JP4573609B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4573609B2
JP4573609B2 JP2004284430A JP2004284430A JP4573609B2 JP 4573609 B2 JP4573609 B2 JP 4573609B2 JP 2004284430 A JP2004284430 A JP 2004284430A JP 2004284430 A JP2004284430 A JP 2004284430A JP 4573609 B2 JP4573609 B2 JP 4573609B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
battery
separator
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004284430A
Other languages
Japanese (ja)
Other versions
JP2006100111A (en
Inventor
誠 越智
裕政 杉井
竜 山下
育幸 原田
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004284430A priority Critical patent/JP4573609B2/en
Publication of JP2006100111A publication Critical patent/JP2006100111A/en
Application granted granted Critical
Publication of JP4573609B2 publication Critical patent/JP4573609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

本発明は、一般式がLn1-xMgx(Ni1-yy)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされる水素吸蔵合金を負極活物質とする負極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池に関する。 In the present invention, the general formula is Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y, Yb, Er, Ti, Zr and Hf) T is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P, and B. A negative electrode having a hydrogen storage alloy represented by 0 <x ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5) as a negative electrode active material, a positive electrode, a separator, The present invention relates to an alkaline storage battery provided with an alkaline electrolyte in an outer can.

近年、二次電池(蓄電池)の用途が拡大して、携帯電話、ノートパソコン、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)など広範囲にわたって用いられるようになった。このうち、特に、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)などの高出力が求められる機器の電源として、ニッケル−水素蓄電池が用いられるようになった。この種のニッケル−水素蓄電池の負極活物質として、LaNi5系の水素吸蔵合金が用いられている。   In recent years, the use of secondary batteries (storage batteries) has expanded, and has come to be used in a wide range such as mobile phones, notebook computers, electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (EV). Among these, in particular, nickel-hydrogen storage batteries have come to be used as power sources for devices that require high output, such as electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (EV). As a negative electrode active material of this type of nickel-hydrogen storage battery, a LaNi5-based hydrogen storage alloy is used.

この水素吸蔵合金は水素吸蔵量が合金1に対して水素原子1の割合であるため、これ以上の水素を吸蔵させることは実質的に困難であって、さらなる高容量の二次電池を実用化するにはLaNi5系の水素吸蔵合金を用いる限り飛躍的な増大は望めない状況にある。これに対して、ラーベス相を主相とする水素吸蔵合金では合金1に対して水素原子1以上の吸蔵が可能であることが知られており、原理的には高容量の電池を実現することが可能である。しかしながら、この水素吸蔵合金はその表面に安定な酸化膜を生成するなどの理由から負極材料として用いるに至っていないという状況にある。   Since this hydrogen storage alloy has a hydrogen storage amount of 1 hydrogen atom with respect to alloy 1, it is practically difficult to store more hydrogen than this, and practical use of a secondary battery with higher capacity is practical. Therefore, as long as a LaNi5-based hydrogen storage alloy is used, a dramatic increase cannot be expected. On the other hand, it is known that a hydrogen storage alloy having a Laves phase as a main phase can store one or more hydrogen atoms relative to the alloy 1, and in principle, to realize a high capacity battery. Is possible. However, this hydrogen storage alloy has not been used as a negative electrode material for the reason of forming a stable oxide film on its surface.

これらに対して、新たに見いだされたマグネシウム、ニッケルおよび希土類元素を主要構成元素とする水素吸蔵合金は、LaNi5系の水素吸蔵合金に比べて体積当りおよび質量当り、いずれも高容量であり、ラーベス相系の水素吸蔵合金よりも活性化が速く、高率充放電特性にも優れているという特徴を有する。このため、この水素吸蔵合金を用いることによりLaNi5系の水素吸蔵合金に比べて高容量であり、しかもラーベス相系の水素吸蔵合金よりも優れた高率充放電特性を有することが可能になる。   On the other hand, the newly found hydrogen storage alloys mainly composed of magnesium, nickel and rare earth elements have a higher capacity per volume and mass than LaNi5-based hydrogen storage alloys. It has the characteristics that it is activated faster than the phase-type hydrogen storage alloy and has excellent high rate charge / discharge characteristics. For this reason, by using this hydrogen storage alloy, it is possible to have a higher capacity than the LaNi5-based hydrogen storage alloy and to have high rate charge / discharge characteristics superior to those of the Laves phase-based hydrogen storage alloy.

このようなマグネシウム、ニッケルおよび希土類元素を主要構成元素とする水素吸蔵合金は特許文献1にて提案されるようになった。この特許文献1にて提案された水素吸蔵合金は、一般式(R1-xMgx)Niyzで表され、Rはイットリウムを含む希土類元素、Ca、ZrおよびTiから選ばれる少なくとも1つの元素であり、AはCo,Mn,Fe,V,Cr,Nb,Al,Ga,Zn,Sn,Cu,Si,PおよびBから選ばれる少なくとも1つの元素であり、0<x<1、0≦z≦1.5,2.5≦y+z<4.5の関係を有するものである。 Such a hydrogen storage alloy containing magnesium, nickel and rare earth elements as main constituent elements has been proposed in Patent Document 1. The hydrogen storage alloy proposed in Patent Document 1 is represented by the general formula (R 1−x Mg x ) Ni y A z , where R is at least one selected from rare earth elements including yttrium, Ca, Zr and Ti. A is at least one element selected from Co, Mn, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P and B, and 0 <x <1, It has a relationship of 0 ≦ z ≦ 1.5 and 2.5 ≦ y + z <4.5.

この場合、MgのRに対する置換量であるxを0<x<1の範囲にすることによって、水素を放出し難いという問題点を改善して、大きな放電容量を実現することが可能になる。また、Aの量(z)を0≦z≦1.5の範囲にすることによって、水素吸蔵合金の水素吸蔵・放出速度等の特性を向上することができるとともに、ニッケル−水素蓄電池のサイクル特性を飛躍的に改善することができるようになる。このようなA元素を含む水素吸蔵合金を備えたアルカリ二次電池はサイクル特性が向上され、特に、A元素としてCoを用いた場合には放電容量も向上する。   In this case, by setting x, which is the substitution amount of Mg to R, in the range of 0 <x <1, it is possible to improve the problem that it is difficult to release hydrogen and to realize a large discharge capacity. In addition, by setting the amount of A (z) in the range of 0 ≦ z ≦ 1.5, it is possible to improve the characteristics of the hydrogen storage alloy, such as the hydrogen storage / release rate, and the cycle characteristics of the nickel-hydrogen storage battery. Can be improved dramatically. The alkaline secondary battery provided with such a hydrogen storage alloy containing an A element has improved cycle characteristics. In particular, when Co is used as the A element, the discharge capacity is also improved.

さらに、水素吸蔵合金中のNiおよびAの含有量(y+z)が2.5以上の範囲で水素吸蔵合金の水素吸蔵・放出速度等の水素吸蔵・放出特性が著しく向上され、大きな放電容量を得ることができ、しかもサイクル特性が改善される。しかしながら、(y+z)を4.5以上にすると、合金の水素サイトが減少して水素吸蔵量が低減し、放電容量が低下する。
特開平11−162459号公報
Furthermore, when the content (y + z) of Ni and A in the hydrogen storage alloy is 2.5 or more, the hydrogen storage / release characteristics such as the hydrogen storage / release speed of the hydrogen storage alloy are remarkably improved, and a large discharge capacity is obtained. And the cycle characteristics are improved. However, when (y + z) is 4.5 or more, the hydrogen sites of the alloy are reduced, the hydrogen storage amount is reduced, and the discharge capacity is lowered.
Japanese Patent Laid-Open No. 11-162459

ところで、上述したニッケル−水素蓄電池において、電動工具、アシスト自転車、電気自動車等の用途が拡大し、さらなる大型化、ハイパワー化への需要が高まった。このような背景にあって、放電性のさらなる向上のために、正、負極間の対向面積を増大させる手法が種々提案されるようになった。この場合、同一の空間において、正、負極間の対向面積を増大させるようにするためには、正極および負極の各極板を薄くてしかも長く形成(薄長化)することが提案されるようになった。   By the way, in the above-described nickel-hydrogen storage battery, the use of electric tools, assist bicycles, electric vehicles and the like has expanded, and the demand for further enlargement and higher power has increased. Against this background, various techniques for increasing the facing area between the positive and negative electrodes have been proposed in order to further improve the discharge performance. In this case, in order to increase the facing area between the positive and negative electrodes in the same space, it is proposed to form each electrode plate of the positive electrode and the negative electrode thin and long (thinning). Became.

しかしながら、正極および負極の各極板を薄長化するには限界があるため、セパレータの厚みも低減させて薄型化したり、あるいはその目付量を下げて低密度化を行うことも必要であるということが明らかになった。ところが、上述したLaNi5系水素吸蔵合金を負極に用い、セパレータの厚みを薄くする薄型化や、その目付量を下げて低密度化を推し進めた場合、正極と負極との間で短絡が生じやすくなったり、自己放電特性が生じるようになるという問題があった。   However, since there is a limit to reducing the thickness of each of the positive and negative electrode plates, it is also necessary to reduce the thickness of the separator by reducing the thickness, or to reduce the basis weight to reduce the density. It became clear. However, when the LaNi5-based hydrogen storage alloy described above is used for the negative electrode and the separator is made thinner and the weight per unit area is lowered to reduce the density, a short circuit is likely to occur between the positive electrode and the negative electrode. There is also a problem that self-discharge characteristics are generated.

これは、負極の水素吸蔵合金の一部がアルカリ電解液中に一旦溶解し、溶解した水素吸蔵合金の一部がセパレータに金属として析出するためである。この結果、この析出金属がセパレータを貫通して軽微な短絡を引き起こし、自己放電特性が低下することとなる。
そこで、本発明は上記問題点を解消するためになされたものであって、正、負極間における短絡を防止しながら極板の対向面積を増大させ、セパレータの薄型化および低密度化が可能であり、高出力で自己放電特性に優れたアルカリ蓄電池を提供することを目的とする。
This is because a part of the hydrogen storage alloy of the negative electrode is once dissolved in the alkaline electrolyte, and a part of the dissolved hydrogen storage alloy is deposited as a metal on the separator. As a result, the deposited metal penetrates the separator and causes a slight short circuit, and the self-discharge characteristics are deteriorated.
Therefore, the present invention has been made to solve the above problems, and it is possible to increase the facing area of the electrode plate while preventing a short circuit between the positive and negative electrodes, and to reduce the thickness and density of the separator. It is an object to provide an alkaline storage battery having high output and excellent self-discharge characteristics.

上記目的を達成するため、本発明のアルカリ蓄電池は、一般式がLn1-xMgx(Ni1-yy)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素、0<x≦1、0≦y≦0.5、2.5≦z≦4.5)で表わされる水素吸蔵合金(以下三元系合金という)を負極活物質とする負極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えている。そして、負極の表面積をA(m2)とし、電池容積をS(m3)とし、セパレータの質量をB(g)とした場合、A/S≧1.59×103/mで、かつB/A≦73g/m2、好ましくはA/S≧2.09×103/mで、かつB/A≦58g/m2となるように規定している。 In order to achieve the above object, the alkaline storage battery of the present invention has a general formula of Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y , Yb, Er, Ti, Zr and Hf, T is V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, A hydrogen storage alloy (hereinafter referred to as a ternary alloy) represented by at least one element selected from P and B, 0 <x ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5) A negative electrode as a negative electrode active material, a positive electrode, a separator, and an alkaline electrolyte are provided in an outer can. When the surface area of the negative electrode is A (m 2 ), the battery volume is S (m 3 ), and the mass of the separator is B (g), A / S ≧ 1.59 × 10 3 / m, and It is defined that B / A ≦ 73 g / m 2 , preferably A / S ≧ 2.09 × 10 3 / m and B / A ≦ 58 g / m 2 .

このように、上記の如き一般式で表わされる三元系合金は自己放電特性に優れているので、このような三元系合金からなる水素吸蔵合金を負極活物質として用いると、自己放電特性にも優れたニッケル−水素二次電池が得られる。そして、電池容積S(m3)に対する負極の表面積A(m2)の割合を1.59×103/m以上(A/S≧1.59×103/m)、好ましくは2.09×103/m以上(A/S≧2.09×103/m)とし、負極の表面積に対するセパレータの質量の割合(B/A)が73g/m2以下(B/A≦73g/m2)、好ましくは58g/m2以下(B/A≦58g/m2)になるように規定すると、高出力が得られる極板対向面積が確保できるとともに、適正な極板間距離を保持することが可能となることが明らかになった。このため、A/SおよびB/Aを上述のように規定することにより、HEV用途などの高出力が必要な用途用のニッケル−水素蓄電池を提供することが可能となる。 As described above, the ternary alloy represented by the general formula as described above has excellent self-discharge characteristics. Therefore, when a hydrogen storage alloy made of such a ternary alloy is used as the negative electrode active material, self-discharge characteristics are improved. Excellent nickel-hydrogen secondary battery can be obtained. The ratio of the surface area A (m 2 ) of the negative electrode to the battery volume S (m 3 ) is 1.59 × 10 3 / m or more (A / S ≧ 1.59 × 10 3 / m), preferably 2.09. X10 3 / m or more (A / S ≧ 2.09 × 10 3 / m), and the ratio of the mass of the separator to the negative electrode surface area (B / A) is 73 g / m 2 or less (B / A ≦ 73 g / m) 2 ) Preferably, when it is specified to be 58 g / m 2 or less (B / A ≦ 58 g / m 2 ), it is possible to secure the electrode facing area where high output can be obtained and to maintain an appropriate distance between the plates. It became clear that this would be possible. For this reason, by defining A / S and B / A as described above, it is possible to provide a nickel-hydrogen storage battery for applications that require high output such as HEV applications.

なお、一般式がLn1-xMgx(Ni1-y(CoT)y)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされる水素吸蔵合金を用いる場合は、コバルトのモル比が0.1以下であるのが望ましい。 The general formula is Ln 1-x Mg x (Ni 1-y (CoT) y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y, Yb, Er, Ti, Zr and Hf) T is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Al, Ga, Zn, Sn, In, Cu, Si, P, and B. , 0 <x ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5), the molar ratio of cobalt is 0.1 or less. Is desirable.

さらに、セパレータの厚みは40〜200μmであるのが望ましい。これは、長期にわたり正極と負極との間における絶縁性を確保するためのセパレータ厚みは40μm以上とすることが望ましいからである。また、上述の如き三元系水素吸蔵合金負極を用いると、セパレータへの金属の析出が抑制されて、析出金属によるセパレータの貫通を防止すべきセパレータ厚みが必要がなくなるとともに、セパレータの厚みが薄いほど、正極及び負極の体積を大きくできるようになる。このためには、セパレータの厚みは200μm以下とするのが望ましいということができる。   Furthermore, the thickness of the separator is desirably 40 to 200 μm. This is because the separator thickness for ensuring insulation between the positive electrode and the negative electrode over a long period of time is desirably 40 μm or more. Further, when the ternary hydrogen storage alloy negative electrode as described above is used, the deposition of metal on the separator is suppressed, and it is not necessary to have a separator thickness that should prevent the separator from penetrating the separator, and the separator is thin. As a result, the volumes of the positive electrode and the negative electrode can be increased. For this purpose, it can be said that the thickness of the separator is desirably 200 μm or less.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention.

1.水素吸蔵合金
(1)三元系水素吸蔵合金
ミッシュメタル(Mm:ランタン(La)75質量%、ネオジウム(Nd)15質量%およびプラセオジム(Pr)10質量%を主成分とする)、マグネシウム(Mg)、ニッケル(Ni)、コバルト(Co)、およびアルミニウム(Al)をモル比で0.7:0.3:3.1:0.1:0.2の割合で混合した後、この混合物をアルゴンガス雰囲気の高周波誘導炉で1000℃で10時間の熱処理を行って合金溶湯とした。この合金溶湯を公知の方法で鋳型に流し込み、冷却して、組成式がLn0.7Mg0.3Ni3.1Co0.1Al0.2で表される水素吸蔵合金のインゴットを作製した。この水素吸蔵合金について、Cu−Kα線をX線源とするX線回折パターンから結晶構造を観察したところ、結晶構造はCeNi7型であることが分かった。この水素吸蔵合金を不活性雰囲気中で機械的に粉砕し、篩分けにより400メッシュ〜200メッシュの間に残る合金粉末を選別した。レーザ回折・散乱式粒度分布測定装置により粒度分布を測定したところ、質量積分50%にあたる平均粒径は45μmであった。これを三元系水素吸蔵合金とした。
1. Hydrogen storage alloy (1) Ternary hydrogen storage alloy Misch metal (Mm: 75% by mass of lanthanum (La), 15% by mass of neodymium (Nd) and 10% by mass of praseodymium (Pr)), magnesium (Mg ), Nickel (Ni), cobalt (Co), and aluminum (Al) in a molar ratio of 0.7: 0.3: 3.1: 0.1: 0.2. A heat treatment was performed at 1000 ° C. for 10 hours in a high-frequency induction furnace in an argon gas atmosphere to obtain a molten alloy. This molten alloy was poured into a mold by a known method and cooled to produce a hydrogen storage alloy ingot represented by the composition formula Ln 0.7 Mg 0.3 Ni 3.1 Co 0.1 Al 0.2 . When the crystal structure of this hydrogen storage alloy was observed from an X-ray diffraction pattern using Cu—Kα rays as an X-ray source, it was found that the crystal structure was CeNi7 type. The hydrogen storage alloy was mechanically pulverized in an inert atmosphere, and the alloy powder remaining between 400 mesh and 200 mesh was selected by sieving. When the particle size distribution was measured by a laser diffraction / scattering type particle size distribution measuring apparatus, the average particle size corresponding to 50% of the mass integral was 45 μm. This was designated as a ternary hydrogen storage alloy.

(2)LaNi5系水素吸蔵合金
ミッシュメタル(Mm:ランタン(La)78質量%、セリウム(Ce)20質量%、ネオジウム(Nd)1質量%およびプラセオジム(Pr)1質量%を主成分とする)、ニッケル(Ni)、コバルト(Co)、アルミニウム(Al)およびマンガン(Mn)をモル比で1.0:4.0:0.8:0.3:0.3の割合で混合した後、この混合物をアルゴンガス雰囲気の高周波誘導炉で1000℃で10時間の熱処理を行って合金溶湯とした。この合金溶湯を公知の方法で鋳型に流し込み、冷却して、組成式がLa0.78Ce0.20Nd0.01Pr0.01Ni4.0Co0.8Al0.3Mn0.3で表される水素吸蔵合金のインゴットを作製した。この水素吸蔵合金を上述の三元系水素吸蔵合金と同様にして粉砕し、質量積分50%にあたる平均粒径が45μmの粉末とした。これをLaNi5系水素吸蔵合金とした。
(2) LaNi5-based hydrogen storage alloy Misch metal (Mm: lanthanum (La) 78% by mass, cerium (Ce) 20% by mass, neodymium (Nd) 1% by mass and praseodymium (Pr) 1% by mass) , Nickel (Ni), cobalt (Co), aluminum (Al) and manganese (Mn) in a molar ratio of 1.0: 4.0: 0.8: 0.3: 0.3, This mixture was heat-treated at 1000 ° C. for 10 hours in a high frequency induction furnace under an argon gas atmosphere to obtain a molten alloy. This molten alloy was poured into a mold by a known method and cooled to produce a hydrogen storage alloy ingot represented by the composition formula La 0.78 Ce 0.20 Nd 0.01 Pr 0.01 Ni 4.0 Co 0.8 Al 0.3 Mn 0.3 . This hydrogen storage alloy was pulverized in the same manner as the above-described ternary hydrogen storage alloy to obtain a powder having an average particle diameter corresponding to 50% by mass integral of 45 μm. This was made into a LaNi5-based hydrogen storage alloy.

(3)水素吸蔵負極
得られた三元系水素吸蔵合金およびLaNi5系水素吸蔵合金をそれぞれ用いて、これらの各水素吸蔵合金粉末100質量部に対して、結着剤としての5質量%のPEO(ポリエチレンオキサイド)の水溶液20質量部を混合して水素吸蔵合金ペーストをそれぞれ作製した。ついで、これらの各水素吸蔵合金ペーストをパンチングメタルからなる芯体の両面に塗布し、室温で乾燥させた後、所定の厚みに圧延し、所定の寸法に切断して水素吸蔵合金負極11をそれぞれ作製した。
(3) Hydrogen storage negative electrode Using the obtained ternary system hydrogen storage alloy and LaNi5 system hydrogen storage alloy, 5 mass% PEO as a binder with respect to 100 mass parts of each hydrogen storage alloy powder. A hydrogen storage alloy paste was prepared by mixing 20 parts by mass of an aqueous solution of (polyethylene oxide). Next, each of these hydrogen storage alloy pastes was applied to both surfaces of a core made of punching metal, dried at room temperature, rolled to a predetermined thickness, cut into a predetermined dimension, and the hydrogen storage alloy negative electrode 11 was formed. Produced.

ここで、三元系水素吸蔵合金を用い、表面積が0.0665m2となるように作製したものを負極a1とし、表面積が0.0760m2となるように作製したものを負極a2とし、表面積が0.0998m2となるように作製したものを負極a3とし、表面積が0.1235m2となるように作製したものを負極a4とした。また、LaNi5系水素吸蔵合金を用い、表面積が0.0665m2となるように作製したものを負極x1とし、表面積が0.0760m2となるように作製したものを負極x2とし、表面積が0.0998m2となるように作製したものを負極x3とし、表面積が0.1235m2となるように作製したものを負極x4とした。 Here, using a ternary hydrogen storage alloy, the surface area is a negative electrode a1 those produced as a 0.0665M 2, those surface areas were prepared so that 0.0760M 2 and a negative electrode a2, the surface area a negative electrode a3 those produced as a 0.0998m 2, and what surface area prepared as a 0.1235M 2 and negative electrode a4. Further, using the LaNi5 hydrogen storage alloy, the surface area is a negative electrode x1 those produced as a 0.0665M 2, those surface areas were prepared so that 0.0760M 2 and a negative electrode x2, surface area 0. a negative electrode x3 those produced as a 0998m 2, and what surface area prepared as a 0.1235M 2 and negative electrode x4.

2.ニッケル正極
パンチングメタルからなる極板芯体の表面にニッケル焼結多孔体を形成した後、この多孔性ニッケル焼結基板を硝酸ニッケルと硝酸コバルトと硝酸亜鉛の混合水溶液(含浸液)に浸漬した。これにより、多孔性ニッケル焼結基板の細孔内に硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛を保持させた。この後、この多孔性ニッケル焼結基板を25wt%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛をそれぞれ水酸化ニッケル、水酸化コバルトおよび水酸化亜鉛に転換させた。
2. Nickel positive electrode After a nickel sintered porous body was formed on the surface of an electrode plate core made of a punching metal, this porous nickel sintered substrate was immersed in a mixed aqueous solution (impregnating liquid) of nickel nitrate, cobalt nitrate and zinc nitrate. Thereby, nickel nitrate, cobalt nitrate, and zinc nitrate were held in the pores of the porous nickel sintered substrate. Thereafter, this porous nickel sintered substrate is immersed in a 25 wt% sodium hydroxide (NaOH) aqueous solution to convert nickel nitrate, cobalt nitrate and zinc nitrate into nickel hydroxide, cobalt hydroxide and zinc hydroxide, respectively. I let you.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極板12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode plate 12 was produced.

3.ニッケル−水素蓄電池
ついで、ポリプロピレン製不織布からなるセパレータ13を用意した。この後、上述のようにして作製した水素吸蔵合金負極11とニッケル正極12とを用い、これらの間にセパレータ13を介在させて、これらを渦巻状に巻回して渦巻状電極群を作製した。得られた渦巻状電極群の下部に負極集電体11aを抵抗溶接するとともに、渦巻状電極群の上部に正極集電体12aを抵抗溶接して渦巻状電極体をそれぞれ作製した。ついで、鉄にニッケルメッキを施した有底円筒形の金属外装缶15内に渦巻状電極体を挿入した後、負極集電体11aと金属外装缶15の底部をスポット溶接した。
3. Nickel-hydrogen storage battery Next, a separator 13 made of a polypropylene nonwoven fabric was prepared. Thereafter, the hydrogen storage alloy negative electrode 11 and the nickel positive electrode 12 produced as described above were used, the separator 13 was interposed therebetween, and these were wound in a spiral shape to produce a spiral electrode group. The negative electrode current collector 11a was resistance welded to the lower part of the obtained spiral electrode group, and the positive electrode current collector 12a was resistance welded to the upper part of the spiral electrode group to produce a spiral electrode body. Next, after inserting a spiral electrode body into a bottomed cylindrical metal outer can 15 in which iron was nickel-plated, the negative electrode current collector 11a and the bottom of the metal outer can 15 were spot welded.

一方、正極キャップ17bと蓋体17aとからなる封口体17を用意し、正極集電体12aに設けられたリード部(図示せず)を蓋体17aの底部に接触させて、蓋体17aの底部とリード部とを溶接した。この後、渦巻状電極体の上端面に防振リング(図示せず)を挿入し、外装缶15の上部外周面に溝入れ加工を施して、防振リングの上端部に環状溝部15aを形成した。この後、金属製外装缶15内に電解液(水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)を含有した7Nの水酸化カリウム(KOH)水溶液でリチウム濃度が0.05mol/lのもの)を注液し、封口体17に装着された封口ガスケット16を外装缶15の環状溝部15aに載置するとともに、外装缶15の先端部を封口体側にカシメて封口して、公称容量が6000mAhのニッケル−水素蓄電池10(A1〜A4,X1〜X4)をそれぞれ組み立てた。   On the other hand, a sealing body 17 including a positive electrode cap 17b and a lid body 17a is prepared, and a lead portion (not shown) provided on the positive electrode current collector 12a is brought into contact with the bottom of the lid body 17a to The bottom and the lead were welded. Thereafter, an anti-vibration ring (not shown) is inserted into the upper end surface of the spiral electrode body, and the upper outer peripheral surface of the outer can 15 is grooved to form an annular groove portion 15a at the upper end portion of the anti-vibration ring. did. Thereafter, an electrolytic solution (a 7N potassium hydroxide (KOH) aqueous solution containing lithium hydroxide (LiOH) and sodium hydroxide (NaOH) in a metal outer can 15 having a lithium concentration of 0.05 mol / l) The sealing gasket 16 attached to the sealing body 17 is placed in the annular groove 15a of the outer can 15, and the front end of the outer can 15 is crimped and sealed to the sealing body side to have a nominal capacity of 6000 mAh. Nickel-hydrogen storage batteries 10 (A1 to A4, X1 to X4) were assembled.

ここで、負極a1を用いたものを電池A1とし、負極a2を用いたものを電池A2とし、負極a3を用いたものを電池A3とし、負極a4を用いたものを電池A4とした。また、負極x1を用いたものを電池X1とし、負極x2を用いたものを電池X2とし、負極x3を用いたものを電池X3とし、負極x4を用いたものを電池X4とした。この場合、各電池A1〜A4,X1〜X4は、直径が32.3mmで、高さが58.2mmのDサイズ(電池容積(S)が4.77×10-53のもの)の電池とした。 Here, a battery using the negative electrode a1 is referred to as a battery A1, a battery using the negative electrode a2 is referred to as a battery A2, a battery using the negative electrode a3 is referred to as a battery A3, and a battery using the negative electrode a4 is referred to as a battery A4. A battery using the negative electrode x1 is referred to as a battery X1, a battery using the negative electrode x2 is referred to as a battery X2, a battery using the negative electrode x3 is referred to as a battery X3, and a battery using the negative electrode x4 is referred to as a battery X4. In this case, each of the batteries A1 to A4 and X1 to X4 has a diameter of 32.3 mm and a height D of 58.2 mm (with a battery volume (S) of 4.77 × 10 −5 m 3 ). A battery was obtained.

この後、電池を解体し各電池A1〜A4,X1〜X4のセパレータ13の質量B(g)を調べると、下記の表1に示すような結果となった。そして、負極11の表面積A(m2)と、電池容積(S)に対する負極の表面積の割合(A/S)と、負極の表面積に対するセパレータの質量の割合(B/A)とを求めると、下記の表1に示すような結果となった。

Figure 0004573609
Then, when the battery was disassembled and the mass B (g) of the separator 13 of each of the batteries A1 to A4 and X1 to X4 was examined, the results shown in Table 1 below were obtained. And when calculating | requiring the surface area A (m < 2 >) of the negative electrode 11, the ratio (A / S) of the negative electrode surface area with respect to a battery volume (S), and the ratio (B / A) of the mass of the separator with respect to the surface area of a negative electrode, The results shown in Table 1 below were obtained.
Figure 0004573609

4.試験
(1)高率放電特性の測定
ついで、これらの各電池A1〜A4およびX1〜X4において、10サイクル目容量に対して1Itの充電電流で電池容量の50%(SOC(State Of Charge :充電深度)が50%で、30分の充電)まで充電した。この後、40A放電→40A充電→80A放電→80A充電→120A放電→120A充電→160A放電→160A充電の順で充放電を繰り返した。
4). Test (1) Measurement of High Rate Discharge Characteristics Next, in each of these batteries A1 to A4 and X1 to X4, 50% of the battery capacity (SOC (State Of Charge) is charged with a charge current of 1 It with respect to the 10th cycle capacity. The battery was charged until (depth) was 50% and charged for 30 minutes). Thereafter, charging / discharging was repeated in the order of 40A discharge → 40A charge → 80A discharge → 80A charge → 120A discharge → 120A charge → 160A discharge → 160A charge.

この場合、各ステップの間に10分間の休止期間を設け、各放電ステップ実施後の10分間の休止後において、10秒間ずつ放電を行い、この10秒間経過時点における電池電圧を放電電流に対してプロットし、最小二乗法にて求めた直線が0.9Vに達するときの電流値を出力とし、電池X1の平均出力を100としたときの各電池A1〜A4およびX2〜X4の比率を高率放電特性として求めると、下記の表2に示すような結果となった。

Figure 0004573609
In this case, a 10-minute rest period is provided between each step, and after 10-minute rest after each discharge step, discharge is performed for 10 seconds, and the battery voltage at the time when 10 seconds have passed is determined with respect to the discharge current. The ratio of each battery A1 to A4 and X2 to X4 when the straight line obtained by plotting the least square method reaches 0.9V and the average output of the battery X1 as 100 is high. When calculated as discharge characteristics, the results shown in Table 2 below were obtained.
Figure 0004573609

上記表2の結果から明らかなように、LaNi5系水素吸蔵合金であっても、三元系水素吸蔵合金であっても、ほぼ同等の高率放電特性が得られることが分かる。そして、電池容積S(m3)に対する負極の表面積A(m2)の割合を1.59×103/m以上(A/S≧1.59×103/m)で、負極の表面積に対するセパレータの質量の割合(B/A)が73g/m2以下(B/A≦73g/m2)であると、高率放電特性は155以上と向上していることが分かる。 As is apparent from the results in Table 2 above, it can be seen that almost the same high rate discharge characteristics can be obtained with either a LaNi5 hydrogen storage alloy or a ternary hydrogen storage alloy. The ratio of the surface area A (m 2 ) of the negative electrode to the battery volume S (m 3 ) is 1.59 × 10 3 / m or more (A / S ≧ 1.59 × 10 3 / m), and the surface area of the negative electrode It can be seen that the high rate discharge characteristic is improved to 155 or more when the mass ratio (B / A) of the separator is 73 g / m 2 or less (B / A ≦ 73 g / m 2 ).

さらに、電池容積S(m3)に対する負極の表面積A(m2)の割合を2.09×103/m以上(A/S≧2.09×103/m)で、負極の表面積に対するセパレータの質量の割合(B/A)が58g/m2以下(B/A≦58g/m2)であると、高率放電特性が174以上でさらに向上していることが分かる。
即ち、三元系水素吸蔵合金であっても、上述のような電池容積S(m3)に対する負極の表面積A(m2)の割合(A/S)、および上述のような負極の表面積A(m2)に対するセパレータの質量B(g)の割合(B/A)とすることで、LaNi5系水素吸蔵合金と同様、HEV用途などに必要な高出力なニッケル−水素蓄電池を提供することが可能となることが分かる。
Further, the ratio of the surface area A (m 2 ) of the negative electrode to the battery volume S (m 3 ) is 2.09 × 10 3 / m or more (A / S ≧ 2.09 × 10 3 / m) and the surface area of the negative electrode When the mass ratio (B / A) of the separator is 58 g / m 2 or less (B / A ≦ 58 g / m 2 ), it can be seen that the high rate discharge characteristic is further improved at 174 or more.
That is, even with a ternary hydrogen storage alloy, the ratio (A / S) of the negative electrode surface area A (m 2 ) to the battery volume S (m 3 ) as described above, and the negative electrode surface area A as described above. By setting the ratio (B / A) of the mass B (g) of the separator to (m 2 ), it is possible to provide a high-power nickel-hydrogen storage battery necessary for HEV applications and the like, similarly to the LaNi5-based hydrogen storage alloy. It turns out that it is possible.

(2)自己放電特性の測定
また、これらの各電池A1〜A4およびX1〜X4において、10サイクル目容量に対して1.0Itの充電電流で電池容量の80%(SOCが80%で、48分の充電)まで充電した。この後、60分間の休止期間の後、1.0Itの放電電流で、電池電圧が1.0Vに達するまで放電した。放電時間からこの時の電池容量を初期容量C1(Ah)として求めた。
(2) Measurement of self-discharge characteristics In each of these batteries A1 to A4 and X1 to X4, 80% of the battery capacity with a charge current of 1.0 It with respect to the capacity of the 10th cycle (SOC is 80%, 48% Charge). Thereafter, after a rest period of 60 minutes, the battery was discharged at a discharge current of 1.0 It until the battery voltage reached 1.0V. The battery capacity at this time was determined as the initial capacity C1 (Ah) from the discharge time.

ついで、このように通電した各電池A1〜A4およびX1〜X4をSOCが80%になるように調整した後、60℃の高温の温度環境に1月間放置した。このような高温放置を行った後、1.0Itの放電電流で電池電圧が1.0Vに達するまで放電した。そして、この時の電池容量を、高温放置後の電池容量C2(Ah)として求めた。ついで、求めたC1およびC2よりC2/C1を自己放電特性として求め、電池X1のC2/C1を100としたときの各電池A1〜A4およびX2〜X4の比率を自己放電特性として求めると下記の表3に示すような結果となった。

Figure 0004573609
Next, the batteries A1 to A4 and X1 to X4 that were energized in this way were adjusted so that the SOC was 80%, and then left in a high temperature environment of 60 ° C. for one month. After being left at such a high temperature, the battery was discharged at a discharge current of 1.0 It until the battery voltage reached 1.0V. And the battery capacity at this time was calculated | required as battery capacity C2 (Ah) after being left at high temperature. Then, C2 / C1 is obtained as the self-discharge characteristic from the obtained C1 and C2, and the ratio of each of the batteries A1 to A4 and X2 to X4 when C2 / C1 of the battery X1 is 100 is obtained as the following self-discharge characteristic. The results shown in Table 3 were obtained.
Figure 0004573609

上記表3の結果から明らかなように、A/SおよびB/Aを等しくした場合、LaNi5系水素吸蔵合金を用いるよりは、三元系水素吸蔵合金を用いた方が自己放電特性が向上していることが分かる。これは、LaNi5系水素吸蔵合金においては、水素吸蔵合金中のコバルトがアルカリ電解液中に一旦溶解し、溶解したコバルトの一部がセパレータに金属として析出する。この結果、この析出金属がセパレータを貫通して軽微な短絡を引き起こし、自己放電特性が低下することとなる。   As is clear from the results in Table 3 above, when A / S and B / A are made equal, self-discharge characteristics are improved by using a ternary hydrogen storage alloy rather than using a LaNi5 hydrogen storage alloy. I understand that This is because, in a LaNi5-based hydrogen storage alloy, cobalt in the hydrogen storage alloy is once dissolved in the alkaline electrolyte, and a part of the dissolved cobalt is deposited as a metal on the separator. As a result, the deposited metal penetrates the separator and causes a slight short circuit, and the self-discharge characteristics are deteriorated.

一方、三元系水素吸蔵合金においては、水素吸蔵合金中のコバルトのモル比がLaNi5系水素吸蔵合金に比べ非常に少なくなっており、アルカリ電解液中へのコバルトの溶解量、セパレータへの金属としての析出量が減少する。この結果、三元系水素吸蔵合金を用いた方が自己放電特性が向上する。このことから、三元系水素吸蔵合金を負極に用いる必要があるということができる。   On the other hand, in the ternary hydrogen storage alloy, the molar ratio of cobalt in the hydrogen storage alloy is much smaller than in the LaNi5 hydrogen storage alloy, the amount of cobalt dissolved in the alkaline electrolyte, and the metal in the separator As a result, the amount of precipitation decreases. As a result, the self-discharge characteristics are improved by using the ternary hydrogen storage alloy. From this, it can be said that it is necessary to use a ternary hydrogen storage alloy for the negative electrode.

(3)高温パルスサイクル寿命の測定
ついで、これらの各電池A1〜A4およびX1〜X4において、10サイクル目容量に対して、1.0Itの充電電流で電池容量の50%(SOCが50%で、30分の充電)まで充電した。この後、40A放電→40A充電→80A放電→80A充電→120A放電→120A充電→160A放電→160A充電の順で、それぞれ10分間の休止期間をを設け、休止後において10秒間ずつ放電を行い、この10秒間経過時点における電池電圧を電流値に対してプロットし、最小二乗法により求めた直線が0.9Vに達するときの電流値を出力とし、初期の出力I1として求めた。
(3) Measurement of high-temperature pulse cycle life Next, in each of these batteries A1 to A4 and X1 to X4, 50% of the battery capacity (SOC is 50% at a charge current of 1.0 It with respect to the capacity of the 10th cycle. 30 minutes). Then, 40A discharge → 40A charge → 80A discharge → 80A charge → 120A discharge → 120A charge → 160A discharge → 160A charge in each order is provided with a 10-minute rest period, and after the rest, 10 seconds are discharged, The battery voltage at the time when 10 seconds had elapsed was plotted against the current value, and the current value when the straight line obtained by the least square method reached 0.9 V was used as the output, and the initial output I1 was obtained.

ついで、上述のように通電した各電池A1〜A4およびX1〜X4を、45℃の温度環境で、SOCが20%〜80%の範囲内に維持されるように制御をおこないながら、50Aの間欠充放電を20000サイクル繰り返した。このような間欠充放電試験を行った後、40A放電→40A充電→80A放電→80A充電→120A放電→120A充電→160A放電→160A充電の順で、それぞれ10分間の休止を挟みながら10秒間通電し、この10秒間経過時点における電池電圧を、電流値に対してプロットし、最小二乗法により求めた直線が0.9Vに達するときの電流値を出力とし、サイクル後の出力I2として求めた。   Next, the batteries A1 to A4 and X1 to X4 that are energized as described above are controlled so that the SOC is maintained within a range of 20% to 80% in a temperature environment of 45 ° C. Charging / discharging was repeated 20000 cycles. After such an intermittent charge / discharge test, 40A discharge → 40A charge → 80A discharge → 80A charge → 120A discharge → 120A charge → 160A discharge → 160A charge The battery voltage at the time when 10 seconds had elapsed was plotted against the current value, and the current value when the straight line obtained by the least square method reached 0.9 V was used as the output, and the output I2 after the cycle was obtained.

ついで、上述のようにして求めたI1およびI2より、高温パルスサイクル寿命特性の指標としてI2/I1を求め、電池X1のI2/I1を100としたときの各電池A1〜A4およびX2〜X4の比率を高温パルスサイクルとして求めると下記の表4に示すような結果が得られた。

Figure 0004573609
Next, I2 / I1 is obtained as an index of the high-temperature pulse cycle life characteristics from I1 and I2 obtained as described above, and each of the batteries A1 to A4 and X2 to X4 when I2 / I1 of the battery X1 is set to 100 is obtained. When the ratio was determined as a high temperature pulse cycle, the results shown in Table 4 below were obtained.
Figure 0004573609

上記表4の結果から明らかなように、LaNi5系水素吸蔵合金であっても、三元系水素吸蔵合金であっても、ほぼ同等の高温パルスサイクル特性が得られることが分かる。通常、水素吸蔵合金の耐食性を向上させるために水素吸蔵合金中のコバルトのモル比を増大させる手法が用いられているが、三元系合金では水素吸蔵合金中のコバルトのモル比がLaNi5系水素吸蔵合金に比べ非常に少なくなっているにも関わらず、ほぼ同等の高温パルスサイクル特性が得られている。   As is apparent from the results in Table 4 above, it can be seen that almost the same high-temperature pulse cycle characteristics can be obtained with either a LaNi5 hydrogen storage alloy or a ternary hydrogen storage alloy. Usually, in order to improve the corrosion resistance of the hydrogen storage alloy, a technique of increasing the molar ratio of cobalt in the hydrogen storage alloy is used, but in the ternary alloy, the molar ratio of cobalt in the hydrogen storage alloy is LaNi5 hydrogen. Despite the fact that it is much less than the storage alloy, almost the same high-temperature pulse cycle characteristics are obtained.

そして、電池容積S(m3)に対する負極の表面積A(m2)の割合を1.59×103/m以上(A/S≧1.59×103/m)で、負極の表面積に対するセパレータの質量の割合(B/A)が73g/m2以下(B/A≦73g/m2)であると、高温パルスサイクルは103以上と向上していることが分かる。さらに、電池容積S(m3)に対する負極の表面積A(m2)の割合を2.09×103/m以上(A/S≧2.09×103/m)で、負極の表面積に対するセパレータの質量の割合(B/A)が58g/m2以下(B/A≦58g/m2)であると、高温パルスサイクル特性が109以上でさらに向上していることが分かる。 The ratio of the surface area A (m 2 ) of the negative electrode to the battery volume S (m 3 ) is 1.59 × 10 3 / m or more (A / S ≧ 1.59 × 10 3 / m), and the surface area of the negative electrode When the mass ratio (B / A) of the separator is 73 g / m 2 or less (B / A ≦ 73 g / m 2 ), it can be seen that the high temperature pulse cycle is improved to 103 or more. Further, the ratio of the surface area A (m 2 ) of the negative electrode to the battery volume S (m 3 ) is 2.09 × 10 3 / m or more (A / S ≧ 2.09 × 10 3 / m) and the surface area of the negative electrode It can be seen that when the mass ratio (B / A) of the separator is 58 g / m 2 or less (B / A ≦ 58 g / m 2 ), the high-temperature pulse cycle characteristics are 109 or more, which is further improved.

即ち、上述のような電池容積S(m3)に対する負極の表面積A(m2)の割合(A/S)、および上述のような負極の表面積に対するセパレータの質量の割合(B/A)とすることで電池の放電性が向上し、充放電時の発熱が抑制されることにより、高温パルス特性が向上したと言える。 That is, the ratio (A / S) of the negative electrode surface area A (m 2 ) to the battery volume S (m 3 ) as described above, and the ratio (B / A) of the separator mass to the negative electrode surface area as described above. Thus, it can be said that the high temperature pulse characteristics are improved by improving the discharge performance of the battery and suppressing the heat generation during charging and discharging.

なお、上述した実施形態においては、三元系水素吸蔵合金として、組成式がLn0.7Mg0.3Ni3.1Co0.1Al0.2で表される水素吸蔵合金を用いる例について説明したが、三元系水素吸蔵合金としてはこれに限ることなく、一般式がLn1-xMgx(Ni1-yy)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされる三元系水素吸蔵合金を用いてもほぼ同等の効果が得られる。 In the embodiment described above, an example in which a hydrogen storage alloy whose composition formula is represented by Ln 0.7 Mg 0.3 Ni 3.1 Co 0.1 Al 0.2 is used as the ternary hydrogen storage alloy has been described. The alloy is not limited to this, but the general formula is Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y, Yb, Er, At least one element selected from Ti, Zr and Hf, T is from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B Even if a ternary hydrogen storage alloy represented by 0 <x ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5 is used with at least one selected element is substantially equivalent An effect is obtained.

また、上述した実施形態においては、三元系水素吸蔵合金にモル比が0.1となるようにコバルトを添加する例について説明したが、三元系水素吸蔵合金に添加するコバルトのモル比が0.1以下になるように添加するのが望ましい。コバルトを添加することにより、耐食性が向上し、サイクル寿命に有利なニッケル−水素蓄電池を提供することが可能となる。このため、用途に応じて適宜コバルトを添加することが望ましいが、コバルトのモル比が0.1を超えて添加した場合、コバルトがアルカリ電解液中に一旦溶解し、溶解したコバルトの一部がセパレータに金属として析出する。そして、この析出金属がセパレータを貫通して軽微な短絡を引き起こし、自己放電特性が低下する原因と成り得るため、コバルトの添加量は、モル比が0.1以下になるように添加するのが望ましい。   In the above-described embodiment, the example in which cobalt is added to the ternary hydrogen storage alloy so that the molar ratio is 0.1 has been described. However, the molar ratio of cobalt added to the ternary hydrogen storage alloy is It is desirable to add so that it may become 0.1 or less. By adding cobalt, it becomes possible to provide a nickel-hydrogen storage battery with improved corrosion resistance and advantageous cycle life. For this reason, it is desirable to add cobalt as appropriate according to the application. However, when the molar ratio of cobalt exceeds 0.1, the cobalt is once dissolved in the alkaline electrolyte, and a part of the dissolved cobalt is dissolved. It deposits as a metal on the separator. And since this deposited metal penetrates the separator to cause a slight short circuit and may cause a decrease in self-discharge characteristics, the addition amount of cobalt should be added so that the molar ratio is 0.1 or less. desirable.

さらに、セパレータの厚みは40〜200μmの範囲であれば、どのような厚みのセパレータを用いてもよい。ここで、長期にわたり正極と負極との間における絶縁性を確保するためのセパレータ厚みは40μm以上とすることが望ましい。また、三元系水素吸蔵合金負極を用いたことでセパレータへの金属の析出が抑制されるようになる。このため、析出金属によるセパレータの貫通を防止すべくセパレータの厚みを厚くする必要がなくなる。一方、セパレータの厚みが薄いほど、正極及び負極の体積を大きくすることができるため、セパレータの厚みは200μm以下とすることが望ましい。   Furthermore, as long as the thickness of the separator is in the range of 40 to 200 μm, a separator having any thickness may be used. Here, the separator thickness for ensuring the insulation between the positive electrode and the negative electrode over a long period of time is desirably 40 μm or more. Further, the use of the ternary hydrogen storage alloy negative electrode suppresses metal deposition on the separator. For this reason, it is not necessary to increase the thickness of the separator in order to prevent the separator from penetrating the separator. On the other hand, since the volume of the positive electrode and the negative electrode can be increased as the thickness of the separator is thinner, the thickness of the separator is desirably 200 μm or less.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically.

符号の説明Explanation of symbols

10…ニッケル−水素蓄電池、11…水素吸蔵合金負極、11a…負極集電体、12…ニッケル正極、12a…正極集電体、13…セパレータ、15…金属製外装缶、15a…環状溝部、16…封口ガスケット、17…封口体、17a…正極キャップ、17b…蓋体
DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Hydrogen storage alloy negative electrode, 11a ... Negative electrode collector, 12 ... Nickel positive electrode, 12a ... Positive electrode collector, 13 ... Separator, 15 ... Metal outer can, 15a ... Annular groove part, 16 ... sealing gasket, 17 ... sealing body, 17a ... positive electrode cap, 17b ... lid

Claims (4)

一般式がLn1-xMgx(Ni1-yy)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされる水素吸蔵合金を負極活物質とする負極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池であって、
前記負極の表面積をA(m2)とし、前記セパレータの質量をB(g)とし、電池容積をS(m3)とした場合、
前記電池容積に対する前記負極の表面積の割合(A/S)が1.59×103/m以上(A/S≧1.59×103/m)で、かつ前記負極の表面積に対する前記セパレータの質量の割合(B/A)が73g/m2以下(B/A≦73g/m2)となるように規定したことを特徴とするアルカリ蓄電池。
The general formula is Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is at least selected from lanthanoid elements, Ca, Sr, Sc, Y, Yb, Er, Ti, Zr and Hf) One element, T is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B, and 0 <X ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5), a negative electrode having a negative electrode active material as a negative electrode active material, a positive electrode, a separator, an alkaline electrolyte, Is an alkaline storage battery equipped in an outer can,
When the surface area of the negative electrode is A (m 2 ), the mass of the separator is B (g), and the battery volume is S (m 3 ),
The ratio of the negative electrode surface area to the battery volume (A / S) is 1.59 × 10 3 / m or more (A / S ≧ 1.59 × 10 3 / m), and the separator has a surface area relative to the negative electrode surface area. An alkaline storage battery, characterized in that the mass ratio (B / A) is 73 g / m 2 or less (B / A ≦ 73 g / m 2 ).
一般式がLn1-xMgx(Ni1-yy)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされる水素吸蔵合金を負極活物質とする負極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池であって、
前記負極の表面積をA(m2)とし、前記セパレータの質量をB(g)とし、電池容積をS(m3)とした場合、
前記電池容積に対する前記負極の表面積の割合(A/S)が2.09×103/m以上(A/S≧2.09×103/m)で、かつ前記負極の表面積に対する前記セパレータの質量の割合(B/A)が58g/m2以下(B/A≦58g/m2)となるように規定したことを特徴とするアルカリ蓄電池。
The general formula is Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is at least selected from lanthanoid elements, Ca, Sr, Sc, Y, Yb, Er, Ti, Zr and Hf) One element, T is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B, and 0 <X ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5), a negative electrode having a negative electrode active material as a negative electrode active material, a positive electrode, a separator, an alkaline electrolyte, Is an alkaline storage battery equipped in an outer can,
When the surface area of the negative electrode is A (m 2 ), the mass of the separator is B (g), and the battery volume is S (m 3 ),
The ratio of the surface area of the negative electrode to the battery volume (A / S) is 2.09 × 10 3 / m or more (A / S ≧ 2.09 × 10 3 / m), and the separator has a surface area of the negative electrode. An alkaline storage battery, characterized in that the mass ratio (B / A) is 58 g / m 2 or less (B / A ≦ 58 g / m 2 ).
前記水素吸蔵合金は一般式がLn1-xMgx(Ni1-y(CoT)y)z(ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Yb、Er、Ti、ZrおよびHfから選ばれる少なくとも一つの元素で、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも一つの元素で、0<x≦1、0≦y≦0.5、2.5≦z≦4.5である)で表わされ、
かつコバルトのモル比が0.1以下であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。
The hydrogen storage alloy has a general formula of Ln 1-x Mg x (Ni 1-y (CoT) y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y, Yb, Er, Ti, At least one element selected from Zr and Hf, T is at least one selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Al, Ga, Zn, Sn, In, Cu, Si, P, and B Two elements, 0 <x ≦ 1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5)
And the molar ratio of cobalt is 0.1 or less, The alkaline storage battery of Claim 1 or Claim 2 characterized by the above-mentioned.
前記セパレータの厚みは40〜200μmであることを特徴とする請求項1から請求項3のいずれかに記載のアルカリ蓄電池。
The alkaline storage battery according to any one of claims 1 to 3, wherein the separator has a thickness of 40 to 200 µm.
JP2004284430A 2004-09-29 2004-09-29 Alkaline storage battery Active JP4573609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284430A JP4573609B2 (en) 2004-09-29 2004-09-29 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284430A JP4573609B2 (en) 2004-09-29 2004-09-29 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2006100111A JP2006100111A (en) 2006-04-13
JP4573609B2 true JP4573609B2 (en) 2010-11-04

Family

ID=36239702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284430A Active JP4573609B2 (en) 2004-09-29 2004-09-29 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4573609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881693B2 (en) 2006-10-17 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111283A (en) * 1997-10-03 1999-04-23 Toshiba Battery Co Ltd Sealed nickel hydrogen secondary battery
JPH11135114A (en) * 1996-12-26 1999-05-21 Matsushita Electric Ind Co Ltd Nickel-hydrogen secondary battery and manufacture of electrode thereof
JPH11162505A (en) * 1997-11-28 1999-06-18 Toshiba Corp Nickel-hydrogen battery
JP2001307722A (en) * 2000-04-24 2001-11-02 Toshiba Battery Co Ltd Alkaline secondary battery
JP2003045477A (en) * 2001-08-01 2003-02-14 Toshiba Corp Alkaline secondary battery, hybrid car and electric vehicle
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135114A (en) * 1996-12-26 1999-05-21 Matsushita Electric Ind Co Ltd Nickel-hydrogen secondary battery and manufacture of electrode thereof
JPH11111283A (en) * 1997-10-03 1999-04-23 Toshiba Battery Co Ltd Sealed nickel hydrogen secondary battery
JPH11162505A (en) * 1997-11-28 1999-06-18 Toshiba Corp Nickel-hydrogen battery
JP2001307722A (en) * 2000-04-24 2001-11-02 Toshiba Battery Co Ltd Alkaline secondary battery
JP2003045477A (en) * 2001-08-01 2003-02-14 Toshiba Corp Alkaline secondary battery, hybrid car and electric vehicle
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery

Also Published As

Publication number Publication date
JP2006100111A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP5207750B2 (en) Alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5252920B2 (en) Alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP4573609B2 (en) Alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JPH11111330A (en) Nickel-hydrogen storage battery
JP2014049210A (en) Alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP4420641B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP5334498B2 (en) Alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2013178882A (en) Alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R151 Written notification of patent or utility model registration

Ref document number: 4573609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3