JP2000021447A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2000021447A
JP2000021447A JP20447998A JP20447998A JP2000021447A JP 2000021447 A JP2000021447 A JP 2000021447A JP 20447998 A JP20447998 A JP 20447998A JP 20447998 A JP20447998 A JP 20447998A JP 2000021447 A JP2000021447 A JP 2000021447A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
sulfone
ester compound
chain ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20447998A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP20447998A priority Critical patent/JP2000021447A/en
Publication of JP2000021447A publication Critical patent/JP2000021447A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To stabilize an electrolyte, to prevent the deterioration of battery performance, and to improve a preserving characteristic, a cycle characteristic and high efficiency discharge performance by including specific asymmetric acyclic sulfone and specific chain ester compound in the specific mixing ratio in a nonaqueous electrolyte. SOLUTION: This nonaqueous electrolyte battery is obtained by using a negative electrode composed of a carbon material, a positive electrode using LiCoO2 as a positive electrode active material and a nonaqueous electrolyte containing electrolyte salt by mixing, for example, LiPF6 and LiN(CF3SO2) in a mole ratio of 1:9 to 9:1). At this time, this electrolyte contains asymmetric acrylic sulfone, for example, ethyl methyl sulfone expressed by formulae I, II (in the formula, R1≠R2, and R1 to R4 respresent and alkyl group having a carbon number of 1 to 4) and a chain ester compound, for example, ethyl acetate in the mixing ratio of 10 to 90 volume %. Decomposition of the electrolyte can be prevented, and ion conductivity can be improved by mixedly using this electrochemically stable acrylic sulfone and the chain ester compound of low viscosity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくは電気自動車用電池として、高エネルギー密度で
かつ高い信頼性を有するリチウム電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery having a high energy density and a high reliability as a power supply for driving electronic equipment or a battery for an electric vehicle.

【0002】[0002]

【従来の技術】リチウムを活物質として用いた非水電解
質電池は、高エネルギー密度電池として知られており、
特に正極に二酸化マンガン、フッ化炭素などを用いた一
次電池は、電卓、時計の電源として用いられている。さ
らに、電子機器の急激なる小形軽量化に伴い、その電源
である電池に対して小形で軽量かつ高エネルギー密度
で、更に繰り返し充放電が可能な二次電池の開発への要
求が高まっている。これら要求を満たす二次電池とし
て、負極に炭素材料を用いた非水電解質二次電池が開発
され、携帯型通信機器、携帯型パソコンの電源として用
いられるようになっている。
2. Description of the Related Art Nonaqueous electrolyte batteries using lithium as an active material are known as high energy density batteries.
In particular, primary batteries using manganese dioxide, fluorocarbon, or the like for the positive electrode are used as power supplies for calculators and watches. Furthermore, with the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged with respect to a battery as a power source thereof. As a secondary battery satisfying these requirements, a non-aqueous electrolyte secondary battery using a carbon material for a negative electrode has been developed, and is being used as a power source for portable communication devices and portable personal computers.

【0003】非水電解質二次電池の負極材料は、金属リ
チウムをはじめとしてリチウムの吸蔵・放出が可能なL
i−Al合金、黒鉛、低結晶性炭素材料、および金属酸
化物など種々のものが検討されている。なかでも炭素材
料は、安全性が高くかつサイクル寿命の長い電池が得ら
れるという利点がある。
The negative electrode material of a non-aqueous electrolyte secondary battery is an L material capable of inserting and extracting lithium, including metallic lithium.
Various things such as i-Al alloys, graphite, low crystalline carbon materials, and metal oxides have been studied. Among them, a carbon material has an advantage that a battery having high safety and a long cycle life can be obtained.

【0004】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(Li
CoO2)、リチウム含有ニッケル・コバルト複合酸化物
(LiNiXCo1-XO2:0.5<X<0.9)、およびスピネル型リチ
ウムマンガン酸化物(LiMn2O4) は、4V(Li/Li+ ) 以上
のきわめて貴な電位で充放電を行うため、正極として用
いることで高い放電電圧を有する電池が実現できる。
Various positive electrode active materials for nonaqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. ing. Among them, lithium cobalt composite oxide (Li
CoO 2 ), lithium-containing nickel-cobalt composite oxide (LiNiXCo 1-X O 2 : 0.5 <X <0.9), and spinel-type lithium manganese oxide (LiMn 2 O 4 ) are 4V (Li / Li +) or more. Since charging and discharging are performed at an extremely noble potential, a battery having a high discharge voltage can be realized by using the positive electrode.

【0005】しかし、この種電池において、卑な電位を
有するリチウムを負極活物質とする一方、正極では貴な
電位を有する金属酸化物を用いるため、負極、正極それ
ぞれにおいて電解質が分解されやすい状況にある。従っ
て、電解質の選択においてこれらの点を考慮した構成と
することが必要不可欠であり、種々の電解質を用いるこ
とが提案されてきた。それらの大部分は、溶媒としてプ
ロピレンカーボネート、エチレンカーボネート、γ−ブ
チロラクトン、スルホランなどの高誘電率溶媒に1,2
−ジメトキシエタン、ジメチルカーボネート、エチルメ
チルカーボネート、ジエチルカーボネート、酢酸メチ
ル、酢酸エチル、プロピオン酸メチル、プロピオン酸エ
チルなどの低粘度溶媒を混合したものである。
[0005] However, in this type of battery, while lithium having a low potential is used as a negative electrode active material, while a metal oxide having a noble potential is used for a positive electrode, the electrolyte is easily decomposed in each of the negative electrode and the positive electrode. is there. Therefore, it is indispensable to adopt a configuration in consideration of these points in selecting an electrolyte, and it has been proposed to use various electrolytes. Most of them are dissolved in high dielectric constant solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and sulfolane as solvents.
-A mixture of low-viscosity solvents such as dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate.

【0006】電解質塩としては、LiClO4、LiB
4、LiPF6、LiCF3SO3、LiN(CF3
22、LiN(Cn2n+1SO22(但し、nは各独立
して1,2,3または4)などのリチウム塩が一般に用いられ
ている。中でもLiPF6およびLiN(CF3SO22
は、安全性が高くかつ溶解させた電解質のイオン導電率
が高いという理由から近年盛んに研究されるようになっ
てきている。
As electrolyte salts, LiClO 4 , LiB
F 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 S
Lithium salts such as O 2 ) 2 and LiN (C n F 2n + 1 SO 2 ) 2 (where n is 1, 2, 3, or 4 independently) are generally used. Among them, LiPF 6 and LiN (CF 3 SO 2 ) 2
Has been actively studied in recent years because of its high safety and high ionic conductivity of the dissolved electrolyte.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たような電解質を用いても、高温で長期間電池を貯蔵す
ると負極、正極それぞれにおいて電解質が分解され、電
池性能が著しく低下するという問題があった。そこで本
発明者らは、電解質の溶媒として電気化学的安定性に優
れた化1に表される非対称の非環状スルホンを用いるこ
とで上記問題の解決を試みた。その結果、この種電解液
を用いた電池は、貯蔵による電池性能の低下を抑制する
ことができた。ところが、電子機器の駆動用電源や電気
自動車用電池などの特に高率放電性能が求められる用途
に用いる場合では、放電容量が小さくなるいう問題が見
られた。
However, even when the above-mentioned electrolyte is used, when the battery is stored at a high temperature for a long period of time, the electrolyte is decomposed at each of the negative electrode and the positive electrode, resulting in a problem that the battery performance is significantly reduced. . Therefore, the present inventors have attempted to solve the above problem by using an asymmetric acyclic sulfone represented by Chemical Formula 1 having excellent electrochemical stability as a solvent for the electrolyte. As a result, the battery using this type of electrolyte solution was able to suppress a decrease in battery performance due to storage. However, when used in applications requiring particularly high-rate discharge performance, such as a power supply for driving an electronic device or a battery for an electric vehicle, there has been a problem that the discharge capacity is reduced.

【0008】[0008]

【課題を解決するための手段】そこで、本発明は上記問
題点を解決するためになされたものであり、特に高率放
電性能にも優れた非水電解質電池を提供するものであ
る。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above problems, and in particular, to provide a non-aqueous electrolyte battery excellent in high-rate discharge performance.

【0009】本発明になる第1の発明は、負極と、正極
と、電解質とを備えた非水電解質電池であって、前記電
解質が化1で表される非対称の非環状スルホンと化2で
表される鎖状エステル化合物とを含有していることを特
徴とする非水電解質電池。
A first invention according to the present invention is a non-aqueous electrolyte battery provided with a negative electrode, a positive electrode, and an electrolyte, wherein the electrolyte is an asymmetric non-cyclic sulfone represented by the following chemical formula (1) and a chemical formula (2). A non-aqueous electrolyte battery comprising a chain ester compound represented by the formula:

【0010】[0010]

【化1】ただし、化1中、R1≠R2でR1、R2は炭素数
1〜4のアルキル基である。
Wherein R 1 ≠ R 2 and R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms.

【0011】[0011]

【化2】ただし、化2中、R3、R4は炭素数1〜4のア
ルキル基である。
Wherein R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms.

【0012】第1の発明にかかる第2の発明は、前記非
対称の非環状スルホンに対する前記鎖状エステル化合物
の混合比が、10体積%以上90体積%以下であること
を特徴とする。
A second invention according to the first invention is characterized in that a mixing ratio of the chain ester compound to the asymmetric acyclic sulfone is 10% by volume or more and 90% by volume or less.

【0013】第1又は第2の発明にかかる第3の発明は
前記電解質が、LiPF6とLiN(CF3SO22とを
モル比1:9〜9:1で混合した電解質塩を含有してい
ることを特徴とする。
A third invention according to the first or second invention is that the electrolyte contains an electrolyte salt obtained by mixing LiPF 6 and LiN (CF 3 SO 2 ) 2 at a molar ratio of 1: 9 to 9: 1. It is characterized by doing.

【0014】[0014]

【実施の形態】前述した如く、電解質の溶媒として電気
化学的安定性に優れた非対称の非環状スルホンを用いる
と、高率放電性能が低下する理由として、この種溶媒の
粘度が高いために電極およびセパレータの濡れ性が悪く
なるとともに、電解液のイオン導電率が低いために、電
池の内部抵抗が高くなったことが考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, when an asymmetric acyclic sulfone having excellent electrochemical stability is used as a solvent for an electrolyte, the reason why the high-rate discharge performance is reduced is that the viscosity of this kind of solvent is high because the viscosity of such a solvent is high. It is conceivable that the internal resistance of the battery was increased because the wettability of the separator became poor and the ionic conductivity of the electrolytic solution was low.

【0015】そこで、電解質に非対称の非環状スルホン
と鎖状エステル化合物との混合溶媒を用いることで、そ
れぞれの溶媒を単独で用いた場合に比べて、保存特性、
サイクル特性および高率放電性能が良好な電池が得られ
ることを見出し、本発明を完成するに至った。
Therefore, by using a mixed solvent of an asymmetric acyclic sulfone and a chain ester compound in the electrolyte, the storage characteristics and the storage characteristics are improved as compared with the case where each solvent is used alone.
It has been found that a battery having good cycle characteristics and high-rate discharge performance can be obtained, and the present invention has been completed.

【0016】すなわち、非対称の非環状スルホンに低粘
度の鎖状エステル化合物を添加することで、溶媒の粘度
が低下し、電極およびセパレータの濡れ性が良好になる
と同時に、電解質のイオン導電率が向上したため、高率
放電性能が良好な電池が得られたと考えられる。
That is, by adding a low-viscosity chain ester compound to the asymmetric acyclic sulfone, the viscosity of the solvent is reduced, the wettability of the electrode and the separator is improved, and the ionic conductivity of the electrolyte is improved. Therefore, it is considered that a battery having good high-rate discharge performance was obtained.

【0017】さらに、非環状スルホンには、非対称スル
ホンと対称スルホンとがあるが、対称スルホンは、非対
称スルホンに比べて凝固点が高いために、電池使用温度
範囲が狭くなり用途の限定が余儀なくされ得る。ゆえ
に、電池の電解質溶媒としては、非環状非対称スルホン
を用いるのが好ましい。エステル化合物には、環状化合
物と鎖状化合物とがあるが、環状化合物は鎖状化合物に
比べて誘電率が高いため、粘度が高く、非対称の非環状
スルホンに添加しても改善効果が小さい。ゆえに、非対
称の非環状スルホンに添加する化合物としては鎖状エス
テル化合物を用いるのが好ましい。
Further, acyclic sulfones include asymmetrical sulfones and symmetrical sulfones. Since the freezing point of the symmetrical sulfone is higher than that of the asymmetrical sulfone, the temperature range in which the battery can be used is narrowed, and the use of the battery may be limited. . Therefore, it is preferable to use a non-cyclic asymmetric sulfone as the electrolyte solvent of the battery. The ester compound includes a cyclic compound and a chain compound. The cyclic compound has a higher dielectric constant than the chain compound, and therefore has a high viscosity and a small improvement effect even when added to an asymmetric acyclic sulfone. Therefore, it is preferable to use a chain ester compound as the compound to be added to the asymmetric acyclic sulfone.

【0018】[0018]

【実施例】[実施例1]以下に、好適な実施例を用いて
本発明を説明する。
[Embodiment 1] The present invention will be described below using preferred embodiments.

【0019】正極活物質としてLiCoO2を用いた。
LiCoO290重量%に対しカーボンブラックを5重
量%とポリフッ化ビニリデン(PVdF)5重量%とを
混合し、溶媒としてN−メチル−2−ピロリドン(NM
P)を適宜添加して、スラリー(ペースト)を得た。次
に、厚さ20μmの帯状アルミニウム箔に正極合剤スラ
リーを均一に塗布し、乾燥させた後にロールプレスして
帯状の正極を作製した。
LiCoO 2 was used as a positive electrode active material.
5% by weight of carbon black and 5% by weight of polyvinylidene fluoride (PVdF) are mixed with 90% by weight of LiCoO 2, and N-methyl-2-pyrrolidone (NM) is used as a solvent.
P) was added as appropriate to obtain a slurry (paste). Next, a positive electrode mixture slurry was uniformly applied to a 20 μm-thick strip-shaped aluminum foil, dried, and roll-pressed to prepare a strip-shaped positive electrode.

【0020】負極には、リチウム(リチウムイオン)の
ドープ・脱ドープが可能な炭素材料(天然黒鉛の表面を
ハードカーボンで被覆したもの;三井鉱山製、GDA
2)を用いた。炭素材料粉末90重量%に対しPVdF
10重量%を混合し、溶媒としてNMPを適宜添加し
て、スラリーを得た。次に、厚さ20μmの帯状銅箔に
負極合剤スラリーを均一に塗布し、乾燥させた後にロー
ルプレスして帯状の負極を作製した。
The negative electrode is made of a carbon material capable of doping / dedoping lithium (lithium ion) (natural graphite coated with hard carbon; manufactured by Mitsui Mining, GDA
2) was used. PVdF for 90% by weight of carbon material powder
10% by weight was mixed and NMP was appropriately added as a solvent to obtain a slurry. Next, the negative electrode mixture slurry was uniformly applied to a 20 μm-thick strip-shaped copper foil, dried, and then roll-pressed to prepare a strip-shaped negative electrode.

【0021】このようにして作製した正極と負極とをポ
リエチレン製の微多孔膜よりなるセパレータを介して巻
回して断面が長円形の発電素子を得た。発電素子に正負
極集電体を接続した後、長円筒形の電池容器(縦50m
m×横130mm×高さ210mm)に挿入し電池蓋に
て封口した。このとき、正極集電体及び負極集電体は電
池容器蓋に設けられた正極端子及び負極端子にそれぞれ
接続した。
The positive electrode and the negative electrode thus produced were wound around a separator made of a microporous polyethylene film to obtain a power generating element having an oval cross section. After connecting the positive and negative electrode current collectors to the power generating element, a long cylindrical battery container (50 m long)
mx 130 mm x 210 mm) and sealed with a battery lid. At this time, the positive electrode current collector and the negative electrode current collector were respectively connected to the positive electrode terminal and the negative electrode terminal provided on the battery container lid.

【0022】次に、表1に示す組成の非対称の非環状ス
ルホン(エチルメチルスルホン(EMS)、エチルイソプロ
ピルスルホン(EIPS))と鎖状エステル化合物(酢酸エチ
ル(EA)、プロピオン酸メチル(MP)、プロピオン酸エチル
(EP))との混合溶媒に、0.5mol/l(リットル)
のLiPF6と0.5mol/lのLiN(CF3
22とを共に溶解した電解液を減圧注入後、密封して
電池とした。
Next, asymmetric acyclic sulfones (ethyl methyl sulfone (EMS), ethyl isopropyl sulfone (EIPS)) and chain ester compounds (ethyl acetate (EA), methyl propionate (MP)) having the compositions shown in Table 1 , Ethyl propionate
(EP)) and 0.5 mol / l (liter)
Of LiPF 6 and 0.5 mol / l of LiN (CF 3 S
An electrolyte solution in which both O 2 ) and 2 were dissolved was injected under reduced pressure, and then sealed to obtain a battery.

【0023】[比較例1]実施例1記載の電解質溶媒の
代りに、表2に示す組成のエチレンカーボネート(EC)と
エチルメチルカーボネート(EMC)との混合溶媒を用いる
以外は、実施例1と同様の電池を作製した。
Comparative Example 1 The procedure of Example 1 was repeated except that a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) having the composition shown in Table 2 was used instead of the electrolyte solvent described in Example 1. A similar battery was manufactured.

【0024】[試験及び結果]これらの電池を用いて、
温度25℃で電流50A/電圧4.1Vで4時間定電流/定電圧
充電後、電流100Aで2.75Vまで高率放電するサイクルを
繰り返した。そして、充放電100サイクル目の放電容量
を表1および表2にまとめた。表1及び表2中の含有率
は体積%である。
[Tests and Results] Using these batteries,
After a constant current / constant voltage charge at a temperature of 25 ° C. and a current of 50 A / voltage of 4.1 V for 4 hours, a cycle of discharging at a high rate of 2.75 V at a current of 100 A was repeated. Tables 1 and 2 show the discharge capacity at the 100th charge / discharge cycle. The contents in Tables 1 and 2 are by volume.

【0025】[0025]

【表1】 表1から明らかなように、電解質溶媒に非対称の非環状
スルホンと鎖状エステル化合物との混合溶媒を用いた本
発明電池は、電解質溶媒に非対称の非環状スルホンある
いは鎖状エステル化合物をそれぞれ単独で用いた電池に
比較して放電容量が大きい。これは、非対称の非環状ス
ルホンに低粘度の鎖状エステル化合物を添加すること
で、溶媒の粘度が低下し、電極およびセパレータの濡れ
性が良好になると同時に、電解質のイオン導電率が向上
したことが考えられる。
[Table 1] As is clear from Table 1, the battery of the present invention using the mixed solvent of the asymmetric acyclic sulfone and the chain ester compound as the electrolyte solvent, the asymmetric acyclic sulfone or the chain ester compound was used alone as the electrolyte solvent. The discharge capacity is large as compared with the battery used. This is because the addition of a low-viscosity chain ester compound to the asymmetric acyclic sulfone lowers the viscosity of the solvent, improves the wettability of the electrode and the separator, and improves the ionic conductivity of the electrolyte. Can be considered.

【0026】一方、電解質に鎖状エステル化合物を単体
で用いた場合は、イオン導電率が低いことに加えて、溶
媒の電気化学的安定性が劣るため、充放電サイクルの進
行にともなって電池容量が低下したことが考えられる。
On the other hand, when the chain ester compound is used alone as the electrolyte, the electrolyte capacity is low and the electrochemical stability of the solvent is poor. Is considered to have decreased.

【0027】[0027]

【表2】 また、表2から明らかなように、本発明電池は、エチレ
ンカーボネートとエチルメチルカーボネートの混合溶媒
を用いた比較電池に比べても放電容量が大きい。この理
由として、本発明電池に含有される非対称の非環状スル
ホンが電解質の分解反応を抑制したため、比較電池にく
らべて充放電サイクルの進行にともな容量低下が小さく
なったことがあげられる。
[Table 2] Further, as is apparent from Table 2, the battery of the present invention has a larger discharge capacity than a comparative battery using a mixed solvent of ethylene carbonate and ethyl methyl carbonate. The reason for this is that the asymmetric acyclic sulfone contained in the battery of the present invention suppressed the decomposition reaction of the electrolyte, so that the decrease in capacity with the progress of the charge / discharge cycle was smaller than that of the comparative battery.

【0028】なお、上記実施例では、非対称の非環状ス
ルホンとしてエチルメチルスルホンおよびエチルイソプ
ロピルスルホンを用いる場合を説明したが、化1中、R
1≠R2でR1、R2は炭素数1〜4のアルキル基であれば
同様の効果が得られる。
In the above embodiment, the case where ethyl methyl sulfone and ethyl isopropyl sulfone are used as the asymmetric acyclic sulfone has been described.
When 1 ≠ R 2 , the same effect can be obtained if R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms.

【0029】一例として、メチルイソプロピルスルホ
ン、エチルイソプロピルスルホン、プロピルイソプロピ
ルスルホン、ブチルメチルスルホン、ブチルエチルスル
ホンなどがあげられ、単独あるいは2種以上を混合して
用いることもできる。また、上記実施例では、鎖状エス
テル化合物として酢酸エチル、プロピオン酸メチル、お
よびプロピオン酸エチルを用いる場合を説明したが、化
2中、R3、R4は炭素数1〜4のアルキル基であれば同
様の効果が得られる(R3=R4であってもよいしR3
4であってもよい)。一例として、酢酸メチル、酢酸
ノルマルプロピル、酢酸イソプロピル、酢酸ブチル、プ
ロピオン酸ノルマルプロピル、プロピオン酸イソプロピ
ル、プロピオン酸ブチルなどがあげられ、単独あるいは
2種以上を混合して用いることもできる。
As an example, methyl isopropyl sulfone, ethyl isopropyl sulfone, propyl isopropyl sulfone, butyl methyl sulfone, butyl ethyl sulfone and the like can be mentioned, and they can be used alone or in combination of two or more. Further, in the above example, the case where ethyl acetate, methyl propionate, and ethyl propionate are used as the chain ester compound has been described, but in Chemical Formula 2, R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms. If it is, the same effect can be obtained (R 3 may be equal to R 4 or R 3
It may be R 4). Examples include methyl acetate, normal propyl acetate, isopropyl acetate, butyl acetate, normal propyl propionate, isopropyl propionate, butyl propionate, and the like, and they can be used alone or in combination of two or more.

【0030】また、実施例では電解質に液体を用いる場
合を説明したが高分子固体電解質、あるいはゲル状電解
質を用いることもできる。一例として、フッ素ゴム系の
高分子材料に上記混合溶媒又は溶液を含ませた高分子固
体電解質、あるいは上記溶媒又は溶液にアクリルモノマ
ーを添加して重合させたゲル状電解質などがあげられ
る。この固体電解質を用いた場合、セパレータは用いて
もよいし、用いなくてもよい。
Further, in the embodiment, the case where a liquid is used as the electrolyte has been described, but a solid polymer electrolyte or a gel electrolyte can also be used. As an example, a polymer solid electrolyte in which the above-mentioned mixed solvent or solution is contained in a fluororubber-based polymer material, or a gel electrolyte in which an acrylic monomer is added to the above-mentioned solvent or solution and polymerized, and the like are mentioned. When this solid electrolyte is used, a separator may or may not be used.

【0031】さらに、本実施例では負極に炭素材料を用
いる場合を説明したが、リチウム電池に用いられている
負極材料、たとえば炭素材料(低結晶性炭素材料である
ハードカーボン、ソフトカーボン等、あるいは高結晶性
炭素材料である人造黒鉛、天然黒鉛等)、金属リチウ
ム、リチウム合金、金属酸化物などの単独あるいは2種
以上を組み合わせた負極としてもよい。ただし、充放電
サイクル寿命性能を考慮すると、格子面間隔d002が0.33
8nm以上の結晶性の低い炭素材料、あるいは黒鉛表面を
結晶性の低い炭素材料などで被覆した材料が好ましい。
Further, in this embodiment, the case where a carbon material is used for the negative electrode has been described. However, a negative electrode material used for a lithium battery, for example, a carbon material (hard carbon or soft carbon which is a low crystalline carbon material, or A negative electrode may be used alone or in combination of two or more of high-crystalline carbon materials such as artificial graphite and natural graphite), metallic lithium, lithium alloy, and metal oxide. However, considering the charge-discharge cycle life performance, the lattice spacing d 002 is 0.33
A carbon material having a low crystallinity of 8 nm or more or a material in which the graphite surface is coated with a carbon material having a low crystallinity is preferable.

【0032】上記実施例では、正極活物質としてリチウ
ムコバルト複合酸化物(LiCoO2)を用いる場合を説明し
たが、一次電池用活物質である二酸化マンガンをはじめ
として、二次電池用活物質である二硫化チタン、スピネ
ル型リチウムマンガン酸化物、五酸化バナジウムおよび
三酸化モリブデンなどの種々のものを適用することがで
きる。特に、本発明電池に用いた電解質は、従来の電解
質に比べて、電気化学的安定性に優れるため、リチウム
コバルト複合酸化物、リチウム含有ニッケル・コバルト
複合酸化物(LiNiXCo1-XO2:たとえば0.5<X<0.9)、お
よびスピネル型リチウムマンガン酸化物(LiMn2O4、Li
1+XMn2O4)などの4V(Li/Li+ ) 以上のきわめて貴な電位
で充放電を行う活物質に対して、その作用効果が大き
い。
In the above embodiment, the case where the lithium-cobalt composite oxide (LiCoO 2 ) is used as the positive electrode active material has been described. However, manganese dioxide which is the active material for the primary battery and the active material for the secondary battery are used. Various materials such as titanium disulfide, spinel lithium manganese oxide, vanadium pentoxide, and molybdenum trioxide can be used. In particular, since the electrolyte used in the battery of the present invention is more excellent in electrochemical stability than the conventional electrolyte, the lithium-cobalt composite oxide and the lithium-containing nickel-cobalt composite oxide (LiNiXCo 1-X O 2 : 0.5 <X <0.9), and spinel-type lithium manganese oxide (LiMn 2 O 4 , Li
It has a great effect on active materials such as 1 + X Mn 2 O 4) that charge and discharge at a very noble potential of 4 V (Li / Li +) or more.

【0033】また、上記実施例では、電解質塩としてL
iPF6とLiN(CF3SO22とを混合する場合を説
明したが、従来の一次電池および二次電池に用いられる
電解質を適用することができる。たとえば、LiClO
4、LiBF4、LiPF6、LiCF3SO3、LiN
(CF3SO22、LiN(Cn2n+1SO22(但し、
nは各独立して1,2,3または4)などを単独あるいは2種
以上を混合して用いることができる。中でも、LiPF
6とLiN(CF3SO22とをモル比1:9〜9:1で
混合した電解質塩は、LiN(CF3SO22の添加効
果により電解質のイオン導電率が高くなること、および
LiPF6の添加効果により正極基材のアルミニウム箔
が腐食されにくくなることから、最も好ましい電解質で
あるといえる。LiPF6に対するLiN(CF3
22のモル比が10%以下の場合は、電解質のイオン
導電率が低くなるために、電池の高率放電性能が低下
し、LiPF6に対するLiN(CF3SO22のモル比
が90%以上の場合は、正極基材のアルミニウム箔が腐
食されるために、電池性能の低下が起こる。また、電解
質に溶解する電解質の濃度は、0.5〜1.5mol/
lが好ましい。
In the above embodiment, L was used as the electrolyte salt.
Although the case where iPF 6 and LiN (CF 3 SO 2 ) 2 are mixed has been described, the electrolyte used in conventional primary batteries and secondary batteries can be applied. For example, LiClO
4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiN
(CF 3 SO 2 ) 2 , LiN (C n F 2n + 1 SO 2 ) 2 (however,
n can be independently 1, 2, 3, or 4) alone or as a mixture of two or more. Among them, LiPF
An electrolyte salt in which 6 and LiN (CF 3 SO 2 ) 2 are mixed at a molar ratio of 1: 9 to 9: 1 increases the ionic conductivity of the electrolyte due to the effect of adding LiN (CF 3 SO 2 ) 2 . In addition, the effect of adding LiPF 6 makes it difficult to corrode the aluminum foil of the positive electrode substrate, and thus can be said to be the most preferable electrolyte. LiN to LiPF 6 (CF 3 S
O 2) in the case of the molar ratio of 2 or less 10%, because the ion conductivity of the electrolyte is low, reduces the high-rate discharge performance of the battery, the molar ratio of LiN (CF 3 SO 2) 2 with respect to LiPF 6 Is 90% or more, the aluminum foil of the positive electrode substrate is corroded, so that the battery performance is reduced. The concentration of the electrolyte dissolved in the electrolyte is 0.5 to 1.5 mol /
l is preferred.

【0034】なお、前記の実施例に係る電池はいずれも
容量100Ahの長円筒形電池であるが、円筒形、角形ま
たはペーパー形電池に本発明を適用しても同様の効果が
得られる。また上記実施例では、二次電池への適用例を
説明したが一次電池においても適用可能であることはい
うまでもない。
Although the batteries according to the above-described embodiments are all long-cylindrical batteries having a capacity of 100 Ah, similar effects can be obtained by applying the present invention to cylindrical, square or paper batteries. Further, in the above embodiment, an example of application to a secondary battery has been described, but it is needless to say that the invention is also applicable to a primary battery.

【0035】[0035]

【発明の効果】上述したごとく、負極と、正極と、電解
質とを備える電池であって、前記電解質が非対称の非環
状スルホンと鎖状エステル化合物とを含有することで、
この種電池の問題である充放電サイクルの進行にともな
う放電容量の低下と高率放電性能の低下とを有効に抑制
できるものであり、その工業的価値は極めて大である。
As described above, a battery including a negative electrode, a positive electrode, and an electrolyte, wherein the electrolyte contains an asymmetric acyclic sulfone and a chain ester compound,
It is capable of effectively suppressing a decrease in discharge capacity and a decrease in high-rate discharge performance due to the progress of a charge / discharge cycle, which are problems of this kind of battery, and its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H024 AA01 AA02 AA03 AA07 AA09 AA11 BB07 CC02 CC12 FF18 FF20 HH00 HH01 HH08 5H029 AJ02 AJ03 AJ04 AJ05 AJ07 AJ12 AJ14 AK02 AK03 AK05 AL02 AL06 AL07 AL12 AL18 AM00 AM03 AM05 AM07 AM16 BJ02 BJ14 CJ08 DJ09 EJ11 HJ02 HJ07 HJ10  ──────────────────────────────────────────────────の Continued on the front page F-term (reference) CJ08 DJ09 EJ11 HJ02 HJ07 HJ10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極と、正極と、電解質とを備えてお
り、 前記電解質が化1で表される非対称の非環状スルホンと
化2で表される鎖状エステル化合物とを含有しているこ
とを特徴とする非水電解質電池。 【化1】 ただし、化1中、R1≠R2でR1、R2は炭素数1〜4の
アルキル基である。 【化2】 ただし、化2中、R3、R4は炭素数1〜4のアルキル基
である。
1. An electrolyte comprising a negative electrode, a positive electrode, and an electrolyte, wherein the electrolyte contains an asymmetric acyclic sulfone represented by Chemical Formula 1 and a chain ester compound represented by Chemical Formula 2. Non-aqueous electrolyte battery characterized by the above-mentioned. Embedded image However, in the chemical formula 1, R 1 ≠ R 2 and R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms. Embedded image However, in Chemical formula 2, R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms.
【請求項2】 請求項1記載の非対称の非環状スルホン
に対する鎖状エステル化合物の混合比が、10体積%以
上90体積%以下であることを特徴とする請求項1記載
の非水電解質電池
2. The non-aqueous electrolyte battery according to claim 1, wherein a mixing ratio of the chain ester compound to the asymmetric acyclic sulfone according to claim 1 is 10% by volume or more and 90% by volume or less.
【請求項3】 請求項1記載の電解質が、LiPF6
LiN(CF3SO22とをモル比1:9〜9:1で混
合した電解質塩を含有していることを特徴とする請求項
1又は2記載の非水電解質電池。
3. The electrolyte according to claim 1, wherein the electrolyte contains an electrolyte salt in which LiPF 6 and LiN (CF 3 SO 2 ) 2 are mixed at a molar ratio of 1: 9 to 9: 1. The non-aqueous electrolyte battery according to claim 1.
JP20447998A 1998-07-03 1998-07-03 Nonaqueous electrolyte battery Pending JP2000021447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447998A JP2000021447A (en) 1998-07-03 1998-07-03 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447998A JP2000021447A (en) 1998-07-03 1998-07-03 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000021447A true JP2000021447A (en) 2000-01-21

Family

ID=16491214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447998A Pending JP2000021447A (en) 1998-07-03 1998-07-03 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000021447A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450199B1 (en) * 2001-05-11 2004-09-24 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2008532209A (en) * 2005-01-19 2008-08-14 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティー Current generator having sulfone electrolyte
JP2012059457A (en) * 2010-09-07 2012-03-22 Toshiba Corp Nonaqueous electrolyte secondary battery and battery pack
CN103094613A (en) * 2013-01-17 2013-05-08 东莞新能源科技有限公司 Electrolyte used for high-voltage power battery and power battery containing electrolyte
KR101395532B1 (en) * 2011-09-26 2014-05-14 가부시끼가이샤 도시바 Nonaqueous electrolyte battery and battery pack
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450199B1 (en) * 2001-05-11 2004-09-24 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2008532209A (en) * 2005-01-19 2008-08-14 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティー Current generator having sulfone electrolyte
JP2012059457A (en) * 2010-09-07 2012-03-22 Toshiba Corp Nonaqueous electrolyte secondary battery and battery pack
KR101343707B1 (en) 2010-09-07 2013-12-20 가부시끼가이샤 도시바 Nonaqueous electrolyte secondary battery
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
KR101395532B1 (en) * 2011-09-26 2014-05-14 가부시끼가이샤 도시바 Nonaqueous electrolyte battery and battery pack
CN103094613A (en) * 2013-01-17 2013-05-08 东莞新能源科技有限公司 Electrolyte used for high-voltage power battery and power battery containing electrolyte
CN103094613B (en) * 2013-01-17 2016-10-19 东莞新能源科技有限公司 High voltage power battery electrolytic solution and comprise the electrokinetic cell of this electrolyte
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery

Similar Documents

Publication Publication Date Title
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
JP2003229168A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP2005190754A (en) Nonaqueous electrolyte secondary battery
JP3229757B2 (en) Lithium secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JPH0992329A (en) Nonaqueous electrolyte secondary battery
JP3705774B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery for nonaqueous electrolyte battery
JP3349399B2 (en) Lithium secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2000021447A (en) Nonaqueous electrolyte battery
JP4172061B2 (en) Non-aqueous electrolyte secondary battery
US7736812B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP3291528B2 (en) Non-aqueous electrolyte battery
JP2001052744A (en) Nonaqueous electrolyte battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2003288939A (en) Nonaqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2003243031A (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery