FR3027987A1 - DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE - Google Patents

DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE Download PDF

Info

Publication number
FR3027987A1
FR3027987A1 FR1460481A FR1460481A FR3027987A1 FR 3027987 A1 FR3027987 A1 FR 3027987A1 FR 1460481 A FR1460481 A FR 1460481A FR 1460481 A FR1460481 A FR 1460481A FR 3027987 A1 FR3027987 A1 FR 3027987A1
Authority
FR
France
Prior art keywords
damping device
elastic
blade
coupling member
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1460481A
Other languages
French (fr)
Other versions
FR3027987B1 (en
Inventor
Olivier Marechal
Maxence Boitelle
Roel Verhoog
Giovanni Grieco
Matthieu Malley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Embrayages SAS
Original Assignee
Valeo Embrayages SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages SAS filed Critical Valeo Embrayages SAS
Priority to FR1460481A priority Critical patent/FR3027987B1/en
Priority to CN201580071063.9A priority patent/CN107110283A/en
Priority to PCT/EP2015/074422 priority patent/WO2016066508A1/en
Publication of FR3027987A1 publication Critical patent/FR3027987A1/en
Application granted granted Critical
Publication of FR3027987B1 publication Critical patent/FR3027987B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1214Folded springs, i.e. made of band-like material folded in an enclosing space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1215Leaf springs, e.g. radially extending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1421Metallic springs, e.g. coil or spiral springs
    • F16F15/1428Metallic springs, e.g. coil or spiral springs with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

L'invention concerne un dispositif d'amortissement des vibrations pour une chaîne de transmission de véhicule automobile, le dispositif comportant : - un premier et un second éléments mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; et un - un organe élastique d'accouplement destiné à s'opposer à la rotation relative du premier élément par rapport au second élément ; l'organe élastique d'accouplement (10) comprend un corps et au moins une lame élastique (23) se développant depuis le corps (22) vers une extrémité distale libre et comprenant une portion principale (30) coopérant avec un élément d'appui (13, 113) associé au second élément (9, 104) ; - la portion proximale coudée (29) de la lame élastique (23) est recourbée de telle sorte que la portion principale (30) de la lame élastique (23) présente une direction d'épaisseur comportant une composante orthogonale à l'axe X.The invention relates to a vibration damping device for a motor vehicle transmission chain, the device comprising: - a first and a second element movable in rotation relative to one another about an axis of rotation X; and a resilient coupling member for opposing relative rotation of the first member relative to the second member; the resilient coupling member (10) comprises a body and at least one resilient blade (23) extending from the body (22) towards a free distal end and comprising a main portion (30) cooperating with a bearing member (13, 113) associated with the second element (9, 104); - The bent proximal portion (29) of the elastic blade (23) is bent so that the main portion (30) of the elastic blade (23) has a direction of thickness having a component orthogonal to the X axis.

Description

Domaine technique L'invention se rapporte au domaine des dispositifs d'amortissement des vibrations destinés à équiper les transmissions de véhicule automobile.TECHNICAL FIELD The invention relates to the field of vibration damping devices intended to equip motor vehicle transmissions.

L'invention se rapporte plus particulièrement aux dispositifs, à lames élastiques, d'amortissement des vibrations. Etat de la technique Les transmissions de véhicule automobile sont généralement équipées d'un dispositif d'amortissement permettant de filtrer les vibrations en amont de la boîte de vitesses de manière à éviter des chocs, bruits ou nuisances sonores particulièrement indésirables. De telles vibrations peuvent notamment être engendrées par les acyclismes du moteur provoqués par les explosions se succédant dans les cylindres du moteur ou par un phénomène dit de broutement se manifestant dans la chaîne de transmission lors des phases de glissement de l'embrayage. Les dispositifs d'amortissement des vibrations sont équipés d'un ou de plusieurs organes élastiques d'accouplement permettant de transmettre un couple et d'amortir les acyclismes de rotation entre deux éléments mobiles en rotation l'un par rapport à l'autre. De tels organes élastiques d'accouplement peuvent notamment être constitués d'éléments équipés de bras ou de lames élastiquement déformables, tels que décrits dans le document FR2938030. Le document FR2938030 divulgue un disque d'embrayage équipé d'un pré-amortisseur comportant un organe élastique d'accouplement constitué d'une rondelle interne liée en rotation au moyeu du disque d'embrayage et de deux bras incurvés, élastiquement déformables. Les deux bras incurvés sont raccordés à la rondelle par une première extrémité et viennent en appui par leur seconde extrémité sur une surface de guidage circonférentielle liée en rotation à un voile annulaire formant un élément de sortie de l'amortisseur principal du disque d'embrayage. Les bras incurvés permettent la transmission du couple entre le voile annulaire et le moyeu du disque d'embrayage et permettent en se déformant d'amortir les acyclismes de rotation. Les bras sont en appui glissant contre la surface de guidage. Il est donc nécessaire de disposer d'une surface de contact suffisamment étendue entre les bras et la surface de guidage de manière à répartir la pression sur une surface importante et limiter ainsi l'usure de l'organe élastique d'accouplement et/ou de la surface de guidage. L'organe élastique d'accouplement est formé par découpage d'une tôle 5 d'acier. Dès lors, afin de disposer de surfaces de contact entre les bras et la surface de guidage suffisamment larges, l'organe élastique d'accouplement est découpé dans une tôle d'acier présentant une épaisseur suffisamment importante. Toutefois, l'utilisation d'une tôle d'acier de large épaisseur conduit à une augmentation de l'encombrement de l'organe élastique d'accouplement, à l'augmentation de son 10 inertie et de son coût. L'organe élastique d'accouplement du document FR2938030 n'est donc pas totalement satisfaisant. Objet de l'invention Une idée à la base de l'invention est de proposer un dispositif 15 d'amortissement des vibrations à lame remédiant à ces problèmes. Selon un mode de réalisation, l'invention fournit un dispositif d'amortissement des vibrations pour une chaîne de transmission de véhicule automobile, le dispositif comportant : un premier et un second éléments mobiles en rotation l'un par rapport à l'autre 20 autour d'un axe de rotation X; un organe élastique d'accouplement pour coupler en rotation le premier élément et le second élément; l'organe élastique d'accouplement comprenant un corps solidarisé en rotation au premier élément et au moins une lame élastique se développant depuis le corps 25 de l'organe élastique d'accouplement vers une extrémité distale libre de la lame; la lame élastique comprenant, depuis le corps de l'organe élastique d'accouplement vers l'extrémité distale libre, une portion proximale et une portion principale coopérant avec un élément d'appui associé au second élément, de telle sorte que, pour un débattement angulaire entre le premier et le second 30 éléments par rapport à une position angulaire de repos, l'élément d'appui exerce un effort de flexion sur la lame élastique produisant une force de réaction apte à rappeler les premier et second éléments vers ladite position angulaire de repos ; le dispositif d'amortissement étant remarquable en ce que la portion proximale de la lame élastique est recourbée de telle sorte que la portion principale de la lame élastique présente une direction d'épaisseur comportant une composante orthogonale à l'axe X. Ainsi, grâce à une telle orientation de la portion principale de la lame élastique, la zone de contact entre la lame élastique et l'élément d'appui est suffisamment étendue pour répartir la pression de manière satisfaisante et cela sans pour autant que l'organe élastique d'accouplement présente une épaisseur importante. Selon d'autres modes de réalisation avantageux, un tel dispositif d'amortissement peut présenter une ou plusieurs des caractéristiques suivantes : - lame élastique se développe circonférentiellement depuis le corps de l'organe élastique d'accouplement vers une extrémité distale libre de la lame - le corps de l'organe élastique d'accouplement présente au moins une portion s'étendant dans un plan orthogonal à l'axe X et présente une direction d'épaisseur s'étendant selon une direction axiale parallèle à l'axe X. - la portion proximale de la lame présente au moins une portion s'étendant dans un plan orthogonal à l'axe X et présente une direction d'épaisseur s'étendant selon une direction axiale parallèle à l'axe X. - la portion principale de la lame élastique présente une largeur supérieure à l'épaisseur du corps au niveau de sa portion s'étendant dans un plan orthogonal à l'axe X. - la direction d'épaisseur de la portion principale de la lame élastique est inclinée d'un angle inférieur à 45° par rapport à un plan orthogonal à l'axe X et de préférence, s'étend dans un plan orthogonal à l'axe X. - l'organe élastique d'accouplement est formé dans une tôle métallique et la portion proximale de la lame élastique est recourbée à 90° de telle sorte que la direction d'épaisseur de la portion principale de la lame élastique soit perpendiculaire à la direction d'épaisseur du corps ou d'une portion du corps. - l'élément d'appui est disposé radialement à l'extérieur de la lame élastique. - La force de réaction de la lame sur l'élément d'appui comporte une composante radiale - la portion principale de la lame élastique comporte, à proximité de l'extrémité distale libre, une portion arquée définissant une surface suiveuse de came coopérant par frottement avec une surface de came portée par l'élément d'appui. - l'organe élastique d'accouplement comporte une pluralité de lames élastiques se développant depuis le corps de l'organe élastique d'accouplement et comportant chacune une portion principale coopérant avec l'élément d'appui et présentant une direction d'épaisseur comportant une composante s'étendant dans un plan orthogonal à l'axe X. - le corps est un corps annulaire solidarisé en rotation au premier élément. - le corps annulaire est prolongé au niveau de son bord interne par une jupe cylindrique s'étendant axialement qui est emmanchée à force sur un moyeu du premier élément. - le corps annulaire comporte des cannelures coopérant avec des cannelures correspondantes formées sur le premier élément. - l'élément d'appui est formé par un flasque annulaire qui est solidarisé au second élément et présente une cavité de logement de l'organe élastique d'accouplement. - la bordure périphérique de la cavité de logement de l'organe élastique d'accouplement comporte une pluralité d'échancrures juxtaposées continument les unes à la suite des autres autour de l'axe X formant des surfaces de came dans la bordure périphérique aptes à coopérer avec une surface suiveuse de came portée par la lame élastique. - l'extrémité distale libre est capable de se déplacer de manière à ce que la distance entre cette extrémité et l'axe de rotation X varie. - La portion proximale de la lame élastique est coudée. - Le corps de l'organe élastique d'accouplement et les lames sont formés d'un seul tenant. - la portion proximale coudée présente au niveau de sa base une largeur plus importante que la largeur de la portion principale de la lame. - le dispositif comporte une pluralité d'organes élastiques d'accouplement. - Selon un mode de réalisation, la surface de came est disposée sur la lame et la surface suiveuse de came est disposée sur l'élément d'appui.The invention relates more particularly to devices with resilient blades for damping vibrations. State of the art Motor vehicle transmissions are generally equipped with a damping device for filtering vibrations upstream of the gearbox so as to avoid shock, noise or noise particularly undesirable. Such vibrations can in particular be generated by the motor acyclisms caused by the successive explosions in the engine cylinders or by a so-called grazing phenomenon occurring in the transmission chain during the sliding phases of the clutch. The vibration damping devices are equipped with one or more resilient coupling members for transmitting a torque and damping rotation acyclisms between two elements movable in rotation relative to each other. Such elastic coupling members may in particular consist of elements equipped with arms or elastically deformable blades, as described in document FR2938030. The document FR2938030 discloses a clutch disc equipped with a pre-damper comprising a resilient coupling member consisting of an inner washer rotatably connected to the hub of the clutch disc and two curved arms, elastically deformable. The two curved arms are connected to the washer at one end and bear at their second end on a circumferential guide surface rotatably connected to an annular web forming an output member of the main damper of the clutch disc. The curved arms allow the transmission of torque between the annular web and the hub of the clutch disc and allow deforming to dampen rotation acyclisms. The arms are in sliding abutment against the guide surface. It is therefore necessary to have a sufficiently wide contact surface between the arms and the guide surface so as to distribute the pressure over a large area and thus limit the wear of the elastic coupling member and / or the guide surface. The resilient coupling member is formed by cutting a sheet of steel. Therefore, in order to have sufficiently large contact surfaces between the arms and the guiding surface, the elastic coupling member is cut from a steel sheet having a sufficiently large thickness. However, the use of a thick steel sheet leads to an increase in the size of the elastic coupling member, the increase in its inertia and its cost. The elastic coupling member of the document FR2938030 is therefore not totally satisfactory. OBJECT OF THE INVENTION An idea underlying the invention is to propose a device 15 for damping blade vibrations that overcomes these problems. According to one embodiment, the invention provides a vibration damping device for a motor vehicle transmission chain, the device comprising: a first and a second element movable in rotation relative to one another 20 around an axis of rotation X; a resilient coupling member for rotatably coupling the first member and the second member; the elastic coupling member comprising a body rotationally secured to the first member and at least one resilient blade developing from the body of the resilient coupling member to a free distal end of the blade; the elastic blade comprising, from the body of the elastic coupling member towards the free distal end, a proximal portion and a main portion cooperating with a bearing element associated with the second element, so that, for a deflection angular between the first and the second 30 elements relative to an angular position of rest, the support element exerts a bending force on the elastic blade producing a reaction force able to recall the first and second elements to said angular position rest ; the damping device being remarkable in that the proximal portion of the elastic blade is bent so that the main portion of the elastic blade has a direction of thickness having a component orthogonal to the X axis. Thus, thanks to such an orientation of the main portion of the elastic blade, the contact area between the elastic blade and the support element is sufficiently extended to distribute the pressure satisfactorily and this without the elastic coupling member has a large thickness. According to other advantageous embodiments, such a damping device may have one or more of the following features: - elastic blade develops circumferentially from the body of the elastic coupling member to a free distal end of the blade - the body of the elastic coupling member has at least one portion extending in a plane orthogonal to the X axis and has a direction of thickness extending in an axial direction parallel to the X axis. proximal portion of the blade has at least one portion extending in a plane orthogonal to the X axis and has a direction of thickness extending in an axial direction parallel to the X axis. - the main portion of the blade elastic band has a width greater than the thickness of the body at its portion extending in a plane orthogonal to the axis X. - the thickness direction of the main portion of the elastic blade is inclined at an angle less than 45 ° with respect to a plane orthogonal to the X axis and preferably extends in a plane orthogonal to the X axis. - the elastic coupling member is formed in a metal sheet and the proximal portion of the elastic blade is bent at 90 ° so that the thickness direction of the main portion of the elastic blade is perpendicular to the thickness direction of the body or a portion of the body. the support element is arranged radially outside the elastic blade. - The reaction force of the blade on the bearing element comprises a radial component - the main portion of the elastic blade has, near the free distal end, an arcuate portion defining a cam follower surface cooperating by friction with a cam surface carried by the support member. the elastic coupling member comprises a plurality of elastic blades developing from the body of the elastic coupling member and each comprising a main portion cooperating with the bearing element and having a thickness direction comprising a component extending in a plane orthogonal to the axis X. - the body is an annular body secured in rotation to the first element. - The annular body is extended at its inner edge by an axially extending cylindrical skirt which is force-fitted on a hub of the first element. the annular body comprises splines cooperating with corresponding splines formed on the first element. - The support element is formed by an annular flange which is secured to the second element and has a housing cavity of the elastic coupling member. - The peripheral edge of the housing cavity of the elastic coupling member comprises a plurality of notches juxtaposed continuously one after the other around the axis X forming cam surfaces in the peripheral edge capable of cooperating. with a follower cam surface carried by the elastic blade. the free distal end is able to move so that the distance between this end and the axis of rotation X varies. - The proximal portion of the elastic blade is bent. - The body of the elastic coupling member and the blades are integrally formed. - The angled proximal portion has at its base a width greater than the width of the main portion of the blade. the device comprises a plurality of elastic coupling members. According to one embodiment, the cam surface is disposed on the blade and the follower cam surface is disposed on the support member.

Selon un mode de réalisation, l'invention fournit un disque d'embrayage comportant un moyeu destiné à être couplé en rotation à un arbre d'entrée d'une boîte des vitesses, des garnitures de friction, un disque externe portant les garnitures de friction accouplé en rotation au moyeu et un dispositif d'amortissement des vibrations précité.According to one embodiment, the invention provides a clutch disc having a hub to be rotatably coupled to an input shaft of a gearbox, friction linings, an outer disc bearing the friction linings. coupled in rotation to the hub and a vibration damping device mentioned above.

Selon un premier mode de réalisation, le premier élément du dispositif d'amortissement est formé par le moyeu du disque d'embrayage et le second élément du dispositif d'amortissement est formé par une masse d'inertie destinée à être montée de manière oscillante en rotation autour de l'axe X sur le moyeu du disque d'embrayage. Selon un second mode de réalisation, le premier élément du dispositif d'amortissement est formé par le moyeu du disque d'embrayage et le second élément du dispositif d'amortissement est formé par un voile du disque d'embrayage.According to a first embodiment, the first element of the damping device is formed by the hub of the clutch disk and the second element of the damping device is formed by a mass of inertia intended to be mounted oscillatingly in a manner. rotation about the X axis on the hub of the clutch disc. According to a second embodiment, the first element of the damping device is formed by the hub of the clutch disk and the second element of the damping device is formed by a web of the clutch disk.

Selon un mode de réalisation, le dispositif d'amortissement constitue un pré-amortisseur. Avantageusement, le disque d'embrayage comporte également un amortisseur principal disposé en série avec ledit pré-amortisseur. Selon un mode de réalisation, l'invention fournit un dispositif de transmission de couple comportant un élément d'entrée de couple, un élément de sortie de couple et un dispositif d'amortissement de vibrations précité dont l'organe élastique d'accouplement est disposé hors du chemin emprunté par le couple transmis entre l'élément d'entrée et l'élément de sortie. Selon un mode de réalisation, l'invention fournit un procédé de fabrication 20 d'un dispositif d'amortissement des vibrations précité, dans lequel la fabrication de l'organe élastique d'accouplement comporte les étapes suivantes : découper une tôle métallique de manière à former un corps et au moins une lame élastique comportant depuis le corps vers une extrémité distale libre, une portion proximale et une portion principale ; 25 replier la lame élastique de 90°, par rapport au corps, au niveau de sa portion proximale de telle sorte que la direction d'épaisseur de la portion principale de la lame élastique soit perpendiculaire à la direction d'épaisseur du corps. Selon un mode de réalisation, l'invention fournit également un véhicule automobile comportant un système d'amortissement précité. 30 L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux figures annexées. Sur ces figures : - La figure 1 est une vue en coupe d'un disque d'embrayage équipé d'un dispositif d'amortissement des vibrations à lames, de type batteur inertiel. - La figure 2 est une vue éclatée du dispositif d'amortissement des vibrations de la figure 1. - La figure 3 est une vue arrière du dispositif d'amortissement des vibrations de la figure 1, dans laquelle la masse d'inertie et l'organe élastique d'accouplement sont dans une position relative de repos. - La figure 4 est une vue arrière du dispositif d'amortissement des vibrations de la figure 1, dans laquelle la masse d'inertie et l'organe élastique d'accouplement sont dans une position relative de fin de course correspondant à une position des surfaces suiveuses de came à une extrémité des surfaces de came associées. - La figure 5 est une vue détaillée en perspective de l'organe élastique d'accouplement du premier mode de réalisation des figures 1 à 4. - La figure 6 est une vue détaillée d'une variante de réalisation de l'organe d'accouplement du dispositif d'amortissement des figures 1 à 5. - La figure 7 est une vue de face d'un disque d'embrayage équipé d'un amortisseur principal à ressorts hélicoïdaux et d'un pré-amortisseur constitué d'un dispositif d'amortissement des vibrations à lames. - La figure 8 est une vue de face du disque d'embrayage de la figure 7 dans laquelle l'une des rondelles de guidage n'a pas été représentée afin de permettre une visualisation des ressorts hélicoïdaux de l'amortisseur principal à ressorts hélicoïdaux et du pré-amortisseur. - La figure 9 est une vue en coupe selon IX-IX de la figure 7. - La figure 10 est une vue en perspective de l'organe élastique d'accouplement équipant le pré-amortisseur du disque d'embrayage représenté sur les figures 7 à 9. Description détaillée de modes de réalisation Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments du dispositif d'amortissement des vibrations. Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe X de rotation du dispositif d'amortissement déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe, l'orientation "circonférentielle" est dirigée orthogonalement à l'axe du dispositif d'amortissement et orthogonalement à la direction radiale. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à 5 l'axe X de rotation du dispositif d'amortissement, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie. Par ailleurs, les termes "arrière" AR et "avant" AV sont utilisés pour définir la position relative d'un élément par rapport à un autre selon la direction axiale, un élément destiné à être placé proche du moteur thermique étant désigné 10 par arrière et un élément destiné à être placé proche de la boîte de vitesses étant désigné par avant. Le dispositif d'amortissement des vibrations est destiné à être disposé dans la chaîne de transmission d'un véhicule automobile, entre le moteur à explosion et la boîte de vitesses. Il peut notamment être intégré à un volant moteur, à un double 15 volant amortisseur, à un mécanisme d'embrayage, à un embrayage de pontage d'un dispositif d'accouplement hydraulique ou à un disque d'embrayage. Selon un premier mode de réalisation représenté sur les figures 1 à 6, le dispositif d'amortissement des vibrations est un batteur inertiel. La masse d'inertie du batteur inertiel et l'organe élastique d'accouplement sont disposés hors du 20 chemin emprunté par le couple transmis par la chaîne de transmission. Le dispositif d'amortissement des vibrations est monté sur un disque d'embrayage 1, représenté sur la figure 1. Le disque d'embrayage 1 comporte un disque externe 2 portant des garnitures de friction 3, un voile annulaire 4 et un moyeu 5. Les garnitures de friction 3 sont fixées au disque externe 2, de part et 25 d'autre de celui-ci. Le disque externe 2 est fixé sur le voile annulaire 4 au moyen de rivets, non illustrés. La périphérie interne du voile annulaire 4 comporte une denture 6 qui engrène, sensiblement sans jeu avec une denture 7 ménagée sur une surface extérieure du moyeu 5. Le couple est ainsi transmis des garnitures de friction 3 au moyeu 5 par l'intermédiaire du disque externe 2 et du voile annulaire 4. Par ailleurs, 30 le moyeu 5 comporte des cannelures internes 8 destinées à coopérer avec des cannelures formées sur un arbre mené, tel qu'un arbre d'entrée d'une boîte de vitesses, non illustré. Un tel disque d'embrayage 1 est destiné à être disposé, dans la chaîne de transmission, entre un plateau de pression d'un mécanisme d'embrayage et un plateau de réaction formé par un volant moteur, solidaire en rotation du vilebrequin du moteur. Ainsi, en position embrayée, le plateau de pression serre les garnitures de friction 3 du disque d'embrayage 1 contre le plateau de réaction de manière à transmettre un couple du vilebrequin vers l'arbre d'entrée de la boîte de vitesses.According to one embodiment, the damping device constitutes a pre-damper. Advantageously, the clutch disc also comprises a main damper disposed in series with said pre-damper. According to one embodiment, the invention provides a torque transmission device comprising a torque input member, a torque output member and a vibration damping device mentioned above, the elastic coupling member of which is arranged off the path taken by the torque transmitted between the input element and the output element. According to one embodiment, the invention provides a method of manufacturing a vibration damping device, wherein the manufacture of the resilient coupling member comprises the steps of: cutting a metal sheet so as to forming a body and at least one elastic blade having from the body to a free distal end, a proximal portion and a main portion; Folding the elastic blade 90 ° relative to the body at its proximal portion so that the thickness direction of the main portion of the elastic blade is perpendicular to the thickness direction of the body. According to one embodiment, the invention also provides a motor vehicle comprising a damping system mentioned above. The invention will be better understood, and other objects, details, features, and advantages thereof will become more apparent in the following description of several particular embodiments of the invention, given for illustrative and non-illustrative purposes only. limiting, with reference to the appended figures. In these figures: - Figure 1 is a sectional view of a clutch disk equipped with a vibration damping device blades, inertial drummer type. FIG. 2 is an exploded view of the vibration damping device of FIG. 1. FIG. 3 is a rear view of the vibration damping device of FIG. 1, in which the mass of inertia and the elastic coupling member are in a relative position of rest. FIG. 4 is a rear view of the vibration damping device of FIG. 1, in which the mass of inertia and the elastic coupling member are in a relative end position corresponding to a position of the surfaces. cam followers at one end of the associated cam surfaces. FIG. 5 is a detailed perspective view of the elastic coupling member of the first embodiment of FIGS. 1 to 4. FIG. 6 is a detailed view of a variant embodiment of the coupling member. of the damping device of Figures 1 to 5. - Figure 7 is a front view of a clutch disc equipped with a main damper coil springs and a pre-damper consisting of a device of vibration damping. FIG. 8 is a front view of the clutch disc of FIG. 7 in which one of the guide washers has not been shown in order to allow visualization of the coil springs of the main coil spring damper and pre-damper. FIG. 9 is a sectional view along IX-IX of FIG. 7; FIG. 10 is a perspective view of the elastic coupling member equipping the pre-damper of the clutch disk shown in FIGS. to 9. Detailed Description of Embodiments In the description and the claims, the terms "external" and "internal" as well as the "axial" and "radial" orientations will be used to designate, according to the definitions given in the description, elements of the vibration damping device. By convention, the "radial" orientation is directed orthogonally to the X axis of rotation of the damping device determining the "axial" orientation and, from the inside towards the outside away from said axis, the "circumferential" orientation is directed orthogonally to the axis of the damping device and orthogonal to the radial direction. The terms "external" and "internal" are used to define the relative position of one element relative to another, with reference to the X axis of rotation of the damping device, an element close to the axis is thus described as internal as opposed to an external element located radially at the periphery. On the other hand, the terms "back" AR and "forward" AV are used to define the relative position of one element relative to another in the axial direction, an element intended to be placed close to the engine being designated by the rear. and an element intended to be placed close to the gearbox being designated by before. The vibration damping device is intended to be arranged in the transmission chain of a motor vehicle, between the combustion engine and the gearbox. It can in particular be integrated with a flywheel, a double damper flywheel, a clutch mechanism, a coupling clutch of a hydraulic coupling device or a clutch disc. According to a first embodiment shown in Figures 1 to 6, the vibration damping device is an inertial drummer. The mass of inertia of the inertial drummer and the elastic coupling member are arranged outside the path taken by the torque transmitted by the transmission chain. The vibration damping device is mounted on a clutch plate 1, shown in FIG. 1. The clutch disk 1 comprises an outer disk 2 bearing friction linings 3, an annular web 4 and a hub 5. The friction linings 3 are attached to the outer disk 2, on both sides thereof. The outer disk 2 is fixed on the annular web 4 by means of rivets, not shown. The inner periphery of the annular web 4 has a toothing 6 which meshes, substantially without play with a toothing 7 formed on an outer surface of the hub 5. The torque is thus transmitted friction linings 3 to the hub 5 via the outer disk 2 and the annular web 4. Furthermore, the hub 5 has internal grooves 8 for cooperating with splines formed on a driven shaft, such as an input shaft of a gearbox, not shown. Such a clutch disk 1 is intended to be disposed in the transmission chain, between a pressure plate of a clutch mechanism and a reaction plate formed by a flywheel, integral in rotation with the crankshaft of the engine. Thus, in the engaged position, the pressure plate tightens the friction linings 3 of the clutch disc 1 against the reaction plate so as to transmit a torque from the crankshaft to the input shaft of the gearbox.

Le dispositif d'amortissement des vibrations comporte une masse d'inertie 9 et un organe élastique d'accouplement 10. La masse d'inertie 9 est montée mobile en rotation sur le moyeu 5 autour de l'axe X. L'organe élastique d'accouplement 10 s'oppose à une rotation relative de la masse d'inertie 9 par rapport au moyeu 5,qui écarte la masse d'inertie de sa position angulaire relative de repos.The vibration damping device comprises a mass of inertia 9 and a resilient coupling member 10. The mass of inertia 9 is rotatably mounted on the hub 5 about the X axis. Coupling 10 opposes a relative rotation of the mass of inertia 9 relative to the hub 5, which separates the mass of inertia from its relative angular position of rest.

En relation avec la figure 2, l'on observe que la masse d'inertie 9 est une pièce métallique annulaire. La masse d'inertie 9 est réalisée dans un matériau présentant une densité supérieure à 2, tel que de l'acier. A titre d'exemple, la masse d'inertie présente, pour des applications de véhicule de tourisme, un moment d'inertie de l'ordre de 0.0005 à 0.01 kg.m2. La masse d'inertie pourra, par exemple, présenter un moment d'inertie de l'ordre de 0.001 kg.m2 pour une chaîne de transmission à boîte manuelle. Pour des applications de véhicule industriel, le moment d'inertie pourra être plus important, de l'ordre de 0.01 à 0.1 kg.m2, par exemple 0.05 kg.m2. La masse d'inertie 9 comporte une pluralité d'orifices 11 20 circonférentiellement réparties permettant le passage d'organes de fixation 12, tels que des rivets. Un flasque annulaire 13 comporte également une pluralité d'orifices 14 permettant le passage des organes de fixation 12 et venant en vis-à-vis des orifices 11 de la masse d'inertie 9, de sorte à assurer la fixation dudit flasque 25 annulaire 13 à la masse d'inertie 9. Le flasque annulaire 13 comporte une cavité 17, notamment représentée sur la figure 1, à l'intérieur de laquelle est reçu l'organe d'accouplement élastique 10. La cavité 17 est formée à l'intérieur d'une jupe 18 du flasque annulaire 13 s'étendant axialement à l'intérieur de la masse d'inertie 9. La cavité 17 est 30 bordée axialement vers l'avant par une joue 19 formant une surface de retenue de l'organe élastique d'accouplement 10 à l'intérieur de la cavité 17. Le flasque annulaire 13 forme ainsi une cassette de logement de l'organe élastique d'accouplement 10.With reference to FIG. 2, it can be observed that the mass of inertia 9 is an annular metal part. The mass of inertia 9 is made of a material having a density greater than 2, such as steel. By way of example, the mass of inertia has, for passenger vehicle applications, a moment of inertia of the order of 0.0005 to 0.01 kg.m2. The mass of inertia may, for example, have a moment of inertia of the order of 0.001 kg.m2 for a transmission chain manual transmission. For industrial vehicle applications, the moment of inertia may be greater, of the order of 0.01 to 0.1 kg.m2, for example 0.05 kg.m2. The mass of inertia 9 comprises a plurality of circumferentially distributed orifices 11 for the passage of fasteners 12, such as rivets. An annular flange 13 also has a plurality of orifices 14 permitting the passage of the fastening members 12 and coming opposite the orifices 11 of the inertia mass 9, so as to ensure the fixing of said annular flange 13 to the mass of inertia 9. The annular flange 13 comprises a cavity 17, in particular shown in Figure 1, inside which is received the elastic coupling member 10. The cavity 17 is formed inside a skirt 18 of the annular flange 13 extending axially inside the mass of inertia 9. The cavity 17 is lined axially towards the front by a cheek 19 forming a retaining surface of the elastic member in the cavity 17. The annular flange 13 thus forms a housing cassette of the elastic coupling member 10.

La joue 19 du flasque annulaire 13 est pourvue d'une ouverture centrale 15 à l'intérieur de laquelle est enfilé le moyeu 5 du disque d'embrayage 1. La périphérie annulaire 16 de l'ouverture centrale 15 forme une surface annulaire de centrage coopérant avec la périphérie extérieure du moyeu 5 de manière à assurer le centrage et le guidage en rotation de la masse d'inertie 9 par rapport au moyeu 5 du disque d'embrayage 1. Selon un mode de réalisation, le flasque annulaire 13 est réalisé dans un matériau plastique choisi en fonction du coefficient de frottement souhaité aux interfaces entre le flasque annulaire 13 et l'organe élastique d'accouplement 10. A titre d'exemple, le flasque annulaire 13 peut être réalisé en polyamide 6-6 ou en polyamide 4-6. Le dispositif d'amortissement des vibrations est attelé axialement sur le moyeu 5 par l'intermédiaire d'un organe de blocage, tel qu'un circlip élastique 20, reçu dans une gorge de fixation ménagée dans le moyeu 5. La joue 19 du flasque annulaire 13 est ainsi retenue contre le circlip élastique 20 de sorte à empêcher le dispositif d'amortissement des vibrations de se déplacer vers l'avant par rapport au moyeu 5. Par ailleurs, le moyeu 5 comporte un épaulement annulaire 21, représenté sur la figure 1, définissant une surface d'appui arrière de l'organe élastique d'accouplement 10 contre le moyeu 5.The flange 19 of the annular flange 13 is provided with a central opening 15 inside which is engaged the hub 5 of the clutch disc 1. The annular periphery 16 of the central opening 15 forms a cooperating annular centering surface. with the outer periphery of the hub 5 so as to ensure the centering and the rotational guidance of the mass of inertia 9 relative to the hub 5 of the clutch plate 1. According to one embodiment, the annular flange 13 is made in a plastic material selected according to the desired coefficient of friction at the interfaces between the annular flange 13 and the elastic coupling member 10. For example, the annular flange 13 may be made of polyamide 6-6 or polyamide 4 -6. The vibration damping device is axially coupled to the hub 5 by means of a locking member, such as an elastic circlip 20, received in a fixing groove in the hub 5. The cheek 19 of the flange The ring 13 is thus held against the elastic circlip 20 so as to prevent the vibration damping device from moving forwardly relative to the hub 5. Furthermore, the hub 5 comprises an annular shoulder 21, shown in FIG. 1, defining a rear bearing surface of the elastic coupling member 10 against the hub 5.

Comme représenté sur les figures 3, 4 et 5, l'organe élastique d'accouplement 10 comporte un corps annulaire 22 et une pluralité de lames élastiques 23. Le corps annulaire 22 comporte, au niveau de son bord interne, une jupe cylindrique 27 s'étendant axialement vers l'avant. La jupe cylindrique 27 est emmanchée à force sur le moyeu 5 de sorte à solidariser en rotation l'organe élastique d'accouplement 10 au moyeu 5. Selon un autre mode de réalisation, non représenté, le corps annulaire 22 est équipé de cannelures ou dentures destinées à coopérer avec des cannelures ou dentures de forme complémentaire ménagées sur la périphérie extérieure du moyeu 5, afin de solidariser en rotation l'organe élastique d'accouplement 10 au moyeu 5.As shown in FIGS. 3, 4 and 5, the elastic coupling member 10 comprises an annular body 22 and a plurality of resilient blades 23. The annular body 22 comprises, at its internal edge, a cylindrical skirt 27 extending axially forward. The cylindrical skirt 27 is force-fitted on the hub 5 so as to rotate the resilient coupling member 10 to the hub 5. According to another embodiment, not shown, the annular body 22 is equipped with splines or teeth. intended to cooperate with splines or toothing of complementary shape formed on the outer periphery of the hub 5, so as to fasten in rotation the elastic coupling member 10 to the hub 5.

Par ailleurs, on observe sur les figures 3 et 4, que les lames élastiques 23 de l'organe élastique d'accouplement 10 s'étendent circonférentiellement et coopèrent par frottement avec la bordure périphérique 24 de la cavité 17 du flasque annulaire 13, située radialement à l'extérieur de l'organe élastique d'accouplement 10. Les lames élastiques 23 coopèrent chacune avec la bordure périphérique 24 par l'intermédiaire d'une surface de came 25 ménagée sur la bordure périphérique 24 et d'une surface suiveuse de came 26, portée par la lame élastique 23, et coopérant par frottement avec la surface de came 25 associée. Les surfaces de came 25 sont chacune formées par le bord d'une échancrure 28 de forme arquée ménagée dans la bordure périphérique 24 de la cavité 17. Les échancrures 28 sont concaves et sont juxtaposées les unes à la suite des autres de manière continue autour de l'axe X. Les surfaces suiveuses de came 26 sont situées au niveau de l'extrémité distale libre des lames élastiques 23. Sous l'effet des acyclismes transitant par le disque d'embrayage 1, la masse d'inertie 9 oscille par rapport au moyeu 5 de part et d'autre de sa position de repos, représentée sur la figure 3. Lors d'un débattement angulaire de la masse d'inertie 9 par rapport à sa position de repos, la forme des surfaces de came 25 entraîne une flexion des lames élastiques 23 et un rapprochement de l'extrémité distale libre des lames élastiques 23 vers l'axe de rotation X. En réaction, les lames élastiques 23 exercent sur le flasque annulaire 13 une force de rappel qui tend à ramener la masse d'inertie 9 dans sa position relative de repos. Le profil des surfaces de came 25 est agencé de telle sorte que la flexion des lames élastiques 23 augmente lorsque la masse d'inertie 9 s'écarte, par rapport au moyeu 5, de sa position de repos, illustrée sur la figure 3, Ainsi, la force de rappel est strictement croissante lorsque la surface suiveuse de came de la lame s'écarte de la position angulaire de repos vers une position située à l'extrémité de la came, illustrée sur la figure 4. Selon un mode de réalisation, les profils de surface de came 25 sont agencés de telle sorte que les lames élastiques 23 présentent une raideur angulaire constante lors du débattement angulaire de la masse d'inertie 9 par rapport au moyeu 5. A titre d'exemple, les lames élastiques 23 génèrent ensemble une raideur angulaire comprise entre 0.02 Nm/° et 0.1 Nm/°. Le batteur inertiel comprend ainsi une unique fréquence de résonance. Cette fréquence de résonnance est comprise entre 3 Hz et 14 Hz.Furthermore, it can be seen in FIGS. 3 and 4 that the elastic strips 23 of the elastic coupling member 10 extend circumferentially and cooperate by friction with the peripheral edge 24 of the cavity 17 of the radially located annular flange 13 outside the resilient coupling member 10. The resilient blades 23 each cooperate with the peripheral rim 24 via a cam surface 25 formed on the peripheral rim 24 and a follower cam surface. 26, carried by the resilient blade 23, and cooperating by friction with the associated cam surface 25. The cam surfaces 25 are each formed by the edge of a notch 28 of arcuate shape formed in the peripheral edge 24 of the cavity 17. The notches 28 are concave and are juxtaposed one after the other in a continuous manner around The follower camming surfaces 26 are located at the free distal end of the elastic blades 23. Under the effect of the acyclisms passing through the clutch disc 1, the mass of inertia 9 oscillates relative to at the hub 5 on either side of its rest position, shown in FIG. 3. During an angular displacement of the inertia mass 9 with respect to its rest position, the shape of the cam surfaces 25 causes flexing of the resilient blades 23 and bringing the free distal end of the resilient blades 23 closer to the axis of rotation X. In response, the resilient blades 23 exert on the annular flange 13 a restoring force which tends to reduce the mass of in 9 in its relative position of rest. The profile of the cam surfaces 25 is arranged such that the bending of the resilient blades 23 increases as the inertia mass 9 deviates from its rest position, relative to the hub 5, as shown in FIG. the return force is strictly increasing when the cam follower surface of the blade deviates from the angular position of rest to a position at the end of the cam, illustrated in FIG. 4. According to one embodiment, the cam surface profiles 25 are arranged such that the resilient blades 23 have a constant angular stiffness during the angular displacement of the mass of inertia 9 relative to the hub 5. For example, the elastic blades 23 generate together an angular stiffness of between 0.02 Nm / ° and 0.1 Nm / °. The inertial drummer thus comprises a single resonance frequency. This resonance frequency is between 3 Hz and 14 Hz.

Pour ce faire, les surfaces de came 25 présentent chacune entre leur centre correspondant à la position relative de repos et leurs extrémités un profil en forme de spirale d'Archimède. En d'autres termes, le profil des surfaces de came 25 est telle que les surfaces suiveuses de came 26 se rapprochent de l'axe X lorsque la masse d'inertie 9 s'écarte de sa position relative de repos et que lors du mouvement de la masse d'inertie 9 depuis sa position de repos, les surfaces suiveuses de came 26 parcourent un chemin en forme de spirale d'Archimède. Dans ce cas, chaque lame élastique 23 exerce sur l'élément d'appui pendant cette oscillation une force de rappel proportionnelle au débattement angulaire. Le coefficient de proportionnalité peut être compris entre 1 N/° et 100 N/°, étant notamment égal à 10 N/° à 10% près. Selon un autre mode de réalisation, les profils de surface de came 25 sont agencés de telle sorte que les lames élastiques 23 présentent une raideur angulaire croissante lors du débattement angulaire de la masse d'inertie 9 par rapport au moyeu 5 entre sa position angulaire de repos et une position de fin de course correspondant à un positionnement des surfaces suiveuses de came 26 à une extrémité des surfaces de came 25 associées. La raideur angulaire des lames élastiques 23 peut varier, en fonction du débattement angulaire, de manière continue ou de manière discontinue. Les profils de surface de came 25 peuvent notamment être agencés de telle sorte que la raideur angulaire varie selon un rapport de 1 à 1.5. Par ailleurs, un couple résistant de frottement, s'opposant à la rotation de la masse d'inertie 9 par rapport au moyeu 5, est généré entre les surfaces suiveuses de came 26 portées par les lames élastiques 23 et les surfaces de came 25 portées par le flasque annulaire 13. Le couple résistant de frottement étant fonction de la force de rappel exercé par les lames élastiques 23 sur le flasque annulaire 13, le couple résistant de frottement est variable et strictement croissant lors d'un débattement angulaire de la masse d'inertie 9 de sa position de repos vers une de ses positions de fin de course. Ainsi, une telle hystérésis de frottement variable permet d'offrir au batteur inertiel une plage de fonctionnement importante. Notons par ailleurs, que l'agencement des surfaces de came 25, formées par le bord d'échancrures 28 juxtaposées les unes à la suite des autres en continue autour de l'axe X, permet de réaliser une fonctionnalité de limitation du couple transmis au dispositif d'amortissement des vibrations. Une telle fonctionnalité vise à protéger le dispositif d'amortissement des vibrations. En effet, un tel agencement permet à chaque surface suiveuse de came 26 de librement passer d'une échancrure 28 à une échancrure adjacente suivante. Lorsque la masse d'inertie 9 est sollicitée par des vibrations d'une forte amplitude entraînant une saturation du batteur inertiel, les vibrations entraînent un débattement de la masse d'inertie 9 tel que la surface suiveuse de came 26 de chaque lame élastique 23 est déplacée au-delà d'une extrémité de la surface de came 25 de l'échancrure 28 avec laquelle elle coopérait précédemment et change d'échancrure 28. L'organe élastique d'accouplement 10, représenté de manière détaillée sur 5 la figure 5, est réalisé par découpage et pliage d'une tôle métallique, telle qu'une tôle d'acier à ressort. Les lames élastiques 23 sont régulièrement réparties le long du corps annulaire 27 et sont symétriques par rapport à l'axe de rotation X de manière à garantir l'équilibre de l'organe élastique d'accouplement 10. 10 Dans le mode de réalisation représenté, l'organe d'accouplement élastique 10 comporte huit lames élastiques 23. Ainsi, le débattement angulaire total autorisé par le dispositif d'amortissement des vibrations est de l'ordre de 45°. Il est possible de prévoir un nombre de lames élastiques 23 différent, en fonction du débattement angulaire souhaité. 15 Chaque lame élastique 23 comporte successivement, depuis le corps annulaire 22 vers son extrémité distale libre, une portion proximale coudée 29 et une portion principale 30. La portion proximale 29 est coudée circonférentiellement de telle sorte que la portion principale 30 se développe circonférentiellement depuis la portion proximale coudée 29 vers l'extrémité distale. 20 Pour réaliser les lames élastiques 23, la tôle métallique est découpée, puis les lames élastiques 23 sont repliées vers l'arrière au niveau de leur portion proximale coudée 29. La portion proximale coudée 29 est donc recourbée d'une manière telle que la direction d'épaisseur de la tôle métallique soit orientée avec une composante radiale au niveau de la portion principale 30 des lames élastiques 25 23. Sur les figures, la direction d'épaisseur de la portion principale 30 s'étend dans un plan orthogonal à l'axe X. Les plans de la tôle métallique sont donc orientés parallèlement à l'axe de rotation X au niveau de la portion principale 30 des lames élastiques et parallèlement aux génératrices des surfaces de came 25. Un tel agencement permet d'obtenir des surfaces de contact entre la lame 30 élastique 30 et le flasque annulaire 13 qui soient larges tout en réalisant l'organe élastique d'accouplement 10 dans une tôle métallique fine afin de limiter son encombrement axial et sa masse. De telles surfaces de contact entre la lame élastique 23 et le flasque annulaire 13 sont utiles pour répartir la pression sur une surface importante et limiter l'usure des composants, et notamment du flasque annulaire 13 lorsqu'il est réalisé en plastique. La portion proximale coudée 29 présente au niveau de sa base une largeur plus importante que la largeur de la portion principale de la lame 30.To do this, the cam surfaces 25 each have between their center corresponding to the relative rest position and their ends an Archimedean spiral profile. In other words, the profile of the cam surfaces 25 is such that the cam follower surfaces 26 approach the X axis when the mass of inertia 9 deviates from its relative rest position and when the motion of the inertia mass 9 from its rest position, the follower cam surfaces 26 travel an Archimedean spiral path. In this case, each elastic blade 23 exerts on the support element during this oscillation a return force proportional to the angular displacement. The coefficient of proportionality may be between 1 N / ° and 100 N / °, being in particular equal to 10 N / ° to 10%. According to another embodiment, the cam surface profiles 25 are arranged in such a way that the elastic strips 23 have an increasing angular stiffness during the angular displacement of the mass of inertia 9 with respect to the hub 5 between its angular position of rest and a limit position corresponding to a positioning of the cam follower surfaces 26 at one end of the associated cam surfaces 25. The angular stiffness of the resilient blades 23 may vary, depending on the angular displacement, continuously or discontinuously. The cam surface profiles 25 may in particular be arranged such that the angular stiffness varies according to a ratio of 1 to 1.5. On the other hand, a friction resisting torque, opposing the rotation of the inertia mass 9 with respect to the hub 5, is generated between the follower cam surfaces 26 carried by the resilient blades 23 and the cam surfaces 25 carried. by the annular flange 13. The friction resisting torque being a function of the restoring force exerted by the resilient blades 23 on the annular flange 13, the friction resisting torque is variable and strictly increasing during an angular displacement of the mass of d inertia 9 from its rest position to one of its end positions. Thus, such a variable friction hysteresis makes it possible to offer the inertial drummer a large operating range. Note also that the arrangement of the cam surfaces 25, formed by the notch edge 28 juxtaposed one after the other continuously around the axis X, makes it possible to achieve a torque limiting function transmitted to the vibration damping device. Such a feature aims to protect the vibration damping device. Indeed, such an arrangement allows each cam follower surface 26 to freely pass from a notch 28 to an adjacent adjacent notch. When the mass of inertia 9 is solicited by vibrations of a large amplitude causing a saturation of the inertial drummer, the vibrations cause a displacement of the mass of inertia 9 such that the cam follower surface 26 of each elastic blade 23 is moved beyond one end of the cam surface 25 of the notch 28 with which it previously cooperated and changes notch 28. The resilient coupling member 10, shown in detail in FIG. 5, is made by cutting and bending a metal sheet, such as a spring steel sheet. The resilient blades 23 are evenly distributed along the annular body 27 and are symmetrical with respect to the axis of rotation X so as to guarantee the equilibrium of the elastic coupling member 10. In the embodiment shown, the elastic coupling member 10 comprises eight resilient blades 23. Thus, the total angular displacement allowed by the vibration damping device is of the order of 45 °. It is possible to provide a different number of resilient blades 23, depending on the desired angular displacement. Each elastic blade 23 comprises successively, from the annular body 22 towards its free distal end, a bent proximal portion 29 and a main portion 30. The proximal portion 29 is bent circumferentially so that the main portion 30 develops circumferentially from the proximal portion bent 29 towards the distal end. To produce the resilient blades 23, the metal sheet is cut, then the elastic strips 23 are folded backwards at their bent proximal portion 29. The bent proximal portion 29 is thus bent in such a way that the direction thickness of the metal sheet is oriented with a radial component at the main portion 30 of the resilient blades 23. In the figures, the thickness direction of the main portion 30 extends in a plane orthogonal to the The planes of the metal sheet are thus oriented parallel to the axis of rotation X at the main portion 30 of the elastic strips and parallel to the generatrices of the cam surfaces 25. Such an arrangement makes it possible to obtain contact between the elastic blade 30 and the annular flange 13 which are wide while achieving the elastic coupling member 10 in a thin metal sheet to limit its axial size and mass. Such contact surfaces between the resilient blade 23 and the annular flange 13 are useful for distributing the pressure over a large area and limit the wear of the components, including the annular flange 13 when made of plastic. The bent proximal portion 29 has at its base a width greater than the width of the main portion of the blade 30.

Par ailleurs, la portion principale des lames élastiques 23 présente, à proximité de l'extrémité distale des lames élastiques, une portion arquée définissant la surface suiveuse de came 26 et permettant ainsi d'augmenter la surface de contact entre les surfaces de came 25 et les surfaces suiveuses de came 26. Cette courbure permet d'éviter des frottements excessifs de la lame 26 lorsqu'elle se déplace vers la portion en saillie vers l'intérieur séparant deux échancrures 28 adjacentes. Autrement dit, elle homogénéise les frottements entre la lame élastique et la bordure périphérique 24 dans les deux sens de rotation relative. L'organe d'accouplement élastique 10, représenté sur la figure 10, présente une structure sensiblement similaire à l'organe d'accouplement élastique de la figure 4. Il diffère toutefois en ce que la portion proximale coudée 29 présente, au niveau de sa base une largeur plus importante. Un tel agencement permet notamment d'améliorer davantage la robustesse de l'organe élastique d'accouplement 10. Dans un mode de réalisation, non représenté, le disque d'embrayage 1 peut également comprendre un second dispositif d'amortissement autre que le batteur inertiel. Dans ce cas, le voile annulaire 4 est mobile en rotation par rapport au moyeu 5 et des organes élastiques, tels que des ressorts hélicoïdaux, permettent de transmettre le couple de rotation entre les garnitures de friction 3 et le moyeu 5 du disque d'embrayage 5 en amortissant les acyclismes.Moreover, the main portion of the resilient blades 23 has, near the distal end of the resilient blades, an arcuate portion defining the follower cam surface 26 and thereby increasing the contact area between the cam surfaces 25 and follower surfaces 26. This curvature avoids excessive friction of the blade 26 as it moves towards the inwardly protruding portion separating two adjacent notches 28. In other words, it homogenizes the friction between the elastic blade and the peripheral edge 24 in both directions of relative rotation. The elastic coupling member 10, shown in FIG. 10, has a structure substantially similar to the elastic coupling member of FIG. 4. It differs, however, in that the bent proximal portion 29 has, at its base a larger width. Such an arrangement makes it possible in particular to further improve the robustness of the elastic coupling member 10. In one embodiment, not shown, the clutch disk 1 may also comprise a second damping device other than the inertial drummer. . In this case, the annular web 4 is rotatable relative to the hub 5 and resilient members, such as coil springs, allow to transmit the torque between the friction linings 3 and the hub 5 of the clutch disc 5 by dampening the acyclisms.

Le disque d'embrayage 101 illustré sur les figures 7, 8 et 9 comporte également un disque externe 102 portant sur chacune de ses faces une garniture de friction 103. Comme représenté sur la figure 9, le disque externe 102 est fixé sur l'une des deux rondelles de guidage 131, 132 formant l'élément d'entrée d'un amortisseur principal du disque d'embrayage 101. Les deux rondelles de guidage 131, 132 sont disposées de part et d'autre d'un voile 104 formant l'élément de sortie de l'amortisseur principal. Les deux rondelles de guidage 131, 132 sont fixées l'une à l'autre par rivetage, par exemple. Les moyens d'amortissement de l'amortisseur principal sont des organes élastiques à action circonférentielle, tels que des ressorts hélicoïdaux 133. Les ressorts hélicoïdaux 133 sont montés dans des fenêtres 134 pratiquées dans les rondelles de guidage, représentées sur la figure 7, et dans le voile 104. Les ressorts hélicoïdaux 133 sont maintenus axialement et radialement dans leurs logements respectifs par les bords 135 des fenêtres 134 des rondelles de guidage 131, 132.The clutch disk 101 illustrated in FIGS. 7, 8 and 9 also comprises an outer disk 102 bearing on each of its faces a friction lining 103. As shown in FIG. 9, the outer disk 102 is fixed on one of its surfaces. two guide washers 131, 132 forming the input element of a main damper clutch disk 101. The two guide washers 131, 132 are disposed on either side of a web 104 forming the output element of the main damper. The two guide washers 131, 132 are fixed to each other by riveting, for example. The damping means of the main damper are circumferentially acting elastic members, such as coil springs 133. The coil springs 133 are mounted in windows 134 formed in the guide washers, shown in FIG. 7, and in the web 104. The helical springs 133 are held axially and radially in their respective housings by the edges 135 of the windows 134 of the guide washers 131, 132.

Les extrémités des ressorts hélicoïdaux 133 sont en appui contre les bords latéraux 136 des fenêtres 134 ménagées dans les rondelles de guidage 131, 132 et dans le voile 104 de telle sorte que lesdits ressorts hélicoïdaux 133 sont aptes à transmettre un couple entre les rondelles de guidage 131, 132 et le voile 104. Le disque de friction 1 est également équipé d'un pré-amortisseur qui est plus particulièrement représenté sur les figures 8 et 9. Un tel pré-amortisseur a essentiellement pour fonction de filtrer les bruits tels que les bruits de boîte ou les bruits de point mort dans le domaine du régime ralenti du moteur alors que l'amortisseur principal est destiné à filtrer les vibrations dans le régime de marche du véhicule. Le pré-amortisseur est ici implanté radialement en dessous des ressorts hélicoïdaux 133 de l'amortisseur principal et axialement entre les deux rondelles de guidage 131, 132 de l'amortisseur principal. L'élément d'entrée du pré-amortisseur comporte un flasque annulaire 113 solidaire en rotation du voile 104 de l'amortisseur principal. Le flasque annulaire 113 comporte une structure sensiblement similaire à celle du flasque annulaire 13 décrit en relation avec les figures 1 à 6. Le flasque annulaire 113 comporte une cavité 117 à l'intérieur de laquelle est reçu l'organe élastique d'accouplement 110. La cavité 117 est formée à l'intérieur d'une jupe 118 du flasque annulaire 113. Le flasque annulaire 113 forme ainsi une cassette de logement de l'organe élastique d'accouplement 110.The ends of the coil springs 133 bear against the lateral edges 136 of the windows 134 formed in the guide washers 131, 132 and in the web 104 so that said helical springs 133 are able to transmit a torque between the guide washers. 131, 132 and the web 104. The friction disc 1 is also equipped with a pre-damper which is more particularly shown in FIGS. 8 and 9. Such a pre-damper essentially has the function of filtering noises such as box noise or dead-center noise in the engine idle speed range while the main damper is designed to filter vibration in the vehicle's operating speed. The pre-damper is here implanted radially below the coil springs 133 of the main damper and axially between the two guide rings 131, 132 of the main damper. The input element of the pre-damper comprises an annular flange 113 integral in rotation with the web 104 of the main damper. The annular flange 113 has a structure substantially similar to that of the annular flange 13 described in relation with FIGS. 1 to 6. The annular flange 113 comprises a cavity 117 inside which the elastic coupling member 110 is received. The cavity 117 is formed inside a skirt 118 of the annular flange 113. The annular flange 113 thus forms a housing cassette of the elastic coupling member 110.

L'élément de sortie du pré-amortisseur est formé par le moyeu 105 du disque d'embrayage 101 destiné à être couplé en rotation à l'arbre d'entrée d'une boîte de vitesses via des cannelures internes. L'organe élastique d'accouplement 110, représenté de manière détaillée sur la figure 10, s'oppose à la rotation relative du flasque annulaire 117, par rapport au moyeu 105,qui écarte le flasque de sa position angulaire relative de repos et permet ainsi de transmettre un couple entre l'amortisseur principal et le moyeu 105 du disque d'embrayage. L'organe élastique d'accouplement 110 présente une structure sensiblement similaire à celle de l'organe élastique d'accouplement 10 décrit en relation avec les figures 1 à 6. Il diffère toutefois en ce qu'il n'est pas solidarisé au moyeu par emmanchement à force mais par l'intermédiaire de cannelures 137. En effet, le corps annulaire de l'organe élastique d'accouplement 110 est pourvu sur sa périphérie interne de cannelures 137 destinées à coopérer avec des cannelures 138 correspondantes ménagées en périphérie du moyeu 105.The output member of the pre-damper is formed by the hub 105 of the clutch disc 101 to be rotatably coupled to the input shaft of a gearbox via internal splines. The elastic coupling member 110, shown in detail in FIG. 10, opposes the relative rotation of the annular flange 117 relative to the hub 105, which separates the flange from its relative angular position of rest and thus allows to transmit a torque between the main damper and the hub 105 of the clutch disc. The elastic coupling member 110 has a structure substantially similar to that of the elastic coupling member 10 described in relation with FIGS. 1 to 6. It differs, however, in that it is not secured to the hub by force fitting but by means of splines 137. Indeed, the annular body of the elastic coupling member 110 is provided on its inner periphery splines 137 for cooperating with corresponding grooves 138 formed at the periphery of the hub 105 .

A titre d'exemple, les lames élastiques 123 peuvent générer ensemble une raideur angulaire comprise entre 0.06Nm/° et 1.5Nm/° pour des véhicules utilitaires avec des inerties d'arbre de boite élevées, par exemple 0,08 Nm/° (pour 3 cylindres). Le moyeu 105 comporte sur sa périphérie externe une denture destinée à engrener, avec un jeu circonférentiel déterminé, avec une denture, correspondante, non représentée, ménagée sur la périphérie interne du voile 104. Lorsque le jeu circonférentiel est rattrapé, le voile 104 et le moyeu 105 coopèrent entre eux par butée. Dans ce cas, le pré-amortisseur n'intervient plus dans la transmission du couple qui est directement transmis du voile 104 au moyeu 105.By way of example, the elastic blades 123 can together generate an angular stiffness of between 0.06 Nm / ° and 1.5 Nm / ° for commercial vehicles with high box tree inertia, for example 0.08 Nm / ° ( for 3 cylinders). The hub 105 comprises on its outer periphery a toothing intended to mesh, with a determined circumferential clearance, with a corresponding toothing, not shown, formed on the inner periphery of the web 104. When the circumferential clearance is caught, the web 104 and the hub 105 cooperate with each other by stop. In this case, the pre-damper no longer intervenes in the transmission of the torque that is directly transmitted from the sail 104 to the hub 105.

L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims (15)

REVENDICATIONS1. Dispositif d'amortissement des vibrations pour une chaîne de transmission de véhicule automobile, le dispositif comportant : - un premier et un second éléments (5, 105; 9, 104) mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X; - un organe élastique d'accouplement (10, 110) pour coupler en rotation le pre- mier élément (5, 105) et le second élément (9, 104) ; - l'organe élastique d'accouplement (10, 110) comprenant un corps (22) solidarisé en rotation au premier élément (5, 105) et au moins une lame élastique (23) se développant depuis le corps de l'organe élastique d'accouplement vers une ex- trémité distale libre de la lame; ; la lame élastique (23) comprenant, depuis le corps vers l'extrémité distale libre, une portion proximale (29) et une portion principale (30) coopérant avec un élément d'appui (13, 113) associé au second élément (9, 104), de telle sorte que, pour un débattement angulaire entre le premier et le second éléments (5, 105; 9, 104) par rapport à une position angu- laire de repos, l'élément d'appui (13, 113) exerce un effort de flexion sur la lame élastique (23) produisant une force de réaction apte à rappeler les premier et second éléments (5, 105; 9, 104) vers ladite position angulaire de repos ; - le dispositif d'amortissement étant caractérisé en ce que la portion proximale (29) de la lame élastique (23) est recourbée de telle sorte que la portion princi- pale (30) de la lame élastique (23) présente une direction d'épaisseur comportant une composante orthogonale à l'axe X.REVENDICATIONS1. Vibration damping device for a motor vehicle transmission chain, the device comprising: - a first and a second element (5, 105; 9, 104) movable in rotation relative to each other around an axis of rotation X; a resilient coupling member (10, 110) for rotatably coupling the first member (5, 105) and the second member (9, 104); - the elastic coupling member (10, 110) comprising a body (22) rotationally secured to the first member (5, 105) and at least one elastic blade (23) developing from the body of the elastic member of coupling to a distal end free from the blade; ; the elastic blade (23) comprising, from the body towards the free distal end, a proximal portion (29) and a main portion (30) cooperating with a bearing element (13, 113) associated with the second element (9, 104), so that for angular displacement between the first and second members (5,105; 9,104) relative to an angular position of rest, the support member (13,113) exerts a bending force on the elastic blade (23) producing a reaction force able to return the first and second elements (5, 105; 9, 104) to said angular position of rest; the damping device being characterized in that the proximal portion (29) of the elastic blade (23) is curved so that the main portion (30) of the elastic blade (23) has a direction of thickness having a component orthogonal to the X axis. 2. Dispositif d'amortissement selon la revendication 1, dans lequel le corps (22) de l'organe élastique d'accouplement présente au moins une portion 25 s'étendant dans un plan orthogonal à l'axe X et présente une direction d'épaisseur s'étendant selon un direction axiale parallèle à l'axe X.2. damping device according to claim 1, wherein the body (22) of the elastic coupling member has at least a portion 25 extending in a plane orthogonal to the axis X and has a direction of thickness extending in an axial direction parallel to the X axis. 3. Dispositif d'amortissement selon la revendication 1 ou 2, dans lequel l'organe élastique d'accouplement (10, 110) est formé dans une tôle métallique et dans lequel la portion proximale (29) de la lame élastique (23) est 30 recourbée à 90° de telle sorte que la direction d'épaisseur de la portion principale (30) de la lame élastique (23) soit perpendiculaire à la direction d'épaisseur d'une portion du corps (22).The damping device according to claim 1 or 2, wherein the resilient coupling member (10, 110) is formed in a metal sheet and wherein the proximal portion (29) of the elastic blade (23) is Curved at 90 ° so that the thickness direction of the main portion (30) of the elastic blade (23) is perpendicular to the thickness direction of a portion of the body (22). 4. Dispositif d'amortissement selon l'une quelconque des revendications 1 à 3, dans lequel l'élément d'appui (13, 113) est disposé radialement à l'extérieur de la lame élastique (23).4. damping device according to any one of claims 1 to 3, wherein the bearing element (13, 113) is disposed radially outside the resilient blade (23). 5. Dispositif d'amortissement selon l'une quelconque des revendications 1 à 4, dans lequel la portion principale (30) de la lame élastique (23) comporte, à proximité de l'extrémité distale libre, une portion arquée définissant une surface suiveuse de came coopérant par frottement avec une surface de came portée par l'élément d'appui.5. Damping device according to any one of claims 1 to 4, wherein the main portion (30) of the elastic blade (23) comprises, near the free distal end, an arcuate portion defining a follower surface cam cooperating by friction with a cam surface carried by the support member. 6. Dispositif d'amortissement selon l'une quelconque des revendications 1 à 5, dans lequel l'organe élastique d'accouplement comporte une pluralité de lames élastiques (23) se développant depuis le corps et comportant chacune une portion principale (30) coopérant avec l'élément d'appui (13, 113) et présentant une direction d'épaisseur comportant une composante s'étendant dans un plan orthogonal à l'axe X.6. damping device according to any one of claims 1 to 5, wherein the elastic coupling member comprises a plurality of resilient blades (23) developing from the body and each having a main portion (30) cooperating with the bearing element (13, 113) and having a thickness direction having a component extending in a plane orthogonal to the X axis. 7. Dispositif d'amortissement selon l'une quelconque des revendications 1 à 6, dans lequel le corps (22) est un corps annulaire solidarisé en rotation au premier élément.7. A damping device according to any one of claims 1 to 6, wherein the body (22) is an annular body secured in rotation to the first element. 8. Dispositif d'amortissement selon la revendication 7, dans lequel le corps annulaire (22) comporte au niveau de son bord interne une jupe cylindrique 20 (27) s'étendant axialement qui est emmanchée à force sur un moyeu du premier élément.The damping device according to claim 7, wherein the annular body (22) has at its inner edge an axially extending cylindrical skirt (27) which is force-fitted on a hub of the first member. 9. Dispositif d'amortissement selon l'une quelconque des revendications précédentes, dans lequel la lame élastique se développe circonférentiellement depuis le corps de l'organe élastique d'accouplement vers une 25 extrémité distale libre de la lame.A cushioning device according to any one of the preceding claims, wherein the resilient blade develops circumferentially from the body of the resilient coupling member to a free distal end of the blade. 10. Dispositif d'amortissement selon l'une quelconque des revendications 1 à 9, dans lequel l'élément d'appui est formé par un flasque annulaire (13) qui est solidarisé au second élément (9) et présente une cavité (17) de logement de l'organe élastique d'accouplement (10).10. A damping device according to any one of claims 1 to 9, wherein the support element is formed by an annular flange (13) which is secured to the second element (9) and has a cavity (17). housing the resilient coupling member (10). 11. Dispositif d'amortissement selon la revendication 10, dans lequel la bordure périphérique (24) de la cavité (17) de logement de l'organe élastique d'accouplement (10) comporte une pluralité d'échancrures (28) juxtaposées continument les unes à la suite des autres autour de l'axe X formant des surfaces de came dans la bordure périphérique aptes à coopérer avec une surface suiveuse de came portée par la lame élastique.11. damping device according to claim 10, wherein the peripheral edge (24) of the cavity (17) housing the resilient coupling member (10) comprises a plurality of notches (28) juxtaposed continuously the one after the other around the X axis forming cam surfaces in the peripheral edge adapted to cooperate with a follower cam surface carried by the elastic blade. 12. Disque d'embrayage (1, 101) comportant un moyeu destiné à être couplé en rotation à un arbre d'entrée d'une boîte des vitesses, des garnitures de friction (3, 103), un disque externe (2, 102) portant les garnitures de friction (3, 103), accouplé en rotation au moyeu (5, 105) et un dispositif d'amortissement des vibrations selon l'une quelconques des revendications 1 à 11.12. A clutch disc (1, 101) having a hub for rotationally coupling to an input shaft of a gearbox, friction linings (3, 103), an outer disk (2, 102). ) carrying the friction linings (3, 103) rotatably coupled to the hub (5, 105) and a vibration damping device according to any one of claims 1 to 11. 13. Disque d'embrayage (1) selon la revendication 12, dans lequel le premier élément du dispositif d'amortissement est formé par le moyeu (5) du disque d'embrayage (1) et le second élément du dispositif d'amortissement est formé par une masse d'inertie (9) destinée à être montée de manière oscillante en rotation autour de l'axe X sur le moyeu (5) du disque d'embrayage (1).The clutch disk (1) according to claim 12, wherein the first element of the damping device is formed by the hub (5) of the clutch disc (1) and the second element of the damping device is formed by a mass of inertia (9) to be rotatably mounted in rotation about the X axis on the hub (5) of the clutch disc (1). 14. Disque d'embrayage (101) selon la revendication 12, dans lequel le premier élément du dispositif d'amortissement est formé par le moyeu (105) du disque d'embrayage (101) et dans lequel le second élément du dispositif 20 d'amortissement est formé par un voile (104) du disque d'embrayage (1).The clutch disk (101) according to claim 12, wherein the first member of the damping device is formed by the hub (105) of the clutch plate (101) and wherein the second member of the device 20 damping is formed by a web (104) of the clutch disc (1). 15. Procédé de fabrication d'un dispositif d'amortissement des vibrations selon l'une quelconque des revendications 1 à 11, dans lequel la fabrication de l'organe élastique d'accouplement comporte les étapes suivantes: - découper une tôle métallique de manière à former un corps (22) et au moins une 25 lame élastique (23) comportant depuis le corps vers une extrémité distale libre, une portion proximale (29) et une portion principale (30) ; - replier la lame élastique de 90°, par rapport au corps (22), au niveau de sa portion proximale (29) de telle sorte que la direction d'épaisseur de la portion principale (30) de la lame élastique (23) soit perpendiculaire à la direction 30 d'épaisseur du corps (22).15. A method of manufacturing a vibration damping device according to any one of claims 1 to 11, wherein the manufacture of the elastic coupling member comprises the following steps: - cutting a metal sheet so as to forming a body (22) and at least one resilient blade (23) having from the body to a free distal end a proximal portion (29) and a main portion (30); - fold the elastic blade 90 °, relative to the body (22), at its proximal portion (29) so that the thickness direction of the main portion (30) of the elastic blade (23) is perpendicular to the thickness direction of the body (22).
FR1460481A 2014-10-31 2014-10-31 DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE Expired - Fee Related FR3027987B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1460481A FR3027987B1 (en) 2014-10-31 2014-10-31 DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE
CN201580071063.9A CN107110283A (en) 2014-10-31 2015-10-21 The vibration damping device of flexible plate
PCT/EP2015/074422 WO2016066508A1 (en) 2014-10-31 2015-10-21 Vibration damping device with elastic leaf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1460481A FR3027987B1 (en) 2014-10-31 2014-10-31 DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE

Publications (2)

Publication Number Publication Date
FR3027987A1 true FR3027987A1 (en) 2016-05-06
FR3027987B1 FR3027987B1 (en) 2016-11-11

Family

ID=52102914

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1460481A Expired - Fee Related FR3027987B1 (en) 2014-10-31 2014-10-31 DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE

Country Status (3)

Country Link
CN (1) CN107110283A (en)
FR (1) FR3027987B1 (en)
WO (1) WO2016066508A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379231A1 (en) * 2022-11-10 2024-06-05 Illinois Tool Works Inc. Damping device for reducing a movement of a second component moving relative to a first component

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110388409A (en) * 2018-04-19 2019-10-29 南京法雷奥离合器有限公司 Torsion damping damper
CN110439968B (en) * 2018-05-04 2023-04-07 南京法雷奥离合器有限公司 Torsional vibration damping system
EP3861426B1 (en) 2018-10-05 2022-09-28 Razer (Asia-Pacific) Pte. Ltd. Joystick device and a method of manufacturing thereof
CN111457014B (en) * 2020-04-13 2022-02-01 浙江东禾机械科技股份有限公司 Self-aligning damping sliding bearing
CN112343931B (en) * 2020-11-24 2022-07-05 长沙皓奥通机电设备有限公司 Progressive contact type coupler
CN115435045A (en) * 2022-08-31 2022-12-06 湖南科技大学 Elastic torsion buffer
CN116498674B (en) * 2023-06-25 2023-10-31 深圳市大族机器人有限公司 Elastic component for brake and brake

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306620A (en) * 1995-10-18 1997-05-07 Fichtel & Sachs Ag Torsional vibration damper
FR2768208A1 (en) * 1997-09-09 1999-03-12 Mannesmann Sachs Ag INSTALLATION FOR DAMPING TORQUE VARIATIONS, IN PARTICULAR FOR DAMPING TORQUE SPOTS PRODUCED IN A MOTOR VEHICLE TRANSMISSION LINE
FR2938030A1 (en) * 2008-11-05 2010-05-07 Valeo Embrayages Torque transmission device for motor vehicle, has arm with end supported on guiding surface, where distance from guiding surface to rotational axis varies with angular displacement of hub and disk to cause elastic deformation of arm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306620A (en) * 1995-10-18 1997-05-07 Fichtel & Sachs Ag Torsional vibration damper
FR2768208A1 (en) * 1997-09-09 1999-03-12 Mannesmann Sachs Ag INSTALLATION FOR DAMPING TORQUE VARIATIONS, IN PARTICULAR FOR DAMPING TORQUE SPOTS PRODUCED IN A MOTOR VEHICLE TRANSMISSION LINE
FR2938030A1 (en) * 2008-11-05 2010-05-07 Valeo Embrayages Torque transmission device for motor vehicle, has arm with end supported on guiding surface, where distance from guiding surface to rotational axis varies with angular displacement of hub and disk to cause elastic deformation of arm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379231A1 (en) * 2022-11-10 2024-06-05 Illinois Tool Works Inc. Damping device for reducing a movement of a second component moving relative to a first component

Also Published As

Publication number Publication date
CN107110283A (en) 2017-08-29
WO2016066508A1 (en) 2016-05-06
FR3027987B1 (en) 2016-11-11

Similar Documents

Publication Publication Date Title
FR3027987A1 (en) DEVICE FOR DAMPING VIBRATION WITH ELASTIC BLADE
EP2959181B1 (en) Vibration damper for clutch friction disc of a motor vehicle
EP2721317B1 (en) Torsion damping device comprising pendular flyweights that are axially offset in relation to guide washers
WO2016071185A1 (en) Vibration damper comprising damping means with a blade
WO2016020584A1 (en) Damper, especially for the clutch of a motor vehicle
FR3026802A1 (en) BLADE TORSION SHOCK ABSORBER
WO2016110646A1 (en) Torque transmission device with elastic blade equipped with a centrifugal-mass torsion damper
WO2016050593A1 (en) Damper, in particular for a motor vehicle clutch
WO2016066507A1 (en) Inertia damper-type vibration damping device
WO2017017380A1 (en) Torque transmission device
EP3212959B1 (en) Device for damping torsional oscillations
WO2016146415A1 (en) Torsional damper
FR3072434B1 (en) TORQUE TRANSMISSION DEVICE COMPRISING A DYNAMIC VIBRATION ABSORBER
FR3034482A1 (en) DOUBLE FLYWHEEL TORQUE TRANSMISSION DAMPER, IN PARTICULAR FOR A MOTOR VEHICLE
FR3031368A1 (en) ELASTIC BLADE TORQUE TRANSMISSION DEVICE EQUIPPED WITH CENTRIFUGAL MASS TORSION DAMPER
FR3011604A1 (en) DOUBLE FLYWHEEL DAMPER EQUIPPED WITH A PENDULAR SHOCK ABSORBER
FR3068410B1 (en) CLUTCH DISC WITH FRICTION DEVICE
WO2016184986A1 (en) Torsional damper for motor vehicle torque transmission device
FR3051029A1 (en) TORQUE TRANSMISSION DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE
FR3068411A1 (en) CLUTCH DISC WITH FRICTION DEVICE
EP3073146B1 (en) Component for transmission system, in particular a clutch disc
FR3031366A1 (en) DEVICE FOR FILTERING VIBRATIONS
FR3042835A1 (en) DAMPING DEVICE
FR3075906A1 (en) TORSION DAMPER COMPRISING A HYSTERESIS SYSTEM
EP3712463A1 (en) Damping device

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160506

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20200910