JP2003089821A - Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet - Google Patents

Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet

Info

Publication number
JP2003089821A
JP2003089821A JP2001280365A JP2001280365A JP2003089821A JP 2003089821 A JP2003089821 A JP 2003089821A JP 2001280365 A JP2001280365 A JP 2001280365A JP 2001280365 A JP2001280365 A JP 2001280365A JP 2003089821 A JP2003089821 A JP 2003089821A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
cold rolling
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001280365A
Other languages
Japanese (ja)
Other versions
JP3743707B2 (en
Inventor
Hidekazu Nanba
英一 難波
Yosuke Kurosaki
洋介 黒崎
Satoshi Arai
聡 新井
Nobuo Tachibana
伸夫 立花
Fumikazu Ando
文和 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001280365A priority Critical patent/JP3743707B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CNB02814192XA priority patent/CN1321215C/en
Priority to KR1020047000761A priority patent/KR100586440B1/en
Priority to EP02746105A priority patent/EP1411139B1/en
Priority to US10/484,347 priority patent/US7399369B2/en
Priority to PCT/JP2002/007229 priority patent/WO2003008654A1/en
Publication of JP2003089821A publication Critical patent/JP2003089821A/en
Application granted granted Critical
Publication of JP3743707B2 publication Critical patent/JP3743707B2/en
Priority to US12/215,540 priority patent/US7981223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an ultrahigh magnetic flux density grain oriented silicon steel sheet. SOLUTION: A grain oriented silicon steel containing, as fundamental components, by mass, <=0.10% C, 2 to 7% Si, 0.02 to 0.30% Mn, one or two kinds selected from S and Se by 0.001 to 0.040% in total, 0.010 to 0.065% acid soluble Al, 0.0030 to 0.0150% N and 0.0005 to 0.05% Bi is, if required, subjected to annealing, is subjected to cold rolling for one time or two or more times including process annealing, is subjected to decarburizing annealing, is thereafter coated with a separation agent for annealing, is dried, and is subjected to finish annealing. In this production method, the maximum arrival temperature before the final cold rolling is controlled to the following range in accordance with the content of B, and, further, before the decarburizing annealing of the steel sheet cold-rolled to a final sheet thickness, heating is performed to the temperature range of >=700 deg.C within 10 sec, or at a heating rate of >=100 deg.C/sec: -10×ln(A)+1100<=B<=10×ln(A)+1220; wherein A is the Bi content (ppm), and B is the annealing temperature ( deg.C) before the finish cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として変圧器そ
の他の電気機器等の鉄心として利用される方向性電磁鋼
板の製造方法に関するものである。特に、仕上冷延前焼
鈍温度及び脱炭焼鈍の昇温速度を制御することにより、
極めて高い磁束密度をコイル長手方向に安定して有する
一方向性電磁鋼板の製造方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, by controlling the annealing temperature before finish cold rolling and the heating rate of decarburizing annealing,
Provided is a method for manufacturing a grain-oriented electrical steel sheet having a very high magnetic flux density stably in the coil longitudinal direction.

【0002】[0002]

【従来の技術】多くの電気機器に磁気鉄心として用いら
れる方向性電磁鋼板は、通常Siを2〜7%含有し、製
品の結晶組織を{110}<001>方位に高度に集積
させた鋼板である。方向性電磁鋼板の製品特性は鉄損特
性と励磁特性の両方で評価される。鉄損を少なくするこ
とは、電気機器として使用する際に熱エネルギーとして
奪われる損失を少なくするため、省エネルギーの点で有
効である。
2. Description of the Related Art A grain-oriented electrical steel sheet used as a magnetic iron core in many electric appliances usually contains 2 to 7% of Si and has a product crystal structure highly integrated in the {110} <001> orientation. Is. The product properties of grain-oriented electrical steel sheets are evaluated by both core loss properties and excitation properties. Reducing the iron loss is effective in saving energy because it reduces the loss taken as heat energy when used as an electric device.

【0003】一方、励磁特性を高めることは電気機器の
設計磁束密度を高めることが可能となり、機器の小型化
に有効である。製品の結晶組織を{110}<001>
方位に集積することは、励磁特性を高め鉄損低減にも有
効であるため、近年多くの研究が重ねられ、様々な製造
技術が開発されてきた。
On the other hand, increasing the excitation characteristic makes it possible to increase the design magnetic flux density of electric equipment, which is effective for downsizing the equipment. The crystal structure of the product is {110} <001>
Since the integration in the azimuth direction is effective in enhancing the excitation characteristics and reducing the iron loss, a lot of researches have been conducted in recent years and various manufacturing techniques have been developed.

【0004】磁束密度向上のための典型的な技術のひと
つに、特公昭40−15644号公報に開示されている
製造方法が挙げられる。これは、AlNとMnSをイン
ヒビターとして機能させ、最終冷延工程における圧下率
を80%を超える強圧下とする製造方法である。この方
法により、{110}<001>方位に結晶粒の方位が
集積し、B8 (800A/mにおける磁束密度)が1.
870T以上の高磁束密度を有する方向性電磁鋼板が得
られる。
One of typical techniques for improving the magnetic flux density is a manufacturing method disclosed in Japanese Patent Publication No. 40-15644. This is a manufacturing method in which AlN and MnS are made to function as inhibitors, and the rolling reduction in the final cold rolling step is set to a strong reduction exceeding 80%. By this method, the crystal grain orientations are integrated in the {110} <001> orientation, and B8 (magnetic flux density at 800 A / m) is 1.
A grain-oriented electrical steel sheet having a high magnetic flux density of 870 T or higher is obtained.

【0005】しかし、この製造方法に基づく磁束密度B
8 は1.88Tから高々1.95T程度であり、3%珪
素鋼の飽和磁束密度2.03Tの95%程度の値を示し
ているに過ぎない。然るに、近年省エネルギー・省資源
への社会的要求は益々厳しくなり、方向性電磁鋼板の鉄
損低減、磁化特性改善への要求も熾烈になってきてお
り、更なる磁束密度の向上が強く望まれている。
However, the magnetic flux density B based on this manufacturing method
8 is from 1.88T to at most 1.95T, which is only about 95% of the saturation magnetic flux density of 2.03T of 3% silicon steel. However, in recent years, the social demands for energy saving and resource saving have become more and more stringent, and the demands for reducing iron loss and improving the magnetization characteristics of grain-oriented electrical steel sheets have become fierce, and further improvement of magnetic flux density is strongly desired. ing.

【0006】一方、鉄損低減の方法として、特公昭57
−2252号公報に開示されている鋼板にレーザー処理
を施す方法、さらに特公昭58−2569号公報に鋼板
に機械的な歪を導入する方法等、磁区を細分化する様々
な方法が開示されている。上記の手法により磁区細分化
される場合には、磁束密度が高くなれば高くなるほど鉄
損は低減する傾向にある。従って、従来の方向性電磁鋼
板の磁束密度B8 を更に高め、3%珪素鋼の飽和磁束密
度2.03Tに近づける手段の出現が待たれているのが
現状である。
On the other hand, as a method for reducing iron loss, Japanese Patent Publication No.
Various methods for subdividing magnetic domains, such as a method for subjecting a steel sheet to laser treatment disclosed in Japanese Patent No. 2252 and a method for introducing mechanical strain to the steel sheet, are disclosed in Japanese Patent Publication No. 58-2569. There is. When the magnetic domains are subdivided by the above method, the higher the magnetic flux density, the lower the iron loss tends to be. Therefore, the present situation is waiting for the appearance of a means for further increasing the magnetic flux density B8 of the conventional grain-oriented electrical steel sheet to approach the saturation magnetic flux density of 2.03T of 3% silicon steel.

【0007】また、一般的に方向性電磁鋼板の鉄損はJ
IS C2553でW17/50 (B81.7T、50Hz
の励磁条件下でのエネルギー損失)で評価されてグレー
ド分けされているが、近年では、トランスの小型化を図
るために、励磁磁束密度を1.7T以上とする場合や、
1.7Tであってもトランスの鉄心の局部的には1.7
T以上の磁束密度となることが明らかとなっており、高
磁場(例えばW19/50)での鉄損が少ない鋼板が求めら
れている。
Generally, the iron loss of grain-oriented electrical steel sheet is J
W17 / 50 (B81.7T, 50Hz by IS C2553)
Energy loss under excitation conditions) and graded. In recent years, in order to downsize the transformer, the excitation magnetic flux density is set to 1.7 T or more,
Even if it is 1.7T, it is 1.7 locally in the transformer core.
It has been clarified that the magnetic flux density is equal to or higher than T, and a steel sheet having a small iron loss in a high magnetic field (for example, W19 / 50) is required.

【0008】高磁場鉄損の優れた方向性電磁鋼板とし
て、特開2000−345306号公報に鋼板の結晶方
位を{110}<001>の理想方位に対して、平均値
で5度以下のずれとし、鋼板の180℃磁区幅の平均が
0.26超〜0.30mm以下、または、鋼板の磁区幅の
0.4mm超の面積率を3%超〜20%以下とするものが
開示されているが、得られた高磁場鉄損は最も低いもの
でW19/50 =1.13W/kgであり、更なる高磁場低
鉄損を有する方向性電磁鋼板が望まれている。
As a grain-oriented electrical steel sheet excellent in high magnetic field iron loss, Japanese Patent Laid-Open No. 2000-345306 discloses that the crystal orientation of the steel sheet deviates from the ideal orientation of {110} <001> by an average value of 5 degrees or less. It is disclosed that the average 180 ° C. magnetic domain width of the steel sheet is more than 0.26 to 0.30 mm or the area ratio of the magnetic domain width of the steel sheet is more than 0.4% and more than 3% to 20%. However, the obtained high magnetic field iron loss is the lowest, W19 / 50 = 1.13 W / kg, and a grain-oriented electrical steel sheet having a further high magnetic field and low iron loss is desired.

【0009】磁束密度を向上させる技術として、特公昭
58−50295号公報では温度勾配焼鈍法を提案して
いる。この方法で初めて安定してB8 が1.95T以上
の製品が得られるようになった。しかし、この方法は工
場サイズの重量で実施する場合、コイルの一端面から加
熱し、他端部は温度勾配をつけるため冷却するという非
常に熱エネルギー損失を伴うため、工業生産としては問
題があった。
As a technique for improving the magnetic flux density, Japanese Patent Publication No. 58-50295 proposes a temperature gradient annealing method. Only by this method can a product with a B8 of 1.95 T or higher be stably obtained. However, when this method is carried out with a factory-sized weight, there is a problem in industrial production because heating from one end surface of the coil and cooling at the other end of the coil are accompanied by a great heat energy loss. It was

【0010】そこで、特開平6−88171号公報で
は、溶鋼に100〜5000g/T のBiを添加する方法
が開示され、B8 が1.95T以上の製品が得られるよ
うになった。Biの作用は、特開平6−207216号
公報などに開示されるようにインヒビターであるMnS
やAlNなどの微細析出を促進するためインヒビター強
度が上がり、理想的な{110}<001>方位からず
れの少ない結晶粒を選択成長させるのに有利であるため
と考えられている。
Therefore, Japanese Unexamined Patent Publication (Kokai) No. 6-88171 discloses a method of adding 100 to 5000 g / T of Bi to molten steel to obtain a product having a B8 of 1.95 T or more. The action of Bi is MnS which is an inhibitor as disclosed in JP-A-6-207216.
It is considered that the inhibitor strength is increased to promote fine precipitation of AlN and AlN, which is advantageous for selective growth of crystal grains with less deviation from the ideal {110} <001> orientation.

【0011】特に、インヒビターとなるAlNの析出制
御には、これまで熱延板焼鈍、予備冷延後仕上冷延前焼
鈍、あるいは中間焼鈍を含む複数冷延のうちの仕上冷延
前焼鈍温度が深く依存していることがよく知られていた
ために、温度の適正化が行われてきた。
In particular, in order to control precipitation of AlN which is an inhibitor, the annealing temperature before finishing cold rolling among a plurality of cold rolling including hot-rolled sheet annealing, pre-cold rolling after finishing cold rolling before annealing, or intermediate annealing has been performed so far. Since it is well known that it is deeply dependent, the temperature has been optimized.

【0012】Biを素材に含有する場合は、特開平6−
212265号公報では、熱延板焼鈍、または中間焼鈍
を含む複数冷延のうちの仕上冷延前焼鈍を850℃〜1
100℃の範囲で30秒から30分施す方法が、特開平
8−253815号公報では鋼中の過剰Al量により仕
上げ冷延前の焼鈍温度を調整する方法や、特開平11−
124627号公報では熱延板の平均冷却速度を制御す
ると共に、最終冷延に先立つ焼鈍温度をBi含有量に応
じて2400×Bi量(wt%)+875℃〜2400×
Bi量(wt%)+1025℃の範囲に制御する方法が開
示されている。いずれも、仕上冷延前焼鈍温度の適正範
囲はBiを添加しない場合よりも低温とすることが特徴
である。
When Bi is contained in the material, it is disclosed in JP-A-6-
In JP-A-212265, an annealing before finishing cold rolling among a plurality of cold rollings including hot-rolled sheet annealing or intermediate annealing is performed at 850 ° C to 1 ° C.
The method of applying the heat treatment in the range of 100 ° C. for 30 seconds to 30 minutes is disclosed in JP-A-8-253815, in which the annealing temperature before finish cold rolling is adjusted by adjusting the amount of excess Al in the steel, and JP-A-11-
In No. 124627, while controlling the average cooling rate of the hot rolled sheet, the annealing temperature prior to the final cold rolling is 2400 × Bi amount (wt%) + 875 ° C. to 2400 × depending on the Bi content.
A method of controlling within the range of Bi amount (wt%) + 1025 ° C is disclosed. All of them are characterized in that the appropriate range of the annealing temperature before finish cold rolling is lower than that in the case where Bi is not added.

【0013】しかし、一般的に仕上冷延前焼鈍はBi含
有材専用設備でないため、Bi含有材を低温化すると、
Bi含有材と非含有材との間で温度変更をしなければな
らず、温度変更部で二次再結晶不良や二次再結晶しても
磁束密度が低い磁気特性不良が生じることがあった。ま
た、温度変更を温度調整用コイルを用いて実施すること
があるが、生産性を阻害するため好ましくない。
However, in general, the annealing before finish cold rolling is not a dedicated facility for Bi-containing materials, so if the Bi-containing material is cooled to a low temperature,
Since the temperature must be changed between the Bi-containing material and the non-Bi-containing material, a secondary magnetic recrystallization defect or a magnetic characteristic defect with a low magnetic flux density may occur at the temperature changing portion even if the secondary recrystallization occurs. . Further, temperature change may be performed using a temperature adjustment coil, but this is not preferable because it impairs productivity.

【0014】また特開平8−188824号公報で、素
材の組成成分にBi:0.0005〜0.05%を含有
させ脱炭焼鈍する前に、P H2 O /P H2 を0.4以下
の雰囲気中で、700℃以上の温度域へ100℃/s以
上の加熱速度で加熱処理してSiO2 量を制御し、仕上
焼鈍での吸脱窒素挙動を安定化させてコイル内で均一に
高磁束密度を得る技術が開示されている。かかる加熱処
理は誘導加熱あるいは通電加熱等の電気設備を擁して施
されるのが一般的であるため、防爆の観点からH2 濃度
は4%以下とするのが一般的である。
Further, in Japanese Unexamined Patent Publication No. 8-188824, P H 2 O / P H 2 is 0.4% before decarburization annealing by adding Bi: 0.0005 to 0.05% to the composition of the material. In the following atmosphere, heat treatment to a temperature range of 700 ° C or higher at a heating rate of 100 ° C / s or higher to control the amount of SiO 2 , stabilize the adsorption / denitrification behavior during finish annealing, and make it uniform in the coil. A technique for obtaining a high magnetic flux density is disclosed in. Since such heat treatment is generally carried out with electrical equipment such as induction heating or electric heating, the H 2 concentration is generally 4% or less from the viewpoint of explosion protection.

【0015】従ってP H2 O /P H2 を0.4以下の雰
囲気とするためには、低露点で操業を安定化することが
必要であり、除湿設備などの設置が必要であり設備コス
トがかかる。さらに僅かな水素濃度変動にも対応できる
ように露点を制御しなければならず、操業自由度が極め
て少なくなるという問題が生じる。それゆえ、コイルで
焼鈍した際に長手方向で二次再結晶不良や二次再結晶し
ても磁束密度が低い磁気特性不良が生じることがあり、
いまだ安定的に工業生産に至っていない。
Therefore, in order to set the atmosphere of P H 2 O / P H 2 to 0.4 or less, it is necessary to stabilize the operation at a low dew point, it is necessary to install dehumidification equipment, etc. Takes. Furthermore, the dew point must be controlled so as to cope with even a slight fluctuation in hydrogen concentration, which causes a problem that the degree of freedom in operation becomes extremely small. Therefore, when annealed by a coil, a magnetic characteristic defect with a low magnetic flux density may occur even if secondary recrystallization failure or secondary recrystallization occurs in the longitudinal direction,
It has not yet reached stable industrial production.

【0016】[0016]

【発明が解決しようとする課題】上記のような問題に鑑
み本発明は、B8 ≧1.94Tの極めて高い磁束密度を
有する方向性電磁鋼板において、操業自由度が高く安定
的に工業生産する方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention is a method for stably producing industrially a grain oriented electrical steel sheet having a very high magnetic flux density of B8 ≥1.94T with a high degree of operational freedom. The purpose is to provide.

【0017】[0017]

【課題を解決するための手段】本発明の特徴とするとこ
ろは以下の通りである。 (1)質量でC:0.10%以下、Si:2〜7%、M
n:0.02〜0.30%、SおよびSeのうちから選
んだ1種または2種の合計:0.001〜0.040
%、酸可溶性Al:0.010〜0.065%、N:
0.0030〜0.0150%、Bi:0.0005〜
0.05%を基本成分とし、残余はFeおよび不可避的
不純物よりなる一方向性電磁鋼熱延板に、必要に応じて
焼鈍を施し、1回あるいは2回以上または中間焼鈍を挟
む2回以上の冷間圧延を行い、脱炭焼鈍後、焼鈍分離剤
を塗布、乾燥し仕上げ焼鈍を行う方向性電磁鋼板の製造
方法において、仕上げ冷延前の最高到達温度をBi含有
量に応じて下式の範囲に制御すると共に最終板厚まで冷
延された鋼板を脱炭焼鈍する前に、700℃以上の温度
域へ10秒以内あるいは100℃/秒以上の加熱速度に
より加熱することを特徴とするB8 ≧1.94Tの超高
磁束密度で高磁場鉄損に優れる一方向性電磁鋼板の製造
方法。 −10×ln(A)+1100≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃) (2)仕上げ冷延前の最高到達温度をBi含有量に応じ
て下記の範囲に制御することを特徴とする前項(1)記
載のB8 ≧1.94Tの超高磁束密度で高磁場鉄損に優
れる一方向性電磁鋼板の製造方法。 −10×ln(A)+1130≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃) (3)最終板厚まで冷延された鋼板を、700℃以上の
温度域へ10秒以内あるいは100℃/秒以上の加熱速
度で加熱し、直ちに700℃以上の1〜20秒間の予備
焼鈍を施した後に脱炭焼鈍を行うことを特徴とする前記
(1)または(2)記載のB8 ≧1.94Tの超高磁束
密度で高磁場鉄損に優れる一方向性電磁鋼板の製造方
法。
The features of the present invention are as follows. (1) C: 0.10% or less by mass, Si: 2 to 7%, M
n: 0.02 to 0.30%, the total of one or two selected from S and Se: 0.001 to 0.040
%, Acid-soluble Al: 0.010 to 0.065%, N:
0.0030 to 0.0150%, Bi: 0.0005
Annealing is applied to a unidirectional electrical steel hot-rolled sheet consisting of 0.05% as a basic component and the balance being Fe and unavoidable impurities, once or twice or more, or two or more times with intermediate annealing. In the method for producing a grain-oriented electrical steel sheet, in which cold rolling is performed, decarburization annealing is applied, and then an annealing separator is applied, followed by drying and finish annealing, the maximum ultimate temperature before finish cold rolling is calculated according to the Bi content. It is characterized in that the steel sheet cold-rolled to the final thickness is heated to a temperature range of 700 ° C. or higher within 10 seconds or at a heating rate of 100 ° C./second or higher before being decarburized and annealed. A manufacturing method of a grain-oriented electrical steel sheet having an ultrahigh magnetic flux density of B8 ≧ 1.94T and excellent in high magnetic field iron loss. −10 × ln (A) + 1100 ≦ B ≦ −10 × ln
(A) +1220 Here, A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C.) (2) Controlling the maximum temperature before finish cold rolling within the following range according to Bi content. The method for producing a unidirectional electrical steel sheet according to (1) above, which has an ultrahigh magnetic flux density of B8 ≧ 1.94T and is excellent in high magnetic field iron loss. −10 × ln (A) + 1130 ≦ B ≦ −10 × ln
(A) +1220 where A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C) (3) A steel sheet cold rolled to the final thickness is heated to a temperature range of 700 ° C or higher within 10 seconds or B8 ≧ in (1) or (2) above, characterized in that heating is carried out at a heating rate of 100 ° C./sec or more, and immediately after pre-annealing at 700 ° C. or more for 1 to 20 seconds, decarburization annealing is performed. A method for producing a grain-oriented electrical steel sheet having an ultrahigh magnetic flux density of 1.94T and excellent in high magnetic field iron loss.

【0018】[0018]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らは、いわゆる超高磁束密度一方向性電
磁鋼鈑をさらに安定して得るために、種々の研究を鋭意
重ねた結果、一次再結晶焼鈍の昇温速度を100℃/秒
以上とする場合、仕上げ冷間圧延前焼鈍温度とBi含有
量が磁気特性に極めて影響を及ぼすことを以下の実験よ
り見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The present inventors have earnestly conducted various studies in order to more stably obtain a so-called ultra-high magnetic flux density unidirectional electromagnetic steel sheet. As a result, the temperature rising rate of primary recrystallization annealing is set to 100 ° C./sec or more. It was found from the following experiment that the annealing temperature before finish cold rolling and the Bi content have a great influence on the magnetic properties in the case of performing.

【0019】本発明の範囲にある質量でC:0.075
%、Si:3.25%、Mn:0.08%、S:0.0
25%、酸可溶性Al:0.026%、N:0.008
%を含有し、かつBi:0.0001〜0.03%で種
々変更した一方向性電磁鋼鈑用スラブを出発材として1
400℃で加熱した後、熱延して2.3mmの熱延板と
した。引き続き、熱延板焼鈍の最高到達温度を950〜
1230℃の範囲で種々変更した後に、酸洗し、冷間圧
延を行って0.22mm厚の鋼板に仕上げた。その後PH
2 O /P H2 :0.6の雰囲気中で850℃まで500
℃/秒の速度で昇温した後、800℃で湿潤雰囲気中で
脱炭焼鈍を行った。更に、MgOを主成分とする焼鈍分
離剤を塗布してから、1200℃で20時間の仕上げ焼
鈍を施した。この焼鈍済み鋼板に燐酸塩とコロイダルシ
リカを主成分とする絶縁皮膜を焼き付け、レーザー照射
による磁区制御を行った。レーザー照射条件は、照射列
間隔6.5mm、照射点間隔0.6mm、照射エネルギー
0.8 mJ/mm2 である。その後磁気測定を行った。
C: 0.075 by mass within the range of the present invention.
%, Si: 3.25%, Mn: 0.08%, S: 0.0
25%, acid-soluble Al: 0.026%, N: 0.008
%, And Bi: 0.0001 to 0.03% by variously modified slabs for unidirectional electromagnetic steel sheet 1 as a starting material
After heating at 400 ° C., hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. Subsequently, the maximum temperature reached for hot-rolled sheet annealing was 950-
After various changes within the range of 1230 ° C., it was pickled and cold-rolled to finish a 0.22 mm thick steel plate. Then PH
2 O / PH 2 : 500 up to 850 ° C in an atmosphere of 0.6
After the temperature was raised at a rate of ° C / sec, decarburization annealing was performed at 800 ° C in a humid atmosphere. Further, after applying an annealing separator containing MgO as a main component, finish annealing was performed at 1200 ° C. for 20 hours. An insulating film containing phosphate and colloidal silica as a main component was baked on this annealed steel sheet, and magnetic domain control was performed by laser irradiation. The laser irradiation conditions are an irradiation row interval of 6.5 mm, an irradiation point interval of 0.6 mm, and an irradiation energy of 0.8 mJ / mm 2 . After that, magnetic measurement was performed.

【0020】図1及び図2にBi含有量と仕上げ冷延前
焼鈍温度が磁束密度B8 及び鉄損に及ぼす影響を示す。
Bi含有量を増加させるに従い、高磁束密度及び低鉄損
が得られる仕上冷延前焼鈍温度は低下する傾向にあり、
B8 ≧1.94T及びW19/50 ≦1.20w/kgが得られ
るのはBi含有量をA(ppm) とすると、 −10×ln(A)+1100≦仕上冷延前温度(℃)
≦−10×ln(A)+1220 の範囲であり、特に優れた磁気特性が得られたのが、 −10×ln(A)+1130≦仕上冷延前温度(℃)
≦−10×ln(A)+1220 の範囲内であった。
1 and 2 show the effect of Bi content and annealing temperature before finish cold rolling on the magnetic flux density B8 and iron loss.
As the Bi content is increased, the annealing temperature before finish cold rolling, at which high magnetic flux density and low iron loss are obtained, tends to decrease,
B8 ≧ 1.94T and W19 / 50 ≦ 1.20 w / kg are obtained when Bi content is A (ppm), −10 × ln (A) + 1100 ≦ finishing cold rolling temperature (° C.)
≦ −10 × ln (A) +1220, and particularly excellent magnetic characteristics were obtained as follows: −10 × ln (A) + 1130 ≦ temperature before finish cold rolling (° C.)
It was within the range of ≦ −10 × ln (A) +1220.

【0021】上述の実験では1回の冷間圧延による方法
について説明したが、中間焼鈍を挟む2回の冷間圧延し
た場合にも同様の結果が得られた。
In the above experiment, the method by one cold rolling was explained, but the same result was obtained when two cold rolling with intermediate annealing was performed.

【0022】従来は、Biを素材に含有すると特開平1
1−124627号公報に開示されているように一次再
結晶粒径が粗大化する傾向にあり、仕上げ冷延前の焼鈍
温度を低温化させてAlN等の析出分散型インヒビター
を微細化させて、一次再結晶粒径の粗大化を抑制するこ
とが必須となっていた。このため、Bi非含有材との間
で仕上げ冷延前の焼鈍温度変動が生じるため、長手方向
で安定した磁気特性が得られていなかった。
Conventionally, when Bi is contained in the material, it is disclosed in Japanese Patent Laid-Open No.
As disclosed in JP-A 1-124627, the primary recrystallized grain size tends to be coarse, and the annealing temperature before finish cold rolling is lowered to refine the precipitation-dispersed inhibitor such as AlN. It has been essential to suppress the coarsening of the primary recrystallized grain size. For this reason, the annealing temperature change before finish cold rolling occurs between the Bi-free material and stable magnetic characteristics in the longitudinal direction.

【0023】しかし、図1に示すように、一次再結晶焼
鈍あるいは脱炭焼鈍の昇温速度を100℃/秒以上に急
速昇温した場合は、従来のBi含有材に比べて仕上冷延
前焼鈍温度の適正範囲が高温化されている。例えば前述
したように、特開平6−212265号公報では仕上げ
冷延前焼鈍を850〜1100℃の範囲としているが、
本発明ではこれよりも高温化している。これは急速昇温
により一次再結晶核発生頻度を高くして一次再結晶粒径
を小粒径化させることにより、仕上げ冷延前の焼鈍温度
を従来よりも高温化することが可能となり、温度変動抑
制が可能となった。
However, as shown in FIG. 1, when the temperature rising rate of the primary recrystallization annealing or decarburizing annealing is rapidly raised to 100 ° C./sec or more, compared with the conventional Bi-containing material, before finish cold rolling. The appropriate range of annealing temperature is raised. For example, as described above, in JP-A-6-212265, the annealing before finish cold rolling is set in the range of 850 to 1100 ° C.
In the present invention, the temperature is higher than this. This is because it is possible to raise the annealing temperature before finish cold rolling to a higher temperature than before by increasing the frequency of primary recrystallization nucleation and decreasing the primary recrystallized grain size by rapid heating. Fluctuation can be suppressed.

【0024】また、Bi添加量の増加に従い仕上げ冷延
前の適正温度範囲が低温化するが、これはBi添加量の
増加により一次再結晶粒径が粗大化するため、仕上げ冷
延前温度を低温化して一次再結晶粒径調整を行うもので
ある。
Further, as the amount of Bi added increases, the appropriate temperature range before finish cold rolling becomes lower. This is because the primary recrystallized grain size becomes coarser as the amount of Bi added increases. The temperature is lowered to adjust the primary recrystallized grain size.

【0025】さらに、Biを添加した場合は、急速に昇
温した後で脱炭焼鈍前に適度に予備焼鈍を行った方が高
磁場鉄損に優れた一方向性電磁鋼板が得られることを見
出した。これは、Biを素材に含有した場合は、二次再
結晶粒が粗大化して磁区幅が広くなるため高磁場鉄損が
劣化する。ところが予備焼鈍を施すことにより、二次被
膜塗布後に得られる被膜の張力付与効果が十分に得ら
れ、磁区細分化されて高磁場鉄損が良好となるものと考
えられる。
Further, in the case of adding Bi, it is possible to obtain a unidirectional electrical steel sheet excellent in high magnetic field iron loss by performing appropriate pre-annealing after decarburization annealing after rapidly raising the temperature. I found it. This is because when Bi is contained in the material, the secondary recrystallized grains are coarsened and the magnetic domain width is widened, so that the high magnetic field iron loss is deteriorated. However, it is considered that the pre-annealing can sufficiently obtain the tension-imparting effect of the coating obtained after the secondary coating is applied, and the magnetic domains are subdivided to improve the high magnetic field iron loss.

【0026】予備焼鈍により、被膜張力が向上する理由
は定かではないが、加熱直後に保持する予備焼鈍時間に
より、鋼板表層部のSiO2 量が変化する。このSiO
2 量は表層部のSiO2 の被覆率を表していると推定さ
れ、このSiO2 被覆率を適正化することにより、引き
続く脱炭焼鈍板での内部酸化層構造を最適化するものと
考えられ、その後の仕上焼鈍中で一次被膜と地鉄界面を
入り組んだ構造として被膜密着性が向上し、被膜張力が
高くなると考えられる。
Although the reason why the film tension is improved by pre-annealing is not clear, the amount of SiO 2 in the surface layer of the steel sheet changes depending on the pre-annealing time maintained immediately after heating. This SiO
It is presumed that the amount of 2 represents the coverage of SiO 2 on the surface layer portion, and by optimizing this SiO 2 coverage, the internal oxide layer structure in the subsequent decarburized and annealed sheet is considered to be optimized. It is considered that the film adhesion is improved and the film tension is increased by the structure in which the interface between the primary film and the base steel is complicated during the subsequent finish annealing.

【0027】次に本発明の成分条件について説明する。
Cは、0.10%を超えると、冷延後の脱炭焼鈍におい
て脱炭時間が長時間必要となり経済的でないばかりでな
く、脱炭が不完全となりやすく、製品での磁気時効と呼
ばれる磁性不良を起こすので好ましくない。
Next, the component conditions of the present invention will be described.
When C exceeds 0.10%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in a magnetic property called magnetic aging in products. It is not preferable because it causes defects.

【0028】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2%未満では製品の渦電流損失を抑制できな
い。また、7.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2%, the eddy current loss of the product cannot be suppressed. Further, if it exceeds 7.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0029】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnS及び、またはMnSeを形成する重要
な元素である。0.02%未満では、二次再結晶を生じ
させるのに必要なMnS、MnSeの絶対量が不足する
ので好ましくない。また、0.3%を超えた場合は、ス
ラブ加熱時の固溶が困難になるばかりでなく、熱延時の
析出サイズが粗大化しやすくインヒビターとしての最適
サイズ分布が損なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amounts of MnS and MnSe necessary for causing secondary recrystallization are insufficient, which is not preferable. On the other hand, if it exceeds 0.3%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0030】S及び、またはSeは上述したMnとMn
Sおよび、またはMnSeを形成する重要な元素であ
る。上記範囲を逸脱すると充分なインヒビター効果が得
られないので、0.001〜0.040%に限定する必
要がある。
S and / or Se are Mn and Mn described above.
It is an important element that forms S and / or MnSe. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.001 to 0.040%.

【0031】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
10%未満では、量的に不足してインヒビター強度が不
足するので好ましくない。一方0.065%を超えると
インヒビターとして析出させるAlNが粗大化し、結果
としてインヒビター強度を低下させるので好ましくな
い。
Acid-soluble Al is a main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheet, and is 0.0
If it is less than 10%, the amount is insufficient and the inhibitor strength is insufficient, which is not preferable. On the other hand, if it exceeds 0.065%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0032】Nは上述した酸可溶性AlとAlNを形成
する重要な元素である。上記範囲を逸脱すると充分なイ
ンヒビター効果が得られないので、0.0030〜0.
0150%に限定する必要がある。
N is an important element forming AlN and the acid-soluble Al described above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.
It must be limited to 0150%.

【0033】さらに、Snについては薄手製品の二次再
結晶を安定して得る元素として有効であり、また二次再
結晶粒径を小さくする作用もあるため、必要に応じ添加
しても良い。この効果を得るためには、0.05%以上
の添加が必要であり、0.50%を超えた場合にはその
作用が飽和するので、コストアップの点から0.50%
以下の添加がよい。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of a thin product, and also has an action of reducing the secondary recrystallization particle size, so it may be added if necessary. In order to obtain this effect, it is necessary to add 0.05% or more, and when it exceeds 0.50%, the action is saturated, so 0.50% is added from the viewpoint of cost increase.
The following additions are good:

【0034】CuについてはSn添加鋼の一次被膜形成
安定化元素として有効であり、必要により添加する。
0.01%未満では効果が少なく、0.40%を超える
と製品の磁束密度が低下するので好ましくない。
Cu is effective as a primary film formation stabilizing element for Sn-added steel, and is added if necessary.
If it is less than 0.01%, the effect is small, and if it exceeds 0.40%, the magnetic flux density of the product decreases, which is not preferable.

【0035】Sbおよび、またはMoについては薄手製
品の二次再結晶を安定して得る元素として有効であるた
め、必要に応じ添加しても良い。この場合、この効果を
得るためには、0.0030%以上の添加が必要であ
り、0.30%を超えた場合にはその作用が飽和するの
でコストアップの点から0.30%以下に限定する。
Sb and / or Mo are effective as an element for stably obtaining the secondary recrystallization of thin products, and thus may be added if necessary. In this case, in order to obtain this effect, it is necessary to add 0.0030% or more, and when it exceeds 0.30%, its action is saturated, so from the viewpoint of cost increase, it is 0.30% or less. limit.

【0036】Biは本発明であるB8 ≧1.94Tの超
高磁束密度一方向性電磁鋼板の安定製造において、その
スラブ中に含有する必須の元素であり、磁束密度向上効
果を有する。0.0005%未満ではその効果が充分に
得られず、また0.05%を超えた場合は磁束密度向上
効果が飽和するだけでなく、熱延コイルの端部に割れが
発生するので好ましくない。
Bi is an essential element contained in the slab in the stable production of the ultrahigh magnetic flux density grain-oriented electrical steel sheet of B8 ≧ 1.94T according to the present invention, and has an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the end of the hot rolled coil, which is not preferable. .

【0037】次に本発明である超高磁束密度材の安定製
造方法について説明する。上記のごとく成分を調整した
超高磁束密度方向性電磁鋼板製造用溶鋼は、通常の方法
で鋳造される。特に鋳造方法に限定はない。次いで通常
の熱間圧延によって熱延コイルに圧延される。引き続い
て、熱延板焼鈍後仕上げ冷延、あるいは中間焼鈍を含む
複数回の冷延、あるいは熱延板焼鈍後中間焼鈍を含む複
数回の冷延によって製品板厚に仕上げるわけであるが、
仕上げ冷延前の焼鈍では結晶組織の均質化と、AlNの
析出制御を行う。
Next, a stable manufacturing method of the super high magnetic flux density material of the present invention will be described. The molten steel for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling. Subsequently, hot-rolled sheet annealing after finish cold-rolling, or multiple times of cold rolling including intermediate annealing, or hot-rolled sheet annealing followed by multiple times of cold rolling including intermediate annealing, to finish the product sheet thickness,
In the annealing before finish cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.

【0038】本発明の特徴とするところは、以下の範囲
に仕上冷延前焼鈍温度を制御することである。 −10×ln(A)+1100≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) 、B:仕上冷延前焼鈍温
度(℃) この温度が低すぎる場合は、AlNが過剰に微細析出す
るため一次再結晶粒径が小粒径化して、磁束密度が低下
するため、−10×ln(A)+1100℃以上としけ
ればならない。一方で、この温度が高い場合は、一次再
結晶粒径が粗大化して二次再結晶が不安定となるため、
−10×ln(A)+1220℃を上限とする。
The feature of the present invention is to control the annealing temperature before finish cold rolling in the following range. −10 × ln (A) + 1100 ≦ B ≦ −10 × ln
(A) +1202 where A: Bi content (ppm), B: Annealing temperature before finish cold rolling (° C.) If this temperature is too low, AlN is excessively finely precipitated and the primary recrystallized grain size is small. Since the diameter is reduced and the magnetic flux density is reduced, the temperature must be -10 × ln (A) + 1100 ° C. or higher. On the other hand, when this temperature is high, the primary recrystallization grain size becomes coarse and the secondary recrystallization becomes unstable,
The upper limit is −10 × ln (A) + 1220 ° C.

【0039】以上最終製品厚まで圧延されたストリップ
に、脱炭焼鈍を施す。最終板厚まで冷延された鋼板を脱
炭焼鈍する前に、700℃以上の温度域へ100℃/秒
以上の加熱速度により加熱する。この加熱速度について
は、20〜700℃以上の最高到達温度までの平均加熱
速度を示すが、特に300℃〜700℃までの加熱速度
が重要であり、この部分の平均加熱速度が100℃/秒
より遅い場合は、二次再結晶核となる{110}<00
1>粒が増加しないため、二次再結晶が不安定となる。
最高到達温度が700℃以下の場合も{110}<00
1>粒が増加しないため700℃を下限とする。このよ
うな、高い昇温速度を達成するための加熱方法として、
誘導加熱や通電加熱を採用するのがよい。
The strip rolled to the final product thickness is subjected to decarburization annealing. Before decarburizing and annealing the steel sheet cold-rolled to the final thickness, it is heated to a temperature range of 700 ° C or higher at a heating rate of 100 ° C / sec or higher. Regarding this heating rate, the average heating rate up to the highest reached temperature of 20 to 700 ° C. is shown, but the heating rate from 300 ° C. to 700 ° C. is particularly important, and the average heating rate of this part is 100 ° C./sec. When it is slower, it becomes a secondary recrystallization nucleus {110} <00.
Since 1> grains do not increase, secondary recrystallization becomes unstable.
{110} <00 even when the maximum temperature is 700 ° C or less
1> Since the number of grains does not increase, the lower limit is 700 ° C. As such a heating method for achieving a high heating rate,
It is advisable to adopt induction heating or electric heating.

【0040】また、急速昇温を施した後に700℃以上
の予備焼鈍を1〜20秒間を施すと高磁場鉄損が良好と
なるので好ましい。予備焼鈍温度が700℃未満の場合
適性なSiO2 が形成されないため、700℃以上とす
る。予備焼鈍時間が20秒超では、SiO2 量が十分確
保されるが、脱炭不良が生じる。一方で、予備焼鈍時間
が1秒未満のときは適正なSiO2 量が確保できないた
めに、脱Biが促進されずに界面にBiが濃化し過ぎ、
被膜密着性を劣化させる。
Further, it is preferable to perform pre-annealing at 700 ° C. or higher for 1 to 20 seconds after the rapid temperature rise, because the high magnetic field iron loss becomes good. If the pre-annealing temperature is lower than 700 ° C, suitable SiO 2 is not formed, so the temperature is set to 700 ° C or higher. If the pre-annealing time exceeds 20 seconds, a sufficient amount of SiO 2 is secured, but decarburization failure occurs. On the other hand, when the pre-annealing time is less than 1 second, an appropriate amount of SiO 2 cannot be secured, so Bi removal is not promoted and Bi is excessively concentrated at the interface.
Deteriorate coating adhesion.

【0041】次に脱炭焼鈍を行うが、上記加熱処理を昇
温に組み込んでも構わない。上記均熱後に引き続く脱炭
焼鈍の雰囲気は通常と同様である。すなわちH2 とH 2
OもしくはH2 とH2 Oと不活性ガスの混合雰囲気と
し、P H2 O/P H2 を0.15から0.65の範囲と
する。尚、脱炭焼鈍後の残留炭素量は、通常の場合と同
様に50ppm以下とする必要がある。AlNのみをイ
ンヒビターとして用いる場合には、脱炭焼鈍後にアンモ
ニア含有雰囲気中で焼鈍することにより鋼板を窒化し、
この段階でインヒビター形成を行ってもよい。
Next, decarburization annealing is performed, but the above heat treatment is increased.
It may be incorporated into the temperature. Subsequent decarburization after soaking
The annealing atmosphere is the same as usual. Ie H2And H 2
O or H2And H2Mixed atmosphere of O and inert gas
And PH2O / P H2In the range of 0.15 to 0.65
To do. The residual carbon content after decarburization annealing is the same as in the normal case.
Similarly, it is necessary to set it to 50 ppm or less. Only AlN
When used as an inhibitor, after decarburization annealing,
The steel sheet is nitrided by annealing in a near-containing atmosphere,
Inhibitor formation may be performed at this stage.

【0042】脱炭焼鈍後、鋼板にMgOを主体とする焼
鈍分離剤を塗布乾燥するが、この際MgO中にTiO2
を1〜40%程度添加しても良く、好ましくは塗布量を
片面あたり5g/m2 以上とする。
After decarburizing and annealing, the steel sheet is coated with an annealing separator containing MgO as a main component and dried. At this time, TiO 2 is added to MgO.
1 to 40% may be added, and the coating amount is preferably 5 g / m 2 or more per one surface.

【0043】さらに、一次被膜形成、二次再結晶、純化
を目的として1100℃以上の最終仕上焼鈍を行う。多
くの場合、最終仕上焼鈍後、一次被膜の上にさらに絶縁
皮膜を施す。特に燐酸塩とコロイダルシリカを主体とす
るコーティング液を焼き付けることによって得られる絶
縁被膜は、鋼板に対する付与聴力が大きく、更なる鉄損
改善に有効である。さらに、上記一方向性電磁鋼板に、
レーザー照射、プラズマ照射、歯型ロールやエッチング
による溝加工等のいわゆる磁区細分化処理を施しても構
わない。
Further, final finishing annealing at 1100 ° C. or higher is carried out for the purpose of forming a primary film, secondary recrystallization, and purification. In many cases, after the final finish annealing, an additional insulating film is applied on the primary film. In particular, an insulating coating obtained by baking a coating liquid mainly containing phosphate and colloidal silica has a large hearing ability applied to a steel sheet and is effective for further improving iron loss. Furthermore, in the above unidirectional electrical steel sheet,
So-called magnetic domain subdivision processing such as laser irradiation, plasma irradiation, groove processing by tooth type roll or etching may be performed.

【0044】[実施例1]質量でC:0.080%、S
i:3.30%、Mn:0.080%、S:0.025
%、酸可溶性Al:0.026%、N:0.0082%
を含有し、かつBi:0、0.0030、0.015
0、0.0380%を含有するすスラブを、1350℃
で加熱した後、2.3mm厚にまで熱間圧延させた熱延板
を1000、1070、1140、1210℃の4水準
で1分間焼鈍を施した。この後、冷間圧延により最終板
厚0.22mmにまで圧延した。
[Example 1] C: 0.080% by mass, S
i: 3.30%, Mn: 0.080%, S: 0.025
%, Acid-soluble Al: 0.026%, N: 0.0082%
And Bi: 0, 0.0030, 0.015
A soot slab containing 0, 0.0380% at 1350 ° C.
After hot-rolling, the hot-rolled sheet hot-rolled to a thickness of 2.3 mm was annealed at 4 levels of 1000, 1070, 1140 and 1210 ° C. for 1 minute. Then, cold rolling was performed to a final plate thickness of 0.22 mm.

【0045】さらに、得られたストリップを脱炭焼鈍す
る際、300℃〜850℃までの昇温速度を400℃/
秒で850℃まで昇温した後、直ちにP H2 O /PH 2
=0.8の雰囲気中で850℃×5秒間の予備焼鈍を施
し、更に840℃の均一温度、湿潤水素中で脱炭焼鈍し
た。
Further, when decarburizing and annealing the obtained strip, the temperature rising rate from 300 ° C to 850 ° C is 400 ° C /
After increasing the temperature to 850 ° C., in seconds, immediately P H 2 O / PH 2
= 850 ° C for 5 seconds in an atmosphere of 0.8, and further decarburized in wet hydrogen at a uniform temperature of 840 ° C.

【0046】その後、MgOを主成分とする焼鈍分離剤
を塗布して、最高到達温度1200℃で20時間、水素
ガス雰囲気中で高温焼鈍を施した。得られた鋼板の余剰
MgOを除去し、形成されたフォルステライト被膜上に
コロイダルシリカと燐酸塩を主体とする絶縁皮膜を形成
して製品とした後、レーザー照射による磁区制御を行っ
た。レーザー照射条件は、照射列間隔6.5mm、照射点
間隔0.6mm、照射エネルギー0.8 mJ/mm2 である。
この時の製造条件と磁気特性を表1に示す。本発明条件
を満足する条件で製造されたコイルは、鉄損特性に優れ
た方向性電磁鋼板となっている。
After that, an annealing separating agent containing MgO as a main component was applied, and high temperature annealing was performed in a hydrogen gas atmosphere at a maximum reached temperature of 1200 ° C. for 20 hours. After removing excess MgO of the obtained steel sheet and forming an insulating film mainly composed of colloidal silica and phosphate on the formed forsterite film to obtain a product, magnetic domain control was performed by laser irradiation. The laser irradiation conditions are an irradiation row interval of 6.5 mm, an irradiation point interval of 0.6 mm, and an irradiation energy of 0.8 mJ / mm 2 .
Table 1 shows the manufacturing conditions and magnetic characteristics at this time. The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0047】[0047]

【表1】 [Table 1]

【0048】[実施例2]質量でC:0.075%、S
i:3.35%、Mn:0.080%、S:0.025
%、酸可溶性Al:0.025%、N:0.0085
%、Sn:0.0140%、Cu:0.08%を含有
し、かつBi:0.0015、0.0230%を含有す
るすスラブを、1350℃で加熱した後、直ちに圧延し
て2.4mm厚の熱延コイルとした。熱延コイルを冷間圧
延して1.8mmとし、1050℃、1150℃、125
0℃の3水準で1分間の焼鈍を施した。この後、冷間圧
延により最終板厚0.22mmにまで圧延した。その後は
実施例1と同様に処理して製品としたコイルの製造条件
と磁気特性を表2に示す。
[Example 2] C: 0.075% by mass, S
i: 3.35%, Mn: 0.080%, S: 0.025
%, Acid-soluble Al: 0.025%, N: 0.0085
%, Sn: 0.0140%, Cu: 0.08%, and Bi: 0.0015, 0.0230% in a slab heated at 1350 ° C. and immediately rolled. A 4 mm thick hot rolled coil was used. Cold rolled hot rolled coil to 1.8mm, 1050 ℃, 1150 ℃, 125
Annealing was performed at 3 levels of 0 ° C. for 1 minute. Then, cold rolling was performed to a final plate thickness of 0.22 mm. After that, the manufacturing conditions and the magnetic characteristics of the coil processed into the product as in Example 1 are shown in Table 2.

【0049】[0049]

【表2】 [Table 2]

【0050】[実施例3]実施例2で得られた、A1、
A2、B1、B2について、通板方向に対して直角方向
とのなす角が12゜の方向に、5mm間隔で深さ15μ
m、幅90μmの溝を形成したときの磁区制御前後の鉄
損値を表3に示す。本発明条件を満足する条件で製造さ
れたコイルは、鉄損特性に優れた方向性電磁鋼板となっ
ている。
[Example 3] A1 obtained in Example 2
Regarding A2, B1 and B2, the angle formed by the direction perpendicular to the sheet passing direction is 12 ° and the depth is 15μ at 5 mm intervals.
Table 3 shows the iron loss values before and after magnetic domain control when a groove having a width of m and a width of 90 μm was formed. The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0051】[0051]

【表3】 [Table 3]

【0052】[実施例4]質量でC:0.070%、S
i:3.25%、Mn:0.070%、Se:0.01
8%、酸可溶性Al:0.025%、N:0.0084
%、Sb:0.025%、Mo:0.014%を含有
し、かつBi:0.035%を含有するすスラブを、1
400℃で加熱した後、直ちに圧延して2.5mm厚の熱
延コイルとした。熱延コイルに1000℃で焼鈍を施し
た後1.7mmまで冷間圧延したコイルを1000〜12
00℃の間で50℃毎に5水準とって1分間の焼鈍を施
した。この後、冷間圧延により最終板厚0.22mmにま
で圧延した。その後は実施例1と同様に処理して製品と
したコイルの製造条件と磁気特性を表4に示す。本発明
条件を満足する条件で製造されたコイルは、鉄損特性に
優れた方向性電磁鋼板となっている。
[Example 4] C: 0.070% by mass, S
i: 3.25%, Mn: 0.070%, Se: 0.01
8%, acid-soluble Al: 0.025%, N: 0.0084
%, Sb: 0.025%, Mo: 0.014%, and Bi: 0.035%.
After heating at 400 ° C., it was immediately rolled into a hot rolled coil having a thickness of 2.5 mm. The hot-rolled coil was annealed at 1000 ° C. and then cold-rolled to 1.7 mm.
Annealing was performed for 1 minute at 5 ° C. every 50 ° C. between 00 ° C. Then, cold rolling was performed to a final plate thickness of 0.22 mm. Table 4 shows the manufacturing conditions and magnetic properties of the coil which was processed as in Example 1 to obtain a product. The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【発明の効果】本発明により、Biを鋼中に含有する高
磁束密度一方向性電磁鋼板の製造において、操業自由度
が高く、安定製造可能な方法を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a method which has a high degree of operational freedom and can be stably manufactured in the manufacture of a high magnetic flux density unidirectional electrical steel sheet containing Bi in the steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度B8 に及ぼすBi含有量と仕上冷延前
温度の影響を示す図。
FIG. 1 is a diagram showing an influence of Bi content and a temperature before finish cold rolling on a magnetic flux density B8.

【図2】鉄損に及ぼすBi含有量と仕上冷延前温度の影
響を示す図。
FIG. 2 is a diagram showing the effects of Bi content and finish cold rolling temperature on iron loss.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年12月24日(2002.12.
24)
[Submission date] December 24, 2002 (2002.12.
24)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【課題を解決するための手段】本発明の特徴とするとこ
ろは以下の通りである。 (1)質量でC:0.10%以下、Si:2〜7%、M
n:0.02〜0.30%、SおよびSeのうちから選
んだ1種または2種の合計:0.001〜0.040
%、酸可溶性Al:0.010〜0.065%、N:
0.0030〜0.0150%、Bi:0.0005〜
0.05%を基本成分とし、残余はFeおよび不可避的
不純物よりなる一方向性電磁鋼熱延板に、必要に応じて
焼鈍を施し、1回あるいは2回以上または中間焼鈍を挟
む2回以上の冷間圧延を行い、脱炭焼鈍後、焼鈍分離剤
を塗布、乾燥し仕上げ焼鈍を行う方向性電磁鋼板の製造
方法において、仕上げ冷延前焼鈍の最高到達温度をBi
含有量に応じて下記式の範囲に制御すると共に最終板厚
まで冷延された鋼板を700℃以上へ10秒以内あるい
は100℃/秒以上の加熱速度で加熱し、直ちに700
℃以上で1〜20秒間保持して鋼板表層部にSiO2
形成させる予備焼鈍を施した後に脱炭焼鈍を行うことを
特徴とするB8 ≧1.94Tの超高磁束密度で高磁場鉄
損に優れる一方向性電磁鋼板の製造方法。 −10×ln(A)+1100≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃) (2)仕上げ冷延前焼鈍の最高到達温度をBi含有量に
応じて下記の範囲に制御することを特徴とする前項
(1)記載のB8 ≧1.94Tの超高磁束密度で高磁場
鉄損に優れる一方向性電磁鋼板の製造方法。 −10×ln(A)+1130≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃)
The features of the present invention are as follows. (1) C: 0.10% or less by mass, Si: 2 to 7%, M
n: 0.02 to 0.30%, the total of one or two selected from S and Se: 0.001 to 0.040
%, Acid-soluble Al: 0.010 to 0.065%, N:
0.0030 to 0.0150%, Bi: 0.0005
Annealing is applied to a unidirectional electrical steel hot-rolled sheet consisting of 0.05% as a basic component and the balance being Fe and unavoidable impurities, once or twice or more, or two or more times with intermediate annealing. perform cold rolling, after the decarburization annealing, coated with an annealing separating agent, in the production method of dry-oriented electrical steel sheet performing finish annealing, the maximum temperature of the finish cold rolling before annealing Bi
Was heated at final thickness until cold cast steel sheet of 7 00 ° C. 10 seconds on than or 100 ° C. / sec or more heating speeds to control the range of the following formula in accordance with the content immediately 700
Hold the temperature above ℃ for 1 to 20 seconds and add SiO 2 to the steel plate surface layer.
A method for producing a grain-oriented electrical steel sheet having an ultrahigh magnetic flux density of B8 ≧ 1.94T and excellent in high magnetic field iron loss, characterized in that decarburization annealing is performed after performing preliminary annealing for forming . −10 × ln (A) + 1100 ≦ B ≦ −10 × ln
(A) +1220 Here, A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C.) (2) The highest temperature reached for annealing before finish cold rolling is controlled within the following range according to Bi content. The method for producing a grain-oriented electrical steel sheet according to (1) above, which has an ultrahigh magnetic flux density of B8 ≧ 1.94T and is excellent in high magnetic field iron loss. −10 × ln (A) + 1130 ≦ B ≦ −10 × ln
(A) +1220 where A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 聡 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 (72)発明者 立花 伸夫 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 (72)発明者 安藤 文和 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 Fターム(参考) 4K033 AA02 CA09 CA10 FA00 HA01 HA03 JA01 JA04 JA05 LA01 RA04 RA10 SA01 SA02 SA03 TA01 5E041 AA02 CA02 HB11 HB15 NN01 NN13 NN18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Arai             1st Fujimachi, Hirohata-ku, Himeji City Nippon Steel Corporation             Inside the Hirohata Works (72) Inventor Nobuo Tachibana             1st Fujimachi, Hirohata-ku, Himeji City Nippon Steel Corporation             Inside the Hirohata Works (72) Inventor Fumika Ando             1st Fujimachi, Hirohata-ku, Himeji City Nippon Steel Corporation             Inside the Hirohata Works F-term (reference) 4K033 AA02 CA09 CA10 FA00 HA01                       HA03 JA01 JA04 JA05 LA01                       RA04 RA10 SA01 SA02 SA03                       TA01                 5E041 AA02 CA02 HB11 HB15 NN01                       NN13 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量で C :0.10%以下、 Si:2〜7%、 Mn:0.02〜0.30%、 SおよびSeのうちから選んだ1種または2種の合計:
0.001〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05% を基本成分とし、残余はFeおよび不可避的不純物より
なる一方向性電磁鋼熱延板に、必要に応じて焼鈍を施
し、1回あるいは2回以上または中間焼鈍を挟む2回以
上の冷間圧延を行い、脱炭焼鈍後、焼鈍分離剤を塗布、
乾燥し仕上げ焼鈍を行う方向性電磁鋼板の製造方法にお
いて、仕上げ冷延前の最高到達温度をBi含有量に応じ
て下記式の範囲に制御すると共に最終板厚まで冷延され
た鋼板を脱炭焼鈍する前に、700℃以上の温度域へ1
0秒以内あるいは100℃/秒以上の加熱速度により加
熱することを特徴とするB8 ≧1.94Tの超高磁束密
度で高磁場鉄損に優れる一方向性電磁鋼板の製造方法。 −10×ln(A)+1100≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃)
1. C: 0.10% or less by mass, Si: 2 to 7%, Mn: 0.02 to 0.30%, and a total of one or two selected from S and Se:
0.001-0.040%, acid-soluble Al: 0.010-0.065%, N: 0.0030-0.0150%, Bi: 0.0005-0.05% as a basic component, and the balance is A unidirectional electromagnetic steel hot-rolled sheet composed of Fe and unavoidable impurities is annealed, if necessary, and cold-rolled once or twice or more or twice with an intermediate anneal, and then decarburized and annealed. , Apply annealing separator,
In a method for producing a grain-oriented electrical steel sheet that is dried and finish-annealed, the maximum temperature reached before finish cold rolling is controlled within the range of the following formula according to the Bi content, and the steel sheet cold-rolled to the final sheet thickness is decarburized. Before annealing, to a temperature range of 700 ° C or higher 1
A method for producing a grain-oriented electrical steel sheet having an ultrahigh magnetic flux density of B8 ≧ 1.94T and excellent in high magnetic field iron loss, characterized by heating within 0 seconds or at a heating rate of 100 ° C./second or more. −10 × ln (A) + 1100 ≦ B ≦ −10 × ln
(A) +1220 where A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C)
【請求項2】 仕上げ冷延前の最高到達温度をBi含有
量に応じて下記の範囲に制御することを特徴とする請求
項1記載のB8 ≧1.94Tの超高磁束密度で高磁場鉄
損に優れる一方向性電磁鋼板の製造方法。 −10×ln(A)+1130≦B≦−10×ln
(A)+1220 ここで A:Bi含有量(ppm) B:仕上冷延前焼鈍温度(℃)
2. A high magnetic field iron with an ultrahigh magnetic flux density of B8 ≧ 1.94T according to claim 1, characterized in that the maximum ultimate temperature before finish cold rolling is controlled within the following range according to the Bi content. A method for manufacturing a grain-oriented electrical steel sheet with excellent loss. −10 × ln (A) + 1130 ≦ B ≦ −10 × ln
(A) +1220 where A: Bi content (ppm) B: Annealing temperature before finish cold rolling (° C)
【請求項3】 最終板厚まで冷延された鋼板を、700
℃以上の温度域へ10秒以内あるいは100℃/秒以上
の加熱速度で加熱し、直ちに700℃以上で1〜20秒
間保持する予備焼鈍を施した後に脱炭焼鈍を行うことを
特徴とする請求項1または2記載のB8 ≧1.94Tの
超高磁束密度で高磁場鉄損に優れる一方向性電磁鋼板の
製造方法。
3. A steel sheet cold-rolled to a final thickness is 700
A decarburization annealing is performed after performing pre-annealing by heating to a temperature range of ℃ or more within 10 seconds or at a heating rate of 100 ℃ / second or more, and immediately holding at 700 ℃ or more for 1 to 20 seconds. Item 1. A method for producing a grain-oriented electrical steel sheet according to Item 1 or 2, which has an ultrahigh magnetic flux density of B8 ≥ 1.94T and is excellent in high magnetic field iron loss.
JP2001280365A 2001-07-16 2001-09-14 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3743707B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001280365A JP3743707B2 (en) 2001-09-14 2001-09-14 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR1020047000761A KR100586440B1 (en) 2001-07-16 2002-07-16 Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
EP02746105A EP1411139B1 (en) 2001-07-16 2002-07-16 Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
US10/484,347 US7399369B2 (en) 2001-07-16 2002-07-16 Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
CNB02814192XA CN1321215C (en) 2001-07-16 2002-07-16 Ultra-high magnetic fiux density unidirectional electrical steel sheet excellent in high magnetic field iron loss and coating characteristic and production method thereof
PCT/JP2002/007229 WO2003008654A1 (en) 2001-07-16 2002-07-16 Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
US12/215,540 US7981223B2 (en) 2001-07-16 2008-06-27 Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280365A JP3743707B2 (en) 2001-09-14 2001-09-14 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003089821A true JP2003089821A (en) 2003-03-28
JP3743707B2 JP3743707B2 (en) 2006-02-08

Family

ID=19104375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280365A Expired - Lifetime JP3743707B2 (en) 2001-07-16 2001-09-14 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3743707B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007013431A1 (en) * 2005-07-28 2009-02-05 オムロン株式会社 Electrical steel sheet component and method for manufacturing the same
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
CN105525087A (en) * 2015-10-10 2016-04-27 广东盈泉高新材料有限公司 Method for improving quality of bottom layer of oriented silicon steel
WO2016159349A1 (en) * 2015-04-02 2016-10-06 新日鐵住金株式会社 Manufacturing method for unidirectional electromagnetic steel sheet
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007013431A1 (en) * 2005-07-28 2009-02-05 オムロン株式会社 Electrical steel sheet component and method for manufacturing the same
JP4669515B2 (en) * 2005-07-28 2011-04-13 オムロン株式会社 Electrical steel sheet component and method for manufacturing the same
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
WO2016159349A1 (en) * 2015-04-02 2016-10-06 新日鐵住金株式会社 Manufacturing method for unidirectional electromagnetic steel sheet
JPWO2016159349A1 (en) * 2015-04-02 2018-01-18 新日鐵住金株式会社 Manufacturing method of unidirectional electrical steel sheet
RU2686725C1 (en) * 2015-04-02 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method for production of electrical steel sheet with oriented grained structure
US10669600B2 (en) 2015-04-02 2020-06-02 Nippon Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
CN105525087A (en) * 2015-10-10 2016-04-27 广东盈泉高新材料有限公司 Method for improving quality of bottom layer of oriented silicon steel
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP7159595B2 (en) 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3743707B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP3846064B2 (en) Oriented electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
WO2020149333A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH11229036A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R151 Written notification of patent or utility model registration

Ref document number: 3743707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term