JP2000150318A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP2000150318A
JP2000150318A JP10327761A JP32776198A JP2000150318A JP 2000150318 A JP2000150318 A JP 2000150318A JP 10327761 A JP10327761 A JP 10327761A JP 32776198 A JP32776198 A JP 32776198A JP 2000150318 A JP2000150318 A JP 2000150318A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10327761A
Other languages
Japanese (ja)
Other versions
JP3853094B2 (en
Inventor
Michio Okamura
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Original Assignee
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMURA KENKYUSHO KK, Jeol Ltd, Okamura Laboratory Inc filed Critical OKAMURA KENKYUSHO KK
Priority to JP32776198A priority Critical patent/JP3853094B2/en
Publication of JP2000150318A publication Critical patent/JP2000150318A/en
Application granted granted Critical
Publication of JP3853094B2 publication Critical patent/JP3853094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To obtain an electric double layer capacitor of large capacitance in which the voltage distribution of a polarizable electrode is equal on the positive pole side and the negative pole side. SOLUTION: This electric double layer capacitor is provided with polarizable electrodes in which carbonaceous material which expands when a voltage is applied and conductive material are mixed. The mixing ratio of the conductive material in one polarizable electrode is not equal to the mixing ratio in the other polarizable electrode. The amount of polarizable electrode where the mixing ratio of conductive material is high is larger than the amount of polarizable electrode where the mixing ratio of conductive material is low.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサに関し、静電容量が大きな電気二重層コンデンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor having a large capacitance.

【0002】[0002]

【従来の技術】電気二重層コンデンサとしては、活性炭
等からなる分極性電極を導電剤および結合剤と共に混練
あるいは塗布したもの、活性炭と未炭化のフェノールレ
ジンを混合後に焼結し固体電極としたもの等を正極およ
び負極として、セパレータを介して対向させて、両電極
に集電体を接触させるとともに、水性電解液あるいは非
水性電解液を含浸したものが知られている。一般には、
正極および負極に同一の材料で作製した電極を同一の量
を用いていた。
2. Description of the Related Art As an electric double layer capacitor, a polarizable electrode made of activated carbon or the like is kneaded or coated with a conductive agent and a binder, or a solid electrode obtained by mixing activated carbon and uncarbonized phenolic resin and then sintering the mixture. As a positive electrode and a negative electrode, a current collector is brought into contact with both electrodes with a separator interposed therebetween, and an aqueous electrolyte or a non-aqueous electrolyte is impregnated. Generally,
The same amount of electrodes made of the same material was used for the positive electrode and the negative electrode.

【0003】ところが、特開昭61−203614号公
報には、このような正極および負極の静電容量の大きさ
が等しい電極を有する電気二重層コンデンサにおいて
は、耐電圧に相当する電圧で充放電すると、内部抵抗、
静電容量変化の劣化がみられたので、分極性電極の静電
容量を電位−電流特性において0電位を基準にして、正
極、負極の反応電位の比率の逆数の比に合わせることに
よって、高い電圧の印加によって特性の劣化を防止する
ことが記載されている。また、同様の問題を改善するた
めに、特公平2−847号公報には、正極側の電極体の
分極性電極量と負極側の電極体の分極性電極量とを異な
らせることが記載されている。しかしながら、このよう
な特性を有するコンデンサの充放電動作を精細に観測す
ると、最初に電源を投入した初期充電の際には静電容量
に反比例して負担電圧が分圧されるが、充放電を繰り返
すと、時間の経過とともに次第に漏洩抵抗値の比に配分
され、本来の目的を実現することができないという問題
点が認められた。
However, Japanese Patent Application Laid-Open No. 61-203614 discloses that such an electric double layer capacitor having electrodes having the same capacitance of the positive electrode and the negative electrode is charged and discharged at a voltage corresponding to the withstand voltage. Then, the internal resistance,
Since the deterioration of the capacitance change was observed, the capacitance of the polarizable electrode was increased by adjusting the capacitance of the polarizable electrode to the reciprocal of the ratio of the reaction potential of the positive electrode and the negative electrode with reference to 0 potential in the potential-current characteristics. It is described that deterioration of characteristics is prevented by applying a voltage. In order to solve the same problem, Japanese Patent Publication No. 2-847 discloses that the amount of the polarizable electrode of the electrode body on the positive electrode side is made different from the amount of the polarizable electrode of the electrode body on the negative electrode side. ing. However, when the charge / discharge operation of a capacitor having such characteristics is observed in detail, the burden voltage is divided in inverse proportion to the capacitance at the time of initial charging when the power is first turned on. Repeatedly, it was gradually distributed to the ratio of leakage resistance values with the passage of time, and the problem that the original purpose could not be realized was recognized.

【0004】本発明者等は、こうした問題点を解決する
ために、正極側および負極側にそれぞれに適した分極性
電極を用いることによって、エネルギー密度の大きな電
気二重層コンデンサを得ることを特願平9−22489
0号公報において提案している。
[0004] In order to solve these problems, the present inventors have filed a patent application to obtain an electric double layer capacitor having a large energy density by using polarizable electrodes respectively suitable for the positive electrode side and the negative electrode side. Hei 9-22489
No. 0 proposes this.

【0005】一方、電気二重層コンデンサの静電容量
は、分極性電極の表面積にほぼ比例するとの考えから、
大きな比表面積を有する活性炭が用いられている。一般
に活性炭は、800℃以下の温度で炭素質材料を炭化し
た後に、600ないし1000℃で、水蒸気、二酸化炭
素等の雰囲気で、あるいは、塩化亜鉛、水酸化カリウム
等を混合して不活性雰囲気で賦活することによって製造
されている。賦活過程では炭素化過程で生じた炭素材の
表面に吸着に適した多数の細孔を生成させる等の方法に
よって製造されている。
On the other hand, the capacitance of an electric double layer capacitor is considered to be substantially proportional to the surface area of a polarizable electrode.
Activated carbon having a large specific surface area is used. Generally, activated carbon is obtained by carbonizing a carbonaceous material at a temperature of 800 ° C. or lower and then at 600 to 1000 ° C. in an atmosphere of steam, carbon dioxide, or the like, or in an inert atmosphere by mixing zinc chloride, potassium hydroxide, or the like. Manufactured by activating. In the activation process, the carbon material is produced by a method of forming a large number of pores suitable for adsorption on the surface of the carbon material generated in the carbonization process.

【0006】そして、電気二重層コンデンサとしての容
量をできるだけ大きくするために、活性炭として表面積
が大きな活性炭を用いることが行われている。例えば、
特開昭63−78513号公報には、従来例として挙げ
られている電気二重層用コンデンサ用の活性炭では、比
表面積が最高1500m2/g 程度であったが、単位体
積当たりの表面積が充分ではなかったので、石油コーク
スを原料とし、石油コークスに水酸化カリウムを混合し
たものを焼成して得られた比表面積が2000ないし3
500m2/g である活性炭を用いることが提案されて
いる。
[0006] In order to maximize the capacity of the electric double layer capacitor, activated carbon having a large surface area is used as activated carbon. For example,
Japanese Patent Application Laid-Open No. 63-78513 discloses that activated carbon for electric double layer capacitors, which is mentioned as a conventional example, has a specific surface area of up to about 1500 m 2 / g, but the surface area per unit volume is not sufficient. Therefore, the specific surface area obtained by calcining a mixture of petroleum coke and potassium hydroxide with petroleum coke as a raw material was 2000 to 3
It has been proposed to use 500 m 2 / g of activated carbon.

【0007】しかし、活性炭の表面積を増大するために
活性炭を強く賦活すると、賦活の進行に伴って活性炭重
量当たりの比表面積は増すが、同時に空隙率も増加する
ため、体積当たりの表面積は一定の賦活レベルを境にし
てかえって減少する。しかも強く賦活した活性炭では、
電気二重層面積当たりの静電容量が、賦活を進めるほど
減少する傾向を示すため、一定限度以上に賦活を進めて
も、より大きな静電容量密度は得られない。この問題点
を、活性炭の比表面積に依存しない分極性電極を用いる
ことによって静電容量密度の限界を改善し、エネルギー
密度の大きな電気二重層コンデンサを得ることを特願平
10−50862号において提案している。
However, when activated carbon is strongly activated in order to increase the surface area of activated carbon, the specific surface area per activated carbon weight increases as the activation proceeds, and the porosity also increases at the same time, so that the surface area per volume is constant. Instead, it decreases at the activation level. In addition, activated carbon activated strongly
Since the capacitance per unit area of the electric double layer tends to decrease as the activation proceeds, a larger capacitance density cannot be obtained even if the activation is carried out beyond a certain limit. To solve this problem, Japanese Patent Application No. 10-50862 proposes to improve the limit of the capacitance density by using a polarizable electrode that does not depend on the specific surface area of activated carbon and obtain an electric double layer capacitor having a large energy density. are doing.

【0008】この電気二重層コンデンサは、電圧印加時
に膨張する炭素質材料からなる分極性電極を用いた分極
性電極を電圧印加時の膨張を制限する寸法制限構造体中
に保持された電気二重層コンデンサである。このような
コンデンサにおいては、分極性電極の電圧印加時の膨張
は、分極性電極中へのイオンの導入によって生じるもの
であり、分極性電極の細孔径等も、正極側、負極側では
導入されるイオンの大きさによって最適化されるものと
思われる。
This electric double layer capacitor is an electric double layer capacitor having a polarizable electrode made of a carbonaceous material which expands when a voltage is applied. The polarizable electrode is held in a dimensional restriction structure which limits expansion when a voltage is applied. It is a capacitor. In such a capacitor, the expansion of the polarizable electrode when a voltage is applied is caused by the introduction of ions into the polarizable electrode, and the pore diameter of the polarizable electrode is also introduced on the positive electrode side and the negative electrode side. Seems to be optimized by the size of the ions.

【0009】ところが、膨張可能な炭素電極を用いた電
気二重層コンデンサにおいて、充放電時の正極側および
負極側のそれぞれの電圧を測定すると、正極側および負
極側の電極の電圧配分がつり合っていないことがある。
正極側および負極側の電圧配分が平衡していない場合に
は、配分電圧の大きな電極側の劣化が大きくなるという
問題があった。また、正極側と負極側では、充放電に寄
与するイオンの種類が異なるとともに、イオンの大きさ
も異なっていることが一般的であり、両者の内部抵抗が
一致せず、電気抵抗が大きな電極側の内部抵抗が実質的
に、電気二重層コンデンサの内部抵抗を大きくし、しか
も内部抵抗の相違によって、正極側と負極側の充放電特
性が平衡していないという問題点があった。
However, in an electric double layer capacitor using an expandable carbon electrode, when the respective voltages on the positive electrode side and the negative electrode side during charging and discharging are measured, the voltage distribution between the positive electrode side and the negative electrode side is balanced. There may not be.
When the voltage distributions on the positive electrode side and the negative electrode side are not balanced, there is a problem that the deterioration of the electrode side where the distribution voltage is large increases. In addition, the types of ions contributing to charge and discharge are generally different between the positive electrode side and the negative electrode side, and the sizes of the ions are also generally different. However, the internal resistance of the electric double layer capacitor substantially increases the internal resistance of the electric double layer capacitor, and the charge / discharge characteristics of the positive electrode side and the negative electrode side are not balanced due to the difference in the internal resistance.

【0010】[0010]

【発明が解決しようとする課題】本発明は、電圧印加時
に膨張する炭素質材料からなる分極性電極を有する電気
二重層コンデンサにおいて、正極側および負極側に充放
電時において分担される電圧が同等な内部抵抗の小さな
電気二重層コンデンサを得ることを課題とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to an electric double layer capacitor having a polarizable electrode made of a carbonaceous material which expands when a voltage is applied. It is an object to obtain an electric double layer capacitor having a small internal resistance.

【0011】[0011]

【課題を解決するための手段】本発明は、電気二重層コ
ンデンサにおいて、電圧印加時に膨張する炭素質材料と
導電性物質を混合した分極性電極を有し、一方の分極性
電極中の導電性物質の混合割合が他方の分極性電極中の
混合割合と等しくなく、導電性物質の混合割合が多い側
の分極性電極の量が、導電性物質の混合割合が少ない電
極よりも多い電気二重層コンデンサである。また、導電
性物質を多く混合した電極が負極であり、導電性物質が
カーボンブラックである電気二重層コンデンサである。
According to the present invention, there is provided an electric double layer capacitor having a polarizable electrode in which a carbonaceous material and a conductive substance which expand when a voltage is applied are mixed. An electric double layer in which the mixing ratio of the substance is not equal to the mixing ratio in the other polarizable electrode, and the amount of the polarizable electrode on the side where the mixing ratio of the conductive substance is higher is larger than that of the electrode where the mixing ratio of the conductive substance is lower. It is a capacitor. Further, an electric double layer capacitor in which an electrode containing a large amount of a conductive substance is a negative electrode and the conductive substance is carbon black.

【0012】[0012]

【発明の実施の形態】電気二重層コンデンサにおける分
極性電極として、電圧の印加によって膨張する炭素質材
料を用いた電気二重層コンデンサにおいては、電圧の印
加によって炭素質材料中へイオンが導入され、特性の優
れた電気二重層コンデンサが得られるが、本発明はその
特性をさらに高めるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In an electric double layer capacitor using a carbonaceous material which expands by applying a voltage as a polarizable electrode in the electric double layer capacitor, ions are introduced into the carbonaceous material by applying a voltage, Although an electric double layer capacitor having excellent characteristics can be obtained, the present invention further enhances the characteristics.

【0013】すなわち、正極、負極ともに、電圧の印加
によって膨張する同一の炭素質材料を用いて、同量の電
極を有する電気二重層コンデンサを作製し、電圧印加時
の膨張を制限する膨張制限部材を取り付けた状態で、充
電完了電圧3Vで充放電を行ってそれぞれの電極の電位
を測定すると、正極および負極の電圧を示す図3のよう
に、正極側Pと負極側Nが負担する電圧が異なってい
る。
That is, an electric double layer capacitor having the same amount of electrodes is manufactured using the same carbonaceous material that expands when a voltage is applied to both a positive electrode and a negative electrode, and an expansion restricting member that restricts expansion when a voltage is applied. When the battery is charged and discharged at a charging completion voltage of 3 V and the potentials of the respective electrodes are measured, as shown in FIG. 3 showing the voltages of the positive electrode and the negative electrode, the voltage borne by the positive electrode P and the negative electrode N is Is different.

【0014】また、充電完了電圧4Vで、同様に充放電
を行うと、図4に示すような充放電曲線が得られる。4
Vで動作させると、負極側の放電曲線には負極側の電極
に起因する大きな内部抵抗を示す部分Aがみられ、電気
二重層コンデンサの全体の充放電曲線Tにおいても、同
様に大きな内部抵抗を示す部分Bがみられる。また、正
極側Pと負極側Nのそれぞれに配分される電圧は等しく
ないことを示している。そこで、本発明の電気二重層コ
ンデンサにおいては、電気抵抗の高い電極に添加する導
電性物質の量を、電気抵抗が小さな電極側に比べて多く
して電気抵抗を低くするものである。
When charging and discharging are similarly performed at a charging completion voltage of 4 V, a charging and discharging curve as shown in FIG. 4 is obtained. 4
When operating at V, the discharge curve on the negative electrode side shows a portion A indicating a large internal resistance due to the electrode on the negative electrode side, and the charge / discharge curve T of the entire electric double layer capacitor also shows a large internal resistance. Is observed. Further, it indicates that the voltages distributed to the positive electrode side P and the negative electrode side N are not equal. Therefore, in the electric double layer capacitor of the present invention, the amount of the conductive substance added to the electrode having the higher electric resistance is increased as compared with the electrode having the lower electric resistance to lower the electric resistance.

【0015】ところが、電気抵抗を下げるために、導電
性物質の添加量を多くすると、電気抵抗は低下するもの
の、炭素質材料の割合が減少するために静電容量が減少
し、更には正極側と負極側では配分される電圧にも差が
生じることとなり、定格電圧で動作させた場合であって
も、配分される電圧が高い側の電極の劣化が早期に進行
する。
However, when the amount of the conductive substance added is increased in order to lower the electric resistance, the electric resistance is lowered, but the ratio of the carbonaceous material is reduced, so that the capacitance is reduced. Also, a difference occurs in the distributed voltage between the negative electrode and the negative electrode, and even when operated at the rated voltage, the deterioration of the electrode on the higher distributed voltage side proceeds early.

【0016】したがって、内部抵抗の低下とともに、正
極側と負極側の両電極の電圧配分を等しくすることが求
められる。電気二重層コンデンサにおける正極側と負極
側の電圧の配分は、静電容量に依存するので、電気抵抗
を低下させるために導電性物質を多量に添加した側の電
極の量を多くすることによって、正極側と負極側の電圧
配分を等しくすることが可能となる。
Therefore, it is required that the voltage distribution between the positive electrode and the negative electrode be equalized as the internal resistance decreases. Since the distribution of the voltage on the positive electrode side and the negative electrode side in the electric double layer capacitor depends on the capacitance, by increasing the amount of the electrode on the side to which a large amount of conductive material is added to reduce the electric resistance, It is possible to equalize the voltage distribution between the positive electrode side and the negative electrode side.

【0017】本発明の電気二重層コンデンサは、正極
側、負極側の両電極に用いる炭素質材料、導電性物質の
量の混合比の異なる電極を作製して、正極側、負極側の
電圧を測定しながら、充放電電圧を測定することによっ
て、好ましい特性の電気二重層コンデンサを得ることが
できるが、以下のようにすることによってより正確に早
く、所望の電気二重層コンデンサを得ることができる。
In the electric double layer capacitor of the present invention, electrodes having different mixing ratios of the amounts of the carbonaceous material and the conductive material used for both the positive electrode and the negative electrode are prepared, and the voltages of the positive electrode and the negative electrode are reduced. By measuring the charge / discharge voltage while measuring, an electric double layer capacitor having preferable characteristics can be obtained. However, a desired electric double layer capacitor can be obtained more accurately and quickly by performing the following. .

【0018】すなわち、まず正負同質同量の膨張する炭
素質材料を用いて電気二重層コンデンサを作製する。各
電気二重層コンデンサには、正極および負極の電位を別
個に測定できるように三電極法による測定設備を取りつ
けておき、正負極の印加電圧の絶対値とその推移が測定
できるようにしておく。次に、電圧を定格充電時間に比
べて、長時間をかけて満充電する。具体的には、電気二
重層コンデンサの内部抵抗と静電容量の積で表した時定
数であるΩF秒の100倍以上の時間を意味する。
That is, first, an electric double layer capacitor is manufactured by using the same amount of positive and negative expanding carbonaceous materials. Each electric double layer capacitor is provided with a measuring device by a three-electrode method so that the potentials of the positive electrode and the negative electrode can be measured separately, so that the absolute value of the applied voltage of the positive electrode and the negative electrode and its transition can be measured. Next, the voltage is fully charged over a longer time than the rated charging time. Specifically, it means a time that is 100 times or more of ΩF seconds, which is a time constant expressed by the product of the internal resistance and the capacitance of the electric double layer capacitor.

【0019】時定数ΩF秒の100倍以上の時間の充電
では、充電の開始時点より定格充電時間で供給する電流
に比べて小さな電流を供給し、長時間の充電によって充
電が完了するように充電電流を調製しても良いが、定格
充電時間で満充電となる定格充電電流によって定格電圧
とした後に、定電圧充電に切り替えて緩和充電状態に保
持して充電開始当初からの総充電時間が時定数の100
倍以上を満足するものとしても良く、定電流充電と緩和
充電とを組み合わせることによって充電装置も制御装置
が簡単なものとすることができる。ここで、電気二重層
コンデンサの充電時間について説明する。一般に電気二
重層コンデンサの充電時間は、電気二重層コンデンサの
分極性電極の厚み等の電極構造の特性等に応じて決定す
ることができる。電気二重層コンデンサを大電流で充電
すると、短時間に充電を完了することが可能であるが、
電気二重層コンデンサの内部抵抗によって、損失が大き
くなる。したがって、実際に電気二重層コンデンサを充
放電する際には、充放電効率を考慮して最適な充放電時
間を決定することが必要となる。
In charging for a time equal to or more than 100 times the time constant ΩF seconds, a current smaller than the current supplied during the rated charging time from the start of charging is supplied, and the charging is performed such that the charging is completed by charging for a long time. The current may be adjusted, but after setting the rated voltage by the rated charging current that will be fully charged in the rated charging time, switch to constant voltage charging and maintain the relaxed charging state, and the total charging time from the beginning of charging Constant 100
The charging device may be one that satisfies a factor of two or more. By combining the constant current charging and the relaxing charging, the charging device can have a simple control device. Here, the charging time of the electric double layer capacitor will be described. Generally, the charging time of the electric double layer capacitor can be determined according to the characteristics of the electrode structure such as the thickness of the polarizable electrode of the electric double layer capacitor. When charging an electric double layer capacitor with a large current, it is possible to complete charging in a short time,
The loss increases due to the internal resistance of the electric double layer capacitor. Therefore, when actually charging / discharging the electric double layer capacitor, it is necessary to determine an optimal charging / discharging time in consideration of charging / discharging efficiency.

【0020】コンデンサの充放電効率は、以下のように
定義される。定電流Iでt時間充電または放電したとき
の電荷をQとすると、 Q=I・t コンデンサに蓄えられる電力量Uは、 U=(1/2)・(Q2/C) となる。コンデンサの抵抗Rで失われる電力量Lは、 L=I2R・t =R・(Q2/t) である。したがって、これらの式から、コンデンサの充
放電の際に抵抗で失われる損失η(比)を電力量から求
めると、 η=L/U =2CR/t となる。
The charge / discharge efficiency of a capacitor is defined as follows. Assuming that the charge after charging or discharging with the constant current I for t time is Q, the electric energy U stored in the Q = I · t capacitor is as follows: U = (1 /) · (Q 2 / C) The amount of power L lost by the resistance R of the capacitor is as follows: L = I 2 R · t = R · (Q 2 / t) Therefore, when the loss η (ratio) lost by the resistance during charging and discharging of the capacitor is calculated from the electric energy from these equations, η = L / U = 2CR / t.

【0021】効率をPとすると、 P=1−η =1−2CR/t となる。充電時間tが長いほど損失は少なくなり、効率
は向上することを示している。例えば、時定数が20Ω
F秒の電気二重層コンデンサでは、t=600秒とする
と、効率は、1−(2×20/600)=93.3%と
なり、充放電効率は、充電効率と放電効率の積で表され
るので、87%の効率が得られることとなる。また、上
記の値を実用的な最低効率とすれば最短充電時間は、時
定数の30倍の値であることも示される。そして、本発
明の電気二重層コンデンサの製造に必要な時定数の10
0倍以上の時間は、時定数が20ΩF秒である電気二重
層コンデンサの場合には、2000秒以上となり、実用
的な最短充電時間である600秒の3倍程度の値とも表
現することができる。
Assuming that the efficiency is P, P = 1−η = 1-2 CR / t. This shows that the longer the charging time t, the smaller the loss and the higher the efficiency. For example, the time constant is 20Ω
In the electric double layer capacitor of F seconds, if t = 600 seconds, the efficiency becomes 1− (2 × 20/600) = 93.3%, and the charge / discharge efficiency is represented by the product of the charge efficiency and the discharge efficiency. Therefore, an efficiency of 87% can be obtained. Further, if the above value is regarded as the practical minimum efficiency, it is also shown that the shortest charging time is 30 times the time constant. The time constant of 10 required for the production of the electric double layer capacitor of the present invention.
The time of 0 or more times is 2000 seconds or more in the case of an electric double layer capacitor having a time constant of 20 ΩF seconds, and can be expressed as a value about three times the practical minimum charging time of 600 seconds. .

【0022】また、本発明の長時間の充電方法において
は、充電電流を小さくして満充電までの時間が所定の時
間となるように充電装置を制御する方法、および定格充
電電圧にをする方法によって行っても良く、定電流によ
る定格充電の後に、定電圧充電に切り替えて緩和充電を
行うものであっても良い。いずれの方法によっても、同
様に長時間の充電を行うことができる。このような方法
で電極の深部の炭素粒子の賦活を行って、静電容量を大
きく安定なものとすることができる。電極への電圧の印
加によって電極は厚さ方向に膨張するから10kg/c
2 以上に耐える治具を用意して、充電開始時の厚さの
10%程度の増加に厚さを押えることが必要である。
Further, in the long-time charging method of the present invention, a method of controlling a charging apparatus so that a charging time is reduced and a time until a full charging is a predetermined time, and a method of setting a rated charging voltage. Alternatively, after the rated charging by the constant current, the charging may be switched to the constant voltage charging to perform the relaxing charging. Either method can similarly charge for a long time. By activating the carbon particles deep in the electrode by such a method, the capacitance can be made large and stable. Since the electrode expands in the thickness direction by applying a voltage to the electrode, 10 kg / c
It is necessary to prepare a jig that can withstand m 2 or more and suppress the thickness to about 10% of the thickness at the start of charging.

【0023】電圧の印加によって賦活が完了した後、電
圧ゼロから定格最大電圧間での充放電サイクルを行な
い、充放電波形の変化がなくなるまで繰り返す。その際
の電圧トレースを三電極法で測定して記録し、定格最大
電圧に達した際の正負極の電圧配分比Kp、Knを算出
する。また、あらかじめ電解液や電極材料によって定ま
る正負極についての分解電圧あるいは使用電圧の限界V
p、Vnを求めておく。この値は集電極に使用する金
属、例えばアルミニウムなどによって一義的に決まるも
のではなく、電解液や炭素材料に含まれる官能基、不純
物などの相互作用、あるいは使用する材料によって異な
った値となる。
After the activation is completed by the application of a voltage, a charge / discharge cycle is performed from a voltage of zero to the rated maximum voltage, and the cycle is repeated until there is no change in the charge / discharge waveform. The voltage trace at that time is measured and recorded by the three-electrode method, and the voltage distribution ratios Kp and Kn of the positive electrode and the negative electrode when the rated maximum voltage is reached are calculated. In addition, the decomposition voltage or the working voltage limit V for the positive and negative electrodes determined in advance by the electrolytic solution and the electrode material.
p and Vn are determined in advance. This value is not uniquely determined by the metal used for the collector electrode, for example, aluminum or the like, but differs depending on the interaction of the functional groups and impurities contained in the electrolytic solution and the carbon material, or the material used.

【0024】次に、第二の電気二重層コンデンサを作製
し、いずれか一方の電極に、電極の空隙率を調節する導
電性材料を混合する。電極は電解液のイオン径に依存
し、電解液のイオン径による影響は一般には負極側に顕
著に現れる。空隙率の調節は例えば電極の組成に占める
カーボンブラックの割合を調整し、特に圧粉成形で電極
を作る場合には初期の圧縮圧力でも調整することができ
る。
Next, a second electric double layer capacitor is manufactured, and a conductive material for adjusting the porosity of the electrode is mixed into one of the electrodes. The electrode depends on the ionic diameter of the electrolytic solution, and the influence of the ionic diameter of the electrolytic solution generally appears remarkably on the negative electrode side. The porosity can be adjusted, for example, by adjusting the proportion of carbon black in the composition of the electrode, and in particular, in the case of forming the electrode by powder compaction, by adjusting the initial compression pressure.

【0025】以上のデータから、二番目に作製した電気
二重層コンデンサの正極および負極の電極量を算出す
る。求める正極および負極の電極量の比Np、Nnはそ
れぞれ、 Np=Vn(Vp+Vn)×Kp(Kp+Kn) Nn=Vp(Vp+Vn)×Kn(Kp+Kn) とすることができる。
From the above data, the amounts of the positive electrode and the negative electrode of the second electric double layer capacitor are calculated. The required ratios Np and Nn of the amounts of the positive electrode and the negative electrode can be expressed as follows: Np = Vn (Vp + Vn) × Kp (Kp + Kn) Nn = Vp (Vp + Vn) × Kn (Kp + Kn)

【0026】次に三番目の電気二重層コンデンサを作製
する。上の式で算出した比になるよう電極の材料を同様
に圧粉成形して電気二重層コンデンサを作製し、同様の
賦活の過程を繰り返して三電極法で充放電波形を測定す
る。この場合の正負の電圧配分は、電圧限界Vp、Vn
の比になっておらず、実際にはかなりずれている。これ
は電極の静電容量に大きな電圧係数があるので、電圧配
分が変ると静電容量が変化するためである。この操作
を、必要なだけ繰り返して、正負電極の電圧配分をV
p、Vnの比に近づける。また、使用する材料によって
ある程度傾向がわかっていれば、はじめから正負電極の
電極量を例えば10%ずつ変化させた数個の試料を作製
して測定し、それら試料の電圧の変化曲線から電極量の
比を求めることもできる。
Next, a third electric double layer capacitor is manufactured. The material of the electrode is similarly compacted so as to obtain the ratio calculated by the above equation to produce an electric double layer capacitor, and the same activation process is repeated to measure the charge / discharge waveform by the three-electrode method. The positive and negative voltage distributions in this case are based on the voltage limits Vp, Vn
The ratio is not so much, and it is actually quite different. This is because the capacitance of the electrode has a large voltage coefficient, so that the capacitance changes when the voltage distribution changes. This operation is repeated as necessary to adjust the voltage distribution of the positive and negative electrodes to V
Close to the ratio of p and Vn. If the tendency is known to some extent depending on the material used, several samples were prepared from the beginning by changing the electrode amounts of the positive and negative electrodes by, for example, 10%, and measured. Can also be determined.

【0027】[0027]

【実施例】以下に、実施例、比較例を示し本発明を説明
する。 比較例1 電気二重層コンデンサの分極性電極に用いる炭素質材料
として、石油コークスを不活性雰囲気中で750℃にお
いて2時間の熱処理を行い、これと重量比で2倍量の水
酸化カリウムを混合し不活性雰囲気で800℃の熱処理
を行ったものを用いる。あらかじめおこなった熱処理に
よる炭素化の効果により賦活は充分に進行せず、得られ
るBET比表面積は300m2/g 程度にとどまり、従
来の電気二重層コンデンサで大静電容量密度を得る活性
炭の比表面積の水準には達しない。炭素質材料を充分に
洗浄後、30μmの粒度の粉砕し、この材料80mg、
カーボンブラック10mg、およびポリテトラフルオロ
エチレン粉末10mgを混合して直径20mmの円盤状
に300kg/cm2 の圧力で圧粉成形し、これを真空
ディジケーク中で10-2torrに減圧し120℃にお
いて4時間乾燥する。 低湿度に保ったグローブボック
ス内で上記電極2枚を圧縮状態で100μm程度となる
ガラスセパレータを介して重ね、さらにその最外側を二
枚のアルミニウム板製集電極で挟み電気二重層コンデン
サ本体とする。コンデンサ本体をOリングでシールした
アルミニウム製気密容器に入れ、テトラエチルアンモニ
ウム・テトラフルオロボーレートの1モルを溶解したプ
ロピレンカーボネートを電解液として充分含浸させて、
試験用電気二重層コンデンサとした。
The present invention will be described below with reference to examples and comparative examples. Comparative Example 1 As a carbonaceous material used for a polarizable electrode of an electric double-layer capacitor, a petroleum coke was heat-treated at 750 ° C. for 2 hours in an inert atmosphere, and mixed with potassium hydroxide twice as much by weight. Then, a material subjected to a heat treatment at 800 ° C. in an inert atmosphere is used. Activation does not proceed sufficiently due to the effect of carbonization by a heat treatment performed in advance, and the obtained BET specific surface area is only about 300 m 2 / g, and the specific surface area of activated carbon that obtains a large capacitance density with a conventional electric double layer capacitor Level is not reached. After sufficiently washing the carbonaceous material, pulverizing it to a particle size of 30 μm,
10 mg of carbon black and 10 mg of polytetrafluoroethylene powder were mixed and compacted into a disc having a diameter of 20 mm at a pressure of 300 kg / cm 2 , which was reduced to 10 −2 torr in a vacuum disc and reduced to 4 ° C. at 120 ° C. Let dry for hours. In a glove box kept at low humidity, the above two electrodes are stacked in a compressed state via a glass separator of about 100 μm, and the outermost part is sandwiched between two aluminum plate collecting electrodes to form an electric double layer capacitor body. . Put the capacitor body in an aluminum hermetic container sealed with an O-ring, and fully impregnated with propylene carbonate in which 1 mol of tetraethylammonium / tetrafluoroborate was dissolved as an electrolyte,
A test electric double layer capacitor was used.

【0028】充電開始電圧1V、最終電圧4Vに設定
し、最終電圧に達するまでの時間を12時間としてその
直線状にほぼ一定の勾配で上昇するような波形を電圧発
生器によって作り、これにしたがって充電器を電圧制御
して充電して賦活した。完成した電気二重層コンデンサ
を充放電電流5mAに設定し三電極式で特性を測定し
た。充電完了電圧3Vで測定した結果を図3に、同様に
4Vで行った測定結果を図4に示した。正極側、負極側
の電極量が等しい電気二重層コンデンサでは、4Vでの
充放電試験では負極側の内部抵抗が大きいため、これが
電気二重層コンデンサの内部抵抗を占めているものと考
えられる。
The charge start voltage is set to 1 V, the final voltage is set to 4 V, and the time until the final voltage is reached is set to 12 hours. The charger was activated by voltage-controlled charging. The completed electric double layer capacitor was set at a charge / discharge current of 5 mA, and the characteristics were measured by a three-electrode method. FIG. 3 shows the result of measurement at a charging completion voltage of 3 V, and FIG. 4 shows the result of measurement at 4 V in the same manner. In an electric double layer capacitor having the same amount of electrodes on the positive electrode side and the negative electrode side, the internal resistance on the negative electrode side is large in the charge / discharge test at 4 V, and this is considered to occupy the internal resistance of the electric double layer capacitor.

【0029】比較例2 負極側の電極組成を炭素質材料72mg、カーボンブラ
ック18mgに変更した以外の点は同様にして電気二重
層コンデンサを作製し、充電開始電圧1V、最終電圧4
Vに設定し、最終電圧に達するまでの時間を12時間と
してその間を直線状にほぼ一定の勾配で上昇するような
波形を電圧発生器によって作り、これにしたがって充電
器を電圧制御して充電して賦活した。得られた正極側、
および負極側の電極の電圧の変化を図1に示す。図1に
示した測定結果では、負極側の内部抵抗の問題は改善さ
れたが、負極側の静電容量が小さくなったため負極側の
電圧負担が大きく、そのため長期の使用においては、負
極側での劣化もしくは分解生成物の発生が進行して行く
ものと考えられる。
Comparative Example 2 An electric double layer capacitor was prepared in the same manner except that the electrode composition on the negative electrode side was changed to 72 mg of carbonaceous material and 18 mg of carbon black.
The voltage is set to V, and the time until the final voltage is reached is set to 12 hours, and a voltage is generated by the voltage generator such that the voltage rises linearly with a substantially constant gradient during that time. Activated. The obtained positive electrode side,
FIG. 1 shows the change in the voltage of the negative electrode. According to the measurement results shown in FIG. 1, the problem of the internal resistance on the negative electrode side was improved, but the voltage load on the negative electrode side was large because the capacitance on the negative electrode side was small. It is considered that the degradation of or the generation of decomposition products proceeds.

【0030】実施例1 負極の電極の量を15%増加させて、115mgとし、
他の条件は同様にして測定した結果を図2に示す。ここ
で得られた特性は、静電容量が大きく、高電圧から放電
する場合にも内部抵抗が比較的低く、しかも正負の電極
の電圧配分が与えられた条件に最適に近い状態につり合
っていることが分かる。
Example 1 The amount of the negative electrode was increased by 15% to 115 mg,
FIG. 2 shows the results of the measurement performed in the same manner under the other conditions. The characteristics obtained here are such that the capacitance is large, the internal resistance is relatively low even when discharging from a high voltage, and the voltage distribution of the positive and negative electrodes is in a state close to the optimal condition given the given conditions. You can see that there is.

【0031】[0031]

【発明の効果】電圧印加によって膨張する正負の電極
は、電解液イオンの有効径に比例して正負極が膨張し、
正極と負極ではそれぞれに好ましい大きさの細孔径を有
したものが得られるが、本発明の電気二重層コンデンサ
によって正負電極の静電容量の釣り合いをとることによ
って、さらに優れた特性、エネルギー密度と内部抵抗を
改善することができる。
According to the present invention, the positive and negative electrodes that expand by applying a voltage have positive and negative electrodes that expand in proportion to the effective diameter of the electrolyte ions.
The positive electrode and the negative electrode each have a pore size of a preferred size, but by balancing the capacitance of the positive and negative electrodes by the electric double layer capacitor of the present invention, more excellent properties, energy density and Internal resistance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極側および負極側の分極性電極の組成が異な
る電気二重層コンデンサの正極側および負極側の電圧の
変化を示す図である。
FIG. 1 is a diagram showing a change in voltage on a positive electrode side and a negative electrode side of an electric double layer capacitor having different compositions of polarizable electrodes on a positive electrode side and a negative electrode side.

【図2】本発明の実施例の電気二重層コンデンサの正極
側および負極側の電圧の変化を示す図である。
FIG. 2 is a diagram showing changes in voltages on the positive electrode side and the negative electrode side of the electric double layer capacitor according to the embodiment of the present invention.

【図3】正極側および負極側に電圧印加によって膨張す
る炭素質材料を含む組成が同じ分極性電極圧を用いた電
気二重層コンデンサの正極側および負極側の電圧の変化
を示す図である。
FIG. 3 is a diagram showing a change in voltage on the positive electrode side and the negative electrode side of an electric double layer capacitor using the same polarizable electrode pressure as a composition containing a carbonaceous material that expands when a voltage is applied to the positive electrode side and the negative electrode side.

【図4】正極側および負極側に電圧印加によって膨張す
る炭素質材料を含む組成が同じ分極性電極圧を用いた電
気二重層コンデンサの正極側および負極側の電圧の変化
を示す図である。
FIG. 4 is a diagram showing a change in voltage on the positive electrode side and the negative electrode side of an electric double layer capacitor using the same polarizable electrode pressure as a composition containing a carbonaceous material that expands when a voltage is applied to the positive electrode side and the negative electrode side.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気二重層コンデンサにおいて、電圧印
加時に膨張する炭素質材料と導電性物質を混合した分極
性電極を有し、一方の分極性電極中の導電性物質の混合
割合が他方の分極性電極中の混合割合と等しくなく、導
電性物質の混合割合が多い側の分極性電極の量が、導電
性物質の混合割合が少ない電極よりも多いことを特徴と
する電気二重層コンデンサ。
An electric double layer capacitor has a polarizable electrode in which a carbonaceous material which expands when a voltage is applied and a conductive substance are mixed, and the mixing ratio of the conductive substance in one polarizable electrode is the same as that of the other. An electric double layer capacitor characterized in that the amount of the polarizable electrode on the side where the mixing ratio of the conductive substance is high is not equal to the mixing ratio in the polar electrode, and is larger than the electrode where the mixing ratio of the conductive substance is low.
【請求項2】 導電性物質を多く混合した電極が負極で
あり、導電性物質がカーボンブラックであることを特徴
とする請求項1記載の電気二重層コンデンサ。
2. The electric double layer capacitor according to claim 1, wherein the electrode containing a large amount of the conductive substance is a negative electrode, and the conductive substance is carbon black.
JP32776198A 1998-11-18 1998-11-18 Electric double layer capacitor Expired - Fee Related JP3853094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32776198A JP3853094B2 (en) 1998-11-18 1998-11-18 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32776198A JP3853094B2 (en) 1998-11-18 1998-11-18 Electric double layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006219717A Division JP2006303546A (en) 2006-08-11 2006-08-11 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2000150318A true JP2000150318A (en) 2000-05-30
JP3853094B2 JP3853094B2 (en) 2006-12-06

Family

ID=18202702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32776198A Expired - Fee Related JP3853094B2 (en) 1998-11-18 1998-11-18 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3853094B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric doule-layer capacitor
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPH0992583A (en) * 1995-07-17 1997-04-04 Toyota Motor Corp Electric double-layer capacitor
JPH09275042A (en) * 1996-02-09 1997-10-21 Honda Motor Co Ltd Activated charcoal for organic solvent-based electric double layer capacitor
JPH09320906A (en) * 1996-05-27 1997-12-12 Honda Motor Co Ltd Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JPH10270293A (en) * 1997-03-26 1998-10-09 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH1187191A (en) * 1997-07-09 1999-03-30 Mitsubishi Chem Corp Electric double layer capacitor
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric doule-layer capacitor
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPH0992583A (en) * 1995-07-17 1997-04-04 Toyota Motor Corp Electric double-layer capacitor
JPH09275042A (en) * 1996-02-09 1997-10-21 Honda Motor Co Ltd Activated charcoal for organic solvent-based electric double layer capacitor
JPH09320906A (en) * 1996-05-27 1997-12-12 Honda Motor Co Ltd Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JPH10270293A (en) * 1997-03-26 1998-10-09 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH1187191A (en) * 1997-07-09 1999-03-30 Mitsubishi Chem Corp Electric double layer capacitor
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same

Also Published As

Publication number Publication date
JP3853094B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
KR101289521B1 (en) Production method for electric double layer capacitor
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
JPH11317333A (en) Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
KR20080012952A (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP2014530502A (en) High voltage electrochemical double layer capacitor
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
JPH1167608A (en) Electric double-layer capacitor
JP2016534565A (en) Carbon-based electrode containing molecular sieve
JP4733707B2 (en) Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
US20070247787A1 (en) Activated Carbon for Electric Double Layer Capacitor, Activated Carbon Electrode for Electric Double Layer Capacitor, and an Electric Double Layer Capacitor Using Same
JP3973183B2 (en) Manufacturing method of electric double layer capacitor
KR102429092B1 (en) Additive material for an electrode of an electrochemical cell, double layer capacitor and production method for such an electrode
JP3853094B2 (en) Electric double layer capacitor
Huang et al. Facile synthesis and application of V2O5/MXene nanocomposites as electrode materials for supercapacitors
JP2000068164A (en) Electric-double-layer capacitors and manufacture thereof
Vervikishko et al. Effect of the conditions of activated carbon synthesis from wood on its porous structure and the specific characteristics of double layer supercapacitors with a sulfuric acid-based electrolyte
KR20220070027A (en) Supercapacitors with biasing electrodes
KR101724434B1 (en) High-voltage/high-power supercapacitor operatable at 3.2v
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
Rustamaji et al. Design, Fabrication, and Testing of Supercapacitor Based on Nanocarbon Composite Material
JP2006303546A (en) Electric double layer capacitor
JP2001302226A (en) Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material
Soserov et al. Activated nano-porous carbons as electrode materials for supercapacitors in aqueous electrolyte
JP3900810B2 (en) Electric double layer capacitor
KR20180025029A (en) Additive for electric double layer capacitor and electric double layer capacitor comprising the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees