JP2005243448A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005243448A
JP2005243448A JP2004051982A JP2004051982A JP2005243448A JP 2005243448 A JP2005243448 A JP 2005243448A JP 2004051982 A JP2004051982 A JP 2004051982A JP 2004051982 A JP2004051982 A JP 2004051982A JP 2005243448 A JP2005243448 A JP 2005243448A
Authority
JP
Japan
Prior art keywords
battery
active material
graphitizable carbon
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051982A
Other languages
Japanese (ja)
Other versions
JP2005243448A5 (en
Inventor
Hidefumi Hasegawa
英史 長谷川
Yoshinori Naruoka
慶紀 成岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004051982A priority Critical patent/JP2005243448A/en
Publication of JP2005243448A publication Critical patent/JP2005243448A/en
Publication of JP2005243448A5 publication Critical patent/JP2005243448A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery whose input density, power density and available capacity of the battery can be drawn out to the maximum extent by adjusting weight balance of a positive active material and a negative electrode active material in the nonaqueous electrolyte secondary battery and adjusting charge levels of a positive electrode and a negative electrode at the time of full charge. <P>SOLUTION: This nonaqueous electrolyte secondary battery uses a spinel type lithium-manganese compound oxide for the positive active material and hardly graphitizable carbon or easily graphitizable carbon capable of storing/releasing lithium for the negative electrode active material. When the composition of the hardly graphitizable carbon or the easily graphitizable carbon is expressed by Li<SB>x</SB>C<SB>6</SB>, x satisfies 0.46≤x≤0.85 when the open circuit voltage at 25°C is 4.25 V, and the applied weight of the positive active material is 5.34-14.33 g/cm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質に難黒鉛化性炭素を用いた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery using spinel-type lithium manganese composite oxide as a positive electrode active material and non-graphitizable carbon as a negative electrode active material.

リチウムイオン二次電池をはじめとする非水電解質二次電池は、高エネルギー密度、高出力などの優れた特徴をもっているため、携帯電話、ビデオカメラ、パソコンなどの携帯機器の電源として、広く普及している。また、非水電解質二次電池を電気自動車の電源に利用するため、大形で大容量の非水電解質二次電池の開発も盛んにおこなわれている。   Non-aqueous electrolyte secondary batteries, including lithium ion secondary batteries, have excellent features such as high energy density and high output, so they are widely used as power sources for mobile devices such as mobile phones, video cameras, and personal computers. ing. In addition, in order to use a non-aqueous electrolyte secondary battery as a power source for an electric vehicle, a large-sized and large-capacity non-aqueous electrolyte secondary battery has been actively developed.

これらの非水電解質二次電池において、正極活物質としてはコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、スピネル型リチウムマンガン複合酸化物(LiMn)等の各種リチウム含有複合酸化物が用いられ、また、負極活物質としてはリチウムを吸蔵・放出可能な、各種炭素材料、珪素、珪素酸化物、錫酸化物などのホスト物質が用いられている。現在市販されている非水系二次電池の代表的な正極活物質はコバルト酸リチウム(LiCoO)である。 In these non-aqueous electrolyte secondary batteries, various lithium-containing composites such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and spinel type lithium manganese composite oxide (LiMn 2 O 4 ) are used as the positive electrode active material. Oxides are used, and as the negative electrode active material, various carbon materials capable of occluding and releasing lithium, and host materials such as silicon, silicon oxide, and tin oxide are used. A typical positive electrode active material of a non-aqueous secondary battery currently on the market is lithium cobalt oxide (LiCoO 2 ).

非水電解質二次電池の正極活物質にスピネル型リチウムマンガン複合酸化物を用いる特許文献は多数あり、例えば特許文献1では、スピネルマンガン酸リチウム(LiMn)は資源量の豊富さや低価格の点で注目されているが、充放電サイクルに伴う容量劣化が生じやすいという問題や、高温領域においてマンガンの一部が電解液中に溶出するため、サイクル寿命特性や放置特性が劣化するという問題があることが記載されている。 There are many patent documents that use a spinel type lithium manganese oxide as a positive electrode active material of a non-aqueous electrolyte secondary battery. For example, in Patent Document 1, spinel lithium manganate (LiMn 2 O 4 ) is rich in resources and low in price. However, there is a problem that capacity deterioration is likely to occur due to charge / discharge cycles, and that part of manganese elutes in the electrolyte at high temperatures, resulting in deterioration of cycle life characteristics and storage characteristics. It is described that there is.

また、特許文献2には、スピネル型リチウムマンガン複合酸化物のマンガンの一部を1種以上の他の元素で置換することにより、充放電サイクル特性に優れた非水電解液二次電池が得られることが開示され、特許文献3には、正極活物質にスピネル型リチウムマンガン複合酸化物を用いることにより、高率充電においても充電負荷特性が優れ、高容量の非水電解液二次電池が得られることが開示されている。   Patent Document 2 discloses a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics by substituting a part of manganese of the spinel type lithium manganese composite oxide with one or more other elements. Patent Document 3 discloses that a high-capacity non-aqueous electrolyte secondary battery has excellent charge load characteristics even at high rate charging by using a spinel type lithium manganese composite oxide as a positive electrode active material. It is disclosed that it can be obtained.

一方、難黒鉛化炭素は、黒鉛インターカレーション化合物の理論容量を越え、これを負極活物質に用いた場合には、大容量で、充放電サイクル特性が良好なリチウム二次電池が得られることが特許文献4に開示されている。また、易黒鉛化炭素を非水電解液二次電池の負極活物質に用いる技術が特許文献5に開示されている。   On the other hand, non-graphitizable carbon exceeds the theoretical capacity of graphite intercalation compounds, and when used as a negative electrode active material, a lithium secondary battery with a large capacity and good charge / discharge cycle characteristics can be obtained. Is disclosed in Patent Document 4. Further, Patent Document 5 discloses a technique of using graphitizable carbon as a negative electrode active material of a non-aqueous electrolyte secondary battery.

さらに、正極活物質にLiMnなどのマンガン酸リチウム、負極活物質に難黒鉛化炭素を用いた非水電解質二次電池は、充電受入性(大電流で充電を行った際にも、速やかにリチウムイオンが炭素の結晶構造中に吸蔵される)や高率放電特性に優れることが特許文献6に開示されている。 Furthermore, the non-aqueous electrolyte secondary battery using lithium manganate such as LiMn 2 O 4 as the positive electrode active material and non-graphitizable carbon as the negative electrode active material has charge acceptability (even when charged with a large current, Patent Document 6 discloses that lithium ions are quickly occluded in the crystal structure of carbon) and excellent high-rate discharge characteristics.

また、正極活物質にLiMnなどのリチウム−マンガン複合酸化物、負極活物質にグラファイトを用いた非水電解質二次電池において、寿命性能を向上させるために、4.20V以下の電圧で満充電した際のグラファイト(Li)の充電深度xを、0.55≦x≦0.70の範囲とする技術が特許文献7に開示されている。 In addition, in a non-aqueous electrolyte secondary battery using a lithium-manganese composite oxide such as LiMn 2 O 4 as a positive electrode active material and graphite as a negative electrode active material, a voltage of 4.20 V or less is used to improve the life performance. Patent Document 7 discloses a technique for setting the charging depth x of graphite (Li x C 6 ) when fully charged to a range of 0.55 ≦ x ≦ 0.70.

さらに、正極活物質にスピネル型リチウム・マンガン酸化物、負極活物質に難黒鉛化炭素を用いた非水電解質二次電池において、正極活物質の重量をW1とし、負極活物質の重量をW2として、その重量比をW1/W2≦3.1に設定する技術が特許文献8に開示されている。   Further, in a non-aqueous electrolyte secondary battery using spinel type lithium manganese oxide as the positive electrode active material and non-graphitizable carbon as the negative electrode active material, the weight of the positive electrode active material is W1, and the weight of the negative electrode active material is W2. Patent Document 8 discloses a technique for setting the weight ratio to W1 / W2 ≦ 3.1.

特開2000−156244号公報JP 2000-156244 A 特開平11−224693号公報JP-A-11-224693 特開2000−251894号公報JP 2000-251894 A 特開平6−187988号公報Japanese Patent Laid-Open No. 6-188798 特開平6−093078号公報JP-A-6-093078 特開2001−176499号公報JP 2001-176499 A 特開2001−115326号公報JP 2001-115326 A 特開2003−045497号公報JP 2003-045497 A

正極活物質としてのスピネル型リチウムマンガン複合酸化物(LiMn)は、高エネルギー密度および高出力という優れた特性を示す。また、負極活物質としての難黒鉛化炭素や易黒鉛化炭素も高容量で高エネルギー密度であり、さらに充放電曲線がなだらかに変化するという優れた特性を示す。 Spinel-type lithium manganese composite oxide (LiMn 2 O 4 ) as a positive electrode active material exhibits excellent characteristics of high energy density and high output. In addition, non-graphitizable carbon and graphitizable carbon as a negative electrode active material have high capacity and high energy density, and also exhibit excellent characteristics such that the charge / discharge curve changes gently.

そこで、正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質に難黒鉛化炭素や易黒鉛化炭素を用いた非水電解質二次電池は、高エネルギー密度が期待され、さらに充放電電圧は充放電深度とともになだらかに変化し、電池の充放電状態を容易に把握することができる。そのため、この非水電解質二次電池は、電気自動車用やハイブリッド電気自動車用の高性能電源として使用されており、さらなる需要の拡大が見込まれている。   Therefore, non-aqueous electrolyte secondary batteries using spinel-type lithium manganese composite oxide as the positive electrode active material and non-graphitizable carbon or graphitizable carbon as the negative electrode active material are expected to have high energy density, and the charge / discharge voltage is The charging / discharging state of the battery can be easily grasped by changing gently with the charging / discharging depth. Therefore, this non-aqueous electrolyte secondary battery is used as a high-performance power source for electric vehicles and hybrid electric vehicles, and further expansion of demand is expected.

しかしながら、従来の正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質に難黒鉛化炭素や易黒鉛化炭素を用いた非水電解質二次電池においては、電池の入力密度、出力密度および電池の利用可能容量が不十分であるという問題があった。   However, in the conventional non-aqueous electrolyte secondary battery using spinel-type lithium manganese composite oxide as the positive electrode active material and non-graphitizable carbon or graphitizable carbon as the negative electrode active material, the input density, output density, and battery of the battery There was a problem that the available capacity of was insufficient.

また、特許文献8に開示されているように、正極活物質と負極活物質との重量比率を一定の範囲としても、正極板や負極板における活物質の塗布重量や電極合剤層厚みを最適の範囲にしないと、電極合剤層の厚みが厚くなりすぎた場合には合剤層の剥離による電池特性の低下が起こり、高率放電が不可能となる。   Further, as disclosed in Patent Document 8, even if the weight ratio between the positive electrode active material and the negative electrode active material is within a certain range, the application weight of the active material and the electrode mixture layer thickness on the positive electrode plate and the negative electrode plate are optimal. Otherwise, if the electrode mixture layer is too thick, the battery characteristics are degraded due to peeling of the mixture layer, and high-rate discharge becomes impossible.

そこで本発明の目的は、正極活物質と負極活物質の重量バランスを調整し、満充電時の正極と負極の充電レベルを合わせることにより、この問題点を解決し、電池の入力密度、出力密度および電池の利用可能容量を最大限に引き出すことが可能な非水電解質二次電池を提供することにある。   Therefore, the object of the present invention is to solve this problem by adjusting the weight balance between the positive electrode active material and the negative electrode active material and matching the charge level of the positive electrode and the negative electrode at the time of full charge, and the input density and output density of the battery. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery that can maximize the available capacity of the battery.

請求項1の発明は、正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質にリチウムを吸蔵・放出可能な難黒鉛化性炭素または易黒鉛化性炭素を用いた非水電解質二次電池において、前記難黒鉛化性炭素または易黒鉛化性炭素の組成をLiで表した場合、25℃における開路電圧が4.25Vの時のxの値が0.46≦x≦0.85を満たし、正極活物質の塗布重量が5.34〜14.33mg/cmであることを特徴とする。 The invention of claim 1 is a non-aqueous electrolyte secondary battery using spinel-type lithium manganese composite oxide as a positive electrode active material and non-graphitizable carbon or graphitizable carbon capable of occluding and releasing lithium as a negative electrode active material. When the composition of the non-graphitizable carbon or graphitizable carbon is represented by Li x C 6 , the value of x when the open circuit voltage at 25 ° C. is 4.25 V is 0.46 ≦ x ≦ 0. 85, and the coating weight of the positive electrode active material is 5.34 to 14.33 mg / cm 2 .

本発明の非水電解質二次電池においては、電池の入力密度が優れているため、大電流で短時間の充電が可能で、さらに、出力密度が優れているため、大電流での放電が可能となる。また、電池の利用可能容量を最大限に引き出すことが可能であるため、大容量でエネルギー密度の高い非水電解質二次電池を得ることができる。   In the non-aqueous electrolyte secondary battery of the present invention, since the battery input density is excellent, charging can be performed in a short time with a large current, and furthermore, since the output density is excellent, discharging with a large current is possible. It becomes. Moreover, since the available capacity of the battery can be maximized, a non-aqueous electrolyte secondary battery having a large capacity and high energy density can be obtained.

その結果、本発明の非水電解質二次電池は、大形で大容量が要求される、例えば電気自動車の電源などに広く使用することが可能となり、その工業的意義は大きい。   As a result, the non-aqueous electrolyte secondary battery of the present invention can be widely used for, for example, a power source of an electric vehicle which requires a large size and a large capacity, and its industrial significance is great.

本発明の非水電解質二次電池は、正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質にリチウムを吸蔵・放出可能な難黒鉛化性炭素または易黒鉛化性炭素を用いた非水電解質二次電池において、前記難黒鉛化性炭素または易黒鉛化性炭素の組成をLiで表した場合、25℃における開路電圧が4.25Vの時のxの値が0.46≦x≦0.85を満たし、正極活物質の塗布重量が5.34〜14.33mg/cmであることを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte using spinel-type lithium manganese composite oxide as a positive electrode active material and non-graphitizable carbon or graphitizable carbon capable of occluding and releasing lithium as a negative electrode active material. In the electrolyte secondary battery, when the composition of the non-graphitizable carbon or graphitizable carbon is represented by Li x C 6 , the value of x when the open circuit voltage at 25 ° C. is 4.25 V is 0.46 ≦ x ≦ 0.85 is satisfied, and the coating weight of the positive electrode active material is 5.34 to 14.33 mg / cm 2 .

ここでxは難黒鉛化性炭素や易黒鉛化炭素の充電深度を表し、x=0の場合は難黒鉛化性炭素中にリチウムが全く吸蔵されていない状態、x=1の場合は難黒鉛化性炭素中に理論値のリチウムが吸蔵されている状態(LiC)を示す。 Here, x represents the charge depth of non-graphitizable carbon or graphitizable carbon. When x = 0, lithium is not occluded in the non-graphitizable carbon, and when x = 1, non-graphite. shows a state in which lithium of theory has been occluded (LiC 6) in carbon.

また、「25℃における開路電圧が4.25Vの時」とは、本発明の非水電解質二次電池を充電し、充電終了後ある程度の時間が経過し、電池の開路電圧が一定値となった時、この一定値が25℃において4.25Vである状態を示す。したがって、電池の開路電圧が25℃において4.25Vよりも低い場合には、さらに充電を続ける必要がある。   In addition, “when the open circuit voltage at 25 ° C. is 4.25 V” means that the non-aqueous electrolyte secondary battery of the present invention is charged, a certain amount of time elapses after the end of charging, and the open circuit voltage of the battery becomes a constant value. The constant value is 4.25 V at 25 ° C. Therefore, when the open circuit voltage of the battery is lower than 4.25 V at 25 ° C., it is necessary to continue charging.

なお、25℃における開路電圧が4.25Vとなった電池は、さらに定電圧充電を続けても、ほとんど充電電流は流れず、これ以上の充電はほとんどできないない。また、無理に定電流充電を続けて、電池の電圧を4.25Vをはるかに越える電圧にした場合には、電池の劣化が激しくなる。したがって「25℃における開路電圧が4.25Vとなった電池」は、満充電状態の電池であると考えられる。   In addition, even if the battery whose open circuit voltage at 25 ° C. is 4.25 V is continued with constant voltage charging, the charging current hardly flows, and further charging is hardly possible. Further, when the constant current charging is continued forcibly and the voltage of the battery is set to a voltage far exceeding 4.25 V, the deterioration of the battery becomes severe. Therefore, the “battery whose open circuit voltage at 25 ° C. is 4.25 V” is considered to be a fully charged battery.

また、充電方法は、定電流方式、定電圧方式、定電流−定電圧方式など、いずれも使用可能であるが、電池の劣化を防止するためには定電流−定電圧方式が好ましい。   As the charging method, any of a constant current method, a constant voltage method, a constant current-constant voltage method, and the like can be used, but a constant current-constant voltage method is preferable in order to prevent deterioration of the battery.

本発明の非水電解質二次電池においては、負極活物質の難黒鉛化性炭素の組成をLiで表した場合、25℃における開路電圧が4.25Vの時のxの値が0.46≦x≦0.85となるように、電池に含まれる正極活物質であるスピネル型リチウムマンガン複合酸化物と負極活物質である難黒鉛化性炭素や易黒鉛化炭素の重量比を調整する必要がある。 In the non-aqueous electrolyte secondary battery of the present invention, when the composition of the non-graphitizable carbon of the negative electrode active material is represented by Li x C 6 , the value of x when the open circuit voltage at 25 ° C. is 4.25 V is 0. The weight ratio of the spinel-type lithium manganese composite oxide, which is the positive electrode active material included in the battery, to the non-graphitizable carbon or graphitizable carbon, which is the negative electrode active material, is adjusted so that .46 ≦ x ≦ 0.85. There is a need to.

スピネル型リチウムマンガン複合酸化物から吸蔵・放出可能なリチウムの理論容量は148mAh/gである。しかし、実際の非水電解質二次電池に用いた場合には、スピネル型リチウムマンガン複合酸化物の利用率は約73%となるため、108.0mAh/gのリチウムが吸蔵・放出される。なお、スピネル型リチウムマンガン複合酸化物から吸蔵・放出されるリチウムの容量は、温度や電流密度によって変化するが、25℃において、0.2C(5時間率)以下の電流で充放電した場合には、リチウムの容量は最大の108.0mAh/gとなるが、1C(1時間率)の電流で充放電した場合には、リチウムの容量は最大値の95%(1C充放電係数=0.95)の102.6mAh/gとなる。   The theoretical capacity of lithium that can be occluded and released from the spinel-type lithium manganese composite oxide is 148 mAh / g. However, when used in an actual nonaqueous electrolyte secondary battery, the utilization rate of the spinel-type lithium manganese composite oxide is about 73%, so that 108.0 mAh / g of lithium is occluded and released. In addition, although the capacity | capacitance of lithium occluded / released from a spinel type lithium manganese complex oxide changes with temperature and current density, when charging / discharging with current below 0.2C (5-hour rate) at 25 ° C. The maximum capacity of lithium is 108.0 mAh / g, but when charging / discharging at a current of 1 C (1 hour rate), the capacity of lithium is 95% of the maximum value (1 C charging / discharging coefficient = 0.0). 95) of 102.6 mAh / g.

一方、難黒鉛化性炭素や易黒鉛化炭素から吸蔵・放出可能なリチウムの理論容量は372mAh/gである。しかし、実際の非水電解質二次電池に用いた場合には、難黒鉛化性炭素や易黒鉛化炭素の利用率は約92%となるため、342.2mAh/gのリチウムが吸蔵・放出される。なお、実際にスピネル型リチウムマンガン複合酸化物から吸蔵・放出されるリチウムの容量は、温度や電流密度によって変化するが、25℃において、1C(1時間率)以下の電流で放電した場合には、1C充放電係数は1で、リチウムの容量は最大値の342.2mAh/gとなる。   On the other hand, the theoretical capacity of lithium that can be occluded / released from non-graphitizable carbon or graphitizable carbon is 372 mAh / g. However, when used in an actual non-aqueous electrolyte secondary battery, the utilization rate of non-graphitizable carbon and graphitizable carbon is about 92%, so that 342.2 mAh / g of lithium is occluded / released. The The capacity of lithium that is actually occluded / released from the spinel-type lithium manganese composite oxide varies depending on the temperature and current density, but when discharged at 25 ° C. with a current of 1 C (one hour rate) or less. The 1C charge / discharge coefficient is 1, and the lithium capacity is a maximum value of 342.2 mAh / g.

正極活物質と負極活物質の重量比の調整は、1C充放電を基準として、次のようにして行う。スピネル型リチウムマンガン複合酸化物から吸蔵・放出可能なリチウムの容量が102.6mAh/g、難黒鉛化性炭素や易黒鉛化炭素の初期不可逆容量が80mAh/g、難黒鉛化性炭素や易黒鉛化炭素のリチウムの容量は342.2mAh/gであるから、25℃における開路電圧が4.25Vの時(満充電状態)のxの値を0.5とする場合には、難黒鉛化性炭素や易黒鉛化炭素を1g使用した場合には、スピネル型リチウムマンガン複合酸化物の重量は2.45g(=(342.2×0.5+80)/102.6)となる。   Adjustment of the weight ratio of the positive electrode active material and the negative electrode active material is performed as follows on the basis of 1C charge / discharge. The capacity of lithium that can be occluded and released from the spinel-type lithium manganese composite oxide is 102.6 mAh / g, the initial irreversible capacity of non-graphitizable carbon and graphitizable carbon is 80 mAh / g, non-graphitizable carbon and graphite Since the capacity of lithium of carbonized carbon is 342.2 mAh / g, when the value of x when the open circuit voltage at 25 ° C. is 4.25 V (fully charged state) is 0.5, it is difficult to graphitize. When 1 g of carbon or graphitizable carbon is used, the weight of the spinel type lithium manganese composite oxide is 2.45 g (= (342.2 × 0.5 + 80) /102.6).

なお、ここで「難黒鉛化性炭素や易黒鉛化炭素の初期不可逆容量」とは、初期充電において、難黒鉛化性炭素や易黒鉛化炭素にリチウムが吸蔵される時、難黒鉛化性炭素や易黒鉛化炭素の表面で電解液と反応して被膜の形成に消費されるリチウムと、また、難黒鉛化性炭素や易黒鉛化炭素中に吸蔵されるが、放電時に放出されないリチウムの容量、すなわち、充放電に使用されないリチウムの容量を意味する。   Here, “initially irreversible capacity of non-graphitizable carbon or graphitizable carbon” means non-graphitizable carbon when lithium is occluded in non-graphitizable carbon or graphitizable carbon during initial charging. Lithium that reacts with the electrolyte solution on the surface of graphitizable carbon and is consumed for film formation, and the capacity of lithium that is occluded in nongraphitizable carbon and graphitizable carbon but is not released during discharge That is, it means the capacity of lithium that is not used for charging and discharging.

本発明の正極活物質に用いるスピネル型リチウムマンガン複合酸化物は、例えば、Mn、MnOOH、γ−MnOOH等のマンガン化合物と、硝酸リチウム、酢酸リチウム、ヨウ化リチウム等のリチウム化合物を、目的のスピネル型リチウムマンガン複合酸化物の組成のMnとLiのモル比よりもLiのモル比をやや大きくして混合し、空気中、200〜400℃で焼成することで製造することができる。得られたリチウムマンガン複合酸化物がスピネル型であるかどうかは、化学分析とX線回折図から判定する。 The spinel-type lithium manganese composite oxide used for the positive electrode active material of the present invention includes, for example, a manganese compound such as Mn 2 O 3 , MnOOH, and γ-MnOOH, and a lithium compound such as lithium nitrate, lithium acetate, and lithium iodide. The target spinel type lithium manganese complex oxide composition can be produced by mixing with a slightly higher molar ratio of Li than the molar ratio of Mn and Li, and firing in air at 200 to 400 ° C. Whether or not the obtained lithium manganese composite oxide is a spinel type is determined from a chemical analysis and an X-ray diffraction pattern.

本発明の正極活物質に用いるスピネル型リチウムマンガン複合酸化物は、マンガンの一部が他の元素で置換されていてもよく、つぎの一般式で表すことができる。   In the spinel-type lithium manganese composite oxide used for the positive electrode active material of the present invention, a part of manganese may be substituted with other elements, and can be represented by the following general formula.

LiMn2−b4−δ(但し、MはLiおよびMn以外の金属元素を表し、0≦a≦1.2、0≦b≦0.6、0≦c≦0.6、0≦δ≦0.1である)
本発明の負極活物質に用いる難黒鉛化性炭素は、石油ピッチ、コールタールなどの重質油を酸素架橋、スルフォン化、ニトロ化して得られる有機化合物を約700〜1500℃の温度で焼成して炭素化する、などの方法で製造することができる。
Li a Mn 2-b M c O 4-δ ( where, M represents a metal element other than Li and Mn, 0 ≦ a ≦ 1.2,0 ≦ b ≦ 0.6,0 ≦ c ≦ 0.6 , 0 ≦ δ ≦ 0.1)
The non-graphitizable carbon used in the negative electrode active material of the present invention is obtained by firing an organic compound obtained by oxygen crosslinking, sulfonation, and nitration of heavy oil such as petroleum pitch and coal tar at a temperature of about 700 to 1500 ° C. And can be carbonized.

難黒鉛化性炭素の構造は、真比重が1.5〜1.7g/cmの範囲、X線回折における結晶面間隔d002が0.37〜0.39nmの範囲、結晶厚みLcが0.5〜1.5nmの範囲が好ましく、平均粒子径は0.1〜200μmの範囲が好ましい。 The structure of non-graphitizable carbon has a true specific gravity in the range of 1.5 to 1.7 g / cm 2, a crystal plane distance d002 in X-ray diffraction of 0.37 to 0.39 nm, and a crystal thickness Lc of 0.1. The range of 5 to 1.5 nm is preferable, and the average particle size is preferably in the range of 0.1 to 200 μm.

本発明の負極活物質に用いる易黒鉛化性炭素は、石油ピッチなどを出発原料とし、2000℃以上の高温で焼成することによって製造することができる。この易黒鉛化性炭素は、発達したグラファイト構造を有し、X線広角回折法による(002)面の面間隔が3.40オングストロ−ム以下で、c軸方向の結晶子の大きさ(Lc)が200〜1000オングストロ−ムである。   The graphitizable carbon used in the negative electrode active material of the present invention can be produced by firing at a high temperature of 2000 ° C. or higher using petroleum pitch or the like as a starting material. This graphitizable carbon has a developed graphite structure, has a (002) plane spacing of 3.40 angstroms or less by the X-ray wide angle diffraction method, and the crystallite size in the c-axis direction (Lc ) Is 200 to 1000 angstroms.

本発明の非水電解質二次電池において、電池の入力密度、出力密度および電池の利用可能容量は、負極活物質である難黒鉛化性炭素や易黒鉛化炭素(Li)の充電深度xに依存する。そして、本発明では、所定の入力密度および出力密度に対し、充電深度(以下「DOD」とする)xの範囲を広く、つまり実際の充放電に利用可能な容量を最大限に引き出すものである。 In the nonaqueous electrolyte secondary battery of the present invention, the input density and output density of the battery and the usable capacity of the battery are such that the charge depth of non-graphitizable carbon or graphitizable carbon (Li x C 6 ) as the negative electrode active material. Depends on x. In the present invention, the range of the charging depth (hereinafter referred to as “DOD”) x is widened for a predetermined input density and output density, that is, the capacity available for actual charge / discharge is maximized. .

「蓄電池用語(SBA S 0405(2001))」によれば、「出力密度」とは「電池の単位重量または単位体積当たりにとり出せる出力」と定義され、単位はW/kgまたはW/lである。   According to “storage battery terminology (SBA S 0405 (2001))”, “power density” is defined as “output that can be taken out per unit weight or unit volume of a battery”, and the unit is W / kg or W / l. .

本発明においては、上記「蓄電池用語」に準じて、「入力密度」を「電池を充電する場合の、単位重量当たりの入力(W/Kg)」と定義する。具体的には、作製した電池を、25℃において、まず、4A定電流で4.25Vまで、さらに4.25V定電圧で、合計3時間充電し、つぎに、4A定電流で2.5Vまで放電した。さらに、同じ充放電条件で充放電を行ない、2サイクル目の放電容量を「電池容量」とした。この「電池容量」に対しする、ある放電深度(DOD)における、5秒後の充電電力をSAE規格J1798graftに準じて算出し、この入力を電池重量で割った値を「入力密度」とした。   In the present invention, in accordance with the above “storage battery term”, “input density” is defined as “input per unit weight (W / Kg) when charging a battery”. Specifically, at 25 ° C., the prepared battery is first charged to 4.25 V at a constant current of 4 A, further 3 hours at a constant voltage of 4.25 V, and then to 2.5 V at a constant current of 4 A. Discharged. Furthermore, charging / discharging was performed under the same charging / discharging conditions, and the discharge capacity at the second cycle was defined as “battery capacity”. The charging power after 5 seconds at a certain depth of discharge (DOD) with respect to this “battery capacity” was calculated according to SAE standard J1798graft, and a value obtained by dividing this input by the battery weight was defined as “input density”.

また「出力密度」を「電池を放電する場合の、単位重量当たりの出力(W/Kg)」と定義する。具体的には、入力を求めた後、15秒後の出力を同じ規格に準じて算出し、この出力を電池重量で割った値を「出力密度」とした。   “Output density” is defined as “output per unit weight (W / Kg) when discharging a battery”. Specifically, after obtaining the input, the output after 15 seconds was calculated according to the same standard, and a value obtained by dividing the output by the battery weight was defined as “output density”.

さらに、「電池の利用可能容量」とは、完備電池を充放電した場合に、実際に充放電できる放電容量のことで、正極活物質であるスピネル型リチウムマンガン複合酸化物と負極活物質である難黒鉛化性炭素や易黒鉛化炭素との重量比によって決まる容量である。   Furthermore, the “battery usable capacity” means a discharge capacity that can be actually charged / discharged when a complete battery is charged / discharged, and is a spinel type lithium manganese composite oxide that is a positive electrode active material and a negative electrode active material. The capacity is determined by the weight ratio of non-graphitizable carbon and graphitizable carbon.

なお、本発明の非水電解質二次電池において、25℃における開路電圧が4.25Vの時に、負極活物質である難黒鉛化性炭素や易黒鉛化炭素のDOD(=xの値)が0.65を越えると、負極と電解液の反応性が極めて高くなり、釘刺し試験などの安全性試験を行った場合、電池が熱暴走する可能性があることから、xの範囲は0.46≦x<0.65であることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, when the open circuit voltage at 25 ° C. is 4.25 V, the DOD (= x value) of the non-graphitizable carbon or graphitizable carbon that is the negative electrode active material is 0. If the value exceeds .65, the reactivity between the negative electrode and the electrolyte solution becomes extremely high, and when a safety test such as a nail penetration test is performed, the battery may run out of heat, so the range of x is 0.46. It is preferable that ≦ x <0.65.

本発明の非水電解質二次電池においては、正極活物質の塗布重量を5.34〜14.33g/cmの範囲とする。正極活物質の塗布重量を5.34g/cmよりも小さくなると、高エネルギー密度の電池が得られなくなり、一方、正極活物質の塗布重量が14.33g/cmよりも大きくなると、合剤層の剥離によって放電容量が小さくなり、結果として高エネルギー密度の電池が得られなくなる。 In the nonaqueous electrolyte secondary battery of the present invention, the coating weight of the positive electrode active material is in the range of 5.34 to 14.33 g / cm 2 . When the coating weight of the positive electrode active material is smaller than 5.34 g / cm 2 , a battery having a high energy density cannot be obtained, while when the coating weight of the positive electrode active material is larger than 14.33 g / cm 2 , The discharge capacity is reduced by the peeling of the layers, and as a result, a battery having a high energy density cannot be obtained.

また、本発明の非水電解質二次電池に用いるセパレータとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   In addition, as the separator used in the nonaqueous electrolyte secondary battery of the present invention, a microporous membrane made of polyolefin resin such as polyethylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are laminated. Or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous membranes.

本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの高誘電率の環状炭酸エステル、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1−3ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホランおよびこれらの混合溶媒等を挙げることができる。   There are no particular limitations on the organic solvent of the electrolytic solution used in the non-aqueous electrolyte secondary battery of the present invention. For example, low-viscosity chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, ethylene carbonate, propylene High dielectric constant cyclic carbonate such as carbonate and butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide , Sulfolane, and mixed solvents thereof.

また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はなく、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiCFSO、LiN(CFSO、LiN(CSO、LiI、LiAlCl等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうち、1種または2種以上を混合したリチウム塩がよい。 As the electrolyte salt used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, LiClO 4, LiBF 4, LiAsF 6, CF 3 SO 3 Li, LiPF 6, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiI, include LiAlCl 4, and the like and mixtures thereof. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

本発明の非水電解質二次電池においては、これらの有機溶媒と電解質とを組み合わせて、電解液として使用する。なお、これらの電解液の中では、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを混合して使用すると、リチウムイオンの伝導度が極大となるために好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, these organic solvents and an electrolyte are combined and used as an electrolytic solution. In these electrolytic solutions, it is preferable to use a mixture of ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate because the lithium ion conductivity is maximized.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いることができる。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. Conventionally, these components can be used as they are.

以下に、本発明の実施例を、比較例とあわせて説明する。   Examples of the present invention will be described below together with comparative examples.

[スピネル型リチウムマンガン複合酸化物の合成]
炭酸リチウム(LiCO)と炭酸マンガン(MnCO)とを、リチウムとマンガンのモル比が1:2となるように混合し、800℃で12時間焼成して、LiMnを得た。このリチウムマンガン複合酸化物のX線回折図を図1に示す。図1から、得られたリチウムマンガン複合酸化物の結晶構造はスピネル型であることがわかった。
[Synthesis of spinel type lithium manganese oxide]
Lithium carbonate (Li 2 CO 3 ) and manganese carbonate (MnCO 3 ) are mixed so that the molar ratio of lithium to manganese is 1: 2, and calcined at 800 ° C. for 12 hours to obtain LiMn 2 O 4 . It was. An X-ray diffraction pattern of this lithium manganese composite oxide is shown in FIG. From FIG. 1, it was found that the crystal structure of the obtained lithium manganese composite oxide was a spinel type.

[難黒鉛化性炭素の合成]
難黒鉛化性炭素は、フェノール樹脂を2000℃で12時間熱処理して炭素化することによって得た。この難黒鉛化性炭素のX線回折図を図2に示す。図2から、得られた炭素スピネル型難黒鉛化性炭素であることがわかった。この難黒鉛化性炭素は、(002)面の格子面間隔が3.70オングストローム以上、真密度が1.70g/cm未満で、空気気流中での示差熱分析で700℃以上の温度に発熱ピークをもたない炭素質材料である。
[Synthesis of non-graphitizable carbon]
Non-graphitizable carbon was obtained by carbonizing a phenol resin by heat treatment at 2000 ° C. for 12 hours. An X-ray diffraction pattern of this hardly graphitizable carbon is shown in FIG. From FIG. 2, it was found that the obtained carbon spinel type non-graphitizable carbon. This non-graphitizable carbon has a (002) plane lattice spacing of 3.70 angstroms or more, a true density of less than 1.70 g / cm 3 , and a temperature of 700 ° C. or more by differential thermal analysis in an air stream. It is a carbonaceous material that does not have an exothermic peak.

[易黒鉛化性炭素の合成]
易黒鉛化性炭素は、石油ピッチを出発原料とし、2300℃の高温で焼成することによって得た。この易黒鉛化性炭素は、発達したグラファイト構造を有し、X線広角回折法による(002)面の面間隔が3.40オングストロ−ム以下で、c軸方向の結晶子の大きさ(Lc)が200〜1000オングストロ−ムであった。
[Synthesis of graphitizable carbon]
Graphitizable carbon was obtained by firing at a high temperature of 2300 ° C. using petroleum pitch as a starting material. This graphitizable carbon has a developed graphite structure, has a (002) plane spacing of 3.40 angstroms or less by the X-ray wide angle diffraction method, and the crystallite size in the c-axis direction (Lc ) Was 200 to 1000 angstroms.

[実施例1〜5および比較例1、2]
[実施例1]
上記の合成方法で得られたスピネル型リチウムマンガン複合酸化物を正極活物質に、難黒鉛化性炭素を負極活物質に用い、試験電池を作製した。正極板は、活物質としてのスピネル型リチウムマンガン複合酸化物と、導電助剤としてアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とを重量比89:4:7の割合で混合し、この混合物にN−メチル−2−ピロリドン(NMP)を適量添加し、正極ペーストとした。この正極ペーストを、集電体としての厚さ20μmのアルミニウム箔の両面に、ドクターブレードで均一に塗布し、乾燥し、ロールプレスすることにより、アルミニウム箔の両面に正極合剤層を備えた正極板を得た。正極板の寸法は、長さ3994mm、幅89mmとし、正極合剤層の厚さは片面38μmとした。電池に含まれるスピネル型リチウムマンガン複合酸化物の重量は58gとした。
[Examples 1 to 5 and Comparative Examples 1 and 2]
[Example 1]
A test battery was prepared using the spinel-type lithium manganese composite oxide obtained by the above synthesis method as a positive electrode active material and non-graphitizable carbon as a negative electrode active material. In the positive electrode plate, a spinel type lithium manganese oxide as an active material, acetylene black as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder are mixed in a weight ratio of 89: 4: 7. An appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to this mixture to obtain a positive electrode paste. The positive electrode paste is provided with a positive electrode mixture layer on both surfaces of the aluminum foil by applying the positive electrode paste uniformly on both surfaces of a 20 μm thick aluminum foil as a current collector with a doctor blade, drying, and roll pressing. I got a plate. The dimensions of the positive electrode plate were 3994 mm in length and 89 mm in width, and the thickness of the positive electrode mixture layer was 38 μm on one side. The weight of the spinel type lithium manganese composite oxide contained in the battery was 58 g.

負極板は、負極活物質としての難黒鉛化性炭素と、結着材としてのPVdFとを重量比94:6の割合で混合し、この混合物にN−メチル−2−ピロリドン(NMP)を適量添加し、負極ペーストとした。この負極ペーストを、集電体としての厚さ10μmの銅箔に塗布し、乾燥し、ロールプレスすることにより、銅箔の両面に負極合剤層を備えた負極板を得た。負極板の寸法は、長さ4150mm、幅91mmとし、負極合剤層の厚さは片面40μmとした。電池に含まれる難黒鉛化性炭素の重量は25gとした。   For the negative electrode plate, non-graphitizable carbon as a negative electrode active material and PVdF as a binder are mixed at a weight ratio of 94: 6, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is mixed with this mixture. The negative electrode paste was added. This negative electrode paste was applied to a copper foil having a thickness of 10 μm as a current collector, dried, and roll-pressed to obtain a negative electrode plate having a negative electrode mixture layer on both surfaces of the copper foil. The dimensions of the negative electrode plate were 4150 mm in length and 91 mm in width, and the thickness of the negative electrode mixture layer was 40 μm on one side. The weight of the non-graphitizable carbon contained in the battery was 25 g.

前述の正極板と負極板とを、厚さ20μmの微多孔性ポリプロピレンフィルムよりなるセパレータを介して積層し、長円形状に巻回して発電要素を作製した後、この発電要素を長円筒形の有底アルミニウム容器に収納した。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合した混合溶媒に、1.2mol/lの六フッ化リン酸リチウム(LiPF)を溶解した電解液を注液し、電池蓋により密閉し、安全弁を備えた、電池容量5Ah、重さ300gの長円筒型非水電解質二次電池を作製し、これを電池Aとした。 The positive electrode plate and the negative electrode plate described above are laminated via a separator made of a microporous polypropylene film having a thickness of 20 μm and wound into an oval shape to produce a power generation element. It was stored in a bottomed aluminum container. Then, an electrolytic solution in which 1.2 mol / l lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 was poured. A long cylindrical non-aqueous electrolyte secondary battery having a battery capacity of 5 Ah and a weight of 300 g and having a safety valve was produced.

[実施例2]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を62g、難黒鉛化性炭素の重量を24gとしたこと以外は実施例1と同様にして、実施例2の非水電解質二次電池を作製し、これを電池Bとした。
[Example 2]
A nonaqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 62 g and the weight of the non-graphitizable carbon was 24 g. This was designated as Battery B.

[実施例3]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を66g、難黒鉛化性炭素の重量を22gとしたこと以外は実施例1と同様にして、実施例3の非水電解質二次電池を作製し、これを電池Cとした。
[Example 3]
A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 66 g and the weight of the non-graphitizable carbon was 22 g. This was designated as Battery C.

[実施例4]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を69g、難黒鉛化性炭素の重量を21gとしたこと以外は実施例1と同様にして、実施例4の非水電解質二次電池を作製し、これを電池Dとした。
[Example 4]
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1 except that the weight of the spinel type lithium manganese composite oxide contained in the battery was 69 g and the weight of the non-graphitizable carbon was 21 g. This was designated as Battery D.

[実施例5]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を72g、難黒鉛化性炭素の重量を20gとしたこと以外は実施例1と同様にして、比較例2の非水電解質二次電池を作製し、これを電池Eとした。
[Example 5]
A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the weight of the spinel type lithium manganese composite oxide contained in the battery was 72 g and the weight of the non-graphitizable carbon was 20 g. This was designated as Battery E.

[比較例1]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を53g、難黒鉛化性炭素の重量を27gとしたこと以外は実施例1と同様にして、比較例1の非水電解質二次電池を作製し、これを電池Fとした。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the weight of the spinel type lithium manganese composite oxide contained in the battery was 53 g and the weight of the non-graphitizable carbon was 27 g. This was designated as Battery F.

[比較例2]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を76g、難黒鉛化性炭素の重量を18gとしたこと以外は実施例1と同様にして、比較例3の非水電解質二次電池を作製し、これを電池Gとした。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that the weight of the spinel type lithium manganese composite oxide contained in the battery was 76 g and the weight of the non-graphitizable carbon was 18 g. This was designated as Battery G.

[電池特性の測定]
実施例1〜5および比較例1、2の電池A〜Gについて、次のようにして電池特性を測定した。作製した電池を、25℃において、まず、3A定電流で4.25Vまで、さらに4.25V定電圧で、合計3時間充電し、つぎに、3A定電流で2.5Vまで放電した。さらに、同じ充放電条件で充放電を行ない、2サイクル目の放電容量を「電池容量」とした。
[Measurement of battery characteristics]
Regarding the batteries A to G of Examples 1 to 5 and Comparative Examples 1 and 2, the battery characteristics were measured as follows. At 25 ° C., the produced battery was charged to 4.25 V at a constant current of 3 A, further at a constant voltage of 4.25 V for a total of 3 hours, and then discharged to 2.5 V at a constant current of 3 A. Furthermore, charging / discharging was performed under the same charging / discharging conditions, and the discharge capacity at the second cycle was defined as “battery capacity”.

この「電池容量」に対しする放電深度(DOD)における、電流制限を150Aとして、5秒後の上限電圧を4.35Vとした場合の入力をSAE規格J1798graftに準じて算出し、この入力から入力密度を求め、15秒後の下限電圧を2.5Vとした場合の出力を同じ規格に準じて算出し、この出力から出力密度を求めた。   The input when the current limit is 150A and the upper limit voltage after 5 seconds is 4.35V at the depth of discharge (DOD) for this "battery capacity" is calculated according to SAE standard J1798graft. The density was determined, the output when the lower limit voltage after 15 seconds was 2.5 V was calculated according to the same standard, and the output density was determined from this output.

入力および出力の求め方を、実施例1の電池Aを例にとって説明する。実施例1の電池Aでは、電池に含まれるスピネル型リチウムマンガン複合酸化物の重量が58g、難黒鉛化性炭素の重量が25gである。電池Aの容量は5Ahであるので、5A定電流は1C(1時間率)に相当する。   A method of obtaining the input and output will be described by taking the battery A of Example 1 as an example. In the battery A of Example 1, the weight of the spinel-type lithium manganese composite oxide included in the battery is 58 g, and the weight of the non-graphitizable carbon is 25 g. Since the capacity of the battery A is 5 Ah, the constant current of 5 A corresponds to 1 C (1 hour rate).

25℃、1C充放電の場合、スピネル型リチウムマンガン複合酸化物(LiMn)の単位重量当たり充放電容量は102.6mAh/g、難黒鉛化性炭素(Li)の単位重量当たり充放電容量は342.2mAh/gとなる。電池Aでは、正極のリチウム吸蔵・放出容量は5951mAh(=102.6×58)、負極の吸蔵・放出容量は8555mAh(=342.2×25)となり、負極の不可逆容量は2000mAhである。したがって、正極のリチウム吸蔵・放出容量の5951mAhのうち、2000mAhが負極の不可逆容量として消費される。その結果、正極の充放電可能容量は3951mAh(5951−2000)となる。そのため、負極の吸蔵・放出容量は8555mAhであるが、正極は3951mAhしか充放電できないため、この電池を、25℃における開路電圧が4.25Vとなるまで充電した状態、すなわち満充電状態では、負極の難黒鉛化性炭素の組成はLi0.46(x=0.46)となる(3951/8555=0.46)。そして、この電池の1Cでの最大充放電可能容量は3951mAhとなる。 In the case of 1C charge / discharge at 25 ° C., the charge / discharge capacity per unit weight of spinel type lithium manganese composite oxide (LiMn 2 O 4 ) is 102.6 mAh / g, and the unit weight of non-graphitizable carbon (Li x C 6 ) The per charge / discharge capacity is 342.2 mAh / g. In the battery A, the lithium storage / release capacity of the positive electrode is 5951 mAh (= 102.6 × 58), the storage / release capacity of the negative electrode is 8555 mAh (= 342.2 × 25), and the irreversible capacity of the negative electrode is 2000 mAh. Accordingly, 2000 mAh is consumed as the irreversible capacity of the negative electrode out of 5951 mAh of the lithium storage / release capacity of the positive electrode. As a result, the chargeable / dischargeable capacity of the positive electrode is 3951 mAh (5951-2000). Therefore, the storage / release capacity of the negative electrode is 8555 mAh, but since the positive electrode can only charge and discharge 3951 mAh, this battery is charged until the open circuit voltage at 25 ° C. is 4.25 V, that is, in the fully charged state, The composition of the non-graphitizable carbon is Li 0.46 C 6 (x = 0.46) (3951/8555 = 0.46). The maximum chargeable / dischargeable capacity at 1C of this battery is 3951 mAh.

Figure 2005243448
Figure 2005243448

また、実施例1〜5および比較例1、2の電池A〜Gについて、各電池の活物質量を表2に、電池特性測定結果を表3にまとめた。   In addition, for the batteries A to G of Examples 1 to 5 and Comparative Examples 1 and 2, the active material amount of each battery is summarized in Table 2, and the battery characteristic measurement results are summarized in Table 3.

Figure 2005243448
Figure 2005243448

Figure 2005243448
Figure 2005243448

そこで、充電深度100%の電池容量を4.45Ahとし、2サイクル目の放電終了後の電池を4A定電流で充電し、電池の充電深度を10%から90%まで、10%間隔で調整した。各充電深度において、まず4Aで充電した場合の5秒後の電圧(Ec(V))を測定し、入力(5×Ec(W))を求め、つぎに、4Aで放電した場合の15秒後の電圧(Ed(V))を測定し、出力(5×Ed(W))を求めた。この入力を電池重量で割ることにより、「入力密度」を求めることができる。「出力密度」の場合も同様である。   Therefore, the battery capacity at a charging depth of 100% is 4.45 Ah, the battery after the end of the second cycle discharge is charged at a constant current of 4 A, and the charging depth of the battery is adjusted from 10% to 90% at 10% intervals. . At each charging depth, first, the voltage (Ec (V)) after 5 seconds when charging at 4 A is measured, the input (5 × Ec (W)) is obtained, and then 15 seconds when discharging at 4 A. The later voltage (Ed (V)) was measured to determine the output (5 × Ed (W)). By dividing this input by the battery weight, the “input density” can be obtained. The same applies to “output density”.

実施例1〜5および比較例1、2の電池A〜Gについての、放電深度(DOD)と出力との関係を図3に、また、DODと入力との関係を図4に示す。図3および図4において、記号○は実施例1の、△は実施例2の、□は実施例3の、◇は実施例4の、▽は実施例5の、●は比較例1の、▲は比較例2の、DODと充電電力との関係を示す。   FIG. 3 shows the relationship between the depth of discharge (DOD) and the output of the batteries A to G of Examples 1 to 5 and Comparative Examples 1 and 2, and FIG. 4 shows the relationship between the DOD and the input. 3 and 4, the symbol ◯ is for Example 1, Δ is for Example 2, □ is for Example 3, ◇ is for Example 4, ▽ is for Example 5, and ● is for Comparative Example 1. ▲ shows the relationship between DOD and charging power in Comparative Example 2.

本発明の非水電解質二次電池では、放電時間をできるだけ短くするためには、出力密度を1kW/kg以上にしなければならないため、電池重量が300gであるから、出力を300W以上とする必要がある。そこで、図3の各曲線と出力=300Wの直線(図3の破線)との交点のDODの値を読み取り、その値を、各電池の「出力の下限DOD(%)」とした。   In the non-aqueous electrolyte secondary battery of the present invention, in order to shorten the discharge time as much as possible, the output density must be 1 kW / kg or more. Therefore, since the battery weight is 300 g, the output needs to be 300 W or more. is there. Therefore, the DOD value at the intersection of each curve in FIG. 3 and the output = 300 W straight line (broken line in FIG. 3) was read, and the value was defined as the “lower limit DOD (%) of output” for each battery.

また、放電の場合と同様の理由から、充電時間をできるだけ短くするためには、入力を300W以上とする必要がある。そこで、図4の各曲線と入力=300Wの直線(図4の破線)との交点のDODの値を読み取り、その値を、各電池の「入力の下限DOD(%)」とした。   Further, for the same reason as in the case of discharging, in order to shorten the charging time as much as possible, the input needs to be 300 W or more. Therefore, the DOD value at the intersection of each curve in FIG. 4 and the input = 300 W straight line (broken line in FIG. 4) was read, and the value was taken as the “input lower limit DOD (%)” of each battery.

次に、各電池の出力の下限DODと充電電力の下限DODとの差から、充放電に利用可能なDOD範囲を求め、その値と最大充放電可能容量とから「利用可能充放電容量」を求めた。その結果を表4にまとめた。   Next, the DOD range that can be used for charging / discharging is determined from the difference between the lower limit DOD of the output of each battery and the lower limit DOD of the charging power, and the “available charge / discharge capacity” is calculated from the value and the maximum charge / discharge capacity. Asked. The results are summarized in Table 4.

Figure 2005243448
Figure 2005243448

また、負極の満充電状態組成(Liのxの値)と利用可能充放電容量との関係を図5に示した。図5から、Liのxの値が0.46≦x≦0.85を満たす実施例1〜5の電池A〜Eの場合に、利用可能充放電容量が2.5Ahよりも大きくなるが、xの値がこの範囲外である比較例1および2の電池F、Gの場合は、利用可能充放電容量が2.5Ah以下となることがわかった。 FIG. 5 shows the relationship between the composition of the negative electrode in the fully charged state (the value of x in Li x C 6 ) and the available charge / discharge capacity. From FIG. 5, in the case of the batteries A to E of Examples 1 to 5 where the value x of Li x C 6 satisfies 0.46 ≦ x ≦ 0.85, the available charge / discharge capacity is larger than 2.5 Ah. However, in the case of the batteries F and G of Comparative Examples 1 and 2 in which the value of x was outside this range, it was found that the available charge / discharge capacity was 2.5 Ah or less.

なお、難黒鉛化炭素の代わりに易黒鉛化炭素を用いたこと以外は、実施例1〜5および比較例1、2と同様の電池を作製し、同様の試験をおこなった。その結果、難黒鉛化炭素を用いた場合とほぼ同様の結果が得られた。   In addition, except having used easily graphitized carbon instead of non-graphitizable carbon, the battery similar to Examples 1-5 and Comparative Examples 1 and 2 was produced, and the same test was done. As a result, almost the same result as in the case of using non-graphitizable carbon was obtained.

[実施例6〜9]
[実施例6]
電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比5:5で混合した混合溶媒に、1.2mol/lの六フッ化リン酸リチウム(LiPF)を溶解した電解液を用いたこと以外実施例1と同様にして、実施例6の非水電解質二次電池を作製し、これを電池Hとした。
[Examples 6 to 9]
[Example 6]
As an electrolytic solution, an electrolytic solution in which 1.2 mol / l lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 5: 5. A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1 except that was used as Battery H.

[実施例7]
電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合した混合溶媒に、1.0mol/lの四フッ化ほう酸リチウム(LiBF)を溶解した電解液を用いたこと以外実施例1と同様にして、実施例7の非水電解質二次電池を作製し、これを電池Iとした。
[Example 7]
As an electrolytic solution, an electrolytic solution in which 1.0 mol / l lithium tetrafluoroborate (LiBF 4 ) is dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 is used. A nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as Example 1 except that it was used, and this was designated as Battery I.

[実施例8]
電解液として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比5:5で混合した混合溶媒に、1.2mol/lの六フッ化リン酸リチウム(LiPF)を溶解した電解液を用いたこと以外実施例1と同様にして、実施例8の非水電解質二次電池を作製し、これを電池Jとした。
[Example 8]
Electrolysis in which 1.2 mol / l lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 5: 5. A nonaqueous electrolyte secondary battery of Example 8 was produced in the same manner as Example 1 except that the liquid was used, and this was designated as Battery J.

[実施例9]
電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とエチルメチルカーボネート(EMC)を体積比3:4:4で混合した混合溶媒に、1.2mol/lの六フッ化リン酸リチウム(LiPF)を溶解した電解液を用いたこと以外実施例1と同様にして、実施例9の非水電解質二次電池を作製し、これを電池Kとした。
[Example 9]
As an electrolytic solution, 1.2 mol / l lithium hexafluorophosphate (1.2 mol / l) was added to a mixed solvent in which ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 4: 4. A nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1 except that an electrolytic solution in which LiPF 6 ) was dissolved was used, and this was designated as a battery K.

実施例6〜9の電池H〜Kの特性を、実施例1と同じ条件で測定した結果、負極の満充電状態組成(Liのxの値)はx=0.46となり、利用可能充放電容量は約2.75Ahと、実施例1の場合と同様の結果が得られ、本願発明の非水電解質二次電池は、電解液の種類を代えた場合も、同様の優れた結果が得られることがわかった。 As a result of measuring the characteristics of the batteries H to K of Examples 6 to 9 under the same conditions as in Example 1, the fully charged state composition of the negative electrode (the value of x of Li x C 6 ) was x = 0.46. The charge / discharge capacity is about 2.75 Ah, which is the same result as in Example 1. The nonaqueous electrolyte secondary battery of the present invention has the same excellent result even when the type of the electrolyte is changed. Was found to be obtained.

[実施例10〜14および比較例3、4]
[実施例10]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を51g、難黒鉛化性炭素の重量を19gとし、正極板の長さを5381mm、負極板の長さを5537mmとしたこと以外は実施例1と同様にして、実施例10の非水電解質二次電池を作製し、これを電池Lとした。
[Examples 10 to 14 and Comparative Examples 3 and 4]
[Example 10]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 51 g, the weight of the non-graphitizable carbon was 19 g, the length of the positive electrode plate was 5381 mm, and the length of the negative electrode plate was 5537 mm. In the same manner as described above, a non-aqueous electrolyte secondary battery of Example 10 was produced, and this was designated as a battery L.

[実施例11]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を58g、難黒鉛化性炭素の重量を22gとし、正極板の長さを4561mm、負極板の長さを4717mmとしたこと以外は実施例1と同様にして、実施例11の非水電解質二次電池を作製し、これを電池Mとした。
[Example 11]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 58 g, the weight of the non-graphitizable carbon was 22 g, the length of the positive electrode plate was 4561 mm, and the length of the negative electrode plate was 4717 mm. In the same manner as described above, a nonaqueous electrolyte secondary battery of Example 11 was produced, and this was designated as a battery M.

[実施例12]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を66g、難黒鉛化性炭素の重量を25gとし、正極板の長さを3489mm、負極板の長さを3645mmとしたこと以外は実施例1と同様にして、実施例12の非水電解質二次電池を作製し、これを電池Nとした。
[Example 12]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 66 g, the weight of the non-graphitizable carbon was 25 g, the length of the positive electrode plate was 3489 mm, and the length of the negative electrode plate was 3645 mm. In the same manner as described above, a nonaqueous electrolyte secondary battery of Example 12 was produced, and this was designated as a battery N.

[実施例13]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を69g、難黒鉛化性炭素の重量を26gとし、正極板の長さを3110mm、負極板の長さを3267mmとしたこと以外は実施例1と同様にして、実施例13の非水電解質二次電池を作製し、これを電池Oとした。
[Example 13]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 69 g, the weight of the non-graphitizable carbon was 26 g, the length of the positive electrode plate was 3110 mm, and the length of the negative electrode plate was 3267 mm. In the same manner as described above, a nonaqueous electrolyte secondary battery of Example 13 was produced, and this was designated as a battery O.

[実施例14]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を72g、難黒鉛化性炭素の重量を27gとし、正極板の長さを2795mm、負極板の長さを2951mmとしたこと以外は実施例1と同様にして、実施例14の非水電解質二次電池を作製し、これを電池Pとした。
[Example 14]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 72 g, the weight of the non-graphitizable carbon was 27 g, the length of the positive electrode plate was 2795 mm, and the length of the negative electrode plate was 2951 mm. In the same manner as described above, a nonaqueous electrolyte secondary battery of Example 14 was produced, and this was designated as a battery P.

[比較例3]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を49g、難黒鉛化性炭素の重量を19gとし、正極板の長さを5634mm、負極板の長さを5790mmとしたこと以外は実施例1と同様にして、比較例3の非水電解質二次電池を作製し、これを電池Qとした。
[Comparative Example 3]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 49 g, the weight of the non-graphitizable carbon was 19 g, the length of the positive electrode plate was 5634 mm, and the length of the negative electrode plate was 5790 mm. In the same manner as described above, a non-aqueous electrolyte secondary battery of Comparative Example 3 was produced and designated as Battery Q.

[比較例4]
電池に含まれるスピネル型リチウムマンガン複合酸化物の重量を73g、難黒鉛化性炭素の重量を28gとし、正極板の長さを2543mm、負極板の長さを2699mmとしたこと以外は実施例1と同様にして、比較例4の非水電解質二次電池を作製し、これを電池Rとした。
[Comparative Example 4]
Example 1 except that the weight of the spinel-type lithium manganese composite oxide contained in the battery was 73 g, the weight of the non-graphitizable carbon was 28 g, the length of the positive electrode plate was 2543 mm, and the length of the negative electrode plate was 2699 mm. In the same manner, a non-aqueous electrolyte secondary battery of Comparative Example 4 was produced, and this was designated as a battery R.

実施例10〜14および比較例3、4の電池L〜Rについても、実施例1と同様の条件で、電池特性の測定を行った。各電池の活物質量を表5に、電池特性測定結果を表6にまとめた。なお、表5および6には、比較のため、実施例2のデータも掲載した。   For the batteries L to R of Examples 10 to 14 and Comparative Examples 3 and 4, the battery characteristics were measured under the same conditions as in Example 1. The amount of active material of each battery is summarized in Table 5, and the battery characteristic measurement results are summarized in Table 6. In Tables 5 and 6, the data of Example 2 are also shown for comparison.

Figure 2005243448
Figure 2005243448

Figure 2005243448
Figure 2005243448

つぎに、実施例1と同様にして、入力、出力を求め、これらの値から「入力密度」および「出力密度」を求めた。実施例2、10〜14および比較例3、4の電池B、L〜Rについての、放電深度(DOD)と出力との関係を図6に、また、DODと入力との関係を図7に示す。図6および図7において、記号○は実施例10の、□は実施例11の、△は実施例2の、◇は実施例12の、▽は実施例13の、×は比較例14の、●は比較例3の、▲は比較例4の、DODと充電電力との関係を示す。   Next, input and output were obtained in the same manner as in Example 1, and “input density” and “output density” were obtained from these values. FIG. 6 shows the relationship between the depth of discharge (DOD) and the output for the batteries B and LR of Examples 2, 10 to 14 and Comparative Examples 3 and 4, and FIG. 7 shows the relationship between the DOD and the input. Show. 6 and FIG. 7, the symbol ◯ indicates Example 10, □ indicates Example 11, Δ indicates Example 2, ◇ indicates Example 12, ▽ indicates Example 13, and × indicates Comparative Example 14. ● indicates the relationship between DOD and charging power in Comparative Example 3, and ▲ indicates Comparative Example 4.

本発明の非水電解質二次電池では、放電時間をできるだけ短くするためには、出力密度を1kW/kg以上にしなければならないため、電池重量が300gであるから、出力を300W以上とする必要がある。そこで、図6の各曲線と出力=300Wの直線(図6の破線)との交点のDODの値を読み取り、その値を、各電池の「出力の下限DOD(%)」とした。   In the non-aqueous electrolyte secondary battery of the present invention, in order to shorten the discharge time as much as possible, the output density must be 1 kW / kg or more. Therefore, since the battery weight is 300 g, the output needs to be 300 W or more. is there. Therefore, the DOD value at the intersection of each curve in FIG. 6 and the output = 300 W straight line (broken line in FIG. 6) was read, and the value was defined as the “lower limit DOD (%) of output” for each battery.

また、放電の場合と同様の理由から、充電時間をできるだけ短くするためには、入力を300W以上とする必要がある。そこで、図7の各曲線と入力=300Wの直線(図7の破線)との交点のDODの値を読み取り、その値を、各電池の「入力の下限DOD(%)」とした。   Further, for the same reason as in the case of discharging, in order to shorten the charging time as much as possible, the input needs to be 300 W or more. Therefore, the DOD value at the intersection of each curve in FIG. 7 and the input = 300 W straight line (broken line in FIG. 7) was read, and the value was defined as the “input lower limit DOD (%)” of each battery.

次に、各電池の出力の下限DODと充電電力の下限DODとの差から、充放電に利用可能なDOD範囲を求め、その値と最大充放電可能容量とから「利用可能充放電容量」を求めた。その結果を表7にまとめた。   Next, the DOD range that can be used for charging / discharging is determined from the difference between the lower limit DOD of the output of each battery and the lower limit DOD of the charging power, and the “available charge / discharge capacity” is calculated from the value and the maximum charge / discharge capacity. Asked. The results are summarized in Table 7.

Figure 2005243448
Figure 2005243448

また、正極活物質塗布重量と利用可能充放電容量との関係を図8に示した。図8から、正極活物質塗布重量が5.34〜14.33mg/cmを満たす実施例2、10〜14の電池B、L〜Pの場合に、利用可能充放電容量が2.5Ahよりも大きくなるが、正極活物質塗布重量がこの範囲外である比較例3および4の電池Q、Rの場合は、利用可能充放電容量が2.5Ah以下となることがわかった。 FIG. 8 shows the relationship between the positive electrode active material application weight and the available charge / discharge capacity. From FIG. 8, in the case of the batteries B and L to P of Examples 2 and 10 to 14 in which the coating weight of the positive electrode active material satisfies 5.34 to 14.33 mg / cm 2 , the available charge / discharge capacity is from 2.5 Ah. However, in the case of the batteries Q and R of Comparative Examples 3 and 4 in which the coating weight of the positive electrode active material was outside this range, it was found that the available charge / discharge capacity was 2.5 Ah or less.

合成したスピネル型リチウムマンガン複合酸化物のX線回折図。The X-ray-diffraction figure of the synthesized spinel type lithium manganese complex oxide. 合成した難黒鉛化性炭素のX線回折図。X-ray diffraction pattern of synthesized non-graphitizable carbon. 電池A〜Gの放電深度(DOD)と出力との関係を示す図。The figure which shows the relationship between the discharge depth (DOD) and output of batteries A-G. 電池A〜Gの充電深度(DOD)と入力との関係を示す図。The figure which shows the relationship between the charging depth (DOD) and input of batteries A-G. 負極の満充電状態組成(Liのxの値)と利用可能充放電容量との関係を示す図。Diagram showing the relationship between the available discharge capacity fully charged composition of the negative electrode (the value of x of Li x C 6). 電池BおよびL〜Rの放電深度(DOD)と出力との関係を示す図。The figure which shows the relationship between the discharge depth (DOD) of a battery B and LR, and an output. 電池BおよびL〜Rの充電深度(DOD)と入力との関係を示す図。The figure which shows the relationship between the charging depth (DOD) and input of the batteries B and LR. 正極活物質塗布重量と利用可能充放電容量との関係を示す図。The figure which shows the relationship between a positive electrode active material application | coating weight and available charge / discharge capacity.

Claims (1)

正極活物質にスピネル型リチウムマンガン複合酸化物、負極活物質にリチウムを吸蔵・放出可能な難黒鉛化性炭素または易黒鉛化性炭素を用いた非水電解質二次電池において、前記難黒鉛化性炭素または易黒鉛化性炭素の組成をLiで表した場合、25℃における開路電圧が4.25Vの時のxの値が0.46≦x≦0.85を満たし、正極活物質の塗布重量が5.34〜14.33g/cmであることを特徴とする非水電解質二次電池。
































In a non-aqueous electrolyte secondary battery using a spinel-type lithium manganese composite oxide as a positive electrode active material and non-graphitizable carbon or graphitizable carbon capable of occluding and releasing lithium as a negative electrode active material, When the composition of carbon or graphitizable carbon is represented by Li x C 6 , the value of x when the open circuit voltage at 25 ° C. is 4.25 V satisfies 0.46 ≦ x ≦ 0.85, and the positive electrode active material The non-aqueous electrolyte secondary battery is characterized in that the coating weight of is 5.34 to 14.33 g / cm 2 .
































JP2004051982A 2004-02-26 2004-02-26 Nonaqueous electrolyte secondary battery Pending JP2005243448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051982A JP2005243448A (en) 2004-02-26 2004-02-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051982A JP2005243448A (en) 2004-02-26 2004-02-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005243448A true JP2005243448A (en) 2005-09-08
JP2005243448A5 JP2005243448A5 (en) 2007-03-29

Family

ID=35024954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051982A Pending JP2005243448A (en) 2004-02-26 2004-02-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005243448A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266706A (en) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2009266708A (en) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd Lithium secondary battery
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell
WO2015190482A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion cell
JP2018056082A (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023073480A1 (en) * 2021-10-26 2023-05-04 株式会社半導体エネルギー研究所 Lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (en) * 1998-07-14 2000-03-31 Denso Corp Nonaqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2001319695A (en) * 2000-05-11 2001-11-16 Japan Storage Battery Co Ltd Lithium secondary battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002198101A (en) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2003045497A (en) * 2001-08-01 2003-02-14 Sony Corp Non-aqueous electrolyte battery and manufacturing method thereof
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (en) * 1998-07-14 2000-03-31 Denso Corp Nonaqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2001319695A (en) * 2000-05-11 2001-11-16 Japan Storage Battery Co Ltd Lithium secondary battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002198101A (en) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2003045497A (en) * 2001-08-01 2003-02-14 Sony Corp Non-aqueous electrolyte battery and manufacturing method thereof
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266706A (en) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2009266708A (en) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd Lithium secondary battery
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell
WO2015190482A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion cell
CN106463765A (en) * 2014-06-10 2017-02-22 日立化成株式会社 Lithium ion cell
JPWO2015190482A1 (en) * 2014-06-10 2017-04-20 日立化成株式会社 Lithium ion battery
JPWO2015190480A1 (en) * 2014-06-10 2017-04-20 日立化成株式会社 Lithium ion secondary battery
US10090521B2 (en) 2014-06-10 2018-10-02 Hitachi Chemical Company, Ltd. Lithium ion battery with negative electrode in which state of charge at a potential to be 0.1 V with respect lithium potential is 60% or more, and positive electrode having a density positive electrode composite of 2.4 to 2.7 g/cm3
JP2018056082A (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023073480A1 (en) * 2021-10-26 2023-05-04 株式会社半導体エネルギー研究所 Lithium ion battery

Similar Documents

Publication Publication Date Title
US8691445B2 (en) Positive electrode including particles having bimodal size distribution for lithium secondary battery and lithium secondary battery having the same
JP5070753B2 (en) battery
JP4985524B2 (en) Lithium secondary battery
JP6253411B2 (en) Lithium secondary battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP5412843B2 (en) battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP4715848B2 (en) battery
JP2013118069A (en) Lithium secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR102501252B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2002151154A (en) Lithium secondary battery
JP6208584B2 (en) Nonaqueous electrolyte secondary battery
JP5125050B2 (en) Nonaqueous electrolyte secondary battery
CN109983605B (en) Negative electrode active material and method for producing same
US10431813B2 (en) Carbon-silicon composite structure and method of preparing the same
JP2005243448A (en) Nonaqueous electrolyte secondary battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
JP2010135115A (en) Nonaqueous electrolyte secondary battery
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2013118068A (en) Lithium secondary battery
WO2015046495A1 (en) Positive electrode material for lithium ion secondary batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005