JPH11339850A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery

Info

Publication number
JPH11339850A
JPH11339850A JP10148790A JP14879098A JPH11339850A JP H11339850 A JPH11339850 A JP H11339850A JP 10148790 A JP10148790 A JP 10148790A JP 14879098 A JP14879098 A JP 14879098A JP H11339850 A JPH11339850 A JP H11339850A
Authority
JP
Japan
Prior art keywords
lithium
ion secondary
secondary battery
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10148790A
Other languages
Japanese (ja)
Inventor
Masahito Shirakata
雅人 白方
Hajime Sato
一 佐藤
Satoyuki Ota
智行 太田
Yuichi Kumeuchi
友一 粂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Moli Energy Ltd
Original Assignee
NEC Corp
NEC Moli Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Moli Energy Ltd filed Critical NEC Corp
Priority to JP10148790A priority Critical patent/JPH11339850A/en
Priority to KR1019990019488A priority patent/KR19990088654A/en
Publication of JPH11339850A publication Critical patent/JPH11339850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery whose cycle life is excellent. SOLUTION: This lithium-ion secondary battery has a positive electrode and a negative electrode that doped and dedoped with lithium ions. The battery uses a sultone compound is added to an electrolyte or at least to a part of an electrolyte, at least one kind selected from lithium cobaltate, lithium manganate, and lithium nickelate is used as a positive active material, an electrolyte containing propylene carbonate, and a carbonaceous material as a negative active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
ドープおよび脱ドープする負極を有するリチウムイオン
二次電池に関するものであり、とくにサイクル寿命が良
好なリチウムイオン電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery having a negative electrode for doping and undoping lithium ions, and more particularly to a lithium ion battery having a good cycle life.

【0002】[0002]

【従来の技術】携帯電話、カムコーダ、ノート型パソコ
ン等の小型の電子機器の普及に伴って、エネルギー密度
の高い再充電可能な電池が求められている。とくに、リ
チウムイオンのドープおよび脱ドープを利用したリチウ
ムイオン電池は動作電圧が高く、エネルギー密度が高く
安定した特性が得られるので、小型でエネルギー密度が
大きな電池として広く用いられるようになっている。
2. Description of the Related Art With the spread of small electronic devices such as mobile phones, camcorders, and notebook computers, rechargeable batteries having a high energy density have been demanded. In particular, lithium ion batteries using lithium ion doping and undoping have a high operating voltage, high energy density, and stable characteristics. Therefore, lithium ion batteries are widely used as small and high energy density batteries.

【0003】リチウムイオン二次電池は、コバルト酸リ
チウム(LiCoO2) 、マンガン酸リチウム(LiM
24)、ニッケル酸リチウム(LiNiO2 )等のリ
チウム遷移金属酸化物を含有する合剤をアルミニウム箔
に塗布した正極箔と、黒鉛をはじめとする炭素質化合
物、金属複合酸化物等を含有する合剤を銅箔等に塗布し
た負極箔とを、微多孔性合成樹脂製セパレータを介在さ
せて対向させて渦巻状に巻回した発電要素を電池缶に収
容してエチレンカーボネート、ジエチルカーボネートに
六フッ化リン酸リチウム等を溶解した電解液を注入して
封口することによって製造されている。
[0003] Lithium ion secondary batteries include lithium cobaltate (LiCoO 2 ) and lithium manganate (LiM
n 2 O 4 ), a positive electrode foil obtained by applying a mixture containing a lithium transition metal oxide such as lithium nickel oxide (LiNiO 2 ) to an aluminum foil, a carbonaceous compound such as graphite, a metal composite oxide, etc. A negative electrode foil in which the mixture contained is coated on a copper foil or the like, and a power generation element spirally wound oppositely with a microporous synthetic resin separator interposed therebetween is accommodated in a battery can, and ethylene carbonate and diethyl carbonate are contained therein. It is manufactured by injecting an electrolyte solution in which lithium hexafluorophosphate or the like is dissolved and sealing it.

【0004】リチウムイオン二次電池では、負極にリチ
ウムあるいはリチウム合金を用いた電池のように充放電
の繰り返しによってデンドライト状リチウムが、正極と
負極を隔離するセパレータを貫通し正極と接触して内部
短絡を引き起こすという問題もなく、長期にわたり繰り
返し使用可能であるという特徴を有している。
In a lithium ion secondary battery, as in a battery using lithium or a lithium alloy for the negative electrode, repetition of charging and discharging causes the dendritic lithium to penetrate the separator that separates the positive electrode and the negative electrode, come into contact with the positive electrode, and cause an internal short circuit. It has the feature that it can be used repeatedly for a long time without the problem of causing

【0005】しかしながら、リチウムイオン電池の使用
形態によっては、負極の炭素質材料と電解液が反応した
り、あるいは正極合剤中の遷移金属酸化物が電解液中に
溶解する等の現象が起こり、サイクル寿命が低下すると
いう問題があった。例えば、正極活物質としてマンガン
酸リチウムを使用したリチウムイオン二次電池の場合に
は、45℃程度の高温下で使用すると、電解液中に溶解
しサイクル寿命が低下するという現象があった。
However, depending on the type of use of the lithium ion battery, phenomena such as a reaction between the carbonaceous material of the negative electrode and the electrolytic solution or a dissolution of the transition metal oxide in the positive electrode mixture into the electrolytic solution occur. There was a problem that the cycle life was shortened. For example, in the case of a lithium ion secondary battery using lithium manganate as a positive electrode active material, when used at a high temperature of about 45 ° C., there is a phenomenon that the lithium ion secondary battery is dissolved in an electrolytic solution and the cycle life is reduced.

【0006】また、有機電解液として知られているプロ
ピレンカーボネートは、支持塩の溶解度が大きく、使用
可能な温度範囲が広く、電位窓が大きく優れた電解液で
あるとともに、融点が低く沸点が高いために、電解液注
入時の電解液の取り扱いが容易であるという特徴を有し
ているが、黒鉛系の炭素質材料を負極に用いたリチウム
イオン二次電池にあっては、プロピレンカーボネートが
充電時に黒鉛上で電気分解され、電池として機能しなく
なるという現象が生じていた。
[0006] Propylene carbonate, which is known as an organic electrolyte, has a high solubility of a supporting salt, a wide usable temperature range, a large potential window and an excellent electrolyte, and has a low melting point and a high boiling point. Therefore, it is easy to handle the electrolyte when injecting the electrolyte.However, in a lithium ion secondary battery using a graphite-based carbonaceous material for the negative electrode, propylene carbonate is charged. Occasionally, electrolysis occurs on graphite, causing the battery to no longer function.

【0007】活物質の好ましくない溶解や電解液の分解
等を防ぐ試みとしては、負極にリチウム金属あるいはリ
チウム合金を用いた電池においては、電解液あるいは電
解液の一部に溶解や分解を防止する物質を添加すること
が提案されている。例えば、特開昭63−102173
号公報には、電解液中に1,3−プロパンスルトンを添
加することによって、充電時の電池リチウムと電解液と
の反応により充放電サイクルの特性が低下したり、電着
リチウムのデンドライトの析出による短絡を防止する方
法が提案されているが、リチウムイオン電池における前
記した問題点を特定の物質を電解液としたり、あるいは
電解液中に特定の物質を添加して解決することを提案し
たものはなかった。
As an attempt to prevent undesired dissolution of the active material or decomposition of the electrolytic solution, in a battery using lithium metal or a lithium alloy for the negative electrode, dissolution or decomposition of the electrolytic solution or a part of the electrolytic solution is prevented. It has been proposed to add substances. For example, JP-A-63-102173
Japanese Patent Application Laid-Open Publication No. H11-157,199 discloses that by adding 1,3-propane sultone to an electrolytic solution, the characteristics of a charge / discharge cycle are degraded due to a reaction between the battery lithium and the electrolytic solution during charging, or the deposition of electrodeposited lithium dendrite. Although a method of preventing short-circuiting due to has been proposed, it has been proposed to solve the above-mentioned problems in lithium ion batteries by using a specific substance as an electrolyte or adding a specific substance to the electrolyte. There was no.

【0008】[0008]

【発明が解決しようとする課題】本発明は、リチウムイ
オン二次電池において、サイクル寿命を長期化すること
を課題とするものであり、とくにマンガン酸リチウムを
正極に用いた場合の高温度でのサイクル寿命の低下を防
止するとともに、プロピレンカーボネートを電解液とし
た場合の黒鉛表面での電気分解を防止し特性の優れた電
池を提供することを課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium ion secondary battery having a prolonged cycle life, particularly at a high temperature when lithium manganate is used for a positive electrode. It is an object of the present invention to provide a battery having excellent characteristics by preventing a decrease in cycle life and preventing electrolysis on a graphite surface when propylene carbonate is used as an electrolyte.

【0009】[0009]

【課題を解決するための手段】本発明は、リチウムイオ
ンをドープおよび脱ドープする正極および負極を有する
リチウムイオン二次電池において、スルトンを電解液と
するか、もしくは電解液の一部に添加したリチウムイオ
ン二次電池である。スルトン化合物が1,3−プロパン
スルトンまたは1,4−ブタンスルトンであるリチウム
イオン二次電池である。また、正極活物質として、リチ
ウムコバルト酸、リチウムマンガン酸、リチウムニッケ
ル酸から選ばれる少なくとも1種を用いたリチウムイオ
ン二次電池である。電解液としてプロピレンカーボネー
トを用いたリチウムイオン二次電池である。 負極とし
て黒鉛質の炭素材料を用いたリチウムイオン二次電池で
ある。本発明のように、スルトンをリチウムイオン二次
電池の電解液中に添加することによってサイクル寿命等
が増加する理由は定かではないが、正極活物質および負
極活物質の表面に、イオン導電性の保護皮膜を形成する
ことによって、正極活物質中からのマンガンの溶解を抑
制し、また黒鉛表面での電解液の分解を抑制するものと
推察される。
SUMMARY OF THE INVENTION The present invention provides a lithium ion secondary battery having a positive electrode and a negative electrode for doping and undoping lithium ions, wherein sultone is used as an electrolyte or is added to a part of the electrolyte. It is a lithium ion secondary battery. A lithium ion secondary battery in which the sultone compound is 1,3-propane sultone or 1,4-butane sultone. Further, the present invention is a lithium ion secondary battery using at least one selected from lithium cobalt acid, lithium manganate, and lithium nickel acid as a positive electrode active material. This is a lithium ion secondary battery using propylene carbonate as an electrolyte. This is a lithium ion secondary battery using a graphite carbon material as a negative electrode. As in the present invention, the reason why the cycle life and the like are increased by adding sultone to the electrolyte solution of the lithium ion secondary battery is not clear, but the surface of the positive electrode active material and the negative electrode active material has an ionic conductivity. It is presumed that by forming the protective film, dissolution of manganese from the positive electrode active material is suppressed, and decomposition of the electrolytic solution on the graphite surface is suppressed.

【0010】[0010]

【発明の実施の形態】本発明のリチウム二次電池の正極
としては、リチウムをドープおよび脱ドープすることが
でき、リチウムを含む遷移金属複合酸化物を用いること
が好ましい。具体的には、コバルト酸リチウム(LiC
oO2) 、マンガン酸リチウム(LiMn24)、ニッ
ケル酸リチウム(LiNiO2 )等のリチウム遷移金属
酸化物を挙げることができ、なかでもリチウムマンガン
酸を用いる場合には、リチウムマンガン酸からのマンガ
ンの溶解を抑制することができるのでとくに大きな効果
が期待できる。また、負極には、天然黒鉛、人造黒鉛、
黒鉛化メソカーボンマイクロビーズ、黒鉛化炭素繊維等
のような黒鉛質炭素材料、黒鉛前駆体炭素等の各種の炭
素質物質、遷移金属複合酸化物等を挙げることができ
る。スルトン化合物としては、以下に示す1,3−プロ
パンスルトン、1,4−ブタンスルトンを挙げることが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION As the positive electrode of the lithium secondary battery of the present invention, it is preferable to use a transition metal composite oxide containing lithium, which can be doped and dedoped with lithium. Specifically, lithium cobaltate (LiC
oO 2 ), lithium transition metal oxides such as lithium manganate (LiMn 2 O 4 ) and lithium nickelate (LiNiO 2 ). Among them, when lithium manganate is used, A particularly great effect can be expected because the dissolution of manganese can be suppressed. For the negative electrode, natural graphite, artificial graphite,
Examples include graphitic carbon materials such as graphitized mesocarbon microbeads and graphitized carbon fibers, various carbonaceous materials such as graphite precursor carbon, and transition metal composite oxides. Examples of the sultone compound include 1,3-propane sultone and 1,4-butane sultone shown below.

【0011】[0011]

【化1】 Embedded image

【0012】スルトン化合物の利用形態としては、スル
トン化合物を電解液として用いる場合、およびスルトン
化合物を電解液に混合する方法が挙げられる。スルトン
化合物を電解液として使用する場合には、スルトン化合
物に支持電解質として、LiClO4、LiPF6、Li
AsF6、LiSbF6、LiBF4、LiB(C
654、LiSO3CF3、LiN(SO2CF32、L
iN(SO2CF2CF32からなる群から選ばれる少な
くとも1種を電解液に溶解することによって調製する。
The sultone compound can be used in a case where the sultone compound is used as an electrolyte and a method in which the sultone compound is mixed with the electrolyte. When a sultone compound is used as an electrolyte, LiClO 4 , LiPF 6 , Li
AsF 6 , LiSbF 6 , LiBF 4 , LiB (C
6 H 5) 4, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, L
It is prepared by dissolving at least one selected from the group consisting of iN (SO 2 CF 2 CF 3 ) 2 in an electrolytic solution.

【0013】また、他の電解液に混合する場合には、ス
ルトン化合物と1,2−ジメトキシエタン、1,2−ジ
エトキシエタン、エチレンカーボネート、プロピレンカ
ーボネート、γ−ブチロラクトン、テトラヒドロフラ
ン、1,3−ジオキソラン、4−メチル−1,3−ジオ
キソラン、スルホランなどの有機溶媒の少なくとも1種
を混合した混合溶媒に、スルトン化合物を電解液として
単独で用いる場合と同様に、支持電解質として、LiC
lO4、LiPF6、LiAsF6、LiSbF6、LiB
4、LiB(C654、LiSO3CF3、LiN(S
2CF32、LiN(SO2CF2CF32などの電解
質の少なくとも1種以上溶解することによって調製す
る。
When mixed with another electrolytic solution, a sultone compound and 1,2-dimethoxyethane, 1,2-diethoxyethane, ethylene carbonate, propylene carbonate, γ-butyrolactone, tetrahydrofuran, As in the case of using a sultone compound alone as an electrolyte in a mixed solvent obtained by mixing at least one of organic solvents such as dioxolan, 4-methyl-1,3-dioxolan, and sulfolane, LiC is used as a supporting electrolyte.
lO 4, LiPF 6, LiAsF 6 , LiSbF 6, LiB
F 4 , LiB (C 6 H 5 ) 4 , LiSO 3 CF 3 , LiN (S
It is prepared by dissolving at least one or more kinds of electrolytes such as O 2 CF 3 ) 2 and LiN (SO 2 CF 2 CF 3 ) 2 .

【0014】スルトン化合物を有機溶媒の混合物として
プロピレンカーボネートに混合して用いる場合には、プ
ロピレンカーボネートの黒鉛表面での分解を防止するこ
とができるのでとくに好ましい。
It is particularly preferable to use the sultone compound as a mixture of an organic solvent in a mixture with propylene carbonate, since the decomposition of propylene carbonate on the graphite surface can be prevented.

【0015】本発明において、スルトン化合物を他の電
解液と混合して用いる場合には、1,3−プロパンスル
トン、1.4−ブタンスルトンの少なくともいずれか一
種が電解液の全重量中に0.1〜9重量%とすることが
好ましく、0.1〜5重量%とすることが好ましく、
0.1重量%より少なくなると、充放電サイクル特性を
向上させる効果が充分に発揮されなくなる。
In the present invention, when the sultone compound is used in a mixture with another electrolyte, at least one of 1,3-propane sultone and 1.4-butane sultone is contained in an amount of 0.1% in the total weight of the electrolyte. 1 to 9% by weight, preferably 0.1 to 5% by weight,
If the content is less than 0.1% by weight, the effect of improving the charge / discharge cycle characteristics cannot be sufficiently exhibited.

【0016】本発明の電池の一例を図1に示す。図1
は、厚みの薄い角柱状の角型電池1の一部を切り欠いた
斜視図である。角型電池は、円筒型電池と同様にセパレ
ータ2を介在させて正極側集電体3に正極活物質を塗布
し、負極側集電体4に負極活物質を塗布して巻回して発
電要素からなるジェリーロール5を作製して電池缶6内
に収容し、電解液を注液し、上部の電極ヘッダ7を電池
缶6に溶接することによって電池を密閉し、充電した後
に電池として使用される。
FIG. 1 shows an example of the battery of the present invention. FIG.
FIG. 1 is a perspective view of a prismatic battery 1 having a thin prism and a part of which is cut away. The prismatic battery is, similarly to the cylindrical battery, coated with a positive electrode active material on a positive electrode current collector 3 with a separator 2 interposed therebetween, and coated with a negative electrode active material on a negative electrode current collector 4 and wound. A jelly roll 5 made of is made and housed in a battery can 6, an electrolytic solution is injected, the upper electrode header 7 is welded to the battery can 6 to seal the battery, and the battery is used after being charged. You.

【0017】[0017]

【実施例】以下に本発明の実施例を示し、本発明を説明
する。 実施例1 幅が5.5cm、長さ66cmの厚さ20μmのアルミ
ニウム箔の両面にスピネル構造を有するマンガン酸リチ
ウム(Li1+XMn2+X4 )粉末92重量部、カーボン
ブラック5重量部、ポリフッ化ビニリデン3重量部から
なる混合物を、アルミニウム箔を含む乾燥後の厚みが1
78μmとなるように塗布して正極とした。負極は、幅
が5.75cm、長さ73.5cmの厚さ10μmの銅
箔に、黒鉛化メソカーボンマイクロビーズ(大阪ガス
製)94重量部、ポリフッ化ビニリデン6重量部からな
る混合物を銅箔を含む乾燥後の厚みが124μmとなる
ように塗布して乾燥して作製した。正極および負極を微
孔性ポリプロピレン膜を介して積層して、渦巻状に巻回
して発電要素を作製して電池缶に収容して図1と同様の
電池を作製した。電解液として、プロピレンカーボネー
ト5容量部、エチレンカーボネート30容量部、ジエチ
ルカーボネート65容量部からなる混合溶媒に、濃度
1.0mol/lとなるようにLiPF6 を溶解して作
製した電解液中に1,3−プロパンスルトンの含有量が
3重量%となるように添加して電解液を作製して使用し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below by showing embodiments of the present invention. Example 1 92 parts by weight of lithium manganate (Li 1 + X Mn 2 + X O 4 ) powder having a spinel structure on both sides of an aluminum foil having a width of 5.5 cm and a length of 66 cm and a thickness of 20 μm, and 5 parts by weight of carbon black Parts, a mixture consisting of 3 parts by weight of polyvinylidene fluoride, having a thickness of 1 after drying containing aluminum foil.
It was applied to a thickness of 78 μm to form a positive electrode. The negative electrode is a copper foil having a mixture of 94 parts by weight of graphitized mesocarbon microbeads (manufactured by Osaka Gas) and 6 parts by weight of polyvinylidene fluoride on a copper foil having a width of 5.75 cm and a length of 73.5 cm and a thickness of 10 μm. And dried so as to have a dry thickness of 124 μm. The positive electrode and the negative electrode were laminated with a microporous polypropylene film interposed therebetween, spirally wound to produce a power generating element, and housed in a battery can to produce a battery similar to that of FIG. As an electrolytic solution, 1 part of an electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent composed of 5 parts by volume of propylene carbonate, 30 parts by volume of ethylene carbonate, and 65 parts by volume of diethyl carbonate was used. , 3-propane sultone was added so as to have a content of 3% by weight to prepare and use an electrolytic solution.

【0018】(充電方法)作製したリチウムイオン二次
電池を、4.2Vまで定電流で充電し、4.2Vから定
電圧充電に切り替えて定電流充電開始からの総充電時間
が2.5時間で充電を終了した。 (保存容量試験)充電直後、および20℃で4週間保存
後の電池容量を放電終止電圧を3Vとして0.2Cの放
電率で放電して電池容量を測定した。
(Charging Method) The produced lithium ion secondary battery was charged with a constant current up to 4.2 V, and switched from 4.2 V to a constant voltage charge, and the total charging time from the start of the constant current charging was 2.5 hours. To finish charging. (Storage capacity test) Immediately after charging and after storage at 20 ° C for 4 weeks, the battery capacity was measured by discharging at a discharge rate of 0.2 C with a discharge end voltage of 3 V.

【0019】(サイクル試験)充電後、20℃で1週間
保存した電池を、20℃および45℃において1C
(1.6A)の放電率で放電した後に、充電し1Cの放
電率で放電を繰り返すサイクル試験を行い、10サイク
ル目の放電容量に対する100サイクル目の放電容量
を、表1において100分率で示した。また、放電容量
の変化を図2に示した。図2(A)は、20℃での放電
容量の変化を示す図であり、図2(B)は、45℃での
放電容量の変化を示す。
(Cycle test) After charging, the battery stored at 20 ° C. for 1 week was subjected to 1C at 20 ° C. and 45 ° C.
After discharging at a discharge rate of (1.6A), a cycle test was repeated in which the battery was charged and discharged at a discharge rate of 1C, and the discharge capacity at the 100th cycle with respect to the discharge capacity at the 10th cycle was 100% in Table 1. Indicated. FIG. 2 shows the change in the discharge capacity. FIG. 2A shows a change in discharge capacity at 20 ° C., and FIG. 2B shows a change in discharge capacity at 45 ° C.

【0020】実施例2 電解液をプロピレンカーボネート10容量部、エチレン
カーボネート30容量部、ジエチルカーボネート60容
量部からなる混合溶媒に、濃度が1.0mol/lとな
るようにLiPF6 を溶解し、さらに1,3−プロパン
スルトンを電解液中の含有量が3重量%となるように添
加した電解液を使用した点を除き実施例1と同様に電池
を作製して同様に特性を評価した。
Example 2 LiPF 6 was dissolved in a mixed solvent consisting of 10 parts by volume of propylene carbonate, 30 parts by volume of ethylene carbonate, and 60 parts by volume of diethyl carbonate so as to have a concentration of 1.0 mol / l. A battery was prepared in the same manner as in Example 1, except that 1,3-propane sultone was used so that the content in the electrolyte was 3% by weight, and the characteristics were evaluated in the same manner.

【0021】比較例1 電解液をエチレンカーボネート30容量部、ジエチルカ
ーボネート70容量部からなる混合溶媒に、支持電解質
として濃度が1.0mol/lとなるようにLiPF6
を溶解して作製した電解液を使用した点を除き実施例1
と同様に電池を作製して同様に特性を評価した。
COMPARATIVE EXAMPLE 1 LiPF 6 was added to a mixed solvent of 30 parts by volume of ethylene carbonate and 70 parts by volume of diethyl carbonate so that the concentration of the electrolyte was 1.0 mol / l as a supporting electrolyte.
Example 1 except that an electrolytic solution prepared by dissolving
A battery was prepared in the same manner as in the above, and the characteristics were similarly evaluated.

【0022】[0022]

【表1】 電池容量(mAh) 100サイクル/10サイクル電池容量変化(%) 充電直後 4週間保存後 20℃ 45℃ 実施例1 1761 1685 95.3 80.1 実施例2 1754 1663 95.0 80.0 比較例1 1702 1634 95.2 74.5Table 1 Battery capacity (mAh) 100 cycle / 10 cycle battery capacity change (%) Immediately after charging After storage for 4 weeks 20 ° C 45 ° C Example 1 1761 1685 95.3 80.1 Example 2 1754 1663 95.0 80 0.0 Comparative Example 1 1702 1634 95.2 74.5

【0023】実施例3 電解液として、エチレンカーボネートとジエチルカーボ
ネートを体積比3:7の比率で混合した混合溶媒に、濃
度1.0mol/lとなるようにLiPF6 を添加し、
さらに、1,3−プロパンスルトンをその含有量が1重
量%となるように添加した電解液を使用した点を除き、
実施例1と同様にして作製したリチウムイオン二次電池
を、実施例1と同様の条件で60℃で100回の充放電
を繰り返した後に、電池から電解液を取り出して電解液
中のマンガンの濃度をICP発光分光分析装置で測定し
たところ、マンガン濃度は8ppmであった。
Example 3 As an electrolytic solution, LiPF 6 was added to a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7 so as to have a concentration of 1.0 mol / l.
Further, except that an electrolytic solution to which 1,3-propane sultone was added so as to have a content of 1% by weight was used.
A lithium ion secondary battery manufactured in the same manner as in Example 1 was repeatedly charged and discharged 100 times at 60 ° C. under the same conditions as in Example 1, and then the electrolytic solution was taken out of the battery to remove manganese in the electrolytic solution. When the concentration was measured with an ICP emission spectrometer, the manganese concentration was 8 ppm.

【0024】比較例2 1,3−プロパンスルトンを用いなかった点を除き、実
施例2と同様にして電池を作製して充放電試験を行い、
電解液中のマンガン濃度を測定したところ、23ppm
であった。
Comparative Example 2 A battery was prepared and subjected to a charge / discharge test in the same manner as in Example 2, except that 1,3-propane sultone was not used.
When the manganese concentration in the electrolyte was measured, it was 23 ppm
Met.

【0025】[0025]

【発明の効果】本発明のリチウムイオン二次電池は、電
解液中にスルトン化合物を添加したことによって、高温
度で保存した後の電池容量の減少率が小さく、また黒鉛
を負極とした場合には、プロピレンカーボネートの分解
を減少することができ、また正極活物質としてマンガン
酸リチウムを用いた場合には、高温での電解液への溶出
量が少なくすることができるので、電池容量の低下が小
さく、サイクル寿命の長い電池を得ることができる。
According to the lithium ion secondary battery of the present invention, by adding a sultone compound to the electrolyte, the reduction rate of the battery capacity after storage at a high temperature is small, and when the graphite is used as the negative electrode, Can reduce the decomposition of propylene carbonate, and when lithium manganate is used as the positive electrode active material, the amount of elution into the electrolytic solution at high temperatures can be reduced, so that the battery capacity decreases. A small battery having a long cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウムイオン電池の一例を説明する一部を切
り欠いた斜視図である。
FIG. 1 is a partially cutaway perspective view illustrating an example of a lithium ion battery.

【図2】本発明の実施例および比較例の電池容量の変化
を説明する図である。
FIG. 2 is a diagram illustrating a change in battery capacity according to an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1…角型電池、2…セパレータ、3…正極側集電体、4
…負極側集電体、5…ジェリーロール、6…電池缶、7
…電極ヘッダ
DESCRIPTION OF SYMBOLS 1 ... Square battery, 2 ... Separator, 3 ... Positive side collector, 4
... negative electrode side current collector, 5 ... jelly roll, 6 ... battery can, 7
… Electrode header

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一 神奈川県横浜市港北区新横浜2−5−5 日本モリエナジー株式会社内 (72)発明者 太田 智行 東京都港区芝5−7−1 日本電気株式会 社内 (72)発明者 粂内 友一 東京都港区芝5−7−1 日本電気株式会 社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazu Sato 2-5-5 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa Prefecture Within Mori Energy Japan Co., Ltd. (72) Tomoyuki Ota 5-7-1 Shiba, Minato-ku, Tokyo Japan NEC Corporation In-house (72) Inventor Yuichi Kumeuchi 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation In-house

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンをドープおよび脱ドープ
する正極および負極を有するリチウムイオン二次電池に
おいて、スルトン化合物を電解液、もしくは電解液の一
部に添加したことを特徴とするリチウムイオン二次電
池。
1. A lithium ion secondary battery having a positive electrode and a negative electrode for doping and undoping lithium ions, wherein a sultone compound is added to an electrolytic solution or a part of the electrolytic solution. .
【請求項2】 スルトン化合物が1,3−プロパンスル
トン、1,4−ブタンスルトンの少なくとも一種である
ことを特徴とする請求項1記載のリチウムイオン二次電
池。
2. The lithium ion secondary battery according to claim 1, wherein the sultone compound is at least one of 1,3-propane sultone and 1,4-butane sultone.
【請求項3】 正極活物質として、コバルト酸リチウ
ム、マンガン酸リチウム、ニッケル酸リチウムから選ば
れる少なくとも1種を用いたことを特徴とする請求項1
または2のいずれか1項に記載のリチウムイオン二次電
池。
3. The method according to claim 1, wherein at least one selected from the group consisting of lithium cobaltate, lithium manganate and lithium nickelate is used as the positive electrode active material.
Or the lithium ion secondary battery according to any one of 2.
【請求項4】 電解液としてプロピレンカーボネートを
用いたことを特徴とする請求項1ないし3のいずれかに
1項に記載のリチウムイオン二次電池。
4. The lithium ion secondary battery according to claim 1, wherein propylene carbonate is used as the electrolyte.
【請求項5】 負極として黒鉛質の炭素材料を用いたこ
とを特徴とする請求項1ないし4のいずれか1項に記載
のリチウムイオン二次電池。
5. The lithium ion secondary battery according to claim 1, wherein a graphite carbon material is used as the negative electrode.
JP10148790A 1998-05-29 1998-05-29 Lithium-ion secondary battery Pending JPH11339850A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10148790A JPH11339850A (en) 1998-05-29 1998-05-29 Lithium-ion secondary battery
KR1019990019488A KR19990088654A (en) 1998-05-29 1999-05-28 lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148790A JPH11339850A (en) 1998-05-29 1998-05-29 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11339850A true JPH11339850A (en) 1999-12-10

Family

ID=15460760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148790A Pending JPH11339850A (en) 1998-05-29 1998-05-29 Lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JPH11339850A (en)
KR (1) KR19990088654A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055830A (en) * 1999-12-13 2001-07-04 안복현 Nonaqueous battery electrolyte
JP2001307773A (en) * 2000-04-19 2001-11-02 Gs-Melcotec Co Ltd Nonaqueous electrolyte battery
JP2002170576A (en) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte cell
US6620553B2 (en) 2000-07-10 2003-09-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
EP1394888A1 (en) * 2002-08-29 2004-03-03 NEC Corporation Electrolyte solution for secondary battery and secondary battery using the same
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
WO2005117197A1 (en) 2004-05-28 2005-12-08 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
WO2010016520A1 (en) 2008-08-06 2010-02-11 三井化学株式会社 Nonaqueous electrolyte solution and lithium secondary battery
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
US7709155B2 (en) 2003-05-29 2010-05-04 Tdk Corporation Nonaqueous electrolytic solution and lithium-ion secondary battery
US8119292B2 (en) 2005-09-15 2012-02-21 Lg Chem, Ltd. Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
US8349502B2 (en) 2006-09-20 2013-01-08 Lg Chem, Ltd. Additive for non-aqueous electrolyte and secondary battery using the same
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US8435680B2 (en) 2009-10-01 2013-05-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
US9583789B2 (en) 2012-06-28 2017-02-28 Nec Corporation Non-aqueous electrolyte secondary battery
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203108B2 (en) 2011-11-14 2015-12-01 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR101941401B1 (en) 2018-02-07 2019-01-22 동우 화인켐 주식회사 Electrolyte Composition and Secondary Battery Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (en) * 1986-10-16 1988-05-07 Hitachi Maxell Ltd Lithium secondary battery
JPH1050342A (en) * 1996-08-01 1998-02-20 Sony Corp Non-aqueous electrolyte secondary battery
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2000003725A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (en) * 1986-10-16 1988-05-07 Hitachi Maxell Ltd Lithium secondary battery
JPH1050342A (en) * 1996-08-01 1998-02-20 Sony Corp Non-aqueous electrolyte secondary battery
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2000003725A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055830A (en) * 1999-12-13 2001-07-04 안복현 Nonaqueous battery electrolyte
JP2001307773A (en) * 2000-04-19 2001-11-02 Gs-Melcotec Co Ltd Nonaqueous electrolyte battery
US6620553B2 (en) 2000-07-10 2003-09-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
JP2002170576A (en) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte cell
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP1394888A1 (en) * 2002-08-29 2004-03-03 NEC Corporation Electrolyte solution for secondary battery and secondary battery using the same
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
US7709155B2 (en) 2003-05-29 2010-05-04 Tdk Corporation Nonaqueous electrolytic solution and lithium-ion secondary battery
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
JP4697382B2 (en) * 2003-11-11 2011-06-08 日本電気株式会社 Nonaqueous electrolyte secondary battery
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
US7629085B2 (en) 2004-05-28 2009-12-08 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery
WO2005117197A1 (en) 2004-05-28 2005-12-08 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
US8119292B2 (en) 2005-09-15 2012-02-21 Lg Chem, Ltd. Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
US8349502B2 (en) 2006-09-20 2013-01-08 Lg Chem, Ltd. Additive for non-aqueous electrolyte and secondary battery using the same
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
WO2010016520A1 (en) 2008-08-06 2010-02-11 三井化学株式会社 Nonaqueous electrolyte solution and lithium secondary battery
US9130243B2 (en) 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery
US8435680B2 (en) 2009-10-01 2013-05-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US10050304B2 (en) 2011-07-07 2018-08-14 Sumitomo Seika & Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US9583789B2 (en) 2012-06-28 2017-02-28 Nec Corporation Non-aqueous electrolyte secondary battery
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
US10615456B2 (en) 2015-11-06 2020-04-07 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20200039691A (en) 2017-08-08 2020-04-16 스미토모 세이카 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Also Published As

Publication number Publication date
KR19990088654A (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JPH11339850A (en) Lithium-ion secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
US20080292959A1 (en) Positive Electrode and Non-Aqueous Electrolyte Secondary Battery Using the Same
CN101483262A (en) Battery
JP2001222995A (en) Lithium ion secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
KR20180086141A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP2002151144A (en) Lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2005294028A (en) Lithium secondary battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2001126760A (en) Nonaqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP5119594B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees