JP2000200609A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2000200609A
JP2000200609A JP11002712A JP271299A JP2000200609A JP 2000200609 A JP2000200609 A JP 2000200609A JP 11002712 A JP11002712 A JP 11002712A JP 271299 A JP271299 A JP 271299A JP 2000200609 A JP2000200609 A JP 2000200609A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
binder
vinylidene fluoride
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11002712A
Other languages
Japanese (ja)
Other versions
JP3712250B2 (en
Inventor
Masayuki Yoshiya
正幸 芳屋
Kazuyuki Nakazawa
一幸 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP00271299A priority Critical patent/JP3712250B2/en
Publication of JP2000200609A publication Critical patent/JP2000200609A/en
Application granted granted Critical
Publication of JP3712250B2 publication Critical patent/JP3712250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery excellent in charging/ discharging cycle characteristic by enhancing binding of a binder of a negative electrode. SOLUTION: This nonaqueous secondary battery has a negative electrode 2 using, as a negative-electrode active material, a carbon material capable of storing/exhausting lithium and forming a negative-electrode current collector out of a negative-electrode mix layer containing at least a carbon material and a binder, and a positive electrode 1 using, as a positive-electrode active material, a compound capable of reversively charging/discharging lithium. As the binder of the negative electrode 2, a mixture of a polymer having vinylidene fluoride as main monomer unit and a bismaleimide triazine resin is used. Preferably, the bismaleimide triazine resin is thermoset in the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、さらに詳しくは、特にその負極の結着剤の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to an improvement in a binder for a negative electrode thereof.

【0002】[0002]

【従来の技術】近年、各種電子機器のポータブル化、小
型・軽量化などに伴い、それらの電源として、小型・軽
量でかつ高容量の二次電池の需要が大幅に高まってい
る。これらの中でもリチウム二次電池は、他の水系二次
電池、すなわちニッケル・カドミウム(Ni−Cd)電
池やニッケル・水素吸蔵合金(Ni−MH)電池などと
比較して、高電圧でエネルギー密度も高いので、上記用
途に対して最も有望視されている。
2. Description of the Related Art In recent years, as various electronic devices have become more portable and smaller and lighter, the demand for small-sized, light-weight, high-capacity secondary batteries as power sources for these devices has increased significantly. Among these, lithium secondary batteries have higher voltage and higher energy density than other aqueous secondary batteries, such as nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen storage alloy (Ni-MH) batteries. Due to its high cost, it is most promising for the above applications.

【0003】リチウム二次電池における負極は、リチウ
ムを吸蔵・放出可能な炭素系材料を活物質として用い、
これを結着剤とともに有機溶剤中に混合・分散して調製
した負極合剤含有ぺーストを負極集電体に塗布し、乾燥
して、負極集電体上に負極合剤層を形成し、必要に応じ
て、ロールプレス機により適圧で圧延することによって
作製されている。そして、このような有機溶剤でペース
トにする工程を経て作製される負極においては、結着剤
としてポリフッ化ビニリデンなどのフッ化ビニリデンを
主モノマーとして重合したポリマーが使用されている
(特開平4−249859号公報など)。
The negative electrode of a lithium secondary battery uses a carbon-based material capable of occluding and releasing lithium as an active material.
A negative electrode mixture-containing paste prepared by mixing and dispersing this in an organic solvent together with a binder is applied to a negative electrode current collector, and dried to form a negative electrode mixture layer on the negative electrode current collector, If necessary, it is produced by rolling at an appropriate pressure by a roll press. In a negative electrode produced through a process of forming a paste with such an organic solvent, a polymer obtained by polymerizing vinylidene fluoride such as polyvinylidene fluoride as a main monomer is used as a binder (Japanese Unexamined Patent Publication No. Hei. No. 249859).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ポリフ
ッ化ビニリデンは負極活物質の炭素系材料に対する結着
性は比較的良好であるものの、銅箔などの負極集電体に
対する接着性はさほどよくないため、ポリフッ化ビニリ
デンを負極の結着剤として用いた電池は、充放電サイク
ルを繰り返すうちに負極集電体と負極合剤層との接着性
が悪化し、放電容量が低下して充放電サイクル寿命が短
くなるといった問題があった。
However, although polyvinylidene fluoride has a relatively good binding property of a negative electrode active material to a carbon-based material, its adhesion to a negative electrode current collector such as a copper foil is not so good. In the case of batteries using polyvinylidene fluoride as the binder for the negative electrode, the adhesion between the negative electrode current collector and the negative electrode mixture layer deteriorates as the charge / discharge cycle is repeated, the discharge capacity decreases, and the charge / discharge cycle life decreases. There was a problem that the length became short.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、負極の結着剤と
して、ポリフッ化ビニリデンなどのフッ化ビニリデンを
主モノマーユニットとするポリマーとともに、負極集電
体に対する接着性が優れたビスマレイミドトリアジン樹
脂を適量用いることによって、負極合剤層の負極集電体
からの剥離を抑制し、充放電サイクル特性が優れた非水
二次電池が得られることを見出し、本発明を完成するに
いたった。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, as a binder for a negative electrode, a polymer having vinylidene fluoride such as polyvinylidene fluoride as a main monomer unit. In addition, by using a suitable amount of a bismaleimide triazine resin having excellent adhesion to the negative electrode current collector, the non-aqueous secondary battery having excellent charge-discharge cycle characteristics, which suppresses peeling of the negative electrode mixture layer from the negative electrode current collector. Was found, and the present invention was completed.

【0006】すなわち、本発明は、リチウムを吸蔵・放
出可能な炭素系材料を負極活物質とし、少なくとも上記
炭素系材料と結着剤とを含有する負極合剤層を負極集電
体に形成してなる負極と、リチウムを可逆的に充放電可
能な化合物を正極活物質とする正極とを有する非水二次
電池であって、負極の結着剤として、フッ化ビニリデン
を主モノマーユニットとするポリマーとビスマレイミド
トリアジン樹脂との混合物を用いたことを特徴とするも
のである。
That is, according to the present invention, a carbon-based material capable of occluding and releasing lithium is used as a negative electrode active material, and a negative electrode mixture layer containing at least the carbon-based material and a binder is formed on a negative electrode current collector. Non-aqueous secondary battery having a negative electrode comprising a positive electrode and a compound capable of reversibly charging and discharging lithium as a positive electrode active material, wherein vinylidene fluoride is used as a main monomer unit as a binder for the negative electrode. It is characterized by using a mixture of a polymer and a bismaleimide triazine resin.

【0007】[0007]

【発明の実施の形態】本発明で用いるビスマレイミドト
リアジン樹脂とは、少なくともビスマレイミドモノマ
ー、トリアジンモノマーおよびトリアジンオリゴマーを
含有する混合物からなり、それらの中でも比重が1.2
4〜1.28、熱硬化後のTg(ガラス転移点)が23
0〜270℃のものが特に好適に用いられる。特にこの
ビスマレイミドトリアジン樹脂を熱硬化するときは、ビ
スマレイミドトリアジン樹脂とフッ化ビニリデンを主モ
ノマーユニットとするポリマーとがより一層複雑に絡み
あい、負極活物質に対する結着性や負極集電体に対する
結着性がより一層向上する。
BEST MODE FOR CARRYING OUT THE INVENTION The bismaleimide triazine resin used in the present invention consists of a mixture containing at least a bismaleimide monomer, a triazine monomer and a triazine oligomer.
4 to 1.28, Tg (glass transition point) after thermosetting of 23
Those having a temperature of 0 to 270 ° C are particularly preferably used. In particular, when the bismaleimide triazine resin is thermally cured, the bismaleimide triazine resin and the polymer having vinylidene fluoride as a main monomer unit are more complicatedly entangled, and the binding property to the negative electrode active material and the negative electrode current collector The binding property is further improved.

【0008】本発明において、負極の結着剤としてフッ
化ビニリデンを主モノマーユニットとするポリマーとビ
スマレイミドトリアジン樹脂との混合物を用いることに
よって、負極合剤層の負極集電体からの剥離を抑制し、
サイクル特性の優れた非水二次電池が得られるようにな
る理由は、現在のところ必ずしも明確ではないが、ビス
マレイミドトリアジン樹脂が負極集電体によく接着し、
さらにそれが三次元相互侵入網目構造(IPN)を形成
することにより、負極活物質間の結着性も向上して、負
極合剤層と負極集電体との接着性も向上し、それによっ
て、充放電サイクルの繰り返しに伴う負極合剤層と負極
集電体との接着性の悪化が抑制され、放電容量の低下が
抑制されて充放電サイクル特性が向上するようになるも
のと考えられる。
In the present invention, the separation of the negative electrode mixture layer from the negative electrode current collector is suppressed by using a mixture of a polymer having vinylidene fluoride as a main monomer unit and a bismaleimide triazine resin as a binder for the negative electrode. And
The reason why a non-aqueous secondary battery with excellent cycle characteristics will be obtained is not always clear at present, but the bismaleimide triazine resin adheres well to the negative electrode current collector,
Further, by forming a three-dimensional interpenetrating network structure (IPN), the binding property between the negative electrode active materials is also improved, and the adhesion between the negative electrode mixture layer and the negative electrode current collector is also improved. It is considered that the deterioration of the adhesiveness between the negative electrode mixture layer and the negative electrode current collector due to the repetition of the charge / discharge cycle is suppressed, and the decrease in the discharge capacity is suppressed, so that the charge / discharge cycle characteristics are improved.

【0009】負極合剤層と負極集電体との接着性は、ビ
スマレイミドトリアジン樹脂の負極活物質に対する使用
比率を高くするほど向上するが、それに伴って負極合剤
層の導電性が低下して、特に重負荷での放電特性が低下
する。そのため、ビスマレイミドトリアジン樹脂の負極
活物質に対する使用比率は負極活物質100重量部に対
してビスマレイミドトリアジン樹脂を0.01〜5重量
部とすることが好ましく、0.1〜4重量部とすること
がより好ましく、0.5〜3重量部とすることがさらに
好ましい。
The adhesiveness between the negative electrode mixture layer and the negative electrode current collector is improved as the ratio of the bismaleimide triazine resin to the negative electrode active material is increased, but the conductivity of the negative electrode mixture layer is reduced accordingly. As a result, the discharge characteristics particularly under heavy load are deteriorated. Therefore, the use ratio of the bismaleimide triazine resin to the negative electrode active material is preferably 0.01 to 5 parts by weight, and more preferably 0.1 to 4 parts by weight with respect to 100 parts by weight of the negative electrode active material. More preferably, it is more preferably 0.5 to 3 parts by weight.

【0010】本発明において用いるフッ化ビニリデンを
主モノマーユニットとするポリマーとは、ポリフッ化ビ
ニリデン、またはフッ化ビニリデンと第2、第3成分の
モノマーとの共重合体を意味し、フッ化ビニリデンを主
モノマーユニットとするとはポリマー中においてフッ化
ビニリデンに基づく部分が主成分を占めることを意味す
る。また、ポリフッ化ビニリデンと上記のようなフッ化
ビニリデン系の共重合体とをブレンド(混合)して用い
ることもできる。ただし、共重合体の場合やブレンドす
る場合は、ポリフッ化ビニリデンの耐有機溶媒性などの
特徴を維持するために、フッ化ビニリデンユニットの含
有比率が70モル%以上になるようにモノマー構成を設
定することが好ましい。
The polymer having vinylidene fluoride as a main monomer unit used in the present invention means polyvinylidene fluoride or a copolymer of vinylidene fluoride and monomers of the second and third components. The term “main monomer unit” means that a portion based on vinylidene fluoride occupies the main component in the polymer. Further, polyvinylidene fluoride and a vinylidene fluoride-based copolymer as described above can be used by blending (mixing). However, in the case of a copolymer or a blend, the monomer composition is set so that the content ratio of the vinylidene fluoride unit is 70 mol% or more in order to maintain the characteristics of polyvinylidene fluoride such as organic solvent resistance. Is preferred.

【0011】また、フッ化ビニリデンを主モノマーユニ
ットとするポリマーの平均重合度は、300〜5000
が好ましく、500〜3000がより好ましく、100
0〜2000がさらに好ましい。フッ化ビニリデンを主
モノマーユニットとするポリマーの平均重合度を300
以上にすることにより、負極集電体に形成される負極合
剤層の強度の向上を達成でき、平均重合度を5000以
下にすることにより、負極合剤含有ペーストの粘度を低
下させ、負極集電体への塗布を良好にすることができ
る。
The average degree of polymerization of the polymer having vinylidene fluoride as a main monomer unit is 300 to 5000.
Is preferable, 500 to 3000 is more preferable, and 100
0 to 2000 is more preferred. The average polymerization degree of a polymer having vinylidene fluoride as a main monomer unit is 300.
By the above, the strength of the negative electrode mixture layer formed on the negative electrode current collector can be improved, and by setting the average degree of polymerization to 5000 or less, the viscosity of the negative electrode mixture-containing paste is reduced, The coating on the electric body can be improved.

【0012】フッ化ビニリデンと共重合するモノマーと
しては、例えば、六フッ化プロピレンや四フッ化エチレ
ンなどのフッ化炭素系モノマー、あるいはカルボキシル
基、アミノ基、スルホン酸基、リン酸基などの親水性極
性基を有するビニルモノマーなどを用いることができ
る。上記のような親水性極性基を有するビニルモノマー
を用いたポリマーの場合、親水性極性基を有するビニル
モノマーユニットの含有量は0.01〜0.5モル%で
あることが好ましい。親水性極性基を有するビニルモノ
マーユニットの含有量を0.01モル%以上にすること
により、負極活物質に対する結着性を向上でき、0.5
モル%以下とすることにより、負極合剤含有ペーストの
凝集を抑制することができる。
Examples of monomers copolymerized with vinylidene fluoride include fluorocarbon monomers such as propylene hexafluoride and ethylene tetrafluoride, and hydrophilic monomers such as carboxyl, amino, sulfonic and phosphoric acid groups. For example, a vinyl monomer having an acidic polar group can be used. In the case of a polymer using a vinyl monomer having a hydrophilic polar group as described above, the content of the vinyl monomer unit having a hydrophilic polar group is preferably from 0.01 to 0.5 mol%. By adjusting the content of the vinyl monomer unit having a hydrophilic polar group to 0.01 mol% or more, the binding property to the negative electrode active material can be improved,
By setting the content to not more than mol%, the aggregation of the negative electrode mixture-containing paste can be suppressed.

【0013】上記のようなフッ化ビニリデンを主モノマ
ーユニットとするポリマーは、負極活物質を負極集電体
上に保持し、製造工程における負極の折り曲げなどに対
するクラックの生成を防止する。
The above-mentioned polymer having vinylidene fluoride as a main monomer unit holds the negative electrode active material on the negative electrode current collector, and prevents the generation of cracks due to the bending of the negative electrode in the manufacturing process.

【0014】本発明においては、上記のように、負極の
結着剤として、フッ化ビニリデンを主モノマーユニット
とするポリマーとビスマレイミドトリアジン樹脂との混
合物を用いるが、この結着剤が多いほど負極活物質間の
結着性および負極合剤層と銅箔との接着性は向上する
が、多くなりすぎると、負極合剤層の電気抵抗が高くな
り、充放電特性や負荷特性などの電池特性が低下するの
で、負極活物質100重量部に対して結着剤が1〜30
重量部、特に4〜20重量部になるようにすることが好
ましい。
In the present invention, as described above, as a binder for the negative electrode, a mixture of a polymer having vinylidene fluoride as a main monomer unit and a bismaleimide triazine resin is used. The binding properties between the active materials and the adhesion between the negative electrode mixture layer and the copper foil are improved. However, if the amount is too large, the electric resistance of the negative electrode mixture layer increases, and the battery characteristics such as charge / discharge characteristics and load characteristics are increased. , The binder is 1 to 30 parts by weight with respect to 100 parts by weight of the negative electrode active material.
It is preferable that the amount be in the range of parts by weight, especially 4 to 20 parts by weight.

【0015】また、上記フッ化ビニリデンを主モノマー
ユニットとするポリマーとビスマレイミドトリアジン樹
脂との混合比としては、前記のようなビスマレイミドト
リアジン樹脂の負極活物質に対する適正な使用比率を考
慮しつつ、重量比で50:50〜99:1、特に70:
30〜95:5にするのが好ましい。
The mixing ratio of the polymer having vinylidene fluoride as a main monomer unit and the bismaleimide triazine resin is determined by taking into account the appropriate ratio of the bismaleimide triazine resin to the negative electrode active material as described above. 50:50 to 99: 1 by weight, especially 70:50
The ratio is preferably 30 to 95: 5.

【0016】本発明において用いる負極活物質は、リチ
ウムイオンをドープ・脱ドープ可能な炭素系材料であっ
て、その具体例としては、例えば、熱分解炭素類、コー
クス類、ガラス状炭素類、有機高分子の焼結体、メソカ
ーボンマイクロビーズ、炭素繊維、活性炭などが挙げら
れる。
The negative electrode active material used in the present invention is a carbon-based material capable of doping / dedoping lithium ions. Specific examples thereof include pyrolytic carbons, cokes, glassy carbons, and organic carbons. Examples include a polymer sintered body, mesocarbon microbeads, carbon fiber, and activated carbon.

【0017】負極は、例えば、上記負極活物質に結着剤
としてフッ化ビニリデンを主モノマーユニットとするポ
リマーとビスマレイミドトリアジン樹脂を加え、さらに
必要に応じて、鱗片状黒鉛、カーボンブラック、アセチ
レンブラックなどの導電助剤などを加え、混合して負極
合剤を調製し、それを溶剤に分散させてペーストにし
(結着剤はあらかじめ溶剤に溶解させておいてから負極
活物質などと混合してもよい)、その負極合剤含有ペー
ストを銅箔などからなる負極集電体に塗布し、乾燥し
て、負極集電体の少なくとも一部に負極合剤層を形成す
ることによって作製される。ただし、負極の作製方法は
上記例示の方法に限られることなく、他の方法によって
もよい。
For the negative electrode, for example, a polymer having vinylidene fluoride as a main monomer unit and a bismaleimide triazine resin as a binder are added to the negative electrode active material, and if necessary, scaly graphite, carbon black, and acetylene black are added. Prepare a negative electrode mixture by adding a conductive assistant such as, and disperse it in a solvent to make a paste (the binder is dissolved in a solvent in advance, then mixed with the negative electrode active material, etc. The negative electrode mixture-containing paste is applied to a negative electrode current collector made of copper foil or the like, and dried to form a negative electrode mixture layer on at least a part of the negative electrode current collector. However, the method for producing the negative electrode is not limited to the method exemplified above, and may be another method.

【0018】上記負極集電体としては、例えば、銅箔、
アルミニウム箔、ニッケル箔、ステンレス鋼箔などの金
属箔や、それらの金属を網状にしたものなどが用いられ
るが、特に銅箔が適している。
Examples of the negative electrode current collector include copper foil,
Metal foils such as aluminum foil, nickel foil, and stainless steel foil, and nets of these metals are used, and copper foil is particularly suitable.

【0019】そして、上記のようにして作製した負極
は、ビスマレイミドトリアジン樹脂を熱硬化することが
好ましい。すなわち、ビスマレイミドトリアジン樹脂を
熱硬化することにより、結着剤のビスマレイミドトリア
ジン樹脂とフッ化ビニリデンを主モノマーユニットとす
るポリマーとが、さらに複雑に絡み合うようになり、負
極活物質に対する結着性や負極集電体に対する結着性が
向上する。上記熱硬化の条件としては、負極を60〜2
50℃で0.5〜5時間加熱することが好ましく、特に
100〜200℃で1〜3時間加熱することが好まし
い。
It is preferable that the negative electrode prepared as described above is obtained by thermosetting a bismaleimide triazine resin. In other words, by thermally curing the bismaleimide triazine resin, the bismaleimide triazine resin as the binder and the polymer having vinylidene fluoride as the main monomer unit become more intertwined, and the binding property to the negative electrode active material is increased. And the binding property to the negative electrode current collector is improved. The conditions for the above-mentioned thermosetting are as follows:
It is preferable to heat at 50 ° C for 0.5 to 5 hours, and particularly preferable to heat at 100 to 200 ° C for 1 to 3 hours.

【0020】本発明において、正極活物質としてはリチ
ウムを可逆的に充放電可能な化合物が用いられ、そのよ
うな正極活物質の具体例としては、例えば、二酸化マン
ガン、五酸化バナジウムのような遷移金属酸化物や、硫
化鉄、硫化チタンのような遷移金属カルコゲン化合物、
さらにはこれらとリチウムとの複合酸化物などを用いる
ことができる。特に高電圧、高エネルギー密度が得ら
れ、サイクル特性にも優れているという理由から、Li
NiO2 などのリチウムニッケル酸化物、LiMn2
4 などのリチウムマンガン酸化物、LiCoO2 などの
リチウムコバルト酸化物などのリチウム含有遷移金属酸
化物が好適に用いられ、これらの正極活物質はそれぞれ
単独でまたは2種以上の混合物として用いることができ
る。
In the present invention, a compound capable of reversibly charging and discharging lithium is used as the positive electrode active material. Specific examples of such a positive electrode active material include transition materials such as manganese dioxide and vanadium pentoxide. Metal oxides, transition metal chalcogen compounds such as iron sulfide and titanium sulfide,
Further, a composite oxide of these and lithium can be used. In particular, because high voltage and high energy density can be obtained and the cycle characteristics are excellent, Li
Lithium nickel oxide such as NiO 2 , LiMn 2 O
Lithium-containing transition metal oxides such as lithium manganese oxides such as 4 and lithium cobalt oxides such as LiCoO 2 are preferably used, and these positive electrode active materials can be used alone or as a mixture of two or more kinds. .

【0021】正極は、上記正極活物質に、必要に応じ
て、例えば、鱗片状黒鉛、アセチレンブラック、カーボ
ンブラックなどの導電助剤と、例えば、ポリフッ化ビニ
リデン、ポリテトラフルオロエチレン、エチレンプロピ
レンジエンターポリマーなどの結着剤を加え、混合して
正極合剤を調製し、それを溶剤で分散させてペーストに
し(結着剤はあらかじめ溶剤に溶解させてから正極活物
質などと混合してもよい)、その正極合剤含有ペースト
を金属箔などからなる正極集電体に塗布し、乾燥して、
正極集電体の少なくとも一部に正極合剤層を形成するこ
とによって作製される。ただし、正極の作製方法は、上
記例示の方法に限られることなく、他の方法によっても
よい。また、正極の結着剤として、上記のもの以外に
も、負極で用いるものと同様のものを用いることができ
る。
The positive electrode may comprise, as necessary, a conductive auxiliary such as flake graphite, acetylene black, carbon black, and the like, and, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene. A binder such as a polymer is added and mixed to prepare a positive electrode mixture, which is dispersed in a solvent to form a paste (the binder may be previously dissolved in a solvent and then mixed with the positive electrode active material, etc.). ), The paste containing the positive electrode mixture is applied to a positive electrode current collector made of metal foil or the like, and dried,
It is produced by forming a positive electrode mixture layer on at least a part of the positive electrode current collector. However, the method for producing the positive electrode is not limited to the method described above, but may be another method. Further, as the binder for the positive electrode, other than those described above, those similar to those used for the negative electrode can be used.

【0022】本発明において、電解質としては、液状電
解質、ゲル状電解質、固体電解質のいずれであってもよ
いが、本発明においては、特に液状電解質を用いること
が多いことから、この液状電解質を当業者間で慣用され
ている「電解液」という表現を用い、それを中心に詳細
に説明する。
In the present invention, the electrolyte may be any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte. However, in the present invention, since a liquid electrolyte is particularly often used, this liquid electrolyte is used as the electrolyte. The expression “electrolyte”, which is commonly used among traders, will be described in detail with a focus on the expression.

【0023】本発明において、電解液の溶媒としてはエ
ステルが好適に用いられる。特に鎖状エステルは、電解
液の粘度を下げ、イオン伝導度を高めることから好適に
用いられる。このような鎖状エステルとしては、例え
ば、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、プロピオン酸メチルなどの鎖
状のCOO−結合を有する有機溶媒、リン酸トリメチル
などの鎖状リン酸トリエステルなどが挙げられ、それら
の中でも特に鎖状のカーボネート類が好ましい。
In the present invention, an ester is preferably used as a solvent for the electrolytic solution. Particularly, a chain ester is preferably used because it lowers the viscosity of the electrolytic solution and increases the ionic conductivity. Examples of such chain esters include, for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, organic solvents having a chain COO-bond such as methyl propionate, and chain phosphate triesters such as trimethyl phosphate. And among them, chain carbonates are particularly preferable.

【0024】また、上記鎖状エステルなどに下記の誘電
率が高いエステル(誘電率30以上)を混合して用いる
と電解液のイオン伝導度が高くなり、電池の充放電特性
などが向上するので好ましい。このような誘電率が高い
エステルとしては、例えば、エチレンカーボネート(E
C)、プロピレンカーボネート(PC)、ブチレンカー
ボネート(BC)、ガンマーブチロラクトン(γ−B
L)、エチレングリコールサルファイト(EGS)など
が挙げられる。特に環状構造のものが好ましく、とりわ
け環状のカーボネートが好ましく、エチレンカーボネー
ト(EC)が最も好ましい。
When the following ester having a high dielectric constant (dielectric constant of 30 or more) is mixed with the above-mentioned chain ester and used, the ionic conductivity of the electrolyte solution is increased, and the charge / discharge characteristics of the battery are improved. preferable. Examples of such an ester having a high dielectric constant include ethylene carbonate (E
C), propylene carbonate (PC), butylene carbonate (BC), gamma-butyrolactone (γ-B
L), ethylene glycol sulfite (EGS) and the like. In particular, those having a cyclic structure are preferable, cyclic carbonates are particularly preferable, and ethylene carbonate (EC) is most preferable.

【0025】上記エステル以外にも、例えば、1,2−
ジメトキシエタン(DME)、1,3−ジオキソラン
(DO)、テトラヒドロフラン(THF)、2−メチル
−テトラヒドロフラン(2Me−THF)、ジエチルエ
ーテル(DEE)などの粘度の低いエーテルも好適に用
いられる。そのほか、アミン系またはイミド系有機溶媒
や、含イオウ系または含フッ素系有機溶媒なども用いる
ことができる。
In addition to the above esters, for example, 1,2-
Low viscosity ethers such as dimethoxyethane (DME), 1,3-dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), and diethyl ether (DEE) are also preferably used. In addition, an amine-based or imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.

【0026】電解液において溶質となるリチウム塩とし
ては、例えば、LiClO4 、LiPF6 、LiB
4 、LiAsF6 、LiSbF6 、LiCF3
3 、LiCF3 CO2 などや、その他Li2 2 4
(SO3 2 、LiN(CF3 SO22 、LiC(C
3 SO2 3 、LiCn 2n+1SO3 (n≧2)など
が単独でまたは2種以上混合して用いられる。それらの
中でもLiPF6 やLiCn 2n+1SO3 (n≧2)は
充放電特性が良好なことから好ましい。電解液中におけ
るリチウム塩の濃度は、特に限定されるものではない
が、通常、0.1〜2mol/l、特に0.4〜1.4
mol/l程度が好ましい。
As a lithium salt which becomes a solute in the electrolytic solution,
For example, LiClOFour, LiPF6, LiB
FFour, LiAsF6, LiSbF6, LiCFThreeS
OThree, LiCFThreeCOTwoAnd other LiTwoCTwoFFour
(SOThree)Two, LiN (CFThreeSOTwo)Two, LiC (C
FThreeSOTwo)Three, LiCnF2n + 1SOThree(N ≧ 2) etc.
Are used alone or in combination of two or more. Them
Among them, LiPF6And LiCnF 2n + 1SOThree(N ≧ 2) is
It is preferable because the charge and discharge characteristics are good. In electrolyte
The concentration of the lithium salt is not particularly limited.
Is usually 0.1 to 2 mol / l, especially 0.4 to 1.4.
It is preferably about mol / l.

【0027】また、本発明の非水二次電池においては、
上記電解液以外に、ゲル状電解質や固体電解質も用いる
ことができる。それらのゲル状電解質や固体電解質とし
ては、無機系電解質のほか、ポリエチレンオキサイド、
ポリプロピレンオキサイド、またはそれらの誘導体など
を主材にした有機系電解質を挙げることができる。
Further, in the non-aqueous secondary battery of the present invention,
In addition to the above electrolyte, a gel electrolyte or a solid electrolyte can also be used. As the gel electrolyte or solid electrolyte, in addition to inorganic electrolytes, polyethylene oxide,
An organic electrolyte containing polypropylene oxide or a derivative thereof as a main material can be used.

【0028】セパレータとしては、特に限定されること
はないが、例えば、微孔性ポリエチレンフィルム、微孔
性ポリプロピレンフィルム、微孔性エチレン−プロピレ
ンコポリマーフィルムなどをポリオレフィン系セパレー
タが好適に用いられる。
The separator is not particularly limited. For example, a polyolefin-based separator such as a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, etc. is preferably used.

【0029】[0029]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0030】実施例1 負極活物質として、石油ピッチから抽出したカーボンマ
イクロビーズを3000℃で熱処理したバルクカーボン
を粉砕して平均粒径10μmの粉末を用意した。このカ
ーボン粉末の層間距離d002 は3.36Åであり、c軸
方向の結晶子サイズLcは1334Åであった。このカ
ーボン粉末90重量部と、結着剤として、ポリフッ化ビ
ニリデン(フッ化ビニリデンユニット含有量:75モル
%、平均重合度:1000)7.5重量部、ビスマレイ
ミドトリアジン樹脂(比重:1.24、熱硬化後のT
g:230〜250℃)2.5重量部と溶剤としてのN
−メチル−2−ピロリドンとを混合して負極合剤含有ペ
ーストを調製し、この負極合剤含有ペーストを帯状で厚
さ15μmの銅箔からなる負極集電体の両面に均一に塗
布し、乾燥して負極合剤層を形成し、ローラープレス機
により圧縮成形した後、真空中で160℃で2時間熱処
理を行った後、リード体を溶接して、負極を作製した。
Example 1 As a negative electrode active material, carbon microbeads extracted from petroleum pitch were heat-treated at 3000 ° C. to crush pulverized bulk carbon to prepare a powder having an average particle diameter of 10 μm. The interlayer distance d 002 of this carbon powder was 3.36 °, and the crystallite size Lc in the c-axis direction was 1334 °. 90 parts by weight of this carbon powder, 7.5 parts by weight of polyvinylidene fluoride (vinylidene fluoride unit content: 75 mol%, average degree of polymerization: 1000) as a binder, and a bismaleimide triazine resin (specific gravity: 1.24) , T after heat curing
g: 230-250 ° C.) 2.5 parts by weight and N as a solvent
-Methyl-2-pyrrolidone to prepare a negative electrode mixture-containing paste, apply the negative electrode mixture-containing paste uniformly to both surfaces of a strip-shaped negative electrode current collector made of a copper foil having a thickness of 15 μm, and dry the paste. After forming a negative electrode mixture layer and compression-molding with a roller press, a heat treatment was performed at 160 ° C. for 2 hours in a vacuum, and the lead body was welded to produce a negative electrode.

【0031】つぎに、LiCoO2 90重量部に鱗片状
黒鉛6重量部とポリフッ化ビニリデン4重量部を加えて
混合し、N−メチル−2−ピロリドンに分散させてペー
ストにした。この正極合剤含有ペーストを厚さ20μm
のアルミニウム箔からなる正極集電体の両面に均一に塗
布し、乾燥して正極合剤層を形成し、ローラープレス機
により圧縮成形した後、リード体を溶接して、帯状の正
極を作製した。
Next, 90 parts by weight of LiCoO 2 , 6 parts by weight of flake graphite and 4 parts by weight of polyvinylidene fluoride were added and mixed, and dispersed in N-methyl-2-pyrrolidone to form a paste. This paste containing the positive electrode mixture is coated with a thickness of 20 μm.
Uniformly coated on both sides of a positive electrode current collector made of an aluminum foil, dried to form a positive electrode material mixture layer, compression-molded by a roller press, and then welded to a lead body to produce a band-shaped positive electrode. .

【0032】上記の帯状正極に厚さ25μmの微孔性ポ
リエチレンフィルムからなるセパレータを介して前記帯
状負極を重ね、渦巻状に巻回して渦巻状電極体とした
後、外径15mm、高さ40mmの有底円筒状の電池ケ
ース内に充填し、正極および負極のリード体の溶接を行
った後、電解液を電池ケース内に注入した。
The above-mentioned strip-shaped negative electrode is overlaid on the above-mentioned strip-shaped positive electrode via a separator made of a microporous polyethylene film having a thickness of 25 μm, spirally wound into a spirally wound electrode body, and has an outer diameter of 15 mm and a height of 40 mm. Was filled in the bottomed cylindrical battery case, and the positive electrode and the negative electrode lead bodies were welded, and then the electrolytic solution was injected into the battery case.

【0033】上記電解液は、LiPF6 をエチルメチル
カーボネート(MEC)に溶解させた後、エチレンカー
ボネート(EC)を加えて混合して調製したもので、L
iPF6 がエチレンカーボネート(EC)とエチルメチ
ルカーボネート(MEC)との体積比1:1の混合溶媒
中に1.0mol/l溶解した有機溶媒系の非水電解液
である。この電解液の組成は1.0mol/l LiP
6 /EC:MEC(体積比1:1)で示される。
The electrolytic solution is prepared by dissolving LiPF 6 in ethyl methyl carbonate (MEC), adding ethylene carbonate (EC), and mixing.
iPF 6 is an organic solvent-based non-aqueous electrolyte in which 1.0 mol / l of iPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (MEC) at a volume ratio of 1: 1. The composition of this electrolyte is 1.0 mol / l LiP
It is expressed as F 6 / EC: MEC (volume ratio 1: 1).

【0034】つぎに、常法にしたがって、電池ケースの
開口部を封口し、図1に示す構造の筒形の非水二次電池
を作製した。
Next, the opening of the battery case was sealed in a conventional manner to produce a cylindrical non-aqueous secondary battery having the structure shown in FIG.

【0035】図1に示す電池について説明すると、1は
前記の正極で、2は前記の負極である。ただし、図1で
は、繁雑化を避けるため、正極1や負極2の作製にあた
って使用された集電体などは図示していない。そして、
これらの正極1と負極2はセパレータ3を介して渦巻状
に巻回され、渦巻状電極積層体にして、上記の特定電解
液からなる電解質4と共に電池ケース5内に収容されて
いる。
Referring to the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 in order to avoid complication. And
The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 to form a spiral electrode laminate, which is housed in a battery case 5 together with the electrolyte 4 made of the specific electrolyte.

【0036】電池ケース5は前記のようにステンレス鋼
製で、その底部には上記渦巻状電極積層体の挿入に先立
って、ポリプロピレンからなる絶縁体6が配置されてい
る。封口板7は、アルミニウム製で円板状をしていて、
その中央部に薄肉部7aを設け、かつ上記薄肉部7aの
周囲に電池内圧を防爆弁9に作用させるための圧力導入
口7bとしての孔が設けられている。そして、この薄肉
部7aの上面に防爆弁9の突出部9aが溶接され、溶接
部分11を構成している。なお、上記の封口板7に設け
た薄肉部7aや防爆弁9の突出部9aなどは、図面上で
の理解がしやすいように、切断面のみを図示しており、
切断面後方の輪郭線は図示を省略している。また、封口
板7の薄肉部7aと防爆弁9の突出部9aの溶接部分1
1も、図面上での理解が容易なように、実際よりは誇張
した状態に図示している。
The battery case 5 is made of stainless steel as described above, and an insulator 6 made of polypropylene is arranged on the bottom of the battery case 5 before the spiral electrode laminate is inserted. The sealing plate 7 is made of aluminum and has a disk shape.
A thin portion 7a is provided at the center thereof, and a hole is provided around the thin portion 7a as a pressure inlet 7b for allowing the internal pressure of the battery to act on the explosion-proof valve 9. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. It should be noted that, for the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9, only the cut surface is illustrated for easy understanding in the drawings.
The contour line behind the cut surface is not shown. Further, a welded portion 1 between the thin portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9
1 is also shown in an exaggerated state rather than the actual one for easy understanding in the drawings.

【0037】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられる。防
爆弁9は、アルミニウム製で円板状をしており、その中
央部には発電要素側(図1では、下側)に先端部を有す
る突出部9aが設けられ、かつ薄肉部9bが設けられ、
上記突出部9aの下面が、前記したように、封口板7の
薄肉部7aの上面に溶接され、溶接部分11を構成して
いる。絶縁パッキング10は、ポリプロピレン製で環状
をしており、封口板7の周縁部の上部に配置され、その
上部に防爆弁9が配置していて、封口板7と防爆弁9と
を絶縁するとともに、両者の間から液状の電解質が漏れ
ないように両者の間隙を封止している。環状ガスケット
12はポリプロピレン製で、リード体13はアルミニウ
ム製で、前記封口板7と正極1とを接続し、渦巻状電極
積層体の上部には絶縁体14が配置され、負極2と電池
ケース5の底部とはニッケル製のリード体15で接続さ
れている。
The terminal plate 8 is made of rolled steel, has a nickel-plated surface, and has a hat-like shape with a brim at the periphery. The terminal plate 8 is provided with a gas outlet 8a. The explosion-proof valve 9 is made of aluminum and is in the shape of a disk. A projection 9a having a tip is provided on the power generation element side (the lower side in FIG. 1) at the center thereof, and a thin wall 9b is provided. And
As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral portion of the sealing plate 7, and the explosion-proof valve 9 is disposed above the insulating packing 10. The insulating packing 10 insulates the sealing plate 7 from the explosion-proof valve 9. The gap between the two is sealed so that the liquid electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed above the spiral electrode laminate, and the negative electrode 2 and the battery case 5 are connected. Is connected to the bottom of the lead by a lead 15 made of nickel.

【0038】実施例2 実施例1における負極の結着剤をポリフッ化ビニリデン
8.5重量部とビスマレイミドトリアジン樹脂1.5重
量部に変更した以外は、実施例1と同様に筒形の非水二
次電池を作製した。
Example 2 The same procedure as in Example 1 was repeated except that the binder for the negative electrode was changed to 8.5 parts by weight of polyvinylidene fluoride and 1.5 parts by weight of bismaleimide triazine resin. A water secondary battery was manufactured.

【0039】実施例3 実施例1における負極の結着剤をポリフッ化ビニリデン
9.0重量部とビスマレイミドトリアジン樹脂1.0重
量部に変更した以外は、実施例1と同様に筒形の非水二
次電池を作製した。
Example 3 The same procedure as in Example 1 was repeated except that the binder for the negative electrode was changed to 9.0 parts by weight of polyvinylidene fluoride and 1.0 part by weight of bismaleimide triazine resin. A water secondary battery was manufactured.

【0040】実施例4 実施例1における負極の結着剤をポリフッ化ビニリデン
9.5重量部とビスマレイミドトリアジン樹脂0.5重
量部に変更した以外は、実施例1と同様に筒形の非水二
次電池を作製した。
Example 4 The same procedure as in Example 1 was repeated except that the binder for the negative electrode in Example 1 was changed to 9.5 parts by weight of polyvinylidene fluoride and 0.5 part by weight of bismaleimide triazine resin. A water secondary battery was manufactured.

【0041】実施例5 実施例1における負極の結着剤をポリフッ化ビニリデン
7.5重量部をフッ化ビニリデンとマレイン酸モノエチ
レンとの共重合体(フッ化ビニリデンユニットの含有比
率:99モル%)7.5重量部に変更した以外は、実施
例1と同様に筒形の非水二次電池を作製した。
Example 5 7.5 parts by weight of polyvinylidene fluoride was used as a binder for the negative electrode in Example 1 and a copolymer of vinylidene fluoride and monoethylene maleate (content ratio of vinylidene fluoride unit: 99 mol%) ) A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 7.5 parts by weight.

【0042】実施例6 実施例1における負極の熱処理条件を真空中120℃で
3時間に変更した以外は、実施例1と同様に筒形の非水
二次電池を作製した。
Example 6 A cylindrical non-aqueous secondary battery was fabricated in the same manner as in Example 1, except that the heat treatment conditions for the negative electrode in Example 1 were changed to 120 ° C. in vacuum for 3 hours.

【0043】比較例1 実施例1における負極の結着剤をポリフッ化ビニリデン
10重量部に変更し、熱処理を行わなかった以外は、実
施例1と同様に筒形の非水二次電池を作製した。
Comparative Example 1 A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1, except that the binder for the negative electrode in Example 1 was changed to 10 parts by weight of polyvinylidene fluoride and the heat treatment was not performed. did.

【0044】比較例2 実施例1における負極の結着剤をポリフッ化ビニリデン
10重量部に変更した以外は、実施例1と同様に筒形の
非水二次電池を作製した。この比較例2と上記比較例1
との相違は、比較例1では熱処理を行っていないのに対
し、比較例2では実施例1と同様に熱処理を行っている
点である。
Comparative Example 2 A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1, except that the binder for the negative electrode in Example 1 was changed to 10 parts by weight of polyvinylidene fluoride. Comparative Example 2 and Comparative Example 1
The difference from this is that the heat treatment is not performed in Comparative Example 1, whereas the heat treatment is performed in Comparative Example 2 as in Example 1.

【0045】上記実施例1〜6および比較例1〜2の非
水二次電池について、室温で、最大電圧4.2V、充電
電流1Aの条件で充電を2.5時間行い、6.2Ωの定
抵抗で放電を行うという充放電サイクルを繰り返し放電
容量の変化を調べ、放電容量が初期容量の50%以下に
低下するまでのサイクル数を調べた。その結果を表1に
示す。
The non-aqueous secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were charged at room temperature under the conditions of a maximum voltage of 4.2 V and a charging current of 1 A for 2.5 hours to obtain a charge of 6.2 Ω. A charge / discharge cycle of discharging with a constant resistance was repeated to examine the change in the discharge capacity, and the number of cycles until the discharge capacity was reduced to 50% or less of the initial capacity was examined. Table 1 shows the results.

【0046】[0046]

【表1】 [Table 1]

【0047】表1に示す結果から明らかなように、実施
例1〜6の電池は、ビスマレイミドトリアジン樹脂を添
加しなかった比較例1〜2の電池に比べて、放電容量が
初期容量の50%以下に低下するまでのサイクル数が大
きく、充放電サイクル特性が優れていた。これは、本発
明の実施例1〜6の電池では、負極の結着剤としてフッ
化ビニリデンを主モノマーユニットとするポリマーとビ
スマレイミドトリアジン樹脂との混合物を用いたことに
より、三次元の相互侵入網目構造を形成することがで
き、それによって、充放電サイクルの繰り返しに伴う負
極合剤層の負極集電体からの剥離を抑制でき、充放電サ
イクル特性を向上させることができたことによるものと
考えられる。
As is clear from the results shown in Table 1, the batteries of Examples 1 to 6 had an initial discharge capacity of 50 times that of the batteries of Comparative Examples 1 and 2 to which no bismaleimide triazine resin was added. %, And the number of cycles required to decrease to not more than% was large, and the charge / discharge cycle characteristics were excellent. This is because the batteries of Examples 1 to 6 of the present invention use a mixture of a polymer having vinylidene fluoride as a main monomer unit and a bismaleimide triazine resin as a binder for the negative electrode, so that three-dimensional interpenetration occurs. A network structure can be formed, whereby the peeling of the negative electrode mixture layer from the negative electrode current collector due to the repetition of the charge / discharge cycle can be suppressed, and the charge / discharge cycle characteristics can be improved. Conceivable.

【0048】[0048]

【発明の効果】以上説明したように、本発明では、負極
の結着剤の結着作用を高めて、充放電サイクル特性が優
れた非水二次電池を提供することができた。
As described above, according to the present invention, a non-aqueous secondary battery having excellent charge-discharge cycle characteristics can be provided by enhancing the binding action of the binder for the negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水二次電池の一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a non-aqueous secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解質 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 AA06 BB01 BB11 BD00 BD03 5H014 AA02 AA04 EE01 HH00 HH01 5H029 AJ05 AJ11 AK02 AK03 AK05 AL06 AM01 AM02 AM03 AM04 AM05 AM07 DJ08 EJ14 HJ01 HJ02 HJ11  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出可能な炭素系材料
を負極活物質とし、少なくとも上記炭素系材料と結着剤
とを含有する負極合剤層を負極集電体に形成してなる負
極と、リチウムを可逆的に充放電可能な化合物を正極活
物質とする正極とを有する非水二次電池であって、上記
負極の結着剤として、フッ化ビニリデンを主モノマーユ
ニットとするポリマーとビスマレイミドトリアジン樹脂
との混合物を用いたことを特徴とする非水二次電池。
A negative electrode comprising a carbon-based material capable of inserting and extracting lithium as a negative electrode active material, and a negative electrode mixture layer containing at least the carbon-based material and a binder formed on a negative electrode current collector. A non-aqueous secondary battery having a positive electrode using a compound capable of reversibly charging and discharging lithium as a positive electrode active material, wherein a polymer containing vinylidene fluoride as a main monomer unit and A non-aqueous secondary battery using a mixture with a maleimide triazine resin.
【請求項2】 フッ化ビニリデンを主モノマーユニット
とするポリマーが、フッ化ビニリデンユニットを70モ
ル%以上含有する共重合体である請求項1記載の非水二
次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the polymer containing vinylidene fluoride as a main monomer unit is a copolymer containing vinylidene fluoride units in an amount of 70 mol% or more.
【請求項3】 前記フッ化ビニリデンを主モノマーユニ
ットとするポリマーの平均重合度が300〜5000で
ある請求項1または2記載の非水二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the polymer having vinylidene fluoride as a main monomer unit has an average degree of polymerization of 300 to 5,000.
【請求項4】 ビスマレイミドトリアジン樹脂が熱硬化
されている請求項1〜3のいずれかに記載の非水二次電
池。
4. The non-aqueous secondary battery according to claim 1, wherein the bismaleimide triazine resin is thermoset.
JP00271299A 1999-01-08 1999-01-08 Non-aqueous secondary battery Expired - Fee Related JP3712250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00271299A JP3712250B2 (en) 1999-01-08 1999-01-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00271299A JP3712250B2 (en) 1999-01-08 1999-01-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2000200609A true JP2000200609A (en) 2000-07-18
JP3712250B2 JP3712250B2 (en) 2005-11-02

Family

ID=11536927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00271299A Expired - Fee Related JP3712250B2 (en) 1999-01-08 1999-01-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3712250B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
JP2006139986A (en) * 2004-11-11 2006-06-01 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2008084652A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Nonaqueous secondary battery, positive electrode, and manufacturing method thereof
WO2013088929A1 (en) * 2011-12-16 2013-06-20 日本電気株式会社 Secondary battery
JP2018206674A (en) * 2017-06-07 2018-12-27 ユニチカ株式会社 Binder for power storage element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269513B (en) * 2014-08-26 2017-06-13 江苏华东锂电技术研究院有限公司 Anode composite material and lithium ion battery with and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163031A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163031A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
JP2006139986A (en) * 2004-11-11 2006-06-01 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2008084652A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Nonaqueous secondary battery, positive electrode, and manufacturing method thereof
WO2013088929A1 (en) * 2011-12-16 2013-06-20 日本電気株式会社 Secondary battery
JPWO2013088929A1 (en) * 2011-12-16 2015-04-27 日本電気株式会社 Secondary battery
US9570747B2 (en) 2011-12-16 2017-02-14 Nec Corporation Secondary battery
JP2018206674A (en) * 2017-06-07 2018-12-27 ユニチカ株式会社 Binder for power storage element

Also Published As

Publication number Publication date
JP3712250B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4878683B2 (en) Lithium secondary battery
JP3957415B2 (en) Non-aqueous secondary battery
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
JP2014007088A (en) Nonaqueous electrolytic secondary battery and method for manufacturing the same
JP3938442B2 (en) Non-aqueous secondary battery
JP4911835B2 (en) Non-aqueous secondary battery manufacturing method and charging method
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2000123868A (en) Nonaqueous secondary battery
JP2002087807A (en) Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2002151156A (en) Method of manufacturing lithium secondary battery
JP4530289B2 (en) Non-aqueous secondary battery
JP3928756B2 (en) Non-aqueous secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP4979049B2 (en) Non-aqueous secondary battery
JP3712250B2 (en) Non-aqueous secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2000195518A (en) Nonaqueous electrolyte secondary battery
JP4159005B2 (en) Non-aqueous secondary battery
JP2002083601A (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP4878690B2 (en) Lithium secondary battery
JP4215263B2 (en) Non-aqueous secondary battery
JP3969551B2 (en) Non-aqueous secondary battery
JP2004199938A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees