JP2002367669A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JP2002367669A
JP2002367669A JP2001168407A JP2001168407A JP2002367669A JP 2002367669 A JP2002367669 A JP 2002367669A JP 2001168407 A JP2001168407 A JP 2001168407A JP 2001168407 A JP2001168407 A JP 2001168407A JP 2002367669 A JP2002367669 A JP 2002367669A
Authority
JP
Japan
Prior art keywords
alkaline
storage battery
silicon oxide
separator
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001168407A
Other languages
Japanese (ja)
Other versions
JP5062929B2 (en
Inventor
Naoto Sato
直人 佐藤
Nobuyasu Morishita
展安 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP2001168407A priority Critical patent/JP5062929B2/en
Publication of JP2002367669A publication Critical patent/JP2002367669A/en
Application granted granted Critical
Publication of JP5062929B2 publication Critical patent/JP5062929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery that has excellent self-discharge characteristics. SOLUTION: The alkaline battery comprises a positive electrode 22, a negative electrode 23, a separator, and an alkaline electrolyte that is supported by the positive electrode 22, the negative electrode 23 and the separator 24, and a silicon oxide is dissolved in the above alkaline electrolyte. The dissolved quantity of the silicon oxide is 0.02 mol/l or less. And the silicon oxide can be contained in either of the positive electrode, negative electrode and separator. As the silicon oxide, silicon dioxide can be employed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
関する。
[0001] The present invention relates to an alkaline storage battery.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、電気自動車や
ハイブリッド電気自動車等の電源として注目されてい
る。電気自動車やハイブリッド電気自動車に用いられる
蓄電池では長期間放置されることがしばしばあるため、
蓄電池の自己放電容量が大きい場合には、放置後の走行
性能が大きく低下するという問題がある。
2. Description of the Related Art In recent years, alkaline storage batteries have attracted attention as power sources for electric vehicles and hybrid electric vehicles. Storage batteries used in electric and hybrid electric vehicles are often left for long periods of time,
When the self-discharge capacity of the storage battery is large, there is a problem that the running performance after being left unnecessarily deteriorates.

【0003】このような自己放電を抑制する方法とし
て、自己放電の主要因である不純物のシャトル反応を抑
制する方法が試みられている。たとえば、セパレータに
スルホン化処理を行って不純物を補足する方法が、従来
から行われている。
As a method of suppressing such self-discharge, a method of suppressing a shuttle reaction of impurities which is a main factor of self-discharge has been attempted. For example, a method of performing a sulfonation treatment on a separator to capture impurities has been conventionally performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在、
さらに自己放電を抑制することが求められている。
However, at present,
Further, it is required to suppress self-discharge.

【0005】このため、本発明は、自己放電特性に優れ
たアルカリ蓄電池を提供することを目的とする。
[0005] Therefore, an object of the present invention is to provide an alkaline storage battery having excellent self-discharge characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアルカリ蓄電池は、正極と負極とセパレー
タと、前記正極、前記負極および前記セパレータに保持
されたアルカリ電解液とを備え、前記アルカリ電解液に
シリコン酸化物が溶解していることを特徴とする。上記
アルカリ蓄電池によれば、自己放電特性に優れたアルカ
リ蓄電池が得られる。
In order to achieve the above object, an alkaline storage battery according to the present invention comprises a positive electrode, a negative electrode, a separator, and an alkaline electrolyte held by the positive electrode, the negative electrode, and the separator. It is characterized in that silicon oxide is dissolved in an alkaline electrolyte. According to the alkaline storage battery, an alkaline storage battery having excellent self-discharge characteristics can be obtained.

【0007】上記アルカリ蓄電池では、前記アルカリ電
解液中の前記シリコン酸化物の溶解量X(mol/L)
が、1.0×10-15≦X≦2.0×10-2を満たして
もよい。X≦2.0×10-2とすることによって、自己
放電特性に優れるアルカリ蓄電池が得られる。
In the above alkaline storage battery, the dissolved amount X (mol / L) of the silicon oxide in the alkaline electrolyte is
May satisfy 1.0 × 10 −15 ≦ X ≦ 2.0 × 10 −2 . By setting X ≦ 2.0 × 10 −2 , an alkaline storage battery having excellent self-discharge characteristics can be obtained.

【0008】上記アルカリ蓄電池では、前記正極、前記
負極、および前記セパレータから選ばれる少なくとも1
つがシリコン酸化物を含んでもよい。
In the alkaline storage battery, at least one selected from the positive electrode, the negative electrode, and the separator is provided.
One may include silicon oxide.

【0009】上記アルカリ蓄電池では、前記シリコン酸
化物が、二酸化珪素であってもよい。
In the above alkaline storage battery, the silicon oxide may be silicon dioxide.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0011】本発明のアルカリ蓄電池は、ケースとケー
ス内に封入された正極、負極、セパレータ、およびアル
カリ電解液とを備える。アルカリ電解液は、正極、負極
およびセパレータに保持されている。
The alkaline storage battery of the present invention comprises a case, a positive electrode, a negative electrode, a separator, and an alkaline electrolyte sealed in the case. The alkaline electrolyte is held by the positive electrode, the negative electrode, and the separator.

【0012】ケース、正極、負極、およびセパレータに
は、アルカリ蓄電池に一般的に用いられるものを用いる
ことができる。たとえば、正極には、水酸化ニッケルを
主成分とする活物質を含む正極を用いることができる。
また、負極には、水素吸蔵合金を含む負極を用いること
ができる。また、セパレータには、親水化処理した不織
布、たとえば、スルホン化したポリプロピレン不織布な
どを用いることができる。
As the case, the positive electrode, the negative electrode, and the separator, those generally used for alkaline storage batteries can be used. For example, a positive electrode containing an active material mainly containing nickel hydroxide can be used as the positive electrode.
Further, as the negative electrode, a negative electrode containing a hydrogen storage alloy can be used. As the separator, a nonwoven fabric subjected to a hydrophilic treatment, for example, a sulfonated polypropylene nonwoven fabric can be used.

【0013】アルカリ電解液には、たとえば、KOHを
主な溶質とする水溶液を用いることができる。そして、
本発明のアルカリ蓄電池では、アルカリ電解液にシリコ
ン酸化物(以下、シリコン酸化物Aという場合がある)
が溶解している。アルカリ電解液1L中のシリコン酸化
物Aの溶解量X(mol/L)は、1.0×10-15
X≦2.0×10-2を満たすことが好ましい。
As the alkaline electrolyte, for example, an aqueous solution containing KOH as a main solute can be used. And
In the alkaline storage battery of the present invention, silicon oxide (hereinafter sometimes referred to as silicon oxide A) is used as the alkaline electrolyte.
Is dissolved. The dissolved amount X (mol / L) of the silicon oxide A in 1 L of the alkaline electrolyte is 1.0 × 10 −15
Preferably satisfies X ≦ 2.0 × 10 -2.

【0014】シリコン酸化物Aには、たとえば、二酸化
珪素(SiO2)を用いることができる。
As the silicon oxide A, for example, silicon dioxide (SiO 2 ) can be used.

【0015】本発明のアルカリ蓄電池は、シリコン酸化
物Aを含むアルカリ電解液を用いることによって製造で
きる。また、シリコン酸化物は、アルカリ電解液に対し
て可溶性であるため、正極、負極、およびセパレータか
ら選ばれる少なくとも1つにシリコン酸化物Aを添加す
ることによっても製造できる。
The alkaline storage battery of the present invention can be manufactured by using an alkaline electrolyte containing silicon oxide A. In addition, since silicon oxide is soluble in an alkaline electrolyte, it can also be produced by adding silicon oxide A to at least one selected from a positive electrode, a negative electrode, and a separator.

【0016】[0016]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0017】(実施例1)実施例1では、アルカリ電解
液にSiO2を添加してアルカリ電解液の導電率の変化
を測定した。
Example 1 In Example 1, SiO 2 was added to an alkaline electrolyte and the change in conductivity of the alkaline electrolyte was measured.

【0018】まず、比重が1.3で、水酸化カリウムを
溶質とする水溶液(アルカリ電解液)を調整した。そし
て、このアルカリ電解液に、さまざまな濃度でSiO2
を添加して導電率を測定した。測定結果を図1に示す。
図1から明らかなように、SiO2の添加量が0.02
mol/L以上となると、導電率が大きく低下した。こ
の理由は明確ではないが、電解液にSiO2を添加する
ことによって、電解液中のイオンの移動が阻害されるた
めであると推定される。
First, an aqueous solution (alkali electrolyte) having a specific gravity of 1.3 and using potassium hydroxide as a solute was prepared. Then, various concentrations of SiO 2 were added to this alkaline electrolyte.
Was added and the conductivity was measured. FIG. 1 shows the measurement results.
As is clear from FIG. 1, the amount of SiO 2 added was 0.02.
When it was at least mol / L, the electrical conductivity was significantly reduced. Although the reason for this is not clear, it is presumed that the addition of SiO 2 to the electrolytic solution inhibits the movement of ions in the electrolytic solution.

【0019】(実施例2)実施例2では、SiO2を溶
解させたアルカリ電解液を用いてアルカリ蓄電池を作製
した一例について説明する。
(Embodiment 2) In Embodiment 2, an example in which an alkaline storage battery is manufactured by using an alkaline electrolyte in which SiO 2 is dissolved will be described.

【0020】まず、Dサイズで容量が6.5Ahの円筒
形アルカリ蓄電池を作製した。このアルカリ蓄電池20
の一部分解斜視図を図2に示す。アルカリ蓄電池20
は、ケース21と、ケース21内に封入された正極2
2、負極23、電解液(図示せず)、および正極22と
負極23との間に配置されたセパレータ24と、安全弁
を備える封口板25とを備える。実施例2では、水酸化
ニッケルを活物質とする正極22と、水素吸蔵合金を主
成分とする負極23と、スルホン化処理されたポリプロ
ピレン不織布からなるセパレータ24とを用いた。ま
た、アルカリ電解液には、水酸化カリウムを主な溶質と
する比重が1.3の水溶液を用いた。そして、アルカリ
電解液に添加するSiO2の量を変化させて複数のアル
カリ蓄電池を作製した。
First, a cylindrical alkaline storage battery having a D size and a capacity of 6.5 Ah was prepared. This alkaline storage battery 20
2 is a partially exploded perspective view of FIG. Alkaline storage battery 20
Is a case 21 and a positive electrode 2 sealed in the case 21.
2, a negative electrode 23, an electrolytic solution (not shown), a separator 24 disposed between the positive electrode 22 and the negative electrode 23, and a sealing plate 25 provided with a safety valve. In Example 2, a positive electrode 22 using nickel hydroxide as an active material, a negative electrode 23 mainly containing a hydrogen storage alloy, and a separator 24 made of a sulfonated polypropylene nonwoven fabric were used. In addition, an aqueous solution having a specific gravity of 1.3 containing potassium hydroxide as a main solute was used as the alkaline electrolyte. Then, a plurality of alkaline storage batteries were manufactured by changing the amount of SiO 2 added to the alkaline electrolyte.

【0021】これらのアルカリ蓄電池について、アルカ
リ蓄電池の内部抵抗と、自己放電後の残存容量、すなわ
ち自己放電後のSOC(State Of Charg
e)について測定した。自己放電後の残存容量は、以下
の方法で測定した。まず、(1)SOCが60%になる
ように、25℃環境下において放電状態から3.9Aの
電流値で1時間充電し、(2)45℃環境下で2週間放
置し、(3)その後、25℃環境下において電池温度が
25℃になるまで放置したのち、2Aの電流値で電池電
圧が1Vになるまで放電したときの放電容量D(Ah)
を測定し、(4)残存容量(%)=D/6.5×100
の式から計算した。
With respect to these alkaline storage batteries, the internal resistance of the alkaline storage battery and the remaining capacity after self-discharge, that is, the SOC (State Of Charge) after self-discharge.
e) was measured. The remaining capacity after self-discharge was measured by the following method. First, (1) the battery was charged for 1 hour at a current value of 3.9 A from a discharged state in an environment of 25 ° C. so that the SOC became 60%, and (2) left for 2 weeks in an environment of 45 ° C. Thereafter, the battery was left to stand at 25 ° C. in a 25 ° C. environment until the battery temperature reached 25 ° C., and then discharged at a current value of 2 A until the battery voltage reached 1 V. D (Ah)
(4) Residual capacity (%) = D / 6.5 × 100
It calculated from the formula of.

【0022】実施例2のアルカリ蓄電池について、内部
抵抗と自己放電後の残存容量を測定した結果を図3に示
す。図3から明らかなように、アルカリ電解液にSiO
2を添加することによって、残存容量を高くすること、
すなわち、自己放電特性を向上させることができた。こ
の効果は、SiO2の添加量が1.0×10-15mol/
Lの場合にも確認できた。一方、SiO2の添加量が
0.02mol/Lを超えると、内部抵抗が増加した。
この結果は、実施例1の結果とも一致している。
FIG. 3 shows the results of measuring the internal resistance and the remaining capacity after self-discharge of the alkaline storage battery of Example 2. As is clear from FIG.
By adding 2, increasing the residual capacity,
That is, the self-discharge characteristics could be improved. This effect is obtained when the added amount of SiO 2 is 1.0 × 10 −15 mol /.
L was also confirmed. On the other hand, when the added amount of SiO 2 exceeded 0.02 mol / L, the internal resistance increased.
This result is consistent with the result of Example 1.

【0023】アルカリ電解液にSiO2を添加すること
によって自己放電特性が向上する理由は現在のところ明
確ではないが、添加されたSiO2が電解液中でSiO3
-となり、これが不純物を補足しているか、もしくは活
物質の自己分解反応を抑制しているのではないかと考え
られる。
[0023] While self-discharge characteristics no reason clear at present to improve by adding SiO 2 in an alkaline electrolyte, SiO 3 SiO 2 which is added in the electrolytic solution
- next, whether this is being supplemented with impurities, or believed that it would be suppresses the self-decomposition reaction of the active material.

【0024】なお、実施例2では、SiO2を添加した
アルカリ電解液を用いる場合について説明した。しか
し、SiO2はアルカリ溶液に溶解するため、SiO
2を、正極、負極またはセパレータに添加しても、同様
の効果が得られると考えられる。
In the second embodiment, the case where the alkaline electrolyte containing SiO 2 is used has been described. However, since SiO 2 dissolves in an alkaline solution,
It is considered that the same effect can be obtained even if 2 is added to the positive electrode, the negative electrode or the separator.

【0025】以上、本発明の実施の形態について例を挙
げて説明したが、本発明は、上記実施の形態に限定され
ず本発明の技術的思想に基づき他の実施形態に適用する
ことができる。
Although the embodiments of the present invention have been described with reference to the examples, the present invention is not limited to the above embodiments, but can be applied to other embodiments based on the technical idea of the present invention. .

【0026】たとえば、本発明のアルカリ蓄電池は、上
記実施例で説明した電池に限定されない。
For example, the alkaline storage battery of the present invention is not limited to the battery described in the above embodiment.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
自己放電特性に優れたアルカリ蓄電池が得られる。
As described above, according to the present invention,
An alkaline storage battery having excellent self-discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 SiO2の添加量とアルカリ電解液の導電率
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the added amount of SiO 2 and the conductivity of an alkaline electrolyte.

【図2】 本発明のアルカリ蓄電池ついて一例を示す一
部分解斜視図である。
FIG. 2 is a partially exploded perspective view showing an example of the alkaline storage battery of the present invention.

【図3】 SiO2の添加量に対する内部抵抗と自己放
電試験後の残存容量の変化を示すグラフである。
FIG. 3 is a graph showing changes in internal resistance and residual capacity after a self-discharge test with respect to the amount of added SiO 2 .

【符号の説明】[Explanation of symbols]

20 アルカリ蓄電池 21 ケース 22 正極 23 負極 24 セパレータ Reference Signs List 20 alkaline storage battery 21 case 22 positive electrode 23 negative electrode 24 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森下 展安 静岡県湖西市境宿555番地 パナソニック EVエナジー株式会社内 Fターム(参考) 5H028 AA01 BB03 BB06 EE05 FF05 HH03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Noriyasu Morishita 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture Panasonic EV Energy Co., Ltd. F-term (reference) 5H028 AA01 BB03 BB06 EE05 FF05 HH03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とセパレータと、前記正極、
前記負極および前記セパレータに保持されたアルカリ電
解液とを備え、前記アルカリ電解液にシリコン酸化物が
溶解していることを特徴とするアルカリ蓄電池。
1. A positive electrode, a negative electrode, a separator, and the positive electrode,
An alkaline storage battery comprising the negative electrode and an alkaline electrolyte held by the separator, wherein silicon oxide is dissolved in the alkaline electrolyte.
【請求項2】 前記アルカリ電解液中の前記シリコン酸
化物の溶解量X(mol/L)が、1.0×10-15
X≦2.0×10-2を満たす請求項1に記載のアルカリ
蓄電池。
2. The method according to claim 1, wherein the dissolution amount X (mol / L) of the silicon oxide in the alkaline electrolyte is 1.0 × 10 −15
2. The alkaline storage battery according to claim 1, wherein X ≦ 2.0 × 10 −2 is satisfied.
【請求項3】 前記正極、前記負極、および前記セパレ
ータから選ばれる少なくとも1つがシリコン酸化物を含
む請求項1または2に記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein at least one selected from the positive electrode, the negative electrode, and the separator contains silicon oxide.
【請求項4】 前記シリコン酸化物が、二酸化珪素であ
る請求項1ないし3のいずれかに記載のアルカリ蓄電
池。
4. The alkaline storage battery according to claim 1, wherein said silicon oxide is silicon dioxide.
JP2001168407A 2001-06-04 2001-06-04 Alkaline storage battery Expired - Fee Related JP5062929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168407A JP5062929B2 (en) 2001-06-04 2001-06-04 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168407A JP5062929B2 (en) 2001-06-04 2001-06-04 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2002367669A true JP2002367669A (en) 2002-12-20
JP5062929B2 JP5062929B2 (en) 2012-10-31

Family

ID=19010641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168407A Expired - Fee Related JP5062929B2 (en) 2001-06-04 2001-06-04 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5062929B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313281A (en) * 1986-07-04 1988-01-20 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPH04188561A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH0850918A (en) * 1994-08-05 1996-02-20 Hitachi Maxell Ltd Nickel hydride secondary cell
JPH08148179A (en) * 1994-11-25 1996-06-07 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH11144698A (en) * 1997-11-05 1999-05-28 Miki Tokushu Seishi Kk Separator for secondary battery
JPH11250905A (en) * 1998-03-02 1999-09-17 Suiso Energy Kenkyusho:Kk Nickel-hydrogen battery
JP2000164220A (en) * 1998-11-26 2000-06-16 Mitsubishi Materials Corp Electrode material for silver oxide battery
JP2000173645A (en) * 1998-12-07 2000-06-23 Yuasa Corp Nickel-hydrogen battery for electric vehicle
JP2001107165A (en) * 1999-09-30 2001-04-17 Toshiba Corp Hydrogen storage alloy, its producing method and secondary battery and electric vehicle using the same
JP2001143682A (en) * 1999-11-18 2001-05-25 Tonen Tapyrus Co Ltd Alkaline cell separator substrate and alkaline cell separator using the same
JP2002124244A (en) * 2000-08-07 2002-04-26 National Institute Of Advanced Industrial & Technology Separator for alkaline secondary battery and alkaline secondary battery using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313281A (en) * 1986-07-04 1988-01-20 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPH04188561A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH0850918A (en) * 1994-08-05 1996-02-20 Hitachi Maxell Ltd Nickel hydride secondary cell
JPH08148179A (en) * 1994-11-25 1996-06-07 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH11144698A (en) * 1997-11-05 1999-05-28 Miki Tokushu Seishi Kk Separator for secondary battery
JPH11250905A (en) * 1998-03-02 1999-09-17 Suiso Energy Kenkyusho:Kk Nickel-hydrogen battery
JP2000164220A (en) * 1998-11-26 2000-06-16 Mitsubishi Materials Corp Electrode material for silver oxide battery
JP2000173645A (en) * 1998-12-07 2000-06-23 Yuasa Corp Nickel-hydrogen battery for electric vehicle
JP2001107165A (en) * 1999-09-30 2001-04-17 Toshiba Corp Hydrogen storage alloy, its producing method and secondary battery and electric vehicle using the same
JP2001143682A (en) * 1999-11-18 2001-05-25 Tonen Tapyrus Co Ltd Alkaline cell separator substrate and alkaline cell separator using the same
JP2002124244A (en) * 2000-08-07 2002-04-26 National Institute Of Advanced Industrial & Technology Separator for alkaline secondary battery and alkaline secondary battery using the same

Also Published As

Publication number Publication date
JP5062929B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP2008243487A (en) Lead acid battery
WO2011079482A1 (en) Battery
CN111279527B (en) Lead-acid battery
WO2014162674A1 (en) Lead acid storage battery
JP2014157703A (en) Lead accumulator
JP6045329B2 (en) Lead acid battery
KR101464515B1 (en) Ni-Zn FLOW BATTERY WITH LONG LIFE TIME
JP2008243493A (en) Lead acid storage battery
KR101888775B1 (en) Nonaqueous electrolyte secondary battery
JPH11224699A (en) Energy storage element
KR101431901B1 (en) Alkaline secondary battery
US5830601A (en) Rechargeable electrochemical cell with modified electrolyte
JP2004014283A (en) Valve regulated lead battery
JP2002367669A (en) Alkaline battery
Holze Self-discharge of batteries: Causes, mechanisms and remedies
JP4715093B2 (en) Electrochemical devices
JP2004327299A (en) Sealed lead-acid storage battery
JP2004079242A (en) Alkali storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JP4250781B2 (en) Lithium secondary battery
JPS6319771A (en) Function recovery agent of lead-acid battery and its function recovery method
JP2762730B2 (en) Nickel-cadmium storage battery
KR19990026737A (en) How to Form a Cathode Conductive Network for Nickel-based Batteries
JP4556250B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5062929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees