JPH04198028A - Lithium manganese double oxide, its production and use - Google Patents

Lithium manganese double oxide, its production and use

Info

Publication number
JPH04198028A
JPH04198028A JP2322351A JP32235190A JPH04198028A JP H04198028 A JPH04198028 A JP H04198028A JP 2322351 A JP2322351 A JP 2322351A JP 32235190 A JP32235190 A JP 32235190A JP H04198028 A JPH04198028 A JP H04198028A
Authority
JP
Japan
Prior art keywords
lithium
surface area
crystal structure
manganese dioxide
type crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2322351A
Other languages
Japanese (ja)
Other versions
JP3057755B2 (en
Inventor
Masaki Okada
昌樹 岡田
Setsuo Yoshida
節夫 吉田
Masaharu Doi
正治 土井
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2322351A priority Critical patent/JP3057755B2/en
Publication of JPH04198028A publication Critical patent/JPH04198028A/en
Application granted granted Critical
Publication of JP3057755B2 publication Critical patent/JP3057755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain fine particles of LiMn2O4 having large surface area and suitable as an anode of a non-aqueous lithium accumulator, etc., by mixing an Li material to an MoO2 having a prescribed BET specific surface area and a theta-type crystal structure and baking the mixture. CONSTITUTION:Manganese dioxide having theta-type crystal structure and a BET specific surface area of 150-500m<2>/g is mixed with a lithium material (e.g. lithium oxide) and the mixture is baked to obtain LiMn2O4) consisting of particles having particle diameter of <=10mum. A non-aqueous lithium accumulator having large cycle discharge capacity can be produced by using the obtained LiMn2O4 as the positive electrode, lithium or a lithium alloy (e.g. lithium/tin alloy) as the negative electrode and a non-aqueous electrolyte as the electrolyte. The MoO2 having theta-type crystal structure can be produced by carrying out the electrolytic reaction at high sulfuric acid concentration and high electric current density compared with those of conventional electrolytic MnO2 production process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規なL iM n 204に関するものであ
り、さらに詳しくは粒径10μm以下の粒子から成るL
 I M n 204とその製造方法並びにその用途に
関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a novel LiM n 204, and more specifically, L iM n 204 consisting of particles with a particle size of 10 μm or less.
This article relates to I M n 204, its manufacturing method, and its uses.

近年L iM n 204は、リチウム二次電池正極材
料として注目されている。
In recent years, LiM n 204 has attracted attention as a positive electrode material for lithium secondary batteries.

[従来の技術] スピネル骨格構造を持つ二酸化マンガンは、八面***置
及び四面***置にリチウムイオンが入ることができ、ま
たリチウムイオンが移動できる通路が三次元的に連なっ
ている。従って、スピネル骨格構造を持つL I M 
n 204は、リチウムイオンを結晶構造内にドープ、
脱ドープすることが可能である。
[Prior Art] Manganese dioxide having a spinel skeleton structure allows lithium ions to enter octahedral and tetrahedral positions, and has a three-dimensional series of paths through which lithium ions can move. Therefore, L I M with a spinel skeleton structure
n 204 is doped with lithium ions into the crystal structure,
It is possible to dedope.

lこの特性から、LiMn2O4は近年リチウム二次電
池の正極材料として注目される゛ようになった。
Due to this property, LiMn2O4 has recently attracted attention as a positive electrode material for lithium secondary batteries.

L s M n 204をリチウム二次電池の正極に用
いた場合、電気化学的な酸化還元を行うため、その際の
電荷補償としてリチウムイオンが、結晶格子内にドープ
又は脱ドープされる。この反応は、結晶格子の構造破壊
を伴わず、安定に繰り返し行えるため、二次電池用正極
材料として有望であり、実用化の検討が行なわれている
When L s M n 204 is used as the positive electrode of a lithium secondary battery, electrochemical redox is performed, and lithium ions are doped or dedoped into the crystal lattice as charge compensation at that time. Since this reaction can be performed repeatedly and stably without destroying the structure of the crystal lattice, it is promising as a positive electrode material for secondary batteries, and its practical application is being studied.

例えば、特開昭63−187569号公報ではMn2O
3とLi2CO3をLi:Mn−に2(モル比)で混合
し、650℃で6時間、850℃で14時間空気中で焼
成する方法で得られたしs M n 204を正極に用
いているが、本発明者らの検討によれば、十分な正極性
能を得るに至っていない。これは、焼成を高温で長時間
行っているために粒子の焼結反応が進み、粒子径の成長
が起こして表面積が低下し、利用効率が低下するためで
ある。
For example, in JP-A-63-187569, Mn2O
3 and Li2CO3 were mixed with Li:Mn- at a molar ratio of 2, and s M n 204 was used as the positive electrode. However, according to studies by the present inventors, sufficient positive electrode performance has not been achieved. This is because the sintering reaction of the particles progresses because the firing is carried out at high temperatures for a long time, causing growth in particle size, decreasing the surface area, and lowering the utilization efficiency.

この問題点を解決するために、幾つかの方法が提案され
ている。
Several methods have been proposed to solve this problem.

特開昭63−218156号公報では、前記特開昭63
−187569号公報の方法でL i M n204を
焼成終了後直ちに水中にて急速冷却を行い、結晶粒子を
微粉化することで表面積を増大させて利用効率を向上さ
せることを提案している。
In JP-A No. 63-218156, the above-mentioned JP-A-63-218156
It is proposed that LiM n204 be rapidly cooled in water immediately after firing by the method of Publication No. 187569, and the crystal particles will be pulverized to increase the surface area and improve the utilization efficiency.

しかし、この方法では、Ll イオンの拡散が容易なス
ピネル構造が歪められ、さらに水分が混入するために、
性能及び保存性の点で問題点かある。
However, in this method, the spinel structure, which allows easy diffusion of Ll ions, is distorted and water is mixed in, resulting in
There are some problems in terms of performance and storage stability.

一方、特開平2−139860号公報では、出発マンガ
ン種としてLl イオンが拡散しやすいγ型構造の二酸
化マンガンを用いて、430℃から510℃の低温で短
時間で焼成する方法が提案されている。この提案は、低
温で短い時間焼成することで粒子成長を抑え、表面積の
低下の抑制を狙ったものである。しかし、本発明者らの
検討によれば、この焼成温度で得られるLiMn2O4
は、表面積の低下は抑制されるものの、結晶格子は小さ
くなり、そのためLl イオンが拡散する3次元チャン
ネルが狭くなる。従って電池正極に用いたときの過電圧
が上昇し、利用率が低下する問題がある。
On the other hand, JP-A-2-139860 proposes a method of firing at a low temperature of 430°C to 510°C in a short time using manganese dioxide having a γ-type structure in which Ll ions easily diffuse as the starting manganese species. . This proposal aims to suppress particle growth and reduce surface area by firing at low temperatures for a short period of time. However, according to the studies of the present inventors, LiMn2O4 obtained at this firing temperature
Although the decrease in surface area is suppressed, the crystal lattice becomes smaller and the three-dimensional channel through which Ll ions diffuse becomes narrower. Therefore, when used as a battery positive electrode, there is a problem in that the overvoltage increases and the utilization rate decreases.

[本発明が解決しようとする課題] これまでに提案されているL iM n 204では、
電気化学活性が不十分であり、正極に用いた場合、サイ
クル特性に優れた非水リチウム二次電池を構成すること
は、困難である。
[Problems to be solved by the present invention] In the L iM n 204 proposed so far,
Electrochemical activity is insufficient, and when used as a positive electrode, it is difficult to construct a non-aqueous lithium secondary battery with excellent cycle characteristics.

[課題を解決するための手段] 本発明者らは、上記課題を解決するために鋭意検討を行
った結果、マンガン酸化物とリチウム材料との混合物を
焼成するL r M n 204の製造方法において、
前記マンガン酸化物にBET比表面積が150m/gか
ら500 m 2/ gのγ型結晶構造を有する二酸化
マンガンを用いてL i M n204の焼成を行うこ
とで、粒子成長が抑制され、粒径10μm以下の粒子か
ら成り、高い表面積を持つ、電気化学的に高活性なL 
iM n 204が合成できることを見出だした。さら
に、これを正極に用い、負極にリチウム又はリチウム合
金、電解質に非水電解質を用いると、高いサイクル放電
容量を持つ非水リチウム二次電池が構成できることを見
出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed a manufacturing method for L r M n 204 in which a mixture of manganese oxide and lithium material is fired. ,
By firing LiM n204 using manganese dioxide having a γ-type crystal structure with a BET specific surface area of 150 m/g to 500 m 2 / g as the manganese oxide, particle growth is suppressed and the particle size is reduced to 10 μm. Electrochemically highly active L, consisting of the following particles and having a high surface area
It has been found that iM n 204 can be synthesized. Furthermore, they discovered that by using this for the positive electrode, lithium or a lithium alloy for the negative electrode, and a nonaqueous electrolyte for the electrolyte, a nonaqueous lithium secondary battery with high cycle discharge capacity could be constructed, and the present invention was completed. .

[作用] 以下本発明を具体的に説明する。[Effect] The present invention will be specifically explained below.

本発明のL I M n 204は、出発マンガン種と
してBET比表面積が150 m 2/ gから500
m2/gのγ型結晶構造を有する二酸化マンガンを用い
て製造することで得られる。本発明者らの検討によれば
、マンガン酸化物とリチウム材料との混合物を焼成する
LiMn2O4の製造方法において、マンガン酸化物に
BET比表面積が150m/gから500m2/gのγ
型結晶構造を有する二酸化マンガンを用いることで、粒
子成長が顕著に抑制されることが分かっている。詳細に
ついては明らかではないが、この効果は以下のように考
えられる。本発明で用いるγ型結晶構造を有する二酸化
マンガンは、BET比表面積が150m/gから500
m2/gであり、リチウム化合物との反応性が極めて高
く、均一組成のLiMn2O4が生成しやすい。また、
結晶構造はγ型であり、γ型の結晶構造を有する二酸化
マンガンは、(IX2)のチャンネル構造を持ち、リチ
ウムの結晶内部への拡散が容易であることから、リチウ
ム化合物と反応させた場合、反応は容易に進行し、二酸
化マンガン粒子表面には過剰のリチウムが残ること無く
反応が進む。即ち、表面にはリチウムが過剰で電気化学
的に不活性なL i −Mn系複合酸化物、例えばLi
MnO3等が生成しない。さらに、リチウムには粒子成
長を促す為、表面のリチウム濃度が過剰になる状態では
粒子成長が容易に起こると考えられる。従って、本発明
のように二酸化マンガン表面と内部のリチウム濃度が均
一になる条件では、粒子成長が抑制され、粒子径が10
μm以下の高表面積のL I M n 204が得られ
ると考えられる。
The L I M n 204 of the present invention has a BET specific surface area of 150 m 2 / g to 500 m 2 / g as the starting manganese species.
It can be obtained by manufacturing using manganese dioxide having a γ-type crystal structure of m2/g. According to the studies of the present inventors, in a method for producing LiMn2O4 in which a mixture of manganese oxide and lithium material is fired, manganese oxide has a BET specific surface area of γ of 150 m/g to 500 m2/g.
It has been found that particle growth is significantly suppressed by using manganese dioxide having a type crystal structure. Although the details are not clear, this effect is thought to be as follows. Manganese dioxide having a γ-type crystal structure used in the present invention has a BET specific surface area of 150 m/g to 500 m/g.
m2/g, the reactivity with lithium compounds is extremely high, and LiMn2O4 with a uniform composition is easily generated. Also,
The crystal structure is γ type, and manganese dioxide having the γ type crystal structure has a (IX2) channel structure, and lithium can easily diffuse into the crystal, so when reacted with a lithium compound, The reaction progresses easily, without leaving excess lithium on the surface of the manganese dioxide particles. That is, an electrochemically inactive Li-Mn complex oxide with excess lithium on the surface, such as Li
MnO3 etc. are not generated. Furthermore, since lithium promotes particle growth, particle growth is thought to occur easily when the lithium concentration on the surface is excessive. Therefore, under conditions where the lithium concentration on the surface and inside the manganese dioxide is uniform as in the present invention, particle growth is suppressed and the particle size is reduced to 10
It is believed that a L I M n 204 with a high surface area of less than μm can be obtained.

この効果は、BET比表面積が150 m 2/ gか
ら500m2/gの間で顕著である。これは、次の理由
に基ずくと考えられる。BET比表面積が150 m 
2/ g未満では、二酸化マンガンとリチウム化合物と
の均一混合を十分に行うことができず、従ってリチウム
が過剰な組成物が二酸化マンガン表面に生成し易くなり
、焼成の際に凝集が起こり易くなる。また、500 m
 2/ gを越えた場合では、二酸化マンガンの熱相転
移のほうがリチウム化合物との焼成反応よりも起こり易
くなり、リチウムが内部に拡散しやすいγ型結晶構造が
歪められるために、組成が不均一となり、凝集が起こり
易くなる。このため、150m2/gがら500m2/
gが最適な条件となり、凝集が抑制され、均一組成で粒
径が10μm以下の高表面積なL I M n 204
が得られると考えられる。これを正極に用い、負極にリ
チウム又はリチウム合金、電解質に非水電解質を用いる
と、高いサイクル放電容量を持つ非水リチウム二次電池
が構成できる。
This effect is remarkable when the BET specific surface area is between 150 m 2 /g and 500 m 2 /g. This is considered to be based on the following reasons. BET specific surface area is 150 m
If it is less than 2/g, the manganese dioxide and the lithium compound cannot be mixed sufficiently uniformly, and therefore a composition containing excessive lithium is likely to be formed on the surface of the manganese dioxide, and agglomeration is likely to occur during firing. . Also, 500 m
When the amount exceeds 2/g, the thermal phase transition of manganese dioxide is more likely to occur than the calcination reaction with the lithium compound, and the γ-type crystal structure in which lithium easily diffuses into the interior is distorted, resulting in non-uniform composition. Therefore, aggregation is likely to occur. Therefore, from 150m2/g to 500m2/g
L I M n 204 with a uniform composition and a high surface area with a particle size of 10 μm or less, with optimum g conditions and suppressed aggregation.
is considered to be obtained. If this is used for the positive electrode, lithium or a lithium alloy for the negative electrode, and a nonaqueous electrolyte for the electrolyte, a nonaqueous lithium secondary battery with high cycle discharge capacity can be constructed.

本発明で用いるγ型結晶構造を有する二酸化マンガンは
、例えば、特公昭41−1696号公報に示されている
ように、通常の電解二酸化マンガンの製造条件よりも高
い硫酸濃度及び高い電流密度で電解反応を行うことで製
造される。通常の製造条件では、電解二酸化マンガンは
(1)式に示した酸化反応により陽極上に析出する。
Manganese dioxide having a γ-type crystal structure used in the present invention can be electrolyzed at a higher sulfuric acid concentration and a higher current density than the normal production conditions for electrolytic manganese dioxide, as shown in Japanese Patent Publication No. 1696/1983, for example. Manufactured by performing a reaction. Under normal manufacturing conditions, electrolytic manganese dioxide is deposited on the anode by the oxidation reaction shown in equation (1).

このため、電解終了後陽極から剥離し粉砕して粒子状の
二酸化マンガンとするが、この方法で得られる二酸化マ
ンガンのBET比表面積は100m2/g以下である。
For this reason, after the electrolysis is completed, it is peeled from the anode and pulverized to produce particulate manganese dioxide, but the BET specific surface area of the manganese dioxide obtained by this method is 100 m2/g or less.

一方、本発明で用いるγ型結晶構造を有する二酸化マン
ガンは、通常の電解二酸化マンガンの製造条件よりも電
解液中の硫酸濃3 + 度を高くすることでMn   イオンの安定性を増3 
+ 加させ、(2)式に示すようにMn   イオンのみを
陽極生成物とし、電解液中で(3)式で示される加水分
解反応を行わせることで製造される。
On the other hand, the manganese dioxide having a γ-type crystal structure used in the present invention increases the stability of Mn ions by increasing the concentration of sulfuric acid in the electrolytic solution compared to the normal production conditions of electrolytic manganese dioxide.
+ is added, and as shown in equation (2), only Mn ions are used as an anode product, and the hydrolysis reaction shown in equation (3) is performed in an electrolytic solution.

2+   3+ Mn   −+Mn   +e  (2)3+    
’l+ 十 2Mn  +2HO→MnO2+Mn  +4H上記方
法で、BET比表面積が150m2/gから500m2
/gのγ型結晶構造をもつ二酸化マンガンが製造される
2+ 3+ Mn −+Mn +e (2) 3+
'l+ 12Mn +2HO→MnO2+Mn +4H By the above method, the BET specific surface area ranges from 150m2/g to 500m2
/g of manganese dioxide having a γ-type crystal structure is produced.

本発明のL iM n 204の製造において用いられ
るリチウム材料は、特に限定されるものではなく、リチ
ウム金属及び/またはリチウム化合物であれば如何なる
ものを用いても良い。例えば、リチウム金属、酸化リチ
ウム、水酸化リチウム、硝酸リチウム、シュウ酸リチウ
ム、炭酸リチウム、ヨウ化リチウム、アルキルリチウム
等が例示される。
The lithium material used in the production of LiM n 204 of the present invention is not particularly limited, and any lithium metal and/or lithium compound may be used. Examples include lithium metal, lithium oxide, lithium hydroxide, lithium nitrate, lithium oxalate, lithium carbonate, lithium iodide, and alkyl lithium.

リチウム材料と二酸化マンガンの混合方法は、特に制限
されるものではなく、固相及び/または液相で混合を行
えば良い。例えば、二酸化マンガン及びリチウム材料の
粉末を、乾式及び/または湿式で混合する方法や、リチ
ウム材料を溶解及び/または懸濁させた溶液中で二酸化
マンガン粉末を撹拌することで混合する方法等が例示さ
れる。
The method for mixing the lithium material and manganese dioxide is not particularly limited, and the mixing may be performed in a solid phase and/or liquid phase. Examples include a method of dry and/or wet mixing of manganese dioxide and lithium material powders, and a method of mixing manganese dioxide powder by stirring it in a solution in which a lithium material is dissolved and/or suspended. be done.

本発明において、焼成は650”C以上の温度で行うこ
とが必要である。この温度以下では、反応が十分に進行
せず、均一組成のL I M n 204を得ることが
できない。また、焼成時の雰囲気は特に制限されないが
、好ましくは酸素含有雰囲気が良い。
In the present invention, it is necessary to perform the firing at a temperature of 650"C or higher. Below this temperature, the reaction will not proceed sufficiently and it will not be possible to obtain L I M n 204 with a uniform composition. The atmosphere at the time is not particularly limited, but preferably an oxygen-containing atmosphere.

本発明の非水リチウム二次電池の負極としてはリチウム
金属、リチウム合金を用いることができる。リチウム合
金としては、例えばリチウム/スズ合金、リチウム/鉛
合金等が挙げられる。
As the negative electrode of the non-aqueous lithium secondary battery of the present invention, lithium metal or lithium alloy can be used. Examples of lithium alloys include lithium/tin alloys and lithium/lead alloys.

また、本発明の非水リチウム二次電池の電解質は特に制
限されないが、例えば、カーボネート類、スルホラン類
、ラクトン類、エーテル類等の有機溶媒中にリチウム塩
を溶解したものや、リチウムイオン導電性の固体電解質
を用いることができる。
Further, the electrolyte of the non-aqueous lithium secondary battery of the present invention is not particularly limited, but examples include those in which a lithium salt is dissolved in an organic solvent such as carbonates, sulfolanes, lactones, and ethers, and electrolytes with lithium ion conductivity. solid electrolyte can be used.

本発明で得られたL iM n 204を正極に用い、
上記の負極及び電解質を使用して第1図に示す二次電池
を構成した。図中に於いて、1:正極用リード線、2:
正極集電用メツシュ、3:正極、4:セバレーター、5
二負極、6:負極集電用メツシュ、7:負極用リード線
、8:容器を示す。
Using LiM n 204 obtained in the present invention as a positive electrode,
A secondary battery shown in FIG. 1 was constructed using the above negative electrode and electrolyte. In the figure, 1: positive electrode lead wire, 2:
Positive electrode current collection mesh, 3: Positive electrode, 4: Separator, 5
Two negative electrodes, 6: mesh for negative electrode current collection, 7: lead wire for negative electrode, 8: container.

[実施例] 以下実施例を述べるが、本発明はこれに限定されるもの
ではない。
[Example] Examples will be described below, but the present invention is not limited thereto.

実施例1 (L I M n 204の作成) 実施例1として、L iM n 204を次のようにし
て製造した。
Example 1 (Preparation of L I M n 204) As Example 1, L i M n 204 was manufactured as follows.

硫酸マンガンを25g/l、硫酸を150g/lの濃度
で含む水溶液中で、陽極にpt板を用いて、50 A 
/ d m 2の電流密度で電解することによって、粒
子状の電解二酸化マンガンを得た。この電解二酸化マン
ガンは分析の結果、BET比表面積190m2/g、粒
径1μm以下、γ型の結晶構造を持つ二酸化マンガンで
あった。第2図に、この二酸化マンガンのX線回折図を
示すが、得られた二酸化マンガンの結晶構造は明らかに
γ型結晶構造を有する。
In an aqueous solution containing manganese sulfate at a concentration of 25 g/l and sulfuric acid at a concentration of 150 g/l, a PT plate was used as the anode, and the temperature was 50 A.
Particulate electrolytic manganese dioxide was obtained by electrolysis at a current density of /d m2. As a result of analysis, this electrolytic manganese dioxide was found to be manganese dioxide having a BET specific surface area of 190 m2/g, a particle size of 1 μm or less, and a γ-type crystal structure. FIG. 2 shows an X-ray diffraction diagram of this manganese dioxide, and the crystal structure of the obtained manganese dioxide clearly has a γ-type crystal structure.

次に、この二酸化マンガン43.5gと酸化リチウム3
.75gを乳鉢で混合した後、850℃で20時間焼成
した。得られた化合物のX線回折及び化学組成分析を行
った。結果をそれぞれ第3図及び以下の表1に示す。分
析の結果から、この化合物はLiMn2O4であると同
定できた。
Next, 43.5g of this manganese dioxide and 3g of lithium oxide
.. After mixing 75 g in a mortar, it was baked at 850° C. for 20 hours. The obtained compound was subjected to X-ray diffraction and chemical composition analysis. The results are shown in FIG. 3 and Table 1 below. From the results of the analysis, this compound was identified as LiMn2O4.

また、SEM観察から粒径は5μm以下であることが分
かった。
Furthermore, SEM observation revealed that the particle size was 5 μm or less.

表1 化学組成分析値 (電池の構成) 得られたLiMn0   導電材のカーボン粉24ゝ 末及び結着材のポリテトラフルオロエチレン粉末を重量
比で、88 : 9 : 3の割合で混合した。この混
合物75mgを5 t o n / c m 2の圧力
で8mmφのベレットに成型した。これを第1図3の正
極として用い、第1図5の負極にはリチウム箔(厚さ0
.2mm)から切り抜いたリチウム片を用い、電解液に
は、プロピレンカーボネートと1゜2ジメトキシエタン
を体積比で1:1の割合で混合した混合液に過塩素酸リ
チウムを1 m o 1 / dm3濃度で溶解した電
解液を第1図4のセパレータに含浸させて、第1図に示
す断面積0.5cm2の電池を構成した。
Table 1 Chemical Composition Analysis Values (Battery Structure) Obtained LiMn0 Carbon powder 24mm powder as a conductive material and polytetrafluoroethylene powder as a binder were mixed in a weight ratio of 88:9:3. 75 mg of this mixture was molded into a pellet of 8 mmφ at a pressure of 5 tons/cm 2 . This was used as the positive electrode in Figure 1 3, and the negative electrode in Figure 1 5 was a lithium foil (thickness 0
.. Using a lithium piece cut out from a 2mm thick piece, the electrolyte was a mixture of propylene carbonate and 1゜2 dimethoxyethane in a volume ratio of 1:1, and lithium perchlorate was added at a concentration of 1 m o 1 / dm3. The separator shown in FIG. 1 and 4 was impregnated with the electrolytic solution dissolved in 1 to form a battery having a cross-sectional area of 0.5 cm 2 as shown in FIG.

(電池性能評価) 上記方法で作成した電池を用いて、5mAの一定電流で
、電池電圧が2v〜4■の範囲で充放電を繰り返した。
(Battery Performance Evaluation) Using the battery prepared by the above method, charging and discharging were repeated at a constant current of 5 mA at a battery voltage in the range of 2 V to 4 ■.

その結果を第4図に示す。結果から、50サイクル目の
放電容量は、1サイクル目の放電容量に対して約80%
の容量を保持していた。
The results are shown in FIG. From the results, the discharge capacity at the 50th cycle is approximately 80% of the discharge capacity at the 1st cycle.
It held a capacity of

比較例1 比較例1として、二酸化マンガンに市販の電解二酸化マ
ンガン(BET比表面積50 m 2/ g 。
Comparative Example 1 As Comparative Example 1, commercially available electrolytic manganese dioxide (BET specific surface area 50 m 2 / g) was used as manganese dioxide.

γ型結晶構造)を用いたこと以外は、実施例1と同様に
L iM n 204を作成した。X線回折からは、得
られた化合物は、L iM n 204であると同定さ
れたが、SEM観察から粒径は約50μmであることが
分かった。次に、これを第1図3の正極に用いた以外は
実施例1と同様な電池を構成した。第4図に示した電池
評価の結果から、50サイクル目の放電容量は、1サイ
クル目の放電容量に対して約30%の容量しか保持して
いなかった。
LiM n 204 was produced in the same manner as in Example 1, except that a γ-type crystal structure) was used. The obtained compound was identified as LiM n 204 by X-ray diffraction, and the particle size was found to be about 50 μm by SEM observation. Next, a battery similar to that of Example 1 was constructed except that this was used as the positive electrode in FIG. 1 and 3. From the battery evaluation results shown in FIG. 4, the discharge capacity at the 50th cycle was only about 30% of the discharge capacity at the 1st cycle.

[発明の効果] 以上述べてきたとおり、本発明の方法により、粒子成長
が抑制され、粒子径が10μm以下の粒径を持ち、高表
面積なL iM n 204が製造でき、これを正極に
用いることで、サイクル放電容量の大きい非水リチウム
二次電池が構成可能となる。
[Effects of the Invention] As described above, according to the method of the present invention, LiM n 204 with suppressed particle growth, a particle size of 10 μm or less, and a high surface area can be produced, and this can be used for a positive electrode. This makes it possible to construct a non-aqueous lithium secondary battery with a large cycle discharge capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1及び比較例1で作成した電池の実施
態様を示す断面概略図である。 図中、 1:正極用リード線、2:正極集電用メツシュ3:正極
      4:セバレータ−5:負極      6
:負極集電用メツシュ7:負極用リード線 8:容器 を示す。 第2図は実施例1で用いた二酸化マンガンのX線回折図
を示す。 第3図は実施例1において作成したLiMn2O4のX
線回折図を示す。 第4図は、実施例1及び比較例1で作成した電池の各サ
イクル毎の放電容量の初期放電容量に対する維持率を示
す図である。 特許出願人   東ソー株式会社 第2図 2e/deg (Cu) 第3図 20んeg(Cu)
FIG. 1 is a schematic cross-sectional view showing embodiments of batteries prepared in Example 1 and Comparative Example 1. In the figure, 1: Lead wire for positive electrode, 2: Mesh for positive electrode current collection 3: Positive electrode 4: Separator 5: Negative electrode 6
: Negative electrode current collection mesh 7: Negative electrode lead wire 8: Indicates a container. FIG. 2 shows an X-ray diffraction pattern of manganese dioxide used in Example 1. Figure 3 shows the X of LiMn2O4 prepared in Example 1.
A line diffraction diagram is shown. FIG. 4 is a diagram showing the retention rate of the discharge capacity for each cycle of the batteries prepared in Example 1 and Comparative Example 1 with respect to the initial discharge capacity. Patent applicant Tosoh Corporation Fig. 2 2e/deg (Cu) Fig. 3 20n eg (Cu)

Claims (3)

【特許請求の範囲】[Claims] (1)粒径10μm以下の粒子から成るLiMn_2O
_4。
(1) LiMn_2O consisting of particles with a particle size of 10 μm or less
_4.
(2)マンガン酸化物とリチウム材料との混合物を焼成
することによりLiMn_2O_4を製造する方法にお
いて、前記マンガン酸化物に、BET比表面積が150
m^2/gから500m^2/gのγ型結晶構造を有す
る二酸化マンガンを用いることを特徴とする、特許請求
の範囲第一項記載のLiMn_2O_4の製造方法。
(2) In a method for producing LiMn_2O_4 by firing a mixture of manganese oxide and lithium material, the manganese oxide has a BET specific surface area of 150
A method for producing LiMn_2O_4 according to claim 1, characterized in that manganese dioxide having a γ-type crystal structure of m^2/g to 500 m^2/g is used.
(3)負極にリチウム又はリチウム合金を用い、電解質
に非水電解質を用いる非水リチウム二次電池において、
正極に特許請求の範囲第一項記載のLiMn_2O_4
を用いることを特徴とする非水リチウム二次電池
(3) In a nonaqueous lithium secondary battery that uses lithium or a lithium alloy for the negative electrode and a nonaqueous electrolyte for the electrolyte,
LiMn_2O_4 described in claim 1 for the positive electrode
A non-aqueous lithium secondary battery characterized by using
JP2322351A 1990-11-28 1990-11-28 Method for producing lithium manganese composite oxide and use thereof Expired - Fee Related JP3057755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322351A JP3057755B2 (en) 1990-11-28 1990-11-28 Method for producing lithium manganese composite oxide and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322351A JP3057755B2 (en) 1990-11-28 1990-11-28 Method for producing lithium manganese composite oxide and use thereof

Publications (2)

Publication Number Publication Date
JPH04198028A true JPH04198028A (en) 1992-07-17
JP3057755B2 JP3057755B2 (en) 2000-07-04

Family

ID=18142675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322351A Expired - Fee Related JP3057755B2 (en) 1990-11-28 1990-11-28 Method for producing lithium manganese composite oxide and use thereof

Country Status (1)

Country Link
JP (1) JP3057755B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683835A (en) * 1993-03-17 1997-11-04 Ultralife Batteries (Uk) Limited Lithiated manganese oxide
US5728367A (en) * 1996-06-17 1998-03-17 Motorola, Inc. Process for fabricating a lithiated transition metal oxide
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
US5985237A (en) * 1996-10-29 1999-11-16 Honjo Chemical Corporation Process for producing lithium manganese oxide suitable for use as cathode material of lithium ion secondary batteries
US6348182B1 (en) 1996-06-27 2002-02-19 The Honjo Chemical Corporation Process for producing lithium manganese oxide with spinel structure
US6506493B1 (en) 1998-11-09 2003-01-14 Nanogram Corporation Metal oxide particles
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
CN111655625A (en) * 2017-11-17 2020-09-11 昂泰克***公司 Solid state synthesis method for metal mixed oxides and surface modification of these materials and use of these materials in batteries, especially as positive electrode materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683835A (en) * 1993-03-17 1997-11-04 Ultralife Batteries (Uk) Limited Lithiated manganese oxide
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
US5728367A (en) * 1996-06-17 1998-03-17 Motorola, Inc. Process for fabricating a lithiated transition metal oxide
US6348182B1 (en) 1996-06-27 2002-02-19 The Honjo Chemical Corporation Process for producing lithium manganese oxide with spinel structure
US5985237A (en) * 1996-10-29 1999-11-16 Honjo Chemical Corporation Process for producing lithium manganese oxide suitable for use as cathode material of lithium ion secondary batteries
US6506493B1 (en) 1998-11-09 2003-01-14 Nanogram Corporation Metal oxide particles
US6680041B1 (en) 1998-11-09 2004-01-20 Nanogram Corporation Reaction methods for producing metal oxide particles
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
CN111655625A (en) * 2017-11-17 2020-09-11 昂泰克***公司 Solid state synthesis method for metal mixed oxides and surface modification of these materials and use of these materials in batteries, especially as positive electrode materials

Also Published As

Publication number Publication date
JP3057755B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4502664B2 (en) Non-aqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JP2005100947A (en) Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP2000348721A (en) Lithium secondary battery
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2006269308A (en) Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
WO2013125798A1 (en) Method for manufacturing cathode active material for lithium secondary battery
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4714978B2 (en) Lithium manganese oxide, method for producing the same, and secondary battery using the same
JP2014017210A (en) Lithium cuprate positive electrode material, method for producing the same, and lithium secondary battery including the positive electrode material as positive electrode active material
JP5691159B2 (en) Manganese oxyhydroxide, process for producing the same, and lithium manganese composite oxide using the same
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof
JPH082921A (en) Lithium-manganese double oxide, its production and use
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JP4320808B2 (en) Lithium manganese oxide having spinel structure, method for producing the same, and use thereof
JP3235098B2 (en) Lithium manganese composite oxide, method for producing the same and use thereof
JP4519959B2 (en) Positive electrode material for lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees