JP3957415B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP3957415B2
JP3957415B2 JP29746598A JP29746598A JP3957415B2 JP 3957415 B2 JP3957415 B2 JP 3957415B2 JP 29746598 A JP29746598 A JP 29746598A JP 29746598 A JP29746598 A JP 29746598A JP 3957415 B2 JP3957415 B2 JP 3957415B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
less
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29746598A
Other languages
Japanese (ja)
Other versions
JP2000123867A5 (en
JP2000123867A (en
Inventor
房次 喜多
美奈子 岩崎
祐樹 石川
和伸 松本
浩司 安部
勉 高井
俊一 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Ube Corp
Original Assignee
Ube Industries Ltd
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Hitachi Maxell Energy Ltd filed Critical Ube Industries Ltd
Priority to JP29746598A priority Critical patent/JP3957415B2/en
Publication of JP2000123867A publication Critical patent/JP2000123867A/en
Publication of JP2000123867A5 publication Critical patent/JP2000123867A5/ja
Application granted granted Critical
Publication of JP3957415B2 publication Critical patent/JP3957415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池に関し、さらに詳しくは、高容量で、かつサイクル特性が優れた非水二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池に代表される非水二次電池は、容量が大きく、かつ高電圧、高エネルギー密度、高出力であることから、ますます需要が増える傾向にある。
【0003】
しかしながら、この非水二次電池について、本発明者らは、さらなる高性能化を目指して検討を進めていくうちに、電池の容量が増加するのに伴い、負極の負極合剤層の密度を高くする必要があり、負極合剤層の密度が1.45g/cm3 になると、所望のサイクル特性が得られにくくなることが判明した。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような従来の非水二次電池の問題点を解決し、負極合剤層の密度が1.45g/cm3 以上の高容量の非水二次電池において、サイクル特性が優れた非水二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、正極、負極およびセパレータを積層した電極積層体と電解液とを有し、正極に4V級の活物質を用い、負極に(002)面の面間距離d002 が3.5Å以下で、かつc軸方向の結晶子の大きさLcが30Å以上である炭素材料を用い、その負極の負極合剤層の密度が1.45g/cmで、上記セパレータの厚みが20μm以下であり、上記電解液が溶媒としてエチレンカーボネートを全溶媒中の50体積%未満で含有する非水二次電池において、電解質中に環状で環内にC=C不飽和結合を有するエステルまたはその誘導体を含有させることによって、上記課題を解決したものである。
【0006】
【発明の実施の形態】
また、本発明においては、電極積層体の単位面積当たりの放電容量が130mAh/cm以上である場合や、環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の含有量が電解液の溶媒成分中0.05〜8重量%であることを好ましい形態とする。
【0007】
本発明において用いる環状で環内にC=C不飽和結合を有するエステルとしては、例えば、ビニレンカーボネート、クマリン、カテコールカーボネート、フタリドなどが挙げられ、その誘導体としては、例えば、アルキル基置換ビニレンカーボネート、アルキル基置換カテコールカーボネートなどが挙げられる。そして、上記環状のエステルまたはその誘導体の環内のC=C不飽和結合は共鳴構造でないことが好ましく、またカーボネート構造であることが好ましい。従って、環状で環内にC=C不飽和結合を有するエステルまたはその誘導体としては、特にビニレンカーボネートまたはその誘導体が好ましい。
【0008】
上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の電解質中の含有量は、電解質の溶媒成分中0.05重量%以上であることが好ましく、それによって、電池のサイクル特性を顕著に向上させることができ、より好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上である。また、上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の電解質中の含有量は、電解質の溶媒成分中8重量%以下であることが好ましく、それによって、電池の容量の低下を少なくすることができ、より好ましくは4重量%以下、さらに好ましくは2重量%以下、さらに好ましくは1重量%以下である。本発明において、環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の電解質の溶媒成分中の含有量とは、電池を化成、エイジングした後、標準使用条件〔1C(その電池を1時間で放電できる電流)で25℃で4.2Vまで充電し、4.2Vに達した後は、定電圧充電を行い、充電を2時間半で終了し、0.2Cで2.75Vまで放電する条件〕で放電した後、電池内の電解質の溶媒成分をガスクロマトグラフィで分析することによって、測定した環状で環内にC=C不飽和結合を有するエステルまたはその誘導体が電解質の溶媒成分中において占める量である。
【0009】
本発明において、電解質としては、液状電解質、ゲル状電解質、固体電解質のいずれであってもよいが、本発明においては、特に液状電解質を用いることが多いことから、以下、この液状電解質を当業者間で慣用されている「電解液」という表現を用い、それを中心に詳細に説明する。
【0010】
本発明において、電解液の溶媒としてはエステルが好適に用いられる。特に鎖状エステルは、電解液の粘度を下げ、イオン伝導度を高めることから好適に用いられる。このような鎖状エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状のCOO−結合を有する有機溶媒、リン酸トリメチルなどの鎖状リン酸トリエステルなどが挙げられ、それらの中でも特に鎖状のカーボネート類が好ましい。
【0011】
また、上記鎖状エステルなどに下記の誘電率が高いエステル(誘電率30以上)を混合して用いると負荷特性などが向上するので好ましい。このような誘電率が高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ガンマーブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。特に環状構造のものが好ましく、とりわけ環状のカーボネートが好ましく、エチレンカーボネート(EC)が最も好ましい。
【0012】
上記高誘電率エステルは電解液の全溶媒中の50体積%未満が好ましく、より好ましくは40体積%以下、さらに好ましくは35体積%以下である。そして、これらの誘電率に高いエステルによる特性の向上は、上記エステルが電解液の全溶媒中で10体積%以上になると顕著になり、20体積%に達するとより顕著になる。また、これと混合する鎖状エステルは、電解液の全溶媒中の50体積%以上が好ましく、より好ましくは60体積%以上、さらに好ましくは65%以上である。
【0013】
上記エステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(DME)、1,3−ジオキソラン(DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2Me−THF)、ジエチルエーテル(DEE)などが挙げられる。そのほか、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。また、ポリエチレンオキサイドやポリメタクリル酸メチルなどのポリマーを含んでゲル状になっていてもよい。
【0014】
電解液の溶質としては、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiCn 2n+1SO3 (n≧2)、LiN(RfOSO2 2 〔ここでRfはフルオロアルキル基〕などが単独でまたは2種以上混合して用いられるが、特にLiPF6 やLiC4 9 SO3 などが好ましい。電解液中における溶質の濃度は、特に限定されるものではないが、濃度を1mol/l以上の多めにすると安全性がよくなるので好ましい。1.2mol/l以上がより好ましい。また、1.7mol/lより少ないと電気特性が良くなるので好ましく、1.5mol/lより少ないとさらに好ましい。
【0015】
本発明においては、環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の電解質中の含有量を、電解質の溶媒成分中において上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体が占める重量%で規定するが、上記溶媒成分はすべてが常温で液体のもので構成されていることを要しない。例えば、上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体中にはクマリンなどのように常温で固体のものもあるが、それを溶媒に溶かすと溶液になるので、本発明では、それを溶媒成分ということにする。言い換えると、電解質をリチウム塩でイオン伝導に直接関与する溶質とそれ以外のものとに分けた場合に溶質以外のものを溶媒成分という。
【0016】
上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体を含有する電解液の調製は、例えば、溶媒と上記環状で環内にC=C不飽和結合を有するエステルまたはその誘導体を混合し、そこに溶質を溶解させればよい。
【0017】
本発明において、正極に4V級の活物質を用いるのは、高エネルギー密度の電池が得られやすいという理由によるものであり、このような4V級の活物質としては、例えば、LiCoO2 、LiNiO2 、LiMn2 4 、または、それらを主成分とする活物質、例えばLiNi0.7 Co0.3 2 などが挙げられる。
【0018】
正極は、例えば、上記正極活物質に、必要に応じて、例えば鱗片状黒鉛などの導電助剤やポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのバインダを加え、混合して正極合剤を調製し、それを溶剤で分散させてペーストにし(バインダはあらかじめ溶剤に溶解させてから正極活物質などと混合してもよい)、その正極合剤ペーストを金属箔などからなる正極集電材に塗布し、乾燥して、正極集電材の少なくとも一部に正極合剤層を形成することによって作製される。ただし、正極の作製方法は、上記例示の方法に限られることなく、他の方法によってもよい。
【0019】
正極に用いる正極集電材は、アルミニウムを主成分とする金属箔が好ましく、そのアルミニウムの純度は98重量%以上99.9重量%未満が好ましい。通常のリチウムイオン二次電池では純度が99.9重量%以上のアルミニウム箔が正極集電材として用いられているが、本発明においては高容量化やサイクル特性の向上を図るため厚さが15μm以下の薄い金属箔を用いるのが好ましい。そのため、薄くても使用に耐え得る強度にしておくことが好ましく、そのような強度を確保するためには純度が99.9重量%未満であることが好ましい。アルミニウムに添加する金属として特に好ましいのは、鉄とシリコンである。鉄は0.5重量%以上が好ましく、さらに好ましくは0.7重量%以上であり、また、2重量%以下が好ましく、より好ましくは1.3重量%以下である。シリコンは0.1重量%以上が好ましく、より好ましくは0.2重量%以上であり、また1.0重量%以下が好ましく、より好ましくは0.3重量%以下である。これらの鉄やシリコンはアルミニウムと合金化していることが必要であり、アルミニウム中に不純物として存在するものではない。
【0020】
そして、正極集電材の引張り強度としては150N/mm2 以上が好ましく、より好ましくは180N/mm2 以上である。また、本発明において用いる正極集電材は、伸びが2%以上であることが好ましく、より好ましくは3%以上である。これは電極積層体の単位体積当たりの放電容量が大きくなるにつれて電極合剤層の充電時の膨張が大きくなるため、その膨張によって正極集電材に応力が発生し、それによって、正極集電材に亀裂や切断などが発生しやすくなるが、正極集電材の伸びを大きくしておくと、その伸びによって応力を緩和し、正極集電材の亀裂や切断などを防止できるようになるからである。
【0021】
本発明においては、上記のように、正極集電材として厚みが15μm以下のアルミニウムを主成分とする金属箔を用いることが好ましいとしているが、これは厚みが薄いほど電池の高容量化に好都合であるという理由によるものである。しかし、あまりにも薄くなりすぎると、製造時に正極集電材の強度不足による切断などが生じるおそれがあるため、正極集電材の厚みとしては、上記のように15μm以下であって、5μm以上、特に8μm以上が実用上適している。
【0022】
また、正極集電材の表面は片面が粗面化していることが好ましい。そして、その粗な面が巻回体において外周側の面にあることが好ましい。これは、巻回体の場合、外周側の面が巻回中心部に近くなるほど対向する負極が多く存在しているので正極が劣化しやすいため、外周側に粗な面を用いて接着性を高めることにより正極の劣化を低減できるからである。粗な面の好ましい平均粗度はRaで0.1〜0.5μmであり、より好ましくは0.2〜0.3μmである。そして、光沢面の好ましい平均粗度はRaで0.2μm以下で、より好ましくは0.1μm以下である。
【0023】
また、正極集電材の濡れ性が悪い場合、電池をサイクル(充放電)させた場合にサイクル特性の低下が生じやすい傾向にある。そのような場合には正極集電材の濡れ性を37dyne/cm以上にすることが好ましい。
【0024】
負極に用いる材料は、リチウムイオンをドープ、脱ドープできるものであればよく、本発明においては、それを負極活物質と呼んでいるが、そのような負極活物質として、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料を用いる。特に2500℃以上で焼成したメソカーボンマイクロビーズは、負極合剤層を高密度に作製してもサイクル特性が良好であることから好ましい。
【0025】
負極活物質として負極に用いる炭素材料は下記の特性を持つものが好ましい。すなわち、その(002)面の面間距離d002 に関しては、3.5Å以下が好ましく、より好ましくは3.45Å以下、さらに好ましくは3.4Å以下である。またc軸方向の結晶子の大きさLcは30Å以上が好ましく、より好ましくは80Å以上、さらに好ましくは250Å以上である。そして、上記炭素材料の平均粒径は8〜20μm、特に10〜15μmが好ましく、純度は99.9重量%以上が好ましい。
【0026】
負極は、例えば、上記負極活物質としての炭素材料に、必要に応じ、正極の場合と同様の導電助剤やバインダなどを加え、混合して負極合剤を調製し、それを溶剤に分散させてペーストにし(バインダはあらかじめ溶剤に溶解させておいてから負極活物質などと混合してもよい)、その負極合剤ペーストを銅箔などからなる負極集電材に塗布し、乾燥して、負極集電材の少なくとも一部に負極合剤層を形成することによって作製される。ただし、負極の作製方法は上記例示の方法に限られることなく、他の方法によってもよい。
【0027】
上記負極集電材としては、例えば、銅箔、アルミニウム箔、ニッケル箔、ステンレス鋼箔などの金属箔や、それらの金属を網状にしたものなどが用いられるが、特に銅箔が適している。
【0028】
負極に炭素材料を用いるに際して、高容量化を図るために、その負極の負極合剤層の密度を1.45g/cm3 以上にするが、特に負極合剤層の密度を1.5g/cm3 以上にすることが好ましい。通常、負極合剤層を高密度にすると、高容量は得られやすくなるが、電解液の浸透が遅くなり、また活物質の利用度も不均一になりやすいため、サイクル特性が低下しやすくなるが、本発明によれば、そのような場合にも、優れたサイクル特性が得られる。すなわち、本発明において用いる環状で環内にC=C不飽和結合を有するエステルまたはその誘導体は、上記のように負極合剤層を高密度にした場合にも、その効果を顕著に発現する。
【0029】
セパレータとしては、特に限定されることはないが、例えば、厚みが20μm以下の微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルムなどのポリオレフィン系セパレータは、薄くても充分な強度を有しているので、正極活物質や負極活物質などの充填量を高めることができるとともに熱伝導性が改善され、電池内部の発熱に対しても放熱を促進するので、本発明において好適に使用される。特に電極積層体と電池ケースとの間にセパレータが介在する場合は電極内部の熱を放熱する効果が大きい。
【0030】
本発明は、電極積層体の単位体積当たりの放電容量が130mAh/cm3 以上の非水二次電池を対象とすることを好ましいとしているが、これは高容量化を図るという理由に基づいている。本発明において、電極積層体の体積とは、正極、負極およびセパレータを積層したものまたは正極、負極およびセパレータを巻回したものの電池内における嵩体積であって、後者のように巻回したものにあっては、巻回に際して使用した巻き軸に基づく巻回体中心部の透孔などは体積として含まない。要は正極、負極、セパレータが占める嵩体積を合計したものである。これら正極、負極、セパレータの3つの体積は電池の容量を決定する重要な因子であり、電池の大きさにかかわらず、電極積層体の単位体積当たりの放電容量(放電容量/電極積層体の体積)を計算することによって、電池の容量密度を比較することができる。また、ここでいう放電容量とは、電池を前記の標準使用条件で充放電させた場合の放電容量である。そして、より高容量化を図るという観点からは、電極積層体の単位体積当たりの放電容量は140mAh/cm3 以上がより好ましく、150mAh/cm3 以上がさらに好ましい。
【0031】
【実施例】
つぎに、実施例をあげて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0032】
実施例1
メチルエチルカーボネートとエチレンカーボネートとビニレンカーボネートとを体積比65:33:2で混合し、この混合溶媒にLiPF6 を1.4mol/l溶解させて、組成が1.4mol/lLiPF6 /EC:MEC:VC(33:65:2体積比)で示される電解液を調製した。
【0033】
上記電解液における、ECはエチレンカーボネートの略称であり、MECはメチルエチルカーボネートの略称であり、VCはビニレンカーボネートの略称である。従って、上記電解液を示す1.4mol/l LiPF6 /EC:MEC:VC(33:65:2体積比)は、メチルエチルカーボネート65体積%とエチレンカーボネート33体積%とビニレンカーボネート2体積%との混合溶媒にLiPF6 を1.4mol/l溶解相当を溶解させたものであることを示している。
【0034】
上記とは別に、LiCoO2 に導電助剤として鱗片状黒鉛を重量比100:6で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してペースト状にした。このポリフッ化ビニリデンの量はLiCoO2 に対して重量比で100:3.8(LiCoO2 100重量部に対してポリフッ化ビニリデン3.8重量部)であった。この正極合剤ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ15μmのアルミニウムを主成分とする金属箔からなる正極集電材の両面に塗布量が24.6mg/cm2 (ただし、乾燥後の正極合剤量)となるように均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、リード体を溶接して、帯状の正極を作製した。
【0035】
上記正極集電材として用いたアルミニウムを主成分とする金属箔は、鉄を1重量%、シリコンを0.15重量%含んでおり、アルミニウムの純度は98重量%以上であった。また、正極集電材として用いたアルミニウムを主成分とする金属箔の引張り強度は185N/mm2 であり、粗面の平均粗度Raは0.2μmで、光沢面の平均粗度Raは0.04μmであった。そして、上記正極集電材として用いたアルミニウムを主成分とする金属箔の濡れ性は38dyne/cmで、伸びは3%であった。
【0036】
つぎに、メソカーボンマイクロビーズの黒鉛系炭素材料〔ただし、(002)面の面間距離d002 が3.37Åで、c軸方向の結晶子の大きさLcが950Åであり、平均粒径15μm、純度99.9重量%以上という特性を持つ黒鉛系炭素材料〕を、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液と混合してペーストにした。このポリフッ化ビニリデンの量は黒鉛系炭素材料に対して重量比で92:8(黒鉛系炭素材料100重量部に対してポリフッ化ビニリデン8.7重量部)であった。この負極合剤ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ10μmの帯状の銅箔からなる負極集電材の両面に塗布量が12.0mg/cm2 (ただし、乾燥後の負極合剤量)となるように均一に塗布し、乾燥して負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、リード体を溶接して、帯状の負極を作製した。なお、負極の負極合剤層の密度は1.5g/cm3 であった。
【0037】
前記帯状の正極を厚さ20μmの微孔性ポリエチレンフィルムを介して上記帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の電極積層体にした。その際、アルミニウムを主成分とする金属箔からなる正極集電材の光沢面が内周側になるようにした。上記電極積層体の体積は11.4cm3 であった。その後、この電極積層体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。
【0038】
つぎに、上記電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、図1の模式図に示すような構造の筒形の非水二次電池を作製した。この電池を前記標準使用条件で放電後、電池内の電解液成分をガスクロマトグラフィにより分析し、ビニレンカーボネートの電解液の溶媒成分中の含有量を調べたところ、0.79重量%であった。
【0039】
図1に示す電池について説明すると、1は前記の正極で、2は前記の負極である。ただし、図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用された集電体などは図示していない。そして、これらの正極1と負極2はセパレータ3を介して渦巻状に巻回され、渦巻状電極積層体にして、上記の特定電解液からなる電解質4と共に電池ケース5内に収容されている。
【0040】
電池ケース5は前記のようにステンレス鋼製で、その底部には上記渦巻状電極積層体の挿入に先立って、ポリプロピレンからなる絶縁体6が配置されている。封口板7は、アルミニウム製で円板状をしていて、その中央部に薄肉部7aを設け、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、この薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。なお、上記の封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。
【0041】
端子板8は、圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、この端子板8にはガス排出口8aが設けられる。防爆弁9は、アルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、上記突出部9aの下面が、前記したように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を構成している。絶縁パッキング10は、ポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から液状の電解質が漏れないように両者の間隙を封止している。環状ガスケット12はポリプロピレン製で、リード体13はアルミニウム製で、前記封口板7と正極1とを接続し、渦巻状電極積層体の上部には絶縁体14が配置され、負極2と電池ケース5の底部とはニッケル製のリード体15で接続されている。
【0042】
実施例2
正極合剤ペーストの塗布量を23.6mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤ペーストの塗布量を11.49mg/cm2 ただし、乾燥後の負極合剤量)とし、セパレータとして従来から汎用されている厚さ25μmの微孔性ポリエチレンフィルムを用いた以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例2の電池においても、実施例1の電池と同様に電解液の溶媒成分中のビニレンカーボネートの含有量を調べたところ、0.80重量%であった。
【0043】
実施例3
電解液の溶媒成分中におけるビニレンカーボネートの占める量を1体積%に減らし、そのぶんメチルエチルカーボネートを増量して66体積%にした以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例3の電池のビニレンカーボネートの電解液の溶媒成分中の含有量を実施例1と同様に測定したところ、0.1重量%であった。
【0044】
実施例4
電解液の溶媒成分中におけるビニレンカーボネートの占める量を5体積%に増やし、そのぶんメチルエチルカーボネートを減らして62体積%にした以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例4の電池のビニレンカーボネートの電解液の溶媒成分中の含有量を実施例1と同様に測定したところ、2.6重量%であった。
【0045】
実施例5
電解液の溶媒成分中におけるビニレンカーボネートの占める量を10体積%に増やし、そのぶんメチルエチルカーボネートを減らして57体積%にした以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例5の電池のビニレンカーボネートの電解液の溶媒成分中の含有量を実施例1と同様に測定したところ、7.7重量%であった。
【0046】
実施例6
ビニレンカーボネートの代わりにクマリンを用いた以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例6の電池のクマリンの電解液の溶媒成分中の含有量を実施例1と同様に測定したところ、1.2重量%であった。
【0047】
比較例1
ビニレンカーボネートを用いず、そのぶんメチルエチルカーボネートを増量した以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0048】
比較例2
ビニレンカーボネートを用いず、そのぶんメチルエチルカーボネートを増量し、負極合剤量を減らして負極の負極合剤層の密度を1.4g/cm3 にした以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0049】
比較例3
ビニレンカーボネートを用いず、そのぶんメチルエチルカーボネートを増量し、正極集電材として従来から汎用されている厚さ20μmのアルミニウムを主成分とする箔を用いた。このアルミニウムを主成分とする箔には鉄が0.03重量%、シリコンが0.02重量%含まれており、純度は99.94重量%であった。引張り強度は140N/mm2 (15μm換算値)であり、両面光沢面で平均粗度Raは0.04μmであった。また、濡れ性は36dyne/cmで、伸びは3%であった。この正極集電材の両面に実施例1と同様の正極合剤ペーストを塗布量が23.9mg/cm2 (ただし、乾燥後の正極合剤量)となるように均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。また、負極は実施例1と同様の厚さ10μmの銅箔からなる負極集電材の両面に実施例1と同様の負極合剤ペーストを塗布量が11.0mg/cm2 (ただし、乾燥後の負極合剤量)となるように塗布し、乾燥して負極合剤層を形成し、セパレータとして実施例2と同様に従来から汎用されている厚さ25μmの微孔性ポリエチレンフィルムを用い、それら以外は実施例1と同様に筒形の非水二次電池を作製した。
【0050】
比較例4
正極合剤ペーストの塗布量を20.0mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤ペーストの塗布量を12.0mg/cm2 (ただし、乾燥後の負極合剤量)とし、それ以外は比較例3と同様に筒形の非水二次電池を作製した。
【0051】
上記実施例1〜6および比較例1〜4の電池を、1700mA(1C)で2.75Vまで放電した後、1700mAで充電し、4.2Vの定電圧に保つ条件で2時間半充電を行った。その後、電池を1700mAで2.75Vまで放電する充放電を繰り返し、1サイクル目の放電容量および100サイクル目の放電容量を測定し、それに基づき、100サイクル目での1サイクル目に対する容量保持率〔(100サイクル目の放電容量)/(1サイクル目の放電容量)×100〕を求めた。その結果を電極積層体の単位体積当たりの放電容量、1サイクル目の放電容量および電極積層体の体積と共に表1に示す。
【0052】
【表1】

Figure 0003957415
【0053】
表1に示すように、ビニレンカーボネートを用いなかった比較例1〜3の電池では、100サイクル目での容量保持率が78%以下にまで低下したのに対し、ビニレンカーボネートを用いた実施例1〜5の電池やクマリンを用いた実施例6の電池は100サイクル目での容量保持率が91%以上であって、サイクル特性が優れていた。また、実施例1〜6の電池は、放電容量が大きく、高容量であり、特に薄いセパレータを用いた実施例1、実施例3〜4および実施例6の電池は放電容量が大きかった。なお、比較例4の電池は、100サイクル目での容量保持率が94%と高く、サイクル特性は優れていたが、容量が小さく、電極積層体の単位体積当たりの放電容量が130mAh/cm3 に満たなかった。
【0054】
【発明の効果】
以上説明したように、本発明では、正極に4V級の活物質を用い、電極積層体単位体積当たりの放電容量が130mAh/cm3 以上という高容量の非水二次電池において、サイクル特性の優れた非水二次電池を提供することができた。
【図面の簡単な説明】
【図1】本発明の非水二次電池の一例を模式的に示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電解質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery having high capacity and excellent cycle characteristics.
[0002]
[Prior art]
Non-aqueous secondary batteries typified by lithium ion secondary batteries have a large capacity, high voltage, high energy density, and high output, and therefore there is an increasing demand.
[0003]
However, with regard to this non-aqueous secondary battery, as the inventors proceeded with studies aiming at higher performance, the density of the negative electrode mixture layer of the negative electrode was increased as the battery capacity increased. It has been found that when the density of the negative electrode mixture layer is 1.45 g / cm 3 , it is difficult to obtain desired cycle characteristics.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems of the conventional non-aqueous secondary battery as described above, and in the high-capacity non-aqueous secondary battery having a negative electrode mixture layer density of 1.45 g / cm 3 or more, the cycle characteristics are An object is to provide an excellent non-aqueous secondary battery.
[0005]
[Means for Solving the Problems]
The present invention includes an electrode laminate in which a positive electrode, a negative electrode, and a separator are laminated, and an electrolytic solution, and uses a 4V class active material for the positive electrode and an inter-surface distance d 002 of the (002) plane for the negative electrode. Is a carbon material having a c-axis direction crystallite size Lc of 30 mm or more, the negative electrode mixture layer has a density of 1.45 g / cm 3 and a thickness of the separator. In a non-aqueous secondary battery in which the electrolytic solution contains ethylene carbonate as a solvent in an amount of less than 50% by volume in the total solvent, and the ester is cyclic in the electrolyte and has a C═C unsaturated bond in the ring Or the said subject is solved by containing the derivative (s).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Further, in the present invention, when the discharge capacity per unit area of the electrode laminate is 130 mAh / cm 3 or more, the content of the ester or derivative thereof having a C═C unsaturated bond in the ring is cyclic. A preferred form is 0.05 to 8% by weight in the solvent component of the liquid.
[0007]
Examples of the cyclic ester having a C═C unsaturated bond in the present invention include vinylene carbonate, coumarin, catechol carbonate, phthalide and the like, and derivatives thereof include, for example, alkyl group-substituted vinylene carbonate, Examples thereof include alkyl group-substituted catechol carbonates. The C═C unsaturated bond in the ring of the cyclic ester or derivative thereof is preferably not a resonance structure, and is preferably a carbonate structure. Accordingly, vinylene carbonate or a derivative thereof is particularly preferable as the ester having a C═C unsaturated bond in the ring or the derivative thereof.
[0008]
The content of the above-mentioned cyclic ester having a C═C unsaturated bond in the ring or a derivative thereof in the electrolyte is preferably 0.05% by weight or more in the solvent component of the electrolyte. Can be remarkably improved, more preferably 0.1% by weight or more, still more preferably 0.5% by weight or more. In addition, the content of the cyclic ester having a C═C unsaturated bond in the ring or a derivative thereof in the electrolyte is preferably 8% by weight or less in the solvent component of the electrolyte. The decrease can be reduced, more preferably 4% by weight or less, further preferably 2% by weight or less, and further preferably 1% by weight or less. In the present invention, the content in the solvent component of the electrolyte of a cyclic ester having a C═C unsaturated bond in the ring or a derivative thereof is defined as standard use conditions [1C (the battery (Current that can be discharged in 1 hour) is charged to 4.2V at 25 ° C, and after reaching 4.2V, constant voltage charging is performed, charging is completed in 2.5 hours, and then to 2.75V at 0.2C. After the discharge under the condition of discharge], the solvent component of the electrolyte in the battery is analyzed by gas chromatography, whereby the measured cyclic ester having a C═C unsaturated bond in the ring or its derivative is present in the solvent component of the electrolyte. Is the amount occupied.
[0009]
In the present invention, the electrolyte may be any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte. However, in the present invention, a liquid electrolyte is often used. The expression “electrolyte” that is commonly used in between will be used and will be described in detail.
[0010]
In the present invention, an ester is preferably used as the solvent of the electrolytic solution. In particular, chain esters are preferably used because they lower the viscosity of the electrolyte and increase the ionic conductivity. Examples of such chain esters include organic solvents having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate, chain phosphate triesters such as trimethyl phosphate, and the like. Among them, chain carbonates are particularly preferable.
[0011]
In addition, it is preferable to mix and use the following ester having a high dielectric constant (dielectric constant of 30 or more) with the chain ester because load characteristics and the like are improved. Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), gamma-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. . In particular, those having a cyclic structure are preferred, cyclic carbonates are particularly preferred, and ethylene carbonate (EC) is most preferred.
[0012]
The high dielectric constant ester is preferably less than 50% by volume in the total solvent of the electrolytic solution, more preferably 40% by volume or less, and still more preferably 35% by volume or less. And the improvement of the characteristic by ester with high dielectric constant becomes remarkable when the said ester becomes 10 volume% or more in all the solvents of electrolyte solution, and becomes more remarkable when it reaches 20 volume%. Further, the chain ester mixed with this is preferably 50% by volume or more, more preferably 60% by volume or more, and still more preferably 65% or more in the total solvent of the electrolytic solution.
[0013]
Examples of solvents that can be used in addition to the ester include 1,2-dimethoxyethane (DME), 1,3-dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether. (DEE). In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used. Moreover, it may be gelatinous including polymers, such as polyethylene oxide and polymethyl methacrylate.
[0014]
The solute of the electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] Are used alone or in combination of two or more, and LiPF 6 and LiC 4 F 9 SO 3 are particularly preferred. The concentration of the solute in the electrolytic solution is not particularly limited, but it is preferable to increase the concentration by 1 mol / l or more because safety is improved. 1.2 mol / l or more is more preferable. Moreover, when it is less than 1.7 mol / l, electrical characteristics are improved, which is preferable, and when it is less than 1.5 mol / l, it is more preferable.
[0015]
In the present invention, the content of the cyclic ester having a C═C unsaturated bond or its derivative in the ring or the derivative thereof in the electrolyte is the above-mentioned cyclic cyclic ester having a C═C unsaturated bond in the electrolyte. Although it is defined by the weight percent occupied by the ester or its derivative, it is not necessary that all the solvent components are composed of liquid at room temperature. For example, some of the above cyclic esters having a C═C unsaturated bond in the ring or derivatives thereof are solid at room temperature such as coumarin, but when dissolved in a solvent, it becomes a solution. Then, it will be called a solvent component. In other words, when the electrolyte is divided into a solute that directly participates in ion conduction with a lithium salt and a solute other than the solute, the electrolyte other than the solute is referred to as a solvent component.
[0016]
Preparation of an electrolytic solution containing an ester or derivative thereof having a C═C unsaturated bond in the ring and the ring is prepared by, for example, using an ester or derivative thereof in the ring and having a C═C unsaturated bond in the ring. What is necessary is just to mix and dissolve a solute there.
[0017]
In the present invention, the 4V class active material is used for the positive electrode because it is easy to obtain a battery having a high energy density. Examples of such 4V class active materials include LiCoO 2 and LiNiO 2. , LiMn 2 O 4 , or an active material containing them as a main component, for example, LiNi 0.7 Co 0.3 O 2 .
[0018]
The positive electrode, for example, to the positive electrode active material, if necessary, for example, a conductive auxiliary such as flaky graphite and a binder such as polyvinylidene fluoride and polytetrafluoroethylene are added and mixed to prepare a positive electrode mixture, Disperse it with a solvent to make a paste (the binder may be dissolved in a solvent in advance and then mixed with the positive electrode active material, etc.), apply the positive electrode mixture paste to a positive electrode current collector made of metal foil, etc. and dry And it produces by forming a positive mix layer in at least one part of a positive electrode electrical power collector. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.
[0019]
The positive electrode current collector used for the positive electrode is preferably a metal foil mainly composed of aluminum, and the purity of the aluminum is preferably 98% by weight or more and less than 99.9% by weight. In an ordinary lithium ion secondary battery, an aluminum foil having a purity of 99.9% by weight or more is used as a positive electrode current collector. In the present invention, however, the thickness is 15 μm or less in order to increase the capacity and improve cycle characteristics. It is preferable to use a thin metal foil. Therefore, it is preferable to have a strength that can be used even if it is thin. In order to ensure such strength, the purity is preferably less than 99.9% by weight. Particularly preferred as metals to be added to aluminum are iron and silicon. Iron is preferably 0.5% by weight or more, more preferably 0.7% by weight or more, and preferably 2% by weight or less, more preferably 1.3% by weight or less. Silicon is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 1.0% by weight or less, more preferably 0.3% by weight or less. These iron and silicon need to be alloyed with aluminum and do not exist as impurities in aluminum.
[0020]
Then, preferably 150 N / mm 2 or more as a tensile strength of the positive electrode current material, more preferably 180 N / mm 2 or more. The positive electrode current collector used in the present invention preferably has an elongation of 2% or more, more preferably 3% or more. This is because, as the discharge capacity per unit volume of the electrode laminate increases, the electrode mixture layer expands during charging, and this expansion causes stress in the positive electrode current collector, thereby cracking the positive electrode current collector. This is because, if the elongation of the positive electrode current collector is increased, the stress is relieved by the elongation, and cracking or cutting of the positive electrode current collector can be prevented.
[0021]
In the present invention, as described above, it is preferable to use a metal foil whose main component is aluminum having a thickness of 15 μm or less as the positive electrode current collector. However, the thinner the thickness, the better the capacity of the battery. It is because there is. However, if the thickness is too thin, there is a risk of cutting due to insufficient strength of the positive electrode current collector during production. Therefore, the thickness of the positive electrode current collector is 15 μm or less as described above, and is 5 μm or more, particularly 8 μm. The above is suitable for practical use.
[0022]
Moreover, it is preferable that the surface of the positive electrode current collector is roughened on one side. And it is preferable that the rough surface exists in the surface of the outer peripheral side in a wound body. This is because in the case of a wound body, the more the negative electrode facing the closer the outer peripheral surface is to the center of the winding, the more the positive electrode tends to deteriorate. It is because deterioration of a positive electrode can be reduced by raising. The preferable average roughness of the rough surface is 0.1 to 0.5 μm in Ra, and more preferably 0.2 to 0.3 μm. And the preferable average roughness of a glossy surface is Ra of 0.2 micrometer or less, More preferably, it is 0.1 micrometer or less.
[0023]
Moreover, when the wettability of the positive electrode current collector is poor, the cycle characteristics tend to deteriorate when the battery is cycled (charged / discharged). In such a case, the wettability of the positive electrode current collector is preferably 37 dyne / cm or more.
[0024]
The material used for the negative electrode may be any material that can be doped or dedoped with lithium ions. In the present invention, it is called a negative electrode active material. Examples of such a negative electrode active material include graphite, pyrolysis, and the like. Carbon materials such as carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon are used. In particular, mesocarbon microbeads fired at 2500 ° C. or higher are preferable because the cycle characteristics are good even when the negative electrode mixture layer is formed at a high density.
[0025]
The carbon material used for the negative electrode as the negative electrode active material preferably has the following characteristics. In other words, the (002) with respect to the interplanar distance d 002 of the plane is preferably not more than 3.5 Å, more preferably 3.45Å or less, more preferably not more than 3.4 Å. The crystallite size Lc in the c-axis direction is preferably 30 mm or more, more preferably 80 mm or more, and further preferably 250 mm or more. And the average particle diameter of the said carbon material is 8-20 micrometers, especially 10-15 micrometers is preferable, and purity is preferable 99.9 weight% or more.
[0026]
For the negative electrode, for example, to the carbon material as the negative electrode active material, if necessary, the same conductive additive or binder as in the case of the positive electrode is added and mixed to prepare a negative electrode mixture, which is dispersed in a solvent. (The binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material, etc.), and the negative electrode mixture paste may be applied to a negative electrode current collector made of copper foil, and then dried. It is produced by forming a negative electrode mixture layer on at least a part of the current collector. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.
[0027]
Examples of the negative electrode current collector include metal foils such as copper foil, aluminum foil, nickel foil, and stainless steel foil, and those made of these metals in a net shape. Copper foil is particularly suitable.
[0028]
When using a carbon material for the negative electrode, in order to increase the capacity, the density of the negative electrode mixture layer of the negative electrode is set to 1.45 g / cm 3 or more. In particular, the density of the negative electrode mixture layer is 1.5 g / cm 3. It is preferably 3 or more. Usually, when the negative electrode mixture layer has a high density, it is easy to obtain a high capacity, but the penetration of the electrolyte solution is slow, and the utilization of the active material tends to be uneven, so that the cycle characteristics are likely to deteriorate. However, according to the present invention, excellent cycle characteristics can be obtained even in such a case. In other words, the cyclic ester used in the present invention and having a C═C unsaturated bond in the ring or a derivative thereof exhibits a remarkable effect even when the negative electrode mixture layer has a high density as described above.
[0029]
The separator is not particularly limited. For example, a polyolefin-based separator such as a microporous polyethylene film having a thickness of 20 μm or less, a microporous polypropylene film, or a microporous ethylene-propylene copolymer film may be thin. Since it has sufficient strength, the filling amount of the positive electrode active material, the negative electrode active material, etc. can be increased, the thermal conductivity is improved, and the heat dissipation is promoted against the heat generation inside the battery. Are preferably used. In particular, when a separator is interposed between the electrode laminate and the battery case, the effect of radiating heat inside the electrode is great.
[0030]
In the present invention, the discharge capacity per unit volume of the electrode laminate is preferably a non-aqueous secondary battery having a capacity of 130 mAh / cm 3 or more, which is based on the reason for increasing the capacity. . In the present invention, the volume of the electrode laminate is the volume of the positive electrode, the negative electrode and the separator laminated or the positive electrode, the negative electrode and the separator wound in the battery, and the volume wound like the latter. In this case, the through hole in the center of the wound body based on the winding shaft used for winding is not included as a volume. In short, the total volume occupied by the positive electrode, the negative electrode, and the separator. These three volumes of the positive electrode, the negative electrode, and the separator are important factors that determine the capacity of the battery. Regardless of the size of the battery, the discharge capacity per unit volume of the electrode stack (discharge capacity / volume of the electrode stack) ) Can be compared to compare the capacity densities of the batteries. Moreover, the discharge capacity here is the discharge capacity when the battery is charged and discharged under the standard use conditions. And more from the viewpoint of achieving Koyo capacity, discharge capacity per unit volume of the electrode stack is more preferably 140 mAh / cm 3 or more, more preferably 150 mAh / cm 3 or more.
[0031]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
[0032]
Example 1
Methyl ethyl carbonate, ethylene carbonate and vinylene carbonate are mixed at a volume ratio of 65: 33: 2, LiPF 6 is dissolved in 1.4 mol / l in this mixed solvent, and the composition is 1.4 mol / l LiPF 6 / EC: MEC. : An electrolytic solution represented by VC (33: 65: 2 volume ratio) was prepared.
[0033]
In the electrolytic solution, EC is an abbreviation for ethylene carbonate, MEC is an abbreviation for methyl ethyl carbonate, and VC is an abbreviation for vinylene carbonate. Therefore, 1.4 mol / l LiPF 6 / EC: MEC: VC (33: 65: 2 volume ratio) indicating the above electrolyte is 65% by volume of methyl ethyl carbonate, 33% by volume of ethylene carbonate, and 2% by volume of vinylene carbonate. It is shown that LiPF 6 was dissolved in an amount equivalent to 1.4 mol / l in the mixed solvent.
[0034]
Separately from the above, scale-like graphite as a conductive additive is added to LiCoO 2 at a weight ratio of 100: 6 and mixed, and this mixture is mixed with a solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone to obtain a paste. I made it. The amount of polyvinylidene fluoride in a weight ratio to LiCoO 2 100: was 3.8 (polyvinylidene fluoride 3.8 parts by weight based on LiCoO 2 100 parts by weight). The positive electrode mixture paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 24.6 mg / cm 2 on both surfaces of a positive electrode current collector made of a metal foil whose main component was aluminum having a thickness of 15 μm. (However, the amount of the positive electrode mixture after drying) is uniformly applied and dried to form a positive electrode mixture layer, and then compression-molded and cut with a roller press, and then the lead body is welded. Thus, a belt-like positive electrode was produced.
[0035]
The metal foil mainly composed of aluminum used as the positive electrode current collector contained 1% by weight of iron and 0.15% by weight of silicon, and the purity of aluminum was 98% by weight or more. The tensile strength of the metal foil mainly composed of aluminum used as the positive electrode current collector is 185 N / mm 2 , the average roughness Ra of the rough surface is 0.2 μm, and the average roughness Ra of the glossy surface is 0. 0. It was 04 μm. The wettability of the metal foil mainly composed of aluminum used as the positive electrode current collector was 38 dyne / cm, and the elongation was 3%.
[0036]
Then, the graphite-based carbon material mesocarbon microbeads [However, (002) in face-to-face distance d 002 is 3.37Å the surface, a size Lc is 950Å in the c-axis direction of the crystallites, the average particle diameter of 15μm And a graphite-based carbon material having a purity of 99.9% by weight or more] was mixed with a solution in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone to obtain a paste. The amount of the polyvinylidene fluoride was 92: 8 by weight with respect to the graphite-based carbon material (8.7 parts by weight of polyvinylidene fluoride with respect to 100 parts by weight of the graphite-based carbon material). This negative electrode mixture paste was passed through a 70-mesh net to remove a large one, and then applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm (12.0 mg / cm 2 (however, dried) The negative electrode mixture amount is applied uniformly and dried to form a negative electrode mixture layer. After that, it is compression-molded by a roller press and cut, and then the lead body is welded to form a belt-like A negative electrode was produced. The density of the negative electrode mixture layer of the negative electrode was 1.5 g / cm 3 .
[0037]
The belt-like positive electrode was overlapped on the belt-like negative electrode through a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape to form an electrode laminate having a spiral winding structure. At that time, the glossy surface of the positive electrode current collector made of a metal foil containing aluminum as a main component was set to the inner peripheral side. The volume of the electrode laminate was 11.4 cm 3 . Thereafter, the electrode laminate was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.
[0038]
Next, the electrolyte solution is poured into the battery case, and after the electrolyte solution has sufficiently penetrated into the separator and the like, it is sealed, precharged, and subjected to aging, and has a cylindrical shape as shown in the schematic diagram of FIG. A non-aqueous secondary battery was produced. After discharging the battery under the above standard use conditions, the electrolyte component in the battery was analyzed by gas chromatography, and the content of vinylene carbonate in the solvent component was examined. As a result, it was 0.79% by weight.
[0039]
Referring to the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector used in the production of the positive electrode 1 and the negative electrode 2 is not shown. The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 to form a spiral electrode laminate and are accommodated in a battery case 5 together with the electrolyte 4 made of the specific electrolyte.
[0040]
The battery case 5 is made of stainless steel as described above, and an insulator 6 made of polypropylene is disposed at the bottom of the battery case 5 prior to the insertion of the spiral electrode laminate. The sealing plate 7 is made of aluminum and has a disk shape. The sealing plate 7 is provided with a thin portion 7a at the center thereof, and serves as a pressure inlet 7b for allowing the battery internal pressure to act on the explosion-proof valve 9 around the thin portion 7a. Holes are provided. And the protrusion part 9a of the explosion-proof valve 9 is welded to the upper surface of this thin part 7a, and the welding part 11 is comprised. Note that the thin-walled portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding on the drawing, and the contour line behind the cut surface is shown. Is not shown. In addition, the welded portion 11 of the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is also illustrated in an exaggerated state so as to facilitate understanding on the drawing.
[0041]
The terminal plate 8 is made of rolled steel, has a nickel plating on the surface, and has a hat shape with a peripheral edge portion having a hook shape. The terminal plate 8 is provided with a gas discharge port 8a. The explosion-proof valve 9 is made of aluminum and has a disk shape, and a central portion is provided with a protruding portion 9a having a tip portion on the power generation element side (lower side in FIG. 1) and a thin portion 9b. As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to constitute the welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is arranged at the upper part of the peripheral edge of the sealing plate 7. The explosion-proof valve 9 is arranged at the upper part of the insulating packing 10. The gap between the two is sealed so that the liquid electrolyte does not leak between the two. The annular gasket 12 is made of polypropylene, the lead body 13 is made of aluminum, the sealing plate 7 and the positive electrode 1 are connected, an insulator 14 is disposed on the upper part of the spiral electrode laminate, and the negative electrode 2 and the battery case 5 are connected. Are connected by a nickel lead body 15.
[0042]
Example 2
The coating amount of the positive electrode mixture paste is 23.6 mg / cm 2 (however, the positive electrode mixture amount after drying), and the coating amount of the negative electrode mixture paste is 11.49 mg / cm 2, but the negative electrode mixture amount after drying And a cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that a microporous polyethylene film having a thickness of 25 μm which has been conventionally used as a separator was used. Also in the battery of Example 2, when the vinylene carbonate content in the solvent component of the electrolytic solution was examined in the same manner as in the battery of Example 1, it was 0.80% by weight.
[0043]
Example 3
Cylindrical non-aqueous secondary battery as in Example 1, except that the amount of vinylene carbonate in the solvent component of the electrolytic solution is reduced to 1% by volume, and that the amount of methyl ethyl carbonate is increased to 66% by volume. Was made. The content of the vinylene carbonate electrolyte solution of the battery of Example 3 in the solvent component was measured in the same manner as in Example 1 and found to be 0.1% by weight.
[0044]
Example 4
A cylindrical non-aqueous secondary battery was prepared in the same manner as in Example 1 except that the amount of vinylene carbonate in the solvent component of the electrolytic solution was increased to 5% by volume, and that methyl ethyl carbonate was reduced to 62% by volume. Produced. The content of the vinylene carbonate electrolyte solution of the battery of Example 4 in the solvent component was measured in the same manner as in Example 1 and found to be 2.6% by weight.
[0045]
Example 5
A cylindrical non-aqueous secondary battery was prepared in the same manner as in Example 1, except that the amount of vinylene carbonate in the solvent component of the electrolytic solution was increased to 10% by volume, and that methyl ethyl carbonate was reduced to 57% by volume. Produced. It was 7.7 weight% when content in the solvent component of the electrolyte solution of vinylene carbonate of the battery of this Example 5 was measured similarly to Example 1.
[0046]
Example 6
A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that coumarin was used instead of vinylene carbonate. The content of the coumarin electrolyte in the battery component of Example 6 in the solvent component was measured in the same manner as in Example 1 and found to be 1.2% by weight.
[0047]
Comparative Example 1
A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that vinylene carbonate was not used and methyl ethyl carbonate was increased.
[0048]
Comparative Example 2
Cylindrical as in Example 1 except that vinylene carbonate was not used, but the amount of methyl ethyl carbonate was increased, the amount of the negative electrode mixture was reduced, and the density of the negative electrode mixture layer of the negative electrode was 1.4 g / cm 3. A non-aqueous secondary battery was prepared.
[0049]
Comparative Example 3
Instead of vinylene carbonate, the amount of methyl ethyl carbonate was increased, and a foil mainly composed of 20 μm thick aluminum, which has been widely used as a positive electrode current collector, was used. This aluminum-based foil contained 0.03% by weight of iron and 0.02% by weight of silicon, and the purity was 99.94% by weight. The tensile strength was 140 N / mm 2 (15 μm equivalent), and the average roughness Ra was 0.04 μm on the double-sided glossy surface. The wettability was 36 dyne / cm and the elongation was 3%. A positive electrode mixture paste similar to that of Example 1 was applied uniformly on both surfaces of the positive electrode current collector so that the application amount was 23.9 mg / cm 2 (however, the positive electrode mixture amount after drying) and dried. A positive electrode mixture layer was formed, and then compression molded by a roller press, cut, and welded with a lead body to produce a strip-like positive electrode. The negative electrode was coated with a negative electrode mixture paste similar to that of Example 1 on both surfaces of a negative electrode current collector made of copper foil having a thickness of 10 μm as in Example 1 (however, after drying, 11.0 mg / cm 2 ) A negative electrode mixture layer is applied to form a negative electrode mixture layer, and a negative electrode mixture layer is formed. Using a microporous polyethylene film having a thickness of 25 μm conventionally used as a separator in the same manner as in Example 2, A cylindrical nonaqueous secondary battery was produced in the same manner as in Example 1 except for the above.
[0050]
Comparative Example 4
The coating amount of the positive electrode mixture paste is 20.0 mg / cm 2 (however, the positive electrode mixture after drying), and the coating amount of the negative electrode mixture paste is 12.0 mg / cm 2 (however, the negative electrode mixture after drying) Other than that, a cylindrical non-aqueous secondary battery was produced in the same manner as in Comparative Example 3.
[0051]
The batteries of Examples 1 to 6 and Comparative Examples 1 to 4 were discharged at 1700 mA (1C) to 2.75 V, charged at 1700 mA, and charged at a constant voltage of 4.2 V for 2.5 hours. It was. Thereafter, the battery was repeatedly charged and discharged at 1.700 mA up to 2.75 V, the discharge capacity at the first cycle and the discharge capacity at the 100th cycle were measured, and based on this, the capacity retention rate for the first cycle at the 100th cycle [ (Discharge capacity at the 100th cycle) / (Discharge capacity at the 1st cycle) × 100]. The results are shown in Table 1 together with the discharge capacity per unit volume of the electrode laminate, the discharge capacity at the first cycle, and the volume of the electrode laminate.
[0052]
[Table 1]
Figure 0003957415
[0053]
As shown in Table 1, in the batteries of Comparative Examples 1 to 3 that did not use vinylene carbonate, the capacity retention rate at the 100th cycle decreased to 78% or less, whereas Example 1 using vinylene carbonate. The batteries of Examples 5 to 5 and the battery of Example 6 using coumarin had a capacity retention of 91% or more at the 100th cycle, and were excellent in cycle characteristics. In addition, the batteries of Examples 1 to 6 had a large discharge capacity and a high capacity, and the batteries of Examples 1, 3 to 4 and Example 6 using particularly thin separators had a large discharge capacity. The battery of Comparative Example 4 had a capacity retention rate as high as 94% at the 100th cycle and excellent cycle characteristics, but the capacity was small, and the discharge capacity per unit volume of the electrode laminate was 130 mAh / cm 3. It was less than.
[0054]
【The invention's effect】
As described above, in the present invention, the non-aqueous secondary battery having a high capacity of 4 mA class active material for the positive electrode and having a discharge capacity per unit volume of the electrode laminate of 130 mAh / cm 3 or more has excellent cycle characteristics. Non-aqueous secondary battery could be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a nonaqueous secondary battery of the present invention.
[Explanation of symbols]
1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (7)

正極、負極およびセパレータを積層した電極積層体と電解液とを有し、正極に4V級の活物質を用い、負極に(002)面の面間距離d 002 が3.5Å以下で、かつc軸方向の結晶子の大きさLcが30Å以上である炭素材料を用い、その負極の負極合剤層の密度が1.45g/cm以上で、上記セパレータの厚みが20μm以下であり、上記電解液が溶媒としてエチレンカーボネートを全溶媒中の50体積%未満で含有する非水二次電池であって、上記電解中に環状で環内にC=C不飽和結合を有するエステルまたはその誘導体を含有することを特徴とする非水二次電池。It has an electrode laminate in which a positive electrode, a negative electrode, and a separator are laminated, and an electrolytic solution. A 4V class active material is used for the positive electrode, and a (002) plane distance d 002 is used for the negative electrode. In but below 3.5 Å, and the size Lc in the c-axis direction of crystallites using a carbon material is more than 30 Å, the density of the negative electrode mixture layer of the negative electrode 1.45 g / cm 3 or more, of the separator thickness from 20μm or less, a non-aqueous secondary battery containing less than 50% by volume of the total solvent of ethylene carbonate the electrolytic solution as a solvent, C = C unsaturated in the ring with ring in the electrolyte solution A non-aqueous secondary battery comprising an ester having a saturated bond or a derivative thereof. 極積層体の単位体積当たりの放電容量が10mAh/cm以上である請求項1記載の非水二次電池。Non-aqueous secondary battery according to claim 1, wherein the discharge capacity per unit volume of electrodes laminate is 1 4 0 mAh / cm 3 or more. 環状で環内にC=C不飽和結合を有するエステルまたはその誘導体の含有量が電解の溶媒成分中0.05〜8重量%である請求項1または2記載の非水二次電池。The nonaqueous secondary battery according to claim 1 or 2, wherein the content of the cyclic ester having a C = C unsaturated bond or a derivative thereof in the ring is 0.05 to 8% by weight in the solvent component of the electrolytic solution . 正極に用いた正極集電材が、アルミニウムの純度が99.9重量%未満で、厚みが15μm以下のアルミニウムを主成分とする金属箔である請求項1〜3のいずれかに記載の非水二次電池。  4. The non-aqueous two-dimensional metal foil according to claim 1, wherein the positive electrode current collector used for the positive electrode is a metal foil mainly composed of aluminum having a purity of aluminum of less than 99.9 wt% and a thickness of 15 μm or less. Next battery. 正極に用いた正極集電材が、150N/mm以上の引張り強度と2%以上の伸びを有するアルミニウムを主成分とする金属箔である請求項1〜4のいずれかに記載の非水二次電池。The non-aqueous secondary according to claim 1, wherein the positive electrode current collector used for the positive electrode is a metal foil mainly composed of aluminum having a tensile strength of 150 N / mm 2 or more and an elongation of 2% or more. battery. 正極に用いた正極集電材が、平均粗度(Ra)で0.1〜0.5μmの粗面と、0.2μm以下の光沢面を有し、37dyne/cm以上の濡れ性を有する金属箔である請求項1〜5のいずれかに記載の非水二次電池。  The positive electrode current collector used for the positive electrode has a rough surface with an average roughness (Ra) of 0.1 to 0.5 μm, a glossy surface of 0.2 μm or less, and a metal foil having a wettability of 37 dyne / cm or more The nonaqueous secondary battery according to any one of claims 1 to 5. 4V級の活物質を用いた正極、(002)面の面間距離dPositive electrode using 4V class active material, inter-surface distance d of (002) plane 002002 が3.5Å以下で、かつc軸方向の結晶子の大きさLcが30Å以上である炭素材料を用い、合剤層の密度が1.45g/cmIs a carbon material in which the crystallite size Lc in the c-axis direction is 30 mm or more, and the density of the mixture layer is 1.45 g / cm. 3 以上である負極、および厚みが20μm以下のセパレータを積層した電極積層体と電解液とを有する非水二次電池用の電解液であって、溶媒としてエチレンカーボネートを全溶媒中の50体積%未満で含有し、かつ環状で環内にC=C不飽和結合を有するエステルまたはその誘導体を含有することを特徴とする非水二次電池用電解液。Electrolytic solution for a non-aqueous secondary battery comprising the negative electrode as described above, and an electrode laminate in which a separator having a thickness of 20 μm or less and an electrolytic solution, and ethylene carbonate as a solvent is less than 50% by volume in the total solvent And an ester or derivative thereof having a cyclic structure and a C═C unsaturated bond in the ring.
JP29746598A 1998-10-20 1998-10-20 Non-aqueous secondary battery Expired - Lifetime JP3957415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29746598A JP3957415B2 (en) 1998-10-20 1998-10-20 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29746598A JP3957415B2 (en) 1998-10-20 1998-10-20 Non-aqueous secondary battery

Publications (3)

Publication Number Publication Date
JP2000123867A JP2000123867A (en) 2000-04-28
JP2000123867A5 JP2000123867A5 (en) 2004-09-30
JP3957415B2 true JP3957415B2 (en) 2007-08-15

Family

ID=17846854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29746598A Expired - Lifetime JP3957415B2 (en) 1998-10-20 1998-10-20 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3957415B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9929698D0 (en) * 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
TW531924B (en) * 2000-05-26 2003-05-11 Sony Corp Nonaqueous electrolyte secondary battery
US7638229B2 (en) 2005-02-15 2009-12-29 Lg Chem, Ltd. Lithium secondary battery of electrolyte containing ammonium compounds
JP5017800B2 (en) * 2005-05-12 2012-09-05 ソニー株式会社 Secondary battery electrolyte and secondary battery
KR101082152B1 (en) 2006-06-20 2011-11-09 주식회사 엘지화학 Electrolyte for improving life characteristics at a high temperature and lithium secondary battery comprising the same
JP5277550B2 (en) 2007-03-12 2013-08-28 セントラル硝子株式会社 Method for producing lithium difluorophosphate and non-aqueous electrolyte battery using the same
KR101106113B1 (en) 2007-11-09 2012-01-18 주식회사 엘지화학 Lithium Secondary Battery Containing Additive for Improved High-Temperature Characteristics
JP5544748B2 (en) * 2009-04-22 2014-07-09 セントラル硝子株式会社 Electrolytes for electrochemical devices, electrolytes using the same, and nonaqueous electrolyte batteries
JP5573313B2 (en) 2010-04-06 2014-08-20 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5796417B2 (en) 2011-08-31 2015-10-21 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
KR102440841B1 (en) 2014-02-14 2022-09-06 스텔라 케미파 코포레이션 Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same
JP6361486B2 (en) 2014-12-01 2018-07-25 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
US11005125B2 (en) 2015-02-04 2021-05-11 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
JP6665396B2 (en) 2015-02-19 2020-03-13 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP6601094B2 (en) 2015-09-25 2019-11-06 日清紡ホールディングス株式会社 Additive for electrolyte
CN105336987A (en) * 2015-11-17 2016-02-17 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
EP3396771B1 (en) 2015-12-22 2023-10-04 Central Glass Company, Limited Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which same is used
CN109326823B (en) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 Lithium ion battery non-aqueous electrolyte and lithium ion battery
CN109428120B (en) 2017-08-30 2021-09-17 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte for lithium ion battery and lithium ion battery
JP7172015B2 (en) 2017-09-12 2022-11-16 セントラル硝子株式会社 Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP7223221B2 (en) 2017-09-12 2023-02-16 セントラル硝子株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
CN109950621B (en) 2017-12-21 2022-05-03 深圳新宙邦科技股份有限公司 Lithium ion battery non-aqueous electrolyte and lithium ion battery
CN111403807B (en) 2019-01-02 2022-12-06 深圳新宙邦科技股份有限公司 Lithium ion battery non-aqueous electrolyte and lithium ion battery
JPWO2020170833A1 (en) 2019-02-19 2021-12-23 株式会社Adeka Electrolyte compositions, non-aqueous electrolytes and non-aqueous electrolyte secondary batteries
CN114447432B (en) 2020-11-03 2023-12-15 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery

Also Published As

Publication number Publication date
JP2000123867A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP3957415B2 (en) Non-aqueous secondary battery
JP5400268B2 (en) Lithium secondary battery
JP3953207B2 (en) Non-aqueous secondary battery
CN100583541C (en) Battery
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
JP3938442B2 (en) Non-aqueous secondary battery
JP3916116B2 (en) Non-aqueous secondary battery
JP5219303B2 (en) Non-aqueous secondary battery
JP3928756B2 (en) Non-aqueous secondary battery
JP4530289B2 (en) Non-aqueous secondary battery
JP2004087209A (en) Lithium secondary battery
JP2003163032A (en) Organic electrolyte including carbonate with carbon- carbon double bond, and polymer electrolyte and lithium secondary battery manufactured by using the same
JP4159005B2 (en) Non-aqueous secondary battery
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP3712250B2 (en) Non-aqueous secondary battery
JP2016072119A (en) Lithium secondary battery
JP4767156B2 (en) Non-aqueous secondary battery
JP4215263B2 (en) Non-aqueous secondary battery
JP4974404B2 (en) Non-aqueous secondary battery
JP4165677B2 (en) Non-aqueous secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
JP3969551B2 (en) Non-aqueous secondary battery
JP5004217B2 (en) Non-aqueous secondary battery
JP2000243439A (en) Nonaqueous secondary battery
JP2003331847A (en) Nonaqueous secondary battery and method for manufacturing paint of positive electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term