JP2000100435A - Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using it - Google Patents

Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using it

Info

Publication number
JP2000100435A
JP2000100435A JP10269945A JP26994598A JP2000100435A JP 2000100435 A JP2000100435 A JP 2000100435A JP 10269945 A JP10269945 A JP 10269945A JP 26994598 A JP26994598 A JP 26994598A JP 2000100435 A JP2000100435 A JP 2000100435A
Authority
JP
Japan
Prior art keywords
oxide
metal
storage alloy
hydrogen storage
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10269945A
Other languages
Japanese (ja)
Other versions
JP3653399B2 (en
Inventor
Yoshinori Matsuura
義典 松浦
Reizo Maeda
礼造 前田
Katsuhiko Niiyama
克彦 新山
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26994598A priority Critical patent/JP3653399B2/en
Publication of JP2000100435A publication Critical patent/JP2000100435A/en
Application granted granted Critical
Publication of JP3653399B2 publication Critical patent/JP3653399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress lowering of an output characteristic even after charging and discharging cycles by securing sufficient conductivity even when the charging and discharging are repeated. SOLUTION: In this hydrogen storage alloy electrode having a conductive agent on the surfaces of the hydrogen storage alloy powder being an active material, a first metal oxide having conductive coating layers, alkali-resistance, and stability even at the time of charging and discharging is used as the conductive agent. A second metal oxide doped with antimony and/or phosphorus is used as the conductive coating layers. Here, the second metal oxide preferably is at least one selected among tin oxide, iron oxide, antimony oxide, indium oxide, scandium oxide, yttrium oxide, boron oxide, gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, and bismuth oxide, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金粉末
を主体とする負極活物質を含む水素吸蔵合金電極、及び
この水素吸蔵合金電極と正極とが、アルカリ電解液が含
浸されたセパレータを介して電池缶内に配設される金属
−水素化物アルカリ蓄電池に関する。
The present invention relates to a hydrogen storage alloy electrode mainly containing a hydrogen storage alloy powder and containing a negative electrode active material, and a method in which the hydrogen storage alloy electrode and the positive electrode are interposed through a separator impregnated with an alkaline electrolyte. A metal-hydride alkaline storage battery disposed in a battery can.

【0002】[0002]

【従来の技術】近年、水素を可逆的に吸蔵,放出するこ
とができる水素吸蔵合金の開発が盛んに行われており、
斯かる水素吸蔵合金を負極材料として用いる金属−水素
化物アルカリ蓄電池が、従来汎用されている鉛蓄電池、
ニッケル−カドミウム蓄電池などに比べて、軽量で、且
つ、高容量化が可能であるなどの理由から、次世代のア
ルカリ蓄電池の主流を占めるものとして有望視されてい
る。
2. Description of the Related Art In recent years, hydrogen storage alloys capable of reversibly storing and releasing hydrogen have been actively developed.
A metal-hydride alkaline storage battery using such a hydrogen storage alloy as a negative electrode material is a lead storage battery conventionally used widely,
It is expected to occupy the mainstream of next-generation alkaline storage batteries because they are lighter in weight and higher in capacity than nickel-cadmium storage batteries and the like.

【0003】ここで、上記金属−水素化物アルカリ蓄電
池においては、負極である水素吸蔵合金電極内での導電
性が良くないという課題がある。そこで、従来より、水
素吸蔵合金電極に、金属或いは金属酸化物を導電剤とし
て添加するようなものが提案されている。しかしなが
ら、このような構成とした場合であっても、導電剤とし
て金属を用いた場合には充放電中に導電剤である金属の
一部が酸化され、また導電剤として金属酸化物を用いた
場合には元来導電性が不十分であるため、導電剤として
十分に機能せず、充放電サイクルを繰り返すにしたがっ
て出力特性が低下する。即ち、充放電サイクルを繰り返
すにしたがって深い深度での放電時に分極が大きくな
り、放電時の電池電圧が低くなるという課題を有してい
た。
[0003] Here, in the above-mentioned alkaline metal-hydride battery, there is a problem that conductivity in a hydrogen storage alloy electrode as a negative electrode is not good. In view of the above, there has been conventionally proposed one in which a metal or a metal oxide is added as a conductive agent to a hydrogen storage alloy electrode. However, even with such a configuration, when a metal is used as the conductive agent, a part of the metal that is the conductive agent is oxidized during charge and discharge, and a metal oxide is used as the conductive agent. In such a case, since the conductivity is originally insufficient, it does not function sufficiently as a conductive agent, and the output characteristics deteriorate as the charge / discharge cycle is repeated. In other words, there is a problem that as the charge / discharge cycle is repeated, the polarization increases at the time of discharging at a deep depth, and the battery voltage at the time of discharging decreases.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
課題を考慮してなされたものであって、充放電を繰り返
した場合であっても十分な導電性を確保することによ
り、充放電サイクル経過後であっても出力特性が低下す
るのを抑えることができる水素吸蔵合金電極及びこれを
用いた金属−水素化物アルカリ蓄電池を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended to ensure sufficient conductivity even when charge / discharge is repeated, thereby achieving charge / discharge. It is an object of the present invention to provide a hydrogen storage alloy electrode capable of suppressing a decrease in output characteristics even after a lapse of a cycle, and a metal-hydride alkaline storage battery using the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の水素吸蔵合金電極は、負極活物質である水
素吸蔵合金粉末の表面に導電剤が存在する水素吸蔵合金
電極において、上記導電剤として、導電性の被覆層を有
し且つ耐アルカリ性で充放電時にも安定な第1の金属酸
化物が用いられることを特徴とする。上記構成であれ
ば、第1の金属酸化物は耐アルカリ性で充放電時にも安
定であるため、充放電を繰り返しても電池内で悪影響を
及ぼすことがなく、しかも第1の金属酸化物の表面には
導電性の被覆層が設けられているので、良好な導電性が
得られることになる。
Means for Solving the Problems To achieve the above object, a hydrogen storage alloy electrode according to the present invention is a hydrogen storage alloy electrode in which a conductive agent is present on the surface of a hydrogen storage alloy powder as a negative electrode active material. As the conductive agent, a first metal oxide which has a conductive coating layer, is resistant to alkali, and is stable during charge and discharge is used. With the above structure, the first metal oxide is alkali-resistant and stable during charging and discharging, so that repeated charging and discharging does not adversely affect the inside of the battery. Is provided with a conductive coating layer, so that good conductivity can be obtained.

【0006】また、請求項2記載の発明は、請求項1記
載の発明において、前記導電性の被覆層として、アンチ
モン及び/又はリンがドープされた第2の金属酸化物が
用いられることを特徴とする。このように、アンチモン
及び/又はリンがドープされた第2の金属酸化物を導電
性の被覆層として用いると、アンチモン等のドープ効果
により金属酸化物に十分な導電性を付与することができ
ると共に、導電剤として金属を用いる場合に比べて耐ア
ルカリ性と充放電時における安定性とが発現される。
According to a second aspect of the present invention, in the first aspect of the present invention, a second metal oxide doped with antimony and / or phosphorus is used as the conductive coating layer. And As described above, when the second metal oxide doped with antimony and / or phosphorus is used as the conductive coating layer, sufficient conductivity can be imparted to the metal oxide by the doping effect of antimony and the like. In addition, alkali resistance and stability during charge and discharge are exhibited as compared with the case where a metal is used as a conductive agent.

【0007】また、請求項3記載の発明は、請求項2記
載の発明において、前記第2の金属酸化物として、酸化
錫、酸化鉄、酸化アンチモン、酸化インジウム、酸化ス
カンジウム、酸化イットリウム、酸化ホウ素、酸化ガリ
ウム、酸化タリウム、酸化ゲルマニウム、酸化バナジウ
ム、酸化ニオブ、酸化タンタル、酸化ビスマス、酸化モ
リブデン、酸化タングステン、酸化セレン、酸化テル
ル、酸化マンガン、酸化レニウム、酸化コバルト、酸化
ニッケル、酸化ルテニウム、酸化ロジウム、酸化パラジ
ウム、酸化オスミウム、酸化イリジウム、及び酸化白金
から成る群から選択される少なくとも一種が用いられる
ことを特徴とする。これら、第2の金属酸化物は導電性
やアルカリ溶液中での安定性の観点から選択されたもの
であり、酸化錫等の上記金属酸化物を用いれば、上記効
果が一層発揮される。
According to a third aspect of the present invention, in the second aspect, tin oxide, iron oxide, antimony oxide, indium oxide, scandium oxide, yttrium oxide, boron oxide is used as the second metal oxide. Gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, bismuth oxide, molybdenum oxide, tungsten oxide, selenium oxide, tellurium oxide, manganese oxide, rhenium oxide, cobalt oxide, nickel oxide, ruthenium oxide, oxide At least one selected from the group consisting of rhodium, palladium oxide, osmium oxide, iridium oxide, and platinum oxide is used. These second metal oxides are selected from the viewpoints of conductivity and stability in an alkaline solution. The use of the above metal oxides such as tin oxide further enhances the above effects.

【0008】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、前記第1の金属酸化物と
して、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化
ジルコニウム、酸化マグネシウムから成る群から選択さ
れる少なくとも一種が用いられることを特徴とする。第
1の金属酸化物としては上記のものに限定するものでは
ないが、第1の金属酸化物として酸化チタン等を用いれ
ば、上記効果が一層発揮される。
[0008] Further, the invention according to claim 4 is based on claim 1,
In the invention described in 2 or 3, at least one selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, zirconium oxide, and magnesium oxide is used as the first metal oxide. The first metal oxide is not limited to the above-mentioned ones. However, if titanium oxide or the like is used as the first metal oxide, the above-mentioned effect is further exhibited.

【0009】また、請求項5記載の発明は、請求項1、
2、3又は4記載の発明において、前記水素吸蔵合金に
対する前記導電性の被覆層を有する第1の金属酸化物の
割合が、0.01〜10重量%に規制されることを特徴
とする。このように規制するのは、導電性の被覆層を有
する第1の金属酸化物の割合が0.1重量%未満であれ
ば、添加効果が十分に発揮されないために、電極の導電
性が十分に向上しない一方、導電性の被覆層を有する第
1の金属酸化物の割合が10重量%を超えると、負極に
おける水素吸蔵合金の割合が減少するため、水素吸蔵量
が減少するという理由によるものである。
[0009] The invention described in claim 5 is the first invention.
In the invention described in 2, 3, or 4, the ratio of the first metal oxide having the conductive coating layer to the hydrogen storage alloy is regulated to 0.01 to 10% by weight. If the proportion of the first metal oxide having a conductive coating layer is less than 0.1% by weight, the effect of addition is not sufficiently exhibited, and thus the conductivity of the electrode is limited. On the other hand, when the proportion of the first metal oxide having a conductive coating layer exceeds 10% by weight, the proportion of the hydrogen storage alloy in the negative electrode decreases, and the amount of hydrogen storage decreases. It is.

【0010】また、上記目的を達成するために、本発明
の金属−水素化物アルカリ蓄電池は、負極活物質である
水素吸蔵合金粉末の表面に導電剤が存在する負極と、正
極とが、アルカリ電解液が含浸されたセパレータを介し
て電池缶内に配設される金属−水素化物アルカリ蓄電池
において、上記導電剤として、導電性の被覆層を有し且
つ耐アルカリ性で充放電時にも安定な第1の金属酸化物
が用いられることを特徴とする。
[0010] In order to achieve the above object, the metal-hydride alkaline storage battery of the present invention is characterized in that a negative electrode in which a conductive agent is present on the surface of a hydrogen storage alloy powder as a negative electrode active material and a positive electrode are formed by alkaline electrolysis. In a metal-hydride alkaline storage battery disposed in a battery can via a separator impregnated with a liquid, the first conductive agent has a conductive coating layer, is alkali-resistant, and is stable during charging and discharging. Characterized in that the metal oxide is used.

【0011】また、請求項7記載の発明は、請求項6記
載の発明において、前記導電性の被覆層として、アンチ
モン及び/又はリンがドープされた第2の金属酸化物が
用いられることを特徴とする。
The invention according to claim 7 is characterized in that, in the invention according to claim 6, a second metal oxide doped with antimony and / or phosphorus is used as the conductive coating layer. And

【0012】また、請求項8記載の発明は、請求項7記
載の発明において、前記第2の金属酸化物として、酸化
鉄、酸化錫、酸化アンチモン、酸化インジウム、酸化ス
カンジウム、酸化イットリウム、酸化ホウ素、酸化ガリ
ウム、酸化タリウム、酸化ゲルマニウム、酸化バナジウ
ム、酸化ニオブ、酸化タンタル、酸化ビスマス、酸化モ
リブデン、酸化タングステン、酸化セレン、酸化テル
ル、酸化マンガン、酸化レニウム、酸化コバルト、酸化
ニッケル、酸化ルテニウム、酸化ロジウム、酸化パラジ
ウム、酸化オスミウム、酸化イリジウム、及び酸化白金
から成る群から選択される少なくとも一種が用いられる
ことを特徴とする。
The invention according to claim 8 is the invention according to claim 7, wherein the second metal oxide is iron oxide, tin oxide, antimony oxide, indium oxide, scandium oxide, yttrium oxide, boron oxide. Gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, bismuth oxide, molybdenum oxide, tungsten oxide, selenium oxide, tellurium oxide, manganese oxide, rhenium oxide, cobalt oxide, nickel oxide, ruthenium oxide, oxide At least one selected from the group consisting of rhodium, palladium oxide, osmium oxide, iridium oxide, and platinum oxide is used.

【0013】また、請求項9記載の発明は、請求項6、
7又は8記載の発明において、前記第1の金属酸化物と
して、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化
ジルコニウム、酸化マグネシウムから成る群から選択さ
れる少なくとも一種が用いられることを特徴とする。
[0013] The ninth aspect of the present invention is the sixth aspect of the present invention.
In the invention described in 7 or 8, at least one selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, zirconium oxide, and magnesium oxide is used as the first metal oxide.

【0014】また、請求項10記載の発明は、請求項
6、7、8又は9記載の発明において、前記水素吸蔵合
金に対する前記導電性の被覆層を有する第1の金属酸化
物の割合が、0.01〜10重量%に規制されることを
特徴とする。
According to a tenth aspect of the present invention, in the sixth, seventh, eighth or ninth aspect, the ratio of the first metal oxide having the conductive coating layer to the hydrogen storage alloy is as follows: It is characterized by being regulated to 0.01 to 10% by weight.

【0015】[0015]

【発明の実施の形態】先ず、市販のミッシュメタル(M
m;La,Ce,Nd,Pr等の希土類元素の混合
物)、ニッケル(Ni)、コバルト(Co)、アルミニ
ウム(Al)、マンガン(Mn)を原材料とし、それぞ
れが元素比で1:3.2:1.0:0.2:0.6の割
合となるように混合した後、高周波誘導加熱溶解炉を用
いて1500℃で溶融し、更に溶湯を冷却することによ
り、組成式MmNi3.2 Co1.0 Al0.2 Mn0.6 で示
される水素吸蔵合金鋳塊を作製した。次に、この水素吸
蔵合金鋳塊を粉砕することにより、平均粒径が50μm
の水素吸蔵合金粉末を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a commercially available misch metal (M
m; a mixture of rare earth elements such as La, Ce, Nd and Pr), nickel (Ni), cobalt (Co), aluminum (Al) and manganese (Mn) as raw materials, each having an element ratio of 1: 3.2. : 1.0: 0.2: 0.6, then melted at 1500 ° C. using a high-frequency induction heating melting furnace, and further cooled the molten metal to obtain a composition formula of MmNi 3.2 Co 1.0 A hydrogen storage alloy ingot represented by Al 0.2 Mn 0.6 was produced. Next, the hydrogen storage alloy ingot was pulverized to have an average particle size of 50 μm.
Was obtained.

【0016】これと並行して、粒径が1μmの酸化チタ
ン(TiO2 )と、酸化錫(SnO2 、粒径:0.1μ
m)と、この酸化錫に対する添加割合が1.0重量%の
塩化アンチモン(SbCl3 、粒径:0.1μm)とを
均一に混合した後、還元ガス雰囲気(水素ガス雰囲気)
の炉内で500℃で1時間加熱するというメカノフュー
ジョン法により、酸化チタンの表面をアンチモンがドー
プされた酸化錫で覆った。以下、アンチモンがドープさ
れた酸化錫で覆われた酸化チタンを導電剤と称する。ま
た、上記酸化チタンは第1の金属酸化物を構成し、上記
酸化錫は第2の金属酸化物を構成する。
In parallel with this, titanium oxide (TiO 2 ) having a particle size of 1 μm and tin oxide (SnO 2 ) having a particle size of 0.1 μm
m) and antimony chloride (SbCl 3 , particle size: 0.1 μm) whose addition ratio to tin oxide is 1.0% by weight is uniformly mixed, and then reduced gas atmosphere (hydrogen gas atmosphere).
The surface of the titanium oxide was covered with tin oxide doped with antimony by the mechanofusion method of heating at 500 ° C. for 1 hour in a furnace. Hereinafter, titanium oxide covered with tin oxide doped with antimony is referred to as a conductive agent. Further, the titanium oxide forms a first metal oxide, and the tin oxide forms a second metal oxide.

【0017】次いで、前記水素吸蔵合金粉末に、水素吸
蔵合金粉末に対する添加割合が1.0重量%の上記導電
剤を添加して、混合粉末を作製すると共に、結着剤とし
てのPEO(ポリエチレンオキサイド)の割合が5重量
%の水溶液を、水素吸蔵合金粉末10重量部に対して1
重量部を混合して作製した。この後、上記水溶液と上記
混合粉末とを混合してペーストを調製した。次に、この
ペーストを芯体(鉄にニッケルメッキを施したパンチン
グメタルからなる)に塗着し、更に圧延することにより
板状の負極を作製した。
Next, the above-mentioned conductive agent was added to the hydrogen-absorbing alloy powder at an addition ratio of 1.0% by weight to the hydrogen-absorbing alloy powder to prepare a mixed powder, and PEO (polyethylene oxide) was used as a binder. ) Is added to the hydrogen storage alloy powder by 10 parts by weight.
It was prepared by mixing parts by weight. Thereafter, the aqueous solution and the mixed powder were mixed to prepare a paste. Next, this paste was applied to a core (made of punching metal obtained by plating nickel on iron), and further rolled to produce a plate-shaped negative electrode.

【0018】しかる後、上記負極と公知の焼結式ニッケ
ル正極とを、ナイロン不織布からなるセパレータを介し
て巻回して発電要素を作製した後、この発電要素を電池
缶内に収納し、更にこの電池缶内に30%のKOHから
成る電解液を注入することにより、理論容量が1200
mAh(AAサイズ)の電池を作製した。尚、上記実施
の形態では、第1の金属酸化物である酸化チタンの粒径
は1μmとしたが、これに限定するものではない。但
し、第1の金属酸化物の粒径が1μmを超えると水素吸
蔵合金の充填密度が小さくなって、負極の単位体積あた
りの水素吸蔵合金量が減少するため、第1の金属酸化物
の粒径は1μm以下であることが望ましい。
Thereafter, the above-mentioned negative electrode and a known sintered nickel positive electrode are wound through a separator made of nylon non-woven fabric to produce a power generating element, and the power generating element is housed in a battery can. By injecting 30% KOH electrolyte into the battery can, the theoretical capacity is 1200
A battery of mAh (AA size) was produced. In the above embodiment, the particle diameter of the titanium oxide as the first metal oxide is 1 μm, but the present invention is not limited to this. However, when the particle diameter of the first metal oxide exceeds 1 μm, the packing density of the hydrogen storage alloy decreases, and the amount of the hydrogen storage alloy per unit volume of the negative electrode decreases. The diameter is desirably 1 μm or less.

【0019】また、上記実施の形態では、塩化アンチモ
ンを用いて酸化錫にアンチモンをドープしているが、こ
れに限定するものではなく、酸化アンチモン等他のアン
チモン化合物を用いてドープしても良く、更にドープす
るものとしてはアンチモンに限定するものではなく、オ
ルトリン酸、メタリン酸、ピロリン酸、トリポリン酸、
亜リン酸、或いは次亜リン酸等のリン酸化合物を用いる
ことによりリンをドープしても良い。また、ドープ時の
加熱温度は、上記の如く500℃に限定するものではな
く、300〜1000℃の範囲であれば円滑にドープさ
れ、また加熱時間も1時間に限定するものではなく、3
0分〜2時間であれば円滑にドープされる。更に、還元
性ガスとしては水素ガスに限定するものではなく、アン
モニアガス、一酸化炭素ガスであっても良く、また、ド
ープする際のガスとしては還元性ガスの他、窒素ガス、
アルゴンガス等の不活性ガスを用いることも可能であ
る。
In the above embodiment, tin oxide is doped with antimony using antimony chloride. However, the present invention is not limited to this. , Further doping is not limited to antimony, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, tripolyacid,
Phosphorus may be doped by using phosphorous acid or a phosphoric acid compound such as hypophosphorous acid. Further, the heating temperature during the doping is not limited to 500 ° C. as described above, and if the temperature is in the range of 300 to 1000 ° C., the doping is smoothly performed.
If it is 0 minutes to 2 hours, doping is performed smoothly. Further, the reducing gas is not limited to the hydrogen gas, but may be an ammonia gas or a carbon monoxide gas.In addition to the reducing gas, the doping gas may be a nitrogen gas,
It is also possible to use an inert gas such as an argon gas.

【0020】更に、アンチモン或いはリンを酸化錫等に
ドープ際、酸化錫に対する塩化アンチモン等のアンチモ
ン化合物等の添加割合は1.0重量%に限定するもので
はないが、0.1重量%以上にするのが望ましい。これ
は、アンチモン化合物等の添加割合が0.1重量%未満
であるとドープ効果が十分に発揮されないからである。
Further, when doping antimony or phosphorus into tin oxide or the like, the proportion of an antimony compound such as antimony chloride to tin oxide is not limited to 1.0% by weight, but may be 0.1% by weight or more. It is desirable to do. This is because the doping effect is not sufficiently exhibited if the proportion of the antimony compound or the like is less than 0.1% by weight.

【0021】加えて、酸化錫等の第2の金属酸化物及び
塩化アンチモン等のアンチモン化合物或いはリン酸化合
物の粒径は前記の如く0.1μmに限定するものではな
いが、0.2μm以下とするのが望ましい。これは、酸
化チタン等の第1の金属酸化物の粒径は上述の如く1μ
m以下に規制されるため、第2の金属酸化物及びアンチ
モン化合物等の粒径が0.2μmを超えると、第1の金
属酸化物の表面を均一に覆うことができないからであ
る。
In addition, the particle size of the second metal oxide such as tin oxide or the like or an antimony compound such as antimony chloride or a phosphoric acid compound is not limited to 0.1 μm as described above. It is desirable to do. This is because the particle size of the first metal oxide such as titanium oxide is 1 μm as described above.
When the particle size of the second metal oxide, the antimony compound, or the like exceeds 0.2 μm, the surface of the first metal oxide cannot be uniformly covered.

【0022】また、酸化チタンの表面に導電性の被覆層
を形成する方法としては上記メカノフュージョン法に限
定するものではなく、例えば、以下の方法によっても達
成できる。先ず、酸化チタンの水懸濁液に、塩化第2
錫、硫酸錫、或いは硝酸スズ等から成る錫塩、又は錫酸
ナトリウム、錫酸カリウムから成る錫酸塩の溶液を添加
した後、アンモニア水、水酸化ナトリウム、水酸化カリ
ウム、炭酸ナトリウム、炭酸カリウム、或いは炭酸アン
モニウムから成るアルカリ、又は塩酸、硫酸、硝酸或い
は酢酸から成る酸を添加する。次に、これにアンチモン
化合物又はリン化合物の水溶液を添加、攪拌した後、処
理液を濾過、洗浄し、更に100℃程度で乾燥させる。
最後に、650℃の還元性ガス或いは不活性ガス雰囲気
中で1時間熱処理することにより酸化チタンの表面に導
電性の被覆層を形成することができる。
The method of forming a conductive coating layer on the surface of titanium oxide is not limited to the above-mentioned mechanofusion method, but can be achieved by, for example, the following method. First, a second suspension of titanium oxide was added to an aqueous suspension of titanium oxide.
After adding a tin salt solution composed of tin, tin sulfate, tin nitrate, or the like, or a stannate solution composed of sodium stannate and potassium stannate, aqueous ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate Alternatively, an alkali consisting of ammonium carbonate or an acid consisting of hydrochloric acid, sulfuric acid, nitric acid or acetic acid is added. Next, an aqueous solution of an antimony compound or a phosphorus compound is added thereto, and the mixture is stirred. Then, the treatment liquid is filtered, washed, and dried at about 100 ° C.
Finally, a heat treatment is performed for one hour in a reducing gas or inert gas atmosphere at 650 ° C. to form a conductive coating layer on the surface of the titanium oxide.

【0023】更に、水素吸蔵合金粉末の平均粒径は50
μmに限定されるものではないが、10〜70μmの範
囲であるのが望ましい。これは、水素吸蔵合金粉末の平
均粒径が10μm未満であると水素吸蔵合金粉末の表面
に生成する酸化皮膜の割合が相対的に多くなる一方、7
0μmを超えると負極全体としての水素吸蔵合金粉末の
表面積が減少する。これらのことから、水素の吸蔵,放
出を円滑に行うことができなくなるという理由によるも
のである。
Further, the average particle size of the hydrogen storage alloy powder is 50
Although not limited to μm, it is preferably in the range of 10 to 70 μm. This is because when the average particle size of the hydrogen storage alloy powder is less than 10 μm, the proportion of the oxide film formed on the surface of the hydrogen storage alloy powder becomes relatively large,
If it exceeds 0 μm, the surface area of the hydrogen storage alloy powder as the whole negative electrode decreases. For these reasons, it is because hydrogen cannot be absorbed and released smoothly.

【0024】加えて、本発明に用いられる水素吸蔵合金
としては上記希土類系水素吸蔵合金に限定するものでは
なく、ZrNi等のZr−Ni系水素吸蔵合金、TiF
e等のTi−Fe系水素吸蔵合金、ZrMn2 等のZr
−Mn系水素吸蔵合金、TiMn1.5 等のTi−Mn系
水素吸蔵合金、またはMg2 Ni等のMg−Ni系水素
吸蔵合金等を用いることも可能である。
In addition, the hydrogen storage alloy used in the present invention is not limited to the above-mentioned rare earth hydrogen storage alloy, but may be a Zr-Ni hydrogen storage alloy such as ZrNi, TiF, or the like.
e, Ti—Fe-based hydrogen storage alloy, Zr such as ZrMn 2
-Mn-based hydrogen storage alloy, it is also possible to use a TiMn-based hydrogen-absorbing alloy such as TiMn 1.5 or Mg-Ni based hydrogen absorbing alloy such as Mg 2 Ni, and the like.

【0025】また、金属−水素化物アルカリ蓄電池に特
に好ましいCaCu5 型の結晶構造を有する水素吸蔵合
金は、一般式MmNia Cob Alc Mnd で表され
る。ここで、この式中におけるMmはLa,Ce,P
r,Nd,Sm,Eu,Sc,Y,Pm,Gd,Tb,
Gy,Ho,Er,Tm,Yb,Luから選択される希
土類元素の混合物であり、特に、La,Ce,Pr,N
d,Smの混合物を主体とするものが好ましく、また、
a>0、b>0、c>0、d≧0で、4.4≦a+b+
c+d≦5.4である。
Further, the metal - hydrogen storage alloy having a particularly preferred CaCu 5 type crystal structure hydride alkaline storage battery is represented by the general formula MmNi a Co b Al c Mn d . Here, Mm in this equation is La, Ce, P
r, Nd, Sm, Eu, Sc, Y, Pm, Gd, Tb,
It is a mixture of rare earth elements selected from Gy, Ho, Er, Tm, Yb, and Lu. In particular, La, Ce, Pr, N
Preferably, the main component is a mixture of d and Sm.
a> 0, b> 0, c> 0, d ≧ 0 and 4.4 ≦ a + b +
c + d ≦ 5.4.

【0026】そして、上記の組成からなる水素吸蔵合金
はアルカリ二次電池のサイクル特性や放電特性等の基本
性能を満たすことができる。また、上記の水素吸蔵合金
における水素を吸蔵する特性を変更しない範囲におい
て、Si,C,W,Bの元素を添加させてもよい。また
好ましくは上記の組成式において、ニッケルの量aを
2.8≦a≦5.2、コバルトの量bを0<b≦1.
4、アルミニウムの量cを0<c≦1.2、更にマンガ
ンの量dをd≦1.2にすることが好ましい。さらに、
電池の容量を高くするためには、アルミニウムの量cを
c≦1.0、マンガンの量dをd≦1.0にすることが
好ましい。
The hydrogen storage alloy having the above composition can satisfy the basic performance such as cycle characteristics and discharge characteristics of the alkaline secondary battery. Further, elements of Si, C, W, and B may be added as long as the hydrogen storage properties of the hydrogen storage alloy are not changed. Also preferably, in the above composition formula, the amount a of nickel is 2.8 ≦ a ≦ 5.2, and the amount b of cobalt is 0 <b ≦ 1.
4. Preferably, the amount c of aluminum is 0 <c ≦ 1.2, and the amount d of manganese is d ≦ 1.2. further,
In order to increase the capacity of the battery, it is preferable that the amount c of aluminum is c ≦ 1.0 and the amount d of manganese is d ≦ 1.0.

【0027】加えて、水素吸蔵合金電極に用いられる芯
体としては、上記鉄にニッケルメッキを施したパンチン
グメタルに限定するものではなく、発泡ニッケル、ニッ
ケル繊維焼結体等を用いることもできる。
In addition, the core used for the hydrogen-absorbing alloy electrode is not limited to the above-mentioned punched metal in which nickel is plated with nickel, but nickel foam, nickel fiber sintered body and the like can also be used.

【0028】[0028]

【実施例】(実施例1)実施例1としては、上記発明の
実施の形態で示した電池を用いた。このようにして作製
した電池を、以下、本発明電池A1と称する。
EXAMPLES (Example 1) In Example 1, the battery described in the embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.

【0029】(実施例2〜7)水素吸蔵合金粉末に対す
る導電剤(表面に導電性の被覆層を有する酸化チタン)
の添加量を、それぞれ0.005重量%、0.01重量
%、0.10重量%、5.00重量%、10.00重量
%及び15.00重量%とする他は、上記実施例1と同
様にして電池を作製した。このようにして作製した電池
を、以下、それぞれ本発明電池A2〜A7と称する。
(Examples 2 to 7) Conductive agent (titanium oxide having conductive coating layer on surface) for hydrogen storage alloy powder
Example 1 except that the amount of addition was 0.005% by weight, 0.01% by weight, 0.10% by weight, 5.00% by weight, 10.00% by weight and 15.00% by weight, respectively. A battery was produced in the same manner as in the above. The batteries fabricated in this manner are hereinafter referred to as Batteries A2 to A7 of the invention, respectively.

【0030】(実施例8〜13)塩化アンチモンを用い
て酸化錫にアンチモンををドープするのではなく、それ
ぞれオルトリン酸、メタリン酸、ピロリン酸、トリポリ
ン酸、亜リン酸、及び次亜リン酸を用いて酸化錫にリン
をドープする他は、上記実施例1と同様にして電池を作
製した。このようにして作製した電池を、以下、それぞ
れ本発明電池A8〜A13と称する。
Examples 8 to 13 Instead of doping tin oxide with antimony using antimony chloride, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, phosphorous acid, and hypophosphorous acid were used, respectively. A battery was fabricated in the same manner as in Example 1 except that tin oxide was used to dope phosphorus. The batteries fabricated in this manner are hereinafter referred to as Batteries A8 to A13 of the invention, respectively.

【0031】(比較例)導電剤(表面に導電性の被覆層
を有する酸化チタン)を添加しない他は、実施例1と同
様にして電池を作製した。このようにして作製した電池
を、以下比較電池Xと称する。
Comparative Example A battery was manufactured in the same manner as in Example 1 except that a conductive agent (titanium oxide having a conductive coating layer on the surface) was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X.

【0032】(実験1)上記本発明電池A1〜A7と比
較電池Xとにおいて、下記(1)の条件で200サイク
ル充放電を行った後、下記(2)の条件で充放電を行
い、3C(1200mA)で30秒間放電したときの電
池電圧を測定したので、その結果を表1に示す。 充放電条件 (1)充電条件:1C(1200mA)で−ΔVが10
mVになるまで充電 放電条件:1C(1200mA)で放電終止電圧が1V
になるまで放電 (2)充電条件:0.1C(120mA)で11時間充
電 放電条件:1/3C(400mA)で放電し、DOD
(放電深度)が80%に達した際に、3C(3600m
A)で30秒間放電
(Experiment 1) The batteries A1 to A7 of the present invention and the comparative battery X were charged / discharged for 200 cycles under the following condition (1), and then charged and discharged under the following condition (2). The battery voltage was measured when the battery was discharged at (1200 mA) for 30 seconds. The results are shown in Table 1. Charging and discharging conditions (1) Charging conditions: -ΔV is 10 at 1 C (1200 mA)
Charge until mV Discharge conditions: 1C (1200mA) and discharge end voltage 1V
(2) Charge condition: Charge at 0.1 C (120 mA) for 11 hours Discharge condition: Discharge at 1/3 C (400 mA) and DOD
When (depth of discharge) reaches 80%, 3C (3600m
Discharge for 30 seconds in A)

【0033】[0033]

【表1】 [Table 1]

【0034】表1から明らかなように、導電剤(表面に
導電性の被覆層を有する酸化チタン)が添加された本発
明電池A1〜A7は、導電剤が添加されていない比較電
池Xに比べて、充放電を200サイクル繰り返した後の
3C放電時の電圧が高くなっていることが認められる。
これは、導電剤が水素吸蔵合金粉末間に存在することに
より、水素吸蔵合金粉末間の接触抵抗が低減して、電極
の分極が抑制されると共に、表面に導電性の被覆層が形
成された酸化チタンはアルカリ電解液中で安定であるた
め、充放電サイクル後の深い深度での放電時における電
圧が上昇するという理由による。
As is clear from Table 1, the batteries A1 to A7 of the present invention to which the conductive agent (titanium oxide having a conductive coating layer on the surface) was added, compared to the comparative battery X to which no conductive agent was added. Thus, it is recognized that the voltage at the time of 3C discharge after 200 cycles of charge / discharge was increased.
This is because the presence of the conductive agent between the hydrogen storage alloy powders reduced the contact resistance between the hydrogen storage alloy powders, suppressed the polarization of the electrodes, and formed a conductive coating layer on the surface. This is because titanium oxide is stable in an alkaline electrolyte, and the voltage at the time of discharging at a deep depth after a charge / discharge cycle increases.

【0035】但し、導電剤の添加量が0.005重量%
の本発明電池A2及び導電剤の添加量が15.00重量
%の本発明電池A7は、導電剤の添加量が0.01〜1
0.00重量%の本発明電池A1、A3〜A6に比べて
3C放電時の電圧が低くなっていることが認められる。
これは、導電剤の添加量が0.005重量%の本発明電
池A2では、添加効果が十分に発揮されないために、電
極の導電性が悪くなる一方、導電剤の添加量が15.0
0重量%の本発明電池A7では、負極における水素吸蔵
合金の割合が減少するため、水素吸蔵量が減少するとい
う理由によるものと考えられる。
However, the amount of the conductive agent added is 0.005% by weight.
In the battery A2 of the present invention and the battery A7 of the present invention in which the amount of the conductive agent added was 15.00% by weight, the amount of the conductive agent added was 0.01 to 1%.
It can be seen that the voltage at the time of 3C discharge is lower than that of 0.00% by weight of the batteries A1 and A3 to A6 of the present invention.
This is because, in the battery A2 of the present invention in which the addition amount of the conductive agent is 0.005% by weight, the effect of the addition is not sufficiently exhibited, and thus the conductivity of the electrode is deteriorated, while the addition amount of the conductive agent is 15.0.
It is considered that in the case of the battery A7 of 0% by weight of the present invention, the ratio of the hydrogen storage alloy in the negative electrode was reduced, and the hydrogen storage amount was reduced.

【0036】(実験2)上記本発明電池A8〜A13に
おいて、上記実験1と同様の条件で充放電を行い、3C
(1200mA)で30秒間放電したときの電池電圧を
測定したので、その結果を表2に示す。
(Experiment 2) In the batteries A8 to A13 of the present invention, charging and discharging were performed under the same conditions as in the above Experiment 1, and 3C
The battery voltage was measured when the battery was discharged at (1200 mA) for 30 seconds, and the results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表2から明らかなように、本発明電池A8
〜A13では、充放電を200サイクル繰り返した後の
3C放電時の電圧が高くなっていることが認められる。
As is clear from Table 2, the battery A8 of the present invention
In A13, it is recognized that the voltage at the time of 3C discharge after 200 cycles of charge / discharge was increased.

【0039】また、酸化チタンに被覆する導電性の被覆
層として、酸化錫の代わりに酸化アンチモン、酸化鉄、
酸化インジウム、酸化スカンジウム、酸化イットリウ
ム、酸化ホウ素、酸化ガリウム、酸化タリウム、酸化ゲ
ルマニウム、酸化バナジウム、酸化ニオブ、酸化タンタ
ル、酸化ビスマス、酸化モリブデン、酸化タングステ
ン、酸化セレン、酸化テルル、酸化マンガン、酸化レニ
ウム、酸化コバルト、酸化ニッケル、酸化ルテニウム、
酸化ロジウム、酸化パラジウム、酸化オスミウム、酸化
イリジウム及び酸化白金においても同様の導電性向上の
効果が得られることを確認している。
As a conductive coating layer covering the titanium oxide, antimony oxide, iron oxide,
Indium oxide, scandium oxide, yttrium oxide, boron oxide, gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, bismuth oxide, molybdenum oxide, tungsten oxide, selenium oxide, tellurium oxide, manganese oxide, rhenium oxide , Cobalt oxide, nickel oxide, ruthenium oxide,
It has been confirmed that rhodium oxide, palladium oxide, osmium oxide, iridium oxide, and platinum oxide have the same effect of improving conductivity.

【0040】[0040]

【発明の効果】以上で説明したように本発明によれば、
充放電を繰り返した場合であっても十分な導電性を確保
することにより、充放電サイクル経過後であっても出力
特性が低下するのを抑えることができるといった優れた
効果を奏する。
According to the present invention as described above,
By securing sufficient conductivity even when charge and discharge are repeated, there is an excellent effect that output characteristics can be prevented from deteriorating even after the charge and discharge cycle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 BB02 BB14 BC01 BC05 BD04 5H016 AA02 EE01 EE05 HH01 5H028 AA01 EE01 EE05 HH01  ──────────────────────────────────────────────────の Continuing on the front page (72) Katsuhiko Niiyama, 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H003 AA04 BB02 BB14 BC01 BC05 BD04 5H016 AA02 EE01 EE05 HH01 5H028 AA01 EE01 EE05 HH01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質である水素吸蔵合金粉末の表
面に導電剤が存在する水素吸蔵合金電極において、 上記導電剤として、導電性の被覆層を有し且つ耐アルカ
リ性で充放電時にも安定な第1の金属酸化物が用いられ
ることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode in which a conductive agent is present on the surface of a hydrogen storage alloy powder as a negative electrode active material, wherein the conductive agent has a conductive coating layer and is alkali-resistant and stable during charge and discharge. A hydrogen-absorbing alloy electrode, comprising: a first metal oxide.
【請求項2】 前記導電性の被覆層として、アンチモン
及び/又はリンがドープされた第2の金属酸化物が用い
られる、請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein a second metal oxide doped with antimony and / or phosphorus is used as the conductive coating layer.
【請求項3】 前記第2の金属酸化物として、酸化錫、
酸化鉄、酸化アンチモン、酸化インジウム、酸化スカン
ジウム、酸化イットリウム、酸化ホウ素、酸化ガリウ
ム、酸化タリウム、酸化ゲルマニウム、酸化バナジウ
ム、酸化ニオブ、酸化タンタル、酸化ビスマス、酸化モ
リブデン、酸化タングステン、酸化セレン、酸化テル
ル、酸化マンガン、酸化レニウム、酸化コバルト、酸化
ニッケル、酸化ルテニウム、酸化ロジウム、酸化パラジ
ウム、酸化オスミウム、酸化イリジウム、及び酸化白金
から成る群から選択される少なくとも一種が用いられ
る、請求項2記載の水素吸蔵合金電極。
3. The method according to claim 1, wherein the second metal oxide is tin oxide,
Iron oxide, antimony oxide, indium oxide, scandium oxide, yttrium oxide, boron oxide, gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, bismuth oxide, molybdenum oxide, tungsten oxide, selenium oxide, tellurium oxide The hydrogen according to claim 2, wherein at least one selected from the group consisting of manganese oxide, rhenium oxide, cobalt oxide, nickel oxide, ruthenium oxide, rhodium oxide, palladium oxide, osmium oxide, iridium oxide, and platinum oxide is used. Storage alloy electrode.
【請求項4】 前記第1の金属酸化物として、酸化チタ
ン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、
酸化マグネシウムから成る群から選択される少なくとも
一種が用いられる、請求項1、2又は3記載の水素吸蔵
合金電極。
4. As the first metal oxide, titanium oxide, aluminum oxide, zinc oxide, zirconium oxide,
4. The hydrogen storage alloy electrode according to claim 1, wherein at least one selected from the group consisting of magnesium oxide is used.
【請求項5】 前記水素吸蔵合金に対する前記導電性の
被覆層を有する第1の金属酸化物の割合が、0.01〜
10重量%に規制される、請求項1、2、3又は4記載
の水素吸蔵合金電極。
5. The ratio of the first metal oxide having the conductive coating layer to the hydrogen storage alloy is from 0.01 to 0.01.
5. The hydrogen storage alloy electrode according to claim 1, wherein the content is regulated to 10% by weight.
【請求項6】 負極活物質である水素吸蔵合金粉末の表
面に導電剤が存在する負極と、正極とが、アルカリ電解
液が含浸されたセパレータを介して電池缶内に配設され
る金属−水素化物アルカリ蓄電池において、 上記導電剤として、導電性の被覆層を有し且つ耐アルカ
リ性で充放電時にも安定な第1の金属酸化物が用いられ
ることを特徴とする金属−水素化物アルカリ蓄電池。
6. A negative electrode in which a conductive agent is present on the surface of a hydrogen storage alloy powder as a negative electrode active material, and a positive electrode are disposed in a battery can through a separator impregnated with an alkaline electrolyte. In the hydride alkaline storage battery, a first metal oxide having a conductive coating layer and having alkali resistance and being stable during charge and discharge is used as the conductive agent.
【請求項7】 前記導電性の被覆層として、アンチモン
及び/又はリンがドープされた第2の金属酸化物が用い
られる、請求項6記載の金属−水素化物アルカリ蓄電
池。
7. The metal-hydride alkaline storage battery according to claim 6, wherein a second metal oxide doped with antimony and / or phosphorus is used as the conductive coating layer.
【請求項8】 前記第2の金属酸化物として、酸化鉄、
酸化錫、酸化アンチモン、酸化インジウム、酸化スカン
ジウム、酸化イットリウム、酸化ホウ素、酸化ガリウ
ム、酸化タリウム、酸化ゲルマニウム、酸化バナジウ
ム、酸化ニオブ、酸化タンタル、酸化ビスマス、酸化モ
リブデン、酸化タングステン、酸化セレン、酸化テル
ル、酸化マンガン、酸化レニウム、酸化コバルト、酸化
ニッケル、酸化ルテニウム、酸化ロジウム、酸化パラジ
ウム、酸化オスミウム、酸化イリジウム、及び酸化白金
から成る群から選択される少なくとも一種が用いられ
る、請求項7記載の金属−水素化物アルカリ蓄電池。
8. An iron oxide as the second metal oxide,
Tin oxide, antimony oxide, indium oxide, scandium oxide, yttrium oxide, boron oxide, gallium oxide, thallium oxide, germanium oxide, vanadium oxide, niobium oxide, tantalum oxide, bismuth oxide, molybdenum oxide, tungsten oxide, selenium oxide, tellurium oxide The metal according to claim 7, wherein at least one selected from the group consisting of manganese oxide, rhenium oxide, cobalt oxide, nickel oxide, ruthenium oxide, rhodium oxide, palladium oxide, osmium oxide, iridium oxide, and platinum oxide is used. Hydride alkaline storage batteries.
【請求項9】 前記第1の金属酸化物として、酸化チタ
ン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、
酸化マグネシウムから成る群から選択される少なくとも
一種が用いられる、請求項6、7又は8記載の金属−水
素化物アルカリ蓄電池。
9. The first metal oxide includes titanium oxide, aluminum oxide, zinc oxide, zirconium oxide,
9. The metal-hydride alkaline storage battery according to claim 6, wherein at least one selected from the group consisting of magnesium oxide is used.
【請求項10】 前記水素吸蔵合金に対する前記導電性
の被覆層を有する第1の金属酸化物の割合が、0.01
〜10重量%に規制される、請求項6、7、8又は9記
載の金属−水素化物アルカリ蓄電池。
10. The ratio of the first metal oxide having the conductive coating layer to the hydrogen storage alloy is 0.01%.
The metal-hydride alkaline storage battery according to claim 6, 7, 8 or 9, which is regulated to 10 to 10% by weight.
JP26994598A 1998-09-24 1998-09-24 Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same Expired - Fee Related JP3653399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26994598A JP3653399B2 (en) 1998-09-24 1998-09-24 Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26994598A JP3653399B2 (en) 1998-09-24 1998-09-24 Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JP2000100435A true JP2000100435A (en) 2000-04-07
JP3653399B2 JP3653399B2 (en) 2005-05-25

Family

ID=17479404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26994598A Expired - Fee Related JP3653399B2 (en) 1998-09-24 1998-09-24 Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3653399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
CN110707315A (en) * 2019-11-26 2020-01-17 河北省科学院能源研究所 Surface modified nickel-based electrode material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
US9748560B2 (en) 2011-07-28 2017-08-29 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
CN110707315A (en) * 2019-11-26 2020-01-17 河北省科学院能源研究所 Surface modified nickel-based electrode material

Also Published As

Publication number Publication date
JP3653399B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
JP2008071759A (en) Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
JPH1140189A (en) Nickel-hydrogen storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP3653399B2 (en) Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same
JPH11111330A (en) Nickel-hydrogen storage battery
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP2004127549A (en) Nickel-hydrogen storage battery
US20040166410A1 (en) Manufacturing method of metal hydride alkaline storage cell
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4540045B2 (en) Hydrogen storage alloy, hydrogen storage electrode and nickel metal hydride storage battery
JP2004273261A (en) Alkaline storage battery
JPH0765833A (en) Hydrogen storage alloy electrode
JP2000182607A (en) Hydrogen storage alloy electrode
JP3082348B2 (en) Nickel-hydrogen battery
US6409849B1 (en) Method of producing hydrogen-absorbing alloy for nickel-hydrogen alkaline storage cell
JP3192694B2 (en) Alkaline storage battery
JP4573609B2 (en) Alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2989356B2 (en) Hydrogen storage alloy electrode
US20060078794A1 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees