JP2000164220A - Electrode material for silver oxide battery - Google Patents

Electrode material for silver oxide battery

Info

Publication number
JP2000164220A
JP2000164220A JP10335540A JP33554098A JP2000164220A JP 2000164220 A JP2000164220 A JP 2000164220A JP 10335540 A JP10335540 A JP 10335540A JP 33554098 A JP33554098 A JP 33554098A JP 2000164220 A JP2000164220 A JP 2000164220A
Authority
JP
Japan
Prior art keywords
silver oxide
powder
electrode material
silver
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10335540A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Sumiyoshi Sato
純悦 佐藤
Kazusuke Sato
一祐 佐藤
Michihiro Tanaka
道広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10335540A priority Critical patent/JP2000164220A/en
Publication of JP2000164220A publication Critical patent/JP2000164220A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a material having high fluidicity and hard to be expanded in charging. SOLUTION: This electrode material is formed by mixing 0.003-0.3 weight % of the silica fine powder having 6-50 nm of the mean primary grain diameter and 50-500 m2/g of the specific surface area in the silver oxide powder to be used as the positive electrode active material for silver oxide battery. Desirably, a coefficient of fluctuation of quantity of the filling at the time of press for filling is restricted to 2% or less. The silver oxide powder having 0.1-1.0 μm of the mean primary grain diameter and 0.5-3.0 g/cm3 of bulk density is desirably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化銀電池の正極
活物質として用いられる電極材料であって、流動性が良
いので容器への充填性に優れ、また充電時に電池の膨張
を生じない電極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material used as a positive electrode active material of a silver oxide battery, which has good fluidity and thus has excellent filling properties in a container, and does not cause battery expansion during charging. About the material.

【0002】ボタン型の銀電池は電圧が比較的高いうえ
に電圧変動が少なく、温度特性も優れているので、各種
の機器に広く用いられている。この銀電池は酸化銀を正
極活物質とし、亜鉛を負極活物質に用い、電解液として
アルカリ液を用いたものが一般的である。この電極材を
形成する酸化銀は、ペレット形状にプレス成形されて電
池の容器に収納されるので、一定体積かつ一定重量の酸
化銀ペレットを再現性よく製造できることが必要であ
り、このため流動性に優れ、プレス金型への充填量の再
現性に優れた酸化銀粉末が求められる。流動性が乏しい
と充填量が不均一になり、所定の容量が得られない等の
問題を生じる。
[0002] Button-type silver batteries are widely used in various devices because of their relatively high voltage, small voltage fluctuations, and excellent temperature characteristics. This silver battery generally uses silver oxide as a positive electrode active material, zinc as a negative electrode active material, and an alkaline solution as an electrolyte. Since the silver oxide forming the electrode material is pressed into a pellet shape and stored in a battery container, it is necessary that silver oxide pellets having a constant volume and a constant weight can be produced with good reproducibility. Silver oxide powder which is excellent in reproducibility and reproducibility of the filling amount in a press die is required. If the fluidity is poor, the filling amount becomes non-uniform, which causes problems such as the inability to obtain a predetermined capacity.

【0003】そこで、酸化銀を顆粒状にすることにより
流動性を高めたものが従来から知られている(特開昭61-
136915号)。ところが、酸化銀粉末を顆粒に加工する手
間がかかり、また顆粒状の粒子は容器に充填した後のプ
レス加圧時に噛込み等の問題を生じ、成形不良となる場
合がある。
[0003] In view of the above, there has been conventionally known a method in which silver oxide is granulated to increase its fluidity (Japanese Patent Application Laid-Open No. 61-1986).
136915). However, it takes time and effort to process the silver oxide powder into granules, and the granulated particles may cause problems such as biting at the time of pressurizing after filling in a container, resulting in poor molding.

【0004】また、酸化銀粉末を表面処理することによ
って流動性を高めることも知られており、例えば、特開
昭56−5323号には、酸化銀ないし過酸化銀の粒子
を帯電防止性を有するカチオン性界面活性剤で処理する
ことにより嵩密度を高めることが記載されている。この
表面処理によれば、酸化銀の摩擦抵抗が減少して流動性
が高めることができるが、表面処理に手間がかかる問題
がある。すなわち、表面処理を行うものは、所定濃度お
よび組成の表面処理液を調製し、該処理液に銀粉末を浸
して処理液を十分に浸透させた後に乾燥する工程が必要
となる。
It is also known that surface treatment of silver oxide powder enhances fluidity. For example, JP-A-56-5323 discloses that silver oxide or silver peroxide particles have an antistatic property. It is described that the bulk density is increased by treating with a cationic surfactant. According to this surface treatment, the frictional resistance of silver oxide can be reduced and the fluidity can be increased, but there is a problem that the surface treatment is troublesome. That is, in the case of performing a surface treatment, a step of preparing a surface treatment solution having a predetermined concentration and composition, immersing silver powder in the treatment solution, sufficiently penetrating the treatment solution, and then drying is required.

【0005】[0005]

【発明の解決課題】本発明は、銀電池の酸化銀粉末につ
いて、従来の上記問題を解決したものであり、流動性に
優れ、従って容器への充填量が精確であり、しかも二次
電池に用いた場合に充電時の膨張を生じない銀電池用電
極材料を提供する。なお、本出願人は表面処理液として
シリル化剤を用いることにより優れた流動性を有する酸
化銀粉末を得ているが(特開平10-81516号)、本発明はこ
のような表面処理によらない流動性に優れた電極材料を
提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems with respect to silver oxide powder of a silver battery, has excellent fluidity, and therefore has a precise filling amount in a container. Provided is an electrode material for a silver battery that does not cause expansion during charging when used. The applicant has obtained a silver oxide powder having excellent fluidity by using a silylating agent as a surface treatment liquid (Japanese Patent Laid-Open No. 10-81516), but the present invention is based on such a surface treatment. The present invention provides an electrode material having excellent fluidity.

【0006】[0006]

【課題を解決する手段】すなわち、本発明は、(1)酸
化銀電池の正極活物質として用いられる酸化銀粉末に、
平均一次粒径6〜50nm、比表面積50〜500m2/g
のシリカ微粉末を0.003〜0.3重量%混合してなる
ことを特徴とする酸化銀電池用電極材料に関する。
That is, the present invention provides (1) silver oxide powder used as a positive electrode active material of a silver oxide battery;
Average primary particle size 6 to 50 nm, specific surface area 50 to 500 m 2 / g
Electrode material for silver oxide batteries, characterized in that 0.003 to 0.3% by weight of silica fine powder is mixed.

【0007】本発明の上記電極材料は、(2)プレス充
填における充填量の変動係数が2%以下である上記(1)
に記載の酸化銀電池用電極材料、および、(3)酸化銀
粉末が、平均一次粒径0.1〜10μmおよび嵩密度0.
5〜3.0g/cm3である上記(1)または(2)に記載の酸化
銀電池用電極材料を含む。
In the above electrode material of the present invention, (2) the coefficient of variation of the filling amount in press filling is 2% or less.
And (3) silver oxide powder having an average primary particle size of 0.1 to 10 μm and a bulk density of 0.1.
The electrode material for a silver oxide battery according to the above (1) or (2), which has an amount of 5 to 3.0 g / cm 3 .

【0008】[0008]

【発明の実施の形態】以下、本発明を実施形態に即して
具体的に説明する。本発明に係る電極材料は、酸化銀電
池の正極活物質として用いられる酸化銀粉末に、平均一
次粒径6〜50nm、比表面積50〜500m2/gのシリ
カ微粉末を0.003〜0.3重量%混合してなる酸化銀
電池用電極材料である。本発明の電極材料は、必要に応
じて炭素等の副成分を添加して使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to embodiments. The electrode material according to the present invention comprises a silver oxide powder used as a positive electrode active material of a silver oxide battery, and a fine silica powder having an average primary particle diameter of 6 to 50 nm and a specific surface area of 50 to 500 m 2 / g in a range of 0.003 to 0.005. It is an electrode material for silver oxide batteries mixed with 3% by weight. The electrode material of the present invention is used by adding an auxiliary component such as carbon as necessary.

【0009】酸化銀電池の正極活物質として、平均粒径
0.1〜10μmおよび嵩密度0.5〜1.5g/cm3の酸化
銀粉末が通常用いられているが、本発明はこの酸化銀粉
末を用いることができる。なお、酸化銀粉末の平均粒径
および嵩密度は上記範囲に限らない。流動性との関係か
ら銀電池用正極活物質として使用できる粒径と嵩密度の
酸化銀であれば良い。酸化銀に本発明範囲内のシリカ微
粉末を混合すると、嵩密度が1.1〜3倍に増加する。
また、銀電池には酸化銀(Ag2O)の他に過酸化銀(AgO)
および銀ニッケライト(AgNiO2)も用いられており、本発
明において酸化銀とは過酸化銀および銀ニッケライトを
含む。
As a positive electrode active material for a silver oxide battery, silver oxide powder having an average particle size of 0.1 to 10 μm and a bulk density of 0.5 to 1.5 g / cm 3 is usually used. Silver powder can be used. The average particle size and bulk density of the silver oxide powder are not limited to the above ranges. Any silver oxide having a particle size and a bulk density that can be used as a positive electrode active material for a silver battery may be used from the viewpoint of fluidity. When the silica fine powder within the range of the present invention is mixed with silver oxide, the bulk density increases 1.1 to 3 times.
In addition to silver oxide (Ag 2 O), silver batteries (AgO)
And silver nickelite (AgNiO 2 ) are also used. In the present invention, silver oxide includes silver peroxide and silver nickelite.

【0010】酸化銀粉末に混合されるシリカ粉は、平均
一次粒径6〜50nm(ナノメータ)であって比表面積50〜5
00m2/gの超微細な粉末である。シリカ微粉末の平均
粒径が6nm未満では比表面積が大きくなり過ぎて電池寿
命が短くなる。一方、平均粒径が50nmより大きいと十
分な流動性が得られない。好ましくは平均一次粒径が7
〜20nmであるものが良い。また、シリカ粉末の比表面
積が50m2/g未満では充電時の内圧上昇を抑制する効
果が小さく、比表面積が500m2/gを上回ると電池寿
命が短くなるので適当ではない。シリカ粉末の比表面積
は好ましくは150〜400m2/gが良い。なお、この
シリカ粉末はSiO2が99重量%以上であればよい。
上記シリカ微粉末の添加量は、0.003〜0.3重量%
が適当である。添加量がこれより少ないとその効果がな
く、一方、添加量がこれより多いと流動性は上記範囲内
のものと大差なくしかも相対的に酸化銀の量が少なくな
り電池特性が低下するので好ましくない。
The silica powder mixed with the silver oxide powder has an average primary particle size of 6 to 50 nm (nanometer) and a specific surface area of 50 to 5 nm.
It is an ultrafine powder of 00 m 2 / g. If the average particle size of the silica fine powder is less than 6 nm, the specific surface area becomes too large and the battery life is shortened. On the other hand, if the average particle size is larger than 50 nm, sufficient fluidity cannot be obtained. Preferably the average primary particle size is 7
Those having a thickness of about 20 nm are good. If the specific surface area of the silica powder is less than 50 m 2 / g, the effect of suppressing an increase in internal pressure during charging is small, and if the specific surface area exceeds 500 m 2 / g, the life of the battery is shortened, which is not suitable. The specific surface area of the silica powder is preferably from 150 to 400 m 2 / g. The silica powder may contain 99% by weight or more of SiO 2 .
The addition amount of the above silica fine powder is 0.003 to 0.3% by weight.
Is appropriate. If the addition amount is less than this, there is no effect.On the other hand, if the addition amount is more than this, the fluidity is not much different from that in the above range, and the amount of silver oxide is relatively small, and the battery characteristics are deteriorated. Absent.

【0011】本発明の上記銀電池用電極材料(正極活物
質)は、上記シリカ微粉末を含有することにより優れた
流動性を有するので、電池容器に充填した際に充填量が
正確であり、プレス充填における充填量の変動係数(S)
が2%以下である。なお充填量の変動係数(S)とは一定
プレス圧を加えて一定容積の上記酸化銀電極ペレットを
製造した際に、個々の電極ペレットの重量が平均重量と
相違するばらつきを示すものであり、一定容積の電池容
器に電極ペレットをプレス成形した際に、得られる電極
ペレットについてその平均重量を求め、この平均重量
(M)に対する個々の電極ペレットの重量の標準偏差(N)
を百分比(S=N/M%)で示したものある。この変動係
数(S)が小さいほどバラツキが少なく均一なものにな
る。因みに、実施例に示すように、シリカ粉末を含有せ
ず、あるいはその添加量が少ない電池用酸化銀粉末の変
動係数(S)は約2〜3であるが、本発明の電極材料の変
動係数(S)は1以下であり、従来のものより大幅に小さ
い。
The electrode material for a silver battery (cathode active material) of the present invention has excellent fluidity by containing the above-mentioned silica fine powder, so that the filling amount when filling the battery container is accurate. Variation coefficient of filling amount in press filling (S)
Is 2% or less. Note that the coefficient of variation (S) of the filling amount indicates that the weight of each electrode pellet differs from the average weight when a constant volume of the silver oxide electrode pellet is manufactured by applying a constant pressing pressure, When the electrode pellets were press-molded into a battery container having a fixed volume, the average weight of the obtained electrode pellets was determined.
Standard deviation of the weight of individual electrode pellets relative to (M) (N)
Is shown as a percentage (S = N / M%). The smaller the variation coefficient (S) is, the smaller the variation is and the more uniform the variation is. Incidentally, as shown in the examples, the variation coefficient (S) of the silver oxide powder for batteries containing no silica powder or having a small amount of addition is about 2-3, but the variation coefficient of the electrode material of the present invention is not limited. (S) is 1 or less, which is much smaller than the conventional one.

【0012】また、本発明の上記電極材料は、二次電池
として用いた際に充電時の膨張を実質上生じない。二次
電池の充電時に生じる膨張は、負極側で水素ガスおよび
正極側で酸素ガスが発生して容器の内圧が上昇するのが
主な原因であるが、本発明の電極材料では、酸化銀粉末
の周囲にシリカ微粉末が分散しており、これによって気
相−液相(電解液)−固相(銀ないし酸化銀粉末)の三相か
らなる界面が形成されるので、酸化銀あるいは酸化銀の
放電によって生じた銀の表面で発生した水素ガスや酸素
ガスがこれら界面で容易に反応して水となり、内圧が上
昇しない。
Further, the above-mentioned electrode material of the present invention does not substantially cause expansion during charging when used as a secondary battery. The expansion that occurs during charging of the secondary battery is mainly caused by the fact that hydrogen gas is generated on the negative electrode side and oxygen gas is generated on the positive electrode side and the internal pressure of the container is increased.In the electrode material of the present invention, silver oxide powder is used. The silica fine powder is dispersed around the surface, and this forms a three-phase interface of a gas phase, a liquid phase (electrolyte solution), and a solid phase (silver or silver oxide powder). The hydrogen gas and the oxygen gas generated on the surface of silver generated by the discharge of the gas easily react at these interfaces to become water, and the internal pressure does not increase.

【0013】[0013]

【実施例】以下、本発明を実施例によって具体的に示
す。実施例1 銀電池用の酸化銀粉末(平均一次粒径:3μm、嵩密度:
0.95g/cm3)に、表1に示すシリカ粉末を混合し、15
分間攪拌して均一な混合粉末(電極材料)とし、この粉末
の安息角を測定した。また、この混合粉末を円形容器
(直径10mmφ、厚さ0.7mm)にプレス圧(3t/cm2)を加えて
充填し、50個の充填物の平均重量に対する変動係数
(S)を求めた。この結果を表1に示した(試料No.A-1〜A-
7)。なお、シリカ粉末を混合しない試料(No.B-1)、およ
びシリカ粉末の平均一次粒径、比表面積、混合量が本発
明の範囲を外れる試料(No.B-2〜B-4)についても同様の
試験を行い、この結果を表1に示した。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 Silver oxide powder for silver batteries (average primary particle size: 3 μm, bulk density:
0.95 g / cm 3 ) and the silica powder shown in Table 1 were mixed.
The mixture was stirred for 1 minute to obtain a uniform mixed powder (electrode material), and the angle of repose of this powder was measured. Also, put this mixed powder in a circular container
(Diameter 10mmφ, thickness 0.7mm) and press pressure (3t / cm 2 ) for filling and filling coefficient, variation coefficient to average weight of 50 packing
(S) was determined. The results are shown in Table 1 (sample Nos. A-1 to A-
7). Incidentally, the sample without mixing the silica powder (No.B-1), and the average primary particle size of the silica powder, specific surface area, the amount of the mixture is out of the range of the present invention (No.B-2 to B-4) Also performed the same test, and the results are shown in Table 1.

【0014】 [0014]

【0015】実施例2 実施例1の試料に炭素粉末3wt%を加えて電極材料(正
極活物質)とし、その他は通常の条件および材料を用い
てボタン型銀電池を製造した。この電池について0.1
C(10hrsで充電または放電)で100回充放電を繰り
返して性能(放電容量,膨張)を評価した。放電容量は1
0回目の放電容量を用い、シリカ粉を添加しない他は同
一条件で製造したものの放電容量に対する百分率で示し
た。膨張の有無は、100回充放電後の電池の膨れを目
視により確認した。この結果を表2に示した。
Example 2 A button-type silver battery was manufactured by adding 3 wt% of carbon powder to the sample of Example 1 to form an electrode material (positive electrode active material), and using the usual conditions and materials. About 0.1
Charging / discharging was repeated 100 times at C (charge or discharge at 10 hrs), and performance (discharge capacity, expansion) was evaluated. Discharge capacity is 1
Using the 0th discharge capacity, except that no silica powder was added, the results were shown as a percentage of the discharge capacity of those manufactured under the same conditions. The presence or absence of swelling was visually confirmed by swelling of the battery after 100 charge / discharge cycles. The results are shown in Table 2.

【0016】 [0016]

【0017】表1に示すように、本発明の実施例に係る
試料(No.A-1〜A-7)は何れも安息角が30度以下であっ
て変動係数が1以下であるのに対して、比較試料(No.B-
1〜B-3)は安息角32度以上であって変動係数が2以上
であり、流動性が低い。なお比較試料(No.B-4)は流動性
が本発明の試料と同等であるが、シリカ量が多いために
表2に示すように放電容量比が低い(試料No.D-4)。また
比較試料(No.B-2,-3)を用いたものも放電容量比が低く
(試料No.D-2,-3)、シリカ粉末を含まないものは充電時
に膨張がみられる(試料No.D-1)。一方、本発明の試料(N
o.C-1〜C-7)は放電容量比が高く、充填時の膨張もみら
れない。
As shown in Table 1, the samples (No. A-1 to A-7) according to the examples of the present invention all have a repose angle of 30 degrees or less and a variation coefficient of 1 or less. On the other hand, the comparative sample (No.B-
1 to B-3) have a repose angle of 32 degrees or more, a coefficient of variation of 2 or more, and low fluidity. The comparative sample (No. B-4) has the same fluidity as the sample of the present invention, but has a low discharge capacity ratio as shown in Table 2 due to the large amount of silica (Sample No. D-4). Also, the one using the comparative sample (No.B-2, -3) has a low discharge capacity ratio.
(Sample Nos. D-2 and -3) and those containing no silica powder showed expansion upon charging (Sample No. D-1). On the other hand, the sample of the present invention (N
oC-1 to C-7) have a high discharge capacity ratio and no expansion during filling is observed.

【0018】[0018]

【発明の効果】本発明の銀電池用電池材料は流動性が良
いので、電池容器に必要量を精確に充填することがで
き、均一な品質の銀電池を製造することができる。ま
た、二次電池として用いた場合、充電時の電池の膨張を
生じない。
The battery material for a silver battery of the present invention has good fluidity, so that the required amount can be accurately filled in a battery container, and a silver battery of uniform quality can be manufactured. When used as a secondary battery, the battery does not expand during charging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一祐 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所材料技術研 究所内 (72)発明者 田中 道広 秋田県秋田市茨島3丁目1番18号 三菱マ テリアル株式会社秋田製錬所内 Fターム(参考) 5H003 AA08 BA03 BB00 BB04 BC01 BD02 BD05 5H015 AA02 BB05 BB09 DD01 EE06 EE11 HH00 HH01 HH06 HH08 HH13 5H016 AA02 BB05 BB09 EE04 HH00 HH01 HH06 HH13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ichisuke Sato 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Research Institute Materials Technology Laboratory (72) Inventor Michihiro Tanaka 3 Ibarjima, Akita City, Akita Prefecture F-term (reference) at Mitsubishi Materials Co., Ltd. Akita Smelter & Refinery 5H003 AA08 BA03 BB00 BB04 BC01 BD02 BD05 5H015 AA02 BB05 BB09 DD01 EE06 EE11 HH00 HH01 HH06 HH08 HH13 5H016 AA02 BB05 H00H06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化銀電池の正極活物質として用いられ
る酸化銀粉末に、平均一次粒径6〜50nm、比表面積5
0〜500m2/gのシリカ微粉末を0.003〜0.3重
量%混合してなることを特徴とする酸化銀電池用電極材
料。
A silver oxide powder used as a positive electrode active material for a silver oxide battery has an average primary particle size of 6 to 50 nm and a specific surface area of 5 to 5.
An electrode material for silver oxide batteries, characterized by mixing 0.003 to 0.3% by weight of silica fine powder of 0 to 500 m 2 / g.
【請求項2】 プレス充填における平均重量に対する充
填量の変動係数が2%以下である請求項1に記載の酸化
銀電池用電極材料。
2. The electrode material for a silver oxide battery according to claim 1, wherein the coefficient of variation of the filling amount with respect to the average weight in press filling is 2% or less.
【請求項3】 酸化銀粉末が、平均一次粒径0.1〜1
0μmおよび嵩密度0.5〜3.0g/cm3である請求項1
または2に記載の酸化銀電池用電極材料。
3. The silver oxide powder has an average primary particle size of 0.1 to 1.
2. The composition according to claim 1, which has a volume density of 0.5 μm and a bulk density of 0.5 to 3.0 g / cm 3.
Or the electrode material for a silver oxide battery according to 2.
JP10335540A 1998-11-26 1998-11-26 Electrode material for silver oxide battery Pending JP2000164220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335540A JP2000164220A (en) 1998-11-26 1998-11-26 Electrode material for silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335540A JP2000164220A (en) 1998-11-26 1998-11-26 Electrode material for silver oxide battery

Publications (1)

Publication Number Publication Date
JP2000164220A true JP2000164220A (en) 2000-06-16

Family

ID=18289727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335540A Pending JP2000164220A (en) 1998-11-26 1998-11-26 Electrode material for silver oxide battery

Country Status (1)

Country Link
JP (1) JP2000164220A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery
JP2005529467A (en) * 2002-06-05 2005-09-29 エヴァレディー バッテリー カンパニー インコーポレイテッド Non-aqueous electrochemical cell with improved energy density
US20130071744A1 (en) * 2009-11-03 2013-03-21 Hongxia Zhou Novel electrodes and rechargeable batteries
US20130230774A1 (en) * 2010-11-03 2013-09-05 ZPower ,LLC Novel electrodes and rechargeable batteries
US9209454B2 (en) 2009-03-27 2015-12-08 Zpower, Llc Cathode
US9401509B2 (en) 2010-09-24 2016-07-26 Zpower, Llc Cathode
US9799886B2 (en) 2012-09-27 2017-10-24 Zpower, Llc Cathode with silver material and silicate dopant and method of producing
WO2019142915A1 (en) 2018-01-18 2019-07-25 マクセルホールディングス株式会社 Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell
JP2021506722A (en) * 2017-12-22 2021-02-22 ナノメーカーズNanomakers Manufacturing method that incorporates silicon-containing particles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery
JP2005529467A (en) * 2002-06-05 2005-09-29 エヴァレディー バッテリー カンパニー インコーポレイテッド Non-aqueous electrochemical cell with improved energy density
US9209454B2 (en) 2009-03-27 2015-12-08 Zpower, Llc Cathode
US20130071744A1 (en) * 2009-11-03 2013-03-21 Hongxia Zhou Novel electrodes and rechargeable batteries
US9184444B2 (en) * 2009-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9401509B2 (en) 2010-09-24 2016-07-26 Zpower, Llc Cathode
US20130230774A1 (en) * 2010-11-03 2013-09-05 ZPower ,LLC Novel electrodes and rechargeable batteries
US9184440B2 (en) * 2010-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9799886B2 (en) 2012-09-27 2017-10-24 Zpower, Llc Cathode with silver material and silicate dopant and method of producing
JP2021506722A (en) * 2017-12-22 2021-02-22 ナノメーカーズNanomakers Manufacturing method that incorporates silicon-containing particles
JP7312752B2 (en) 2017-12-22 2023-07-21 ナノメーカーズ Manufacturing methods incorporating silicon-containing particles
WO2019142915A1 (en) 2018-01-18 2019-07-25 マクセルホールディングス株式会社 Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell

Similar Documents

Publication Publication Date Title
JP2000503467A (en) Zinc anode for electrochemical cells
JP2000164220A (en) Electrode material for silver oxide battery
JP3215446B2 (en) Zinc alkaline battery
US5209995A (en) Zinc alkaline cells
KR100978749B1 (en) Zinc Powder or Zinc Alloy Powder for Alkaline Batteries
US5139900A (en) Zinc alkaline cells
WO2011027485A1 (en) Alkaline battery
JPS58218760A (en) Alkaline battery
JP2006511703A (en) Zinc powder or zinc alloy powder with non-uniform bulk density for alkaline batteries
JPH0736332B2 (en) Battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP2010251221A (en) Electrolytic manganese dioxide composition having superior high rate property
JPH0317182B2 (en)
JPS58206059A (en) Organic electrolyte battery
JPS5935360A (en) Zinc electrode
JPH04262367A (en) Hydrogen storage electrode
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JPS62139261A (en) Nickel electrode for alkaline battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH04296451A (en) Alkaline battery
JPH11111279A (en) Hydrogen storage alloy electrode and nickel hydrogen secondary battery using it
JPH11329419A (en) Positive electrode mixture for alkaline battery
JP2007299622A (en) Zinc powder for alkaline battery, negative electrode gel and alkaline battery
JPH07107853B2 (en) Positive mix for cylindrical alkaline batteries