ES2856055T3 - Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre - Google Patents

Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre Download PDF

Info

Publication number
ES2856055T3
ES2856055T3 ES16168473T ES16168473T ES2856055T3 ES 2856055 T3 ES2856055 T3 ES 2856055T3 ES 16168473 T ES16168473 T ES 16168473T ES 16168473 T ES16168473 T ES 16168473T ES 2856055 T3 ES2856055 T3 ES 2856055T3
Authority
ES
Spain
Prior art keywords
psa
mpsa
glycoprotein
oxidized
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES16168473T
Other languages
English (en)
Inventor
Sanjay Jain
Gregory Gregoriadis
Archana Dwivedi
Srijit Nath
Juergen Siekmann
Stefan Haider
Hanspeter Rottensteiner
Peter Turecek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxalta GmbH
Lipoxen Technologies Ltd
Baxalta Inc
Original Assignee
Baxalta GmbH
Lipoxen Technologies Ltd
Baxalta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxalta GmbH, Lipoxen Technologies Ltd, Baxalta Inc filed Critical Baxalta GmbH
Application granted granted Critical
Publication of ES2856055T3 publication Critical patent/ES2856055T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/644Coagulation factor IXa (3.4.21.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • A61K47/6455Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1075General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of amino acids or peptide residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6437Coagulation factor VIIa (3.4.21.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21021Coagulation factor VIIa (3.4.21.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Reproductive Health (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)

Abstract

Un procedimiento para conjugar ácido polisiálico (PSA) o un PSA modificado (mPSA) a un resto carbohidrato oxidado de una glicoproteína diferente de una proteína de coagulación de la sangre que comprende un grupo carbohidrato, que comprende poner en contacto el resto carbohidrato oxidado con el PSA o el mPSA en condiciones que permitan la conjugación, en el que dicho PSA o mPSA contiene un grupo hidrazida y se forma un enlace hidrazona entre el resto carbohidrato oxidado y el grupo hidrazida del PSA o mPSA, en el que el PSA modificado es PSA que comprende un resto derivado de un resto de ácido N-acetilneuramínico en el extremo mediante oxidación o reducción.

Description

DESCRIPCIÓN
Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre
Campo de la invención
La presente invención se refiere a materiales y procedimientos para conjugar el ácido polisiálico, a glicoproteínas que contienen carbohidratos diferentes de las proteínas de coagulación de la sangre, y a los conjugados obtenidos.
Antecedentes de la invención
La conjugación de fármacos polipeptídicos tales como mediante PEGilación o polisialilación las protege de la degradación en la circulación sanguínea y, por tanto, mejora sus perfiles farmacodinámicos y farmacocinéticos (Harris y Chess, Nat Rev Drug Discov. 2003;2:214-21; S. Jain, D. Hreczuk-Hirst, P. Laing y G. Gregoriadis, Drug Delivery Systems and Sciences, 4 (N.° 1): 3-9, 2004). El proceso de PEGilación une unidades de repetición de etilenglicol (polietilenglicol (PEG)) a un fármaco polipeptídico. Las moléculas de PEG tienen un gran volumen hidrodinámico (5­ 10 veces el tamaño de las proteínas globulares), son muy solubles en agua y se hidratan, no son tóxicas, no son inmunógenas y se eliminan rápidamente del cuerpo. La PEGilación de las moléculas puede producir un aumento en la resistencia de los fármacos a la degradación enzimática, aumento de la semivida in vivo, reducción de la frecuencia de dosificación, disminución de la inmunogenicidad, aumento de la estabilidad física y térmica, aumento de la solubilidad, aumento de la estabilidad en medio líquido y una reducción en la agregación. Los primeros fármacos PEGilados fueron homologados por la FDA a principios de los años 90 del siglo XX. Desde entonces, la FDA ha homologado algunos fármacos PEGilados para la administración oral, inyectable y tópica.
Los ácidos siálicos (denominados también ácidos N-acetil neuramínicos) y los ácidos polisiálicos se encuentran ampliamente distribuidos en tejidos animales y en una menor extensión en otras especies que varían desde plantas y hongos a levaduras y bacterias, principalmente en glicoproteínas y gangliósidos.
La abreviatura "PSA" usada en el presente documento se refiere a la expresión "ácido polisiálico". De manera similar, el término "mPSA" usado en el presente documento se refiere a la expresión "ácido polisiálico modificado".
Los PSA consisten en polímeros (generalmente homopolímeros) de ácido N-acetilneuramínico. El grupo amino secundario normalmente lleva un grupo acetilo, pero puede a su vez llevar un grupo glicolilo. Los posibles sustituyentes en los grupos hidroxilo incluyen grupos acetilo, lactilo, etilo, sulfato y fosfato.
Figure imgf000002_0001
Estructura del ácido siálico (ácido N-acetilneuramínico)
Los PSA y mPSA comprenden generalmente polímeros lineales que consisten esencialmente en restos de ácido N-acetilneuramínico unidos por enlaces 2,8-glicosídicos o 2,9-glicosídicos o combinaciones de estos (por ejemplo, alternando enlaces 2,8 y 2,9). En los PSA y mPSA particularmente preferidos, los enlaces glicosídicos son a-2,8. Dichos PSA y mPSA se derivan convenientemente de ácidos colomínicos, y se denominan en el presente documento "CA" y "mCA". Los PSA y mPSA típicos comprenden al menos 2, preferentemente al menos 5, más preferentemente al menos 10, y lo más preferente al menos 20 restos de ácido N-acetilneuramínico. Por tanto, pueden comprender de 5 a 500 restos de ácido N-acetilneuramínico, preferentemente de 10 a 300 restos de ácido N-acetilneuramínico. Los PSA y los CA pueden ser polímeros que comprenden diferentes restos azucarados. Pueden ser copolímeros. Los PSA y los CA preferentemente están esencialmente exentos de restos azucarados diferentes del ácido N-acetilneuramínico. Los PSA y los CA comprende preferentemente al menos 90 %, más preferentemente al menos 95 % y lo más preferente al menos 98 % de restos de ácido N-acetilneuramínico.
Cuando los PSA y los CA comprende otros restos de ácido N-acetilneuramínico (como, por ejemplo, en los mPSA y mCA), estos están preferentemente localizados en uno o ambos de los extremos de la cadena polimérica. Dichos "otros" restos pueden ser, por ejemplo, restos derivados de restos de ácido N-acetilneuramínico en el extremo mediante oxidación o reducción.
Por ejemplo, el documento WO-A-0187922 describe dichos mPSA y mCA en el que la unidad del ácido N-acetilneuramínico en el extremo se convierte en un grupo aldehído mediante reacción con peryodato de sodio. Adicionalmente, el documento WO 2005/016974 describe dichos mPSA y mCA en que la unidad de ácido N-acetilneuramínico en el extremo reductor se somete a reducción para abrir reductivamente el anillo en la unidad de ácido N-acetilneuramínico en el extremo reductor, por lo cual se forma un grupo diol vecinal, seguido por oxidación para convertir el grupo diol vecinal en un grupo aldehído.
Las glicoproteínas ricas en ácido siálico se unen a la selectina en seres humanos y otros organismos. Juegan un importante papel en las infecciones de la gripe humana. Por ejemplo, el ácido siálico puede ocultar los antígenos de manosa sobre la superficie de las células hospedadoras o bacterias e lectinas de unión a manosa. Esto evita la activación del complemento. Los ácidos siálicos ocultan también el penúltimo resto de galactosa evitando por tanto la rápida eliminación de la glicoproteína por el receptor de la galactosa sobre las células del parénquima hepático.
Figure imgf000003_0001
Se produjeron los CA, entre otras, por cepas concretas de Escherichia coli que contienen el antígeno K1. Los CA pueden tener muchas funciones fisiológicas. Son importantes como materia prima de fármacos y cosméticos.
Los estudios comparativos in vivo con asparaginasa polisialilada y no modificada desvelaron que la polisialilación aumentó la semivida de la enzima (Fernandes y Gregoriadis, Biochimica Biophysica Acta 1341: 26-34, 1997).
La preparación de conjugados formando un enlace covalente entre el polímero soluble en agua y la proteína terapéutica puede llevarse a cabo mediante una variedad de procedimientos químicos. Una estrategia para acoplar PSA a las proteínas terapéuticas es la conjugación de los polímeros mediante los restos carbohidrato de la proteína. Los grupos hidroxilo (OH) vecinales de los carbohidratos en las proteínas pueden oxidarse fácilmente con peryodato de sodio (NaIO4) para formar grupos aldehído activos (Rothfus y Smith, J Biol Chem 1963; 238:1402-10; van Lenten y Ashwell, J Biol Chem 1971;246:1889-94). Posteriormente, el polímero se puede acoplar a los grupos aldehído de los carbohidratos mediante el uso de reactivos que contienen, por ejemplo, un grupo hidrazida activo (Wilchek M y Bayer EA, Methods Enzymol 1987;138:429-42). Una tecnología más reciente es el uso de reactivos que contienen grupos aminooxi que reaccionan con aldehídos para formar enlaces oxima (documento WO 96/40662, documento WO2008/025856).
Ejemplos adicionales que describen la conjugación de un PSA con una proteína terapéutica se describen en la publicación de EE.UU. n.° 2009/0076237 que enseña la oxidación de rFVIII y el posterior acoplamiento a PSA y otros polímeros solubles en agua (p. ej., PEG, HES, dextrano) usando química de la hidrazida; el documento WO 2008/025856 que enseña la oxidación de diferentes factores de coagulación, p. ej., rFIX, FVIII y FVIIa y el posterior acoplamiento a un polímero, p, ej., PEG; el documento WO2006/016168 que enseña la conjugación del PSA que tiene un grupo W-hidroxisuccinimida a grupos amino de las proteínas.
Recientemente, se ha descrito un procedimiento mejorado que comprende una oxidación suave del peryodato de los ácidos siálicos para generar aldehídos, seguido por reacción con un grupo aminooxi que contiene el reactivo en presencia de cantidades catalíticas de anilina (Dirksen A y Dawson PE, Bioconjugate Chem. 2008; 19,2543-8; y Zeng Y y col., Nature Methods 2009;6:207-9). Los catalizadores de anilina aceleran drásticamente la ligadura de la oxima, permitiendo el uso de concentraciones muy bajas de reactivos.
Entendiendo los procedimientos disponibles para conjugar polímeros solubles en agua con proteínas terapéuticas, sigue existiendo necesidad de desarrollar materiales y procedimientos para conjugar polímeros solubles en agua con compuestos que contienen carbohidratos diferentes de las proteínas de coagulación de la sangre que mejoren las propiedades farmacodinámicas y/o farmacocinéticas del compuesto, minimizando a la vez el coste asociado de los diversos reactivos.
Sumario de la invención
La presente invención proporciona materiales y procedimientos para conjugar un polímero soluble en agua a un compuesto que contiene carbohidrato diferente de una proteína de coagulación de la sangre que mejora las propiedades farmacodinámicas y/o farmacocinéticas del compuesto minimizando a la vez el coste asociado de los diversos reactivos.
En una realización de la invención se proporciona un procedimiento para conjugar un polímero soluble en agua a un resto carbohidrato oxidado de un compuesto que contiene carbohidrato diferente de una proteína de coagulación de la sangre, que comprende poner en contacto el resto carbohidrato oxidado con un polímero soluble en agua en condiciones que permitan la conjugación, en el que dicho polímero soluble en agua contiene un grupo hidrazida y se forma un enlace hidrazona entre el resto carbohidrato oxidado y el grupo hidrazida del polímero soluble en agua. El compuesto es una glicoproteína diferente de una proteína de coagulación de la sangre.
El resto carbohidrato puede oxidarse usando una enzima oxidante específica de azúcar (p. ej., galactosa o glucosa oxidasa) o mediante incubación con un tampón que comprende un agente oxidante seleccionado entre peryodato de sodio (NaIO4), tetraacetato de plomo (Pb(OAc)4) y perrutenato de potasio (KRuO4).
El resto carbohidrato puede oxidarse a un resto de ácido siálico, manosa, galactosa o glucosa.
El polímero soluble en agua usado en la invención es PSA, mPSA, CA o mCA.
En los siguientes ejemplos de referencia, el polímero soluble en agua es PEG o PEG ramificado.
En realizaciones concretas adicionales de la invención ilustrada en los ejemplos siguientes, el polímero soluble en agua es ácido polisiálico (PSA) o un PSA modificado (mPSA). El PSA o el mPSA puede tener un intervalo de pesos moleculares de 350 Da a 120.000 Da, 500 Da a 100.000 Da,1000 Da a 80.000 Da, 1500 Da a 60.000 Da, 2.000 Da a 45.000 Da o 3.000 Da a 35.000 Da.
El PSA o el mPSA puede ser ácido colomínico o ácido colomínico modificado.
En otra realización de la invención, el PSA o el mPSA está comprendido por aproximadamente 2-500 o 10-300 unidades de ácido siálico. En otra realización más, se proporciona el procedimiento anteriormente mencionado en el que el agente oxidante es peryodato de sodio (NaIO4).
Se desvela también en el presente documento, pero sin que forme parte de la invención, un procedimiento que comprende oxidar el polímero soluble en agua para formar un grupo aldehído o una unidad de ácido siálico en un extremo del polímero soluble en agua, y hacer reaccionar el polímero soluble en agua oxidado con un enlazador de aminooxi.
En otro aspecto más de la divulgación, se proporciona el procedimiento anteriormente mencionado en el que se prepara el polímero soluble en agua haciendo reaccionar un enlazador aminooxi activado con un polímero soluble en agua oxidado en el que el enlazador es un enlazador homobifuncional o heterobifuncional. El enlazador homobifuncional puede tener la fórmula general NH2[OCH2CH2] nONH2 , en el que n = 1-50, preferentemente 1-11, más preferentemente 1-6. El enlazador puede seleccionarse específicamente entre:
un enlazador de 3-oxa-pentano-1,5-dioxiamina de fórmula:
Figure imgf000004_0001
y
un enlazador 3,6,9-trioxa-undecano-1,11-dioxiamina de fórmula:
Figure imgf000004_0002
PSA o mPSA pueden oxidarse por incubación con un agente oxidante para formar un grupo aldehído en el extremo en el extremo no reductor del p Sa .
El procedimiento puede comprender oxidar el polímero soluble en agua para formar un grupo aldehído en una unidad en el extremo del polímero soluble en agua, p. ej., una unidad de ácido siálico en el extremo del PSA o del mPSA, y hacer reaccionar el polímero soluble en agua oxidado con un enlazador aminooxi. En otro aspecto adicional de la divulgación, se proporciona un procedimiento anteriormente mencionado en el que el enlazador aminooxi es 3-oxapentano-1,5-dioxiamina. En un aspecto relacionado, el agente oxidante es NaIO4.
En otro aspecto de la divulgación, se proporciona el procedimiento anteriormente mencionado en el que la puesta en contacto del resto carbohidrato oxidado con el polímero soluble en agua activado se produce en un tampón que comprende un catalizador nucleofílico seleccionado entre el grupo que consiste en anilina y derivados de anilina.
Se puede formar un grupo hidrazida de acuerdo con la invención en el polímero soluble en agua haciendo reaccionar un polímero soluble en agua oxidado con un enlazador hidrazida. El enlazador hidrazida puede ser de forma adecuada dihidrazida de ácido adípico.
En otra realización adicional de la invención, se proporciona un procedimiento anteriormente mencionado que comprende además la etapa de reducir un enlace hidrazona en la proteína conjugada, incubando, por ejemplo, la proteína conjugada en un tampón que comprende un compuesto reductor seleccionado entre el grupo que consiste en cianoborohidruro de sodio (NaCNBHa) y ácido ascórbico (vitamina C). En una realización relacionada, el compuesto reductor es cianoborohidruro de sodio (NaCNBHa).
En otra realización de la invención, se proporciona una glicoproteína conjugada producida por cualquier procedimiento anteriormente mencionado. En otra realización más de la invención, una glicoproteína conjugada diferente de una proteína de coagulación de la sangre comprende (a) la mencionada glicoproteína; y (b) al menos una hidrazida-PSA o -mPSA unida a la glicoproteína de (a), en la que dicha hidrazida-PSA o -mPSA se une a la glicoproteína mediante uno o más restos carbohidrato.
Figuras
La Figura 1 muestra la síntesis de los enlazadores de diaminoxi solubles en agua, 3-oxa-pentano-1,5-dioxiamina y 3,6,9-trioxaundecano-1,1-dioxiamina.
La Figura 2 muestra la preparación de aminooxi-PSA.
Descripción detallada de la invención
Las propiedades farmacológicas e inmunitarias de los compuestos que contienen carbohidratos, tales como glicoproteínas diferentes de las proteínas de coagulación de la sangre pueden mejorarse mediante modificación y conjugación química con un polímero soluble en agua, en particular PEG o PSA o mPSA. Las propiedades de los conjugados resultantes generalmente dependen fuertemente de la estructura y el tamaño del polímero. Por tanto, se prefieren usualmente polímeros con una distribución de tamaños definida y estrecha. PSA y mPSA, usados en ejemplos específicos, pueden purificarse de tal manera que den como resultado una preparación de PSA final con una distribución de tamaños estrecha.
GLICOPROTEÍNAS
Como se describe en el presente documento, las glicoproteínas diferentes de las proteínas de coagulación incluyen, citoquinas tales como interleuquinas, alfa-interferones, beta-interferones y gamma-interferones, factores estimuladores de colonias incluyen factores estimuladores de colonias de granulocitos, factores de crecimiento de fibroblastos, factores de crecimiento derivados de plaquetas, proteína activadora de la fosfolipasa (PUP), insulina, proteínas vegetales tales como lectinas y ricinas, factores de necrosis tumoral y alelos relacionados, formas solubles de receptores de factores de necrosis tumoral, receptores de interleuquinas y formas solubles de receptores de interleuquinas, factores de crecimiento, factores de crecimiento tisular, factores de crecimiento transformante tales como TGFas o TGFps y factores de crecimiento epidérmico, hormonas, somatomedinas, hormonas pigmentarias, factores de liberación hipotalámicos, hormonas antidiuréticas, prolactina, gonadotropina coriónica, hormona estimuladora del folículo, hormona estimuladora del tiroides, activador del plasminógeno tisular e inmunoglobulinas tales como IgG, IgE, IgM, IgA e IgD, anticuerpos monoclonales, eritropoyetina (EPO), factores sanguíneos diferentes que las proteínas de coagulación de la sangre, galactosidasas, a-galactosidasas, p-galactosidasas, ADNasas fetuína, fragmentos de las mismas, y cualesquiera proteínas de fusión que comprenden cualquiera de las proteínas o fragmentos de las mismas anteriormente mencionadas junto con las glicoproteínas terapéuticas en general están contempladas en la invención. En una realización, la glicoproteína es EPO. En una realización adicional la glicoproteína es galactosidasa. En otra realización adicional la glicoproteína es ADNasa. En otra realización adicional la glicoproteína es fetuína. Finalmente, en otra realización adicional más, la glicoproteína es un factor estimulador de colonias de granulocitos.
Como se usa en el presente documento, "derivado biológicamente activo" o "variante biológicamente activa" incluye cualquier derivado o variante de una molécula que tiene sustancialmente las mismas propiedades funcionales y/o biológicas de dicha molécula, tales como las propiedades de unión, y/o la misma base estructural, tal como la estructura principal peptídica o una unidad polimérica básica.
Un "análogo", "variante" o "derivado" es un compuesto sustancialmente similar en estructura y que tiene la misma actividad biológica, aunque en determinados casos, en un grado diferente, de una molécula de origen natural. Por ejemplo, una variante de polipéptido se refiere a un polipéptido que comparte una estructura sustancialmente similar y que tiene la misma actividad biológica que un polipéptido de referencia. Las variantes o los análogos difieren en la composición de sus secuencias de aminoácidos en comparación con el polipéptido de origen natural a partir del cual se deriva el análogo, basado en una o más mutaciones que implican (i) la deleción de uno o más restos de aminoácidos en uno o más extremos del polipéptido y/o una o más regiones internas de la secuencia del polipéptido de origen natural (p. ej., fragmentos), (ii) inserción o adición de uno o más aminoácidos en uno o más extremos (normalmente una "adición" o "fusión") del polipéptido y una o más regiones internas (normalmente una "inserción") de la secuencia del polipéptido de origen natural o (iii) sustitución de uno o más aminoácidos por otros aminoácidos en la secuencia del polipéptido de origen natural. A modo de ejemplo, un "derivado" se refiere a un polipéptido que comparte la misma estructura o una estructura sustancialmente similar a la del polipéptido de referencia que se ha modificado, por ejemplo, químicamente.
las variantes o análogos de los polipéptidos incluyen variantes de inserción, en el que se añaden uno o más restos de aminoácidos a una secuencia de aminoácidos de la proteína de la invención. Las inserciones pueden estar situadas en cualquiera o en ambos extremos de la proteína, y/o pueden situarse en regiones internas de la secuencia de aminoácidos de la proteína. Las variantes de inserción, con restos adicionales en cualquiera o en ambos extremos, incluyen por ejemplo, proteínas de fusión y proteínas que incluyen etiquetas de aminoácidos y otros marcadores de aminoácidos. En un aspecto, la molécula de proteína contiene opcionalmente una Met en el extremo N, especialmente cuando la molécula se expresa de forma recombinante en una célula bacteriana tal como E. coli.
En variantes de deleción, se eliminan uno o más restos de aminoácidos en una proteína o polipéptido como se describe en el presente documento. Las deleciones pueden efectuarse en uno o en ambos extremos de la proteína o polipéptido, y/o con la eliminación de uno o más restos en la secuencia de aminoácidos de la proteína. Las variantes de deleción, por lo tanto, incluyen fragmentos de una secuencia de proteína o polipéptido.
En variantes de sustitución, uno o más restos de aminoácidos de una proteína o polipéptido se eliminan y sustituyen por restos alternativos. En un aspecto, las sustituciones son conservativas en la naturaleza y las sustituciones conservativas de este tipo son bien conocidas en la técnica. Como alternativa, la invención abarca sustituciones que son también no conservativas. Las sustituciones conservativas ilustrativas se describen en Lehninger, [Biochemistry, 2a Edición; Worth Publishers, Inc., Nueva York (1975), págs.71-77] y se muestran inmediatamente a continuación.
SUSTITUCIONES CONSERVATIVAS
CARACTERISTICAS DE LA CADENA AMINOACID
SECUNDARIA OS
No polares (hidrófobos):
A. Alifáticos A L I V P
B. Aromáticos F W
C. Que contienen azufre M
D. Límite G
Polares no cargados:
A. Hidroxilo S T Y
B. Amidas N Q
C. Sulfhidrilo C
D. Límite G
Cargados positivamente (básicos) K R H
Cargados negativamente (ácidos) D E
Como alternativa, Se muestran inmediatamente a continuación las sustituciones conservativas ilustrativas.
SUSTITUCIONES CONSERVATIVAS II
RESTO ORIGINAL SUSTITUCION ILUSTRATIVA
Ala (A) Val, Leu, Ile
Arg (R) Lys, Gln, Asn
Asn(N) Gln, His, Lys, Arg
Asp(D) Glu
Cys(C) Ser
Gln (Q) Asn
Glu (E) Asp
His (H) Asn, Gln, Lys, Arg
Ile (I) Leu, Val, Met, Ala, Phe,
Leu (L) Ile, Val, Met, Ala, Phe
Lys (K) Arg, Gln, Asn
Met (M) Leu, Phe, Ile
Phe (F) Leu, Val, Ile, Ala
Pro (P) Gly
Ser (S) Thr
Thr (T) Ser
Trp (W) Tyr
Tyr (Y) Trp, Phe, Thr, Ser
Val (V) Ile, Leu, Met, Phe, Ala
ADMINISTRACION
En una realización, se puede administrar un compuesto conjugado de la presente invención mediante inyección, tal como inyección intravenosa, intramuscular o intraperitoneal. Las composiciones pueden ser útiles como agentes terapéuticos, de diagnóstico y/o similares.
Para administrar composiciones que comprenden un compuesto conjugado de la presente invención a seres humanos o animales de ensayo, en un aspecto, las composiciones comprenden uno o más transportadores farmacéuticamente aceptables. Las expresiones "farmacéuticamente" o "farmacológicamente aceptable" se refieren a entidades y composiciones moleculares que son estables, inhiben la degradación de las proteínas tales como la agregación y los productos de escisión y, además, no producen reacciones alérgicas, u otras reacciones adversas cuando se administran usando rutas bien conocidas en la técnica, como se describe a continuación. Los "transportadores farmacéuticamente aceptables" incluyen todos y cada uno de los disolventes, medios de dispersión, recubrimientos, agentes antibacterianos y antifúngicos clínicamente útiles, agentes isotónicos y agentes retardantes de la absorción y similares, incluyendo aquellos agentes desvelados anteriormente.
Como se usa en el presente documento, "cantidad eficaz" incluye una dosis adecuada para tratar un mamífero que tiene un trastorno clínicamente definido.
Las composiciones se pueden administrar por vía oral, tópica, transdérmica, parenteral, por inhalación mediante pulverización, por vía vaginal, por vía rectal o mediante inyección intracraneal. El extremo parenteral como se usa en el presente documento incluye inyecciones subcutánea, inyección intravenosa, intramuscular, intracisternal o técnicas de infusión. La administración mediante inyección intravenosa, intradérmica, intramuscular, intramamaria, intraperitoneal, intratecal, retrobulbar intrapulmonar y/o implante quirúrgico en un sitio concreto también se contemplan. Generalmente, las composiciones están esencialmente exentas de pirógenos, así como de otras impurezas que podrían ser perjudiciales para el receptor.
Se pueden llevar a cabo administraciones únicas o múltiples de los compuestos con los niveles de dosis y el patrón seleccionados por el médico a cargo del tratamiento. Para la prevención o el tratamiento de una enfermedad, la dosificación adecuada dependerá del tipo de enfermedad que se va a tratar, como se ha descrito anteriormente, la gravedad y la evolución de la enfermedad, si el fármaco se administra con fines preventivos o terapéuticos, tratamiento previo, antecedentes clínicos del paciente y respuesta al fármaco, y el criterio del médico a cargo del tratamiento.
La presente invención se refiere también a una composición farmacéutica que comprende una cantidad eficaz de un compuesto o proteína conjugada como se define en el presente documento. La composición farmacéutica puede comprender además un transportador, diluyente, sal, tampón o excipiente farmacéuticamente aceptable. La composición farmacéutica se puede usar para tratar trastornos clínicamente definidos. La composición farmacéutica de la invención puede ser una solución o un producto liofilizado. Las soluciones de la composición farmacéutica pueden someterse a cualquier procedimiento de liofilización adecuado.
Como aspecto adicional, la invención incluye kits que comprenden una composición de la invención envasada de manera que facilite su uso para la administración a sujetos. En una realización, dicho kit incluye un compuesto o composición descrito en el presente documento (por ejemplo, una composición que comprende una proteína conjugada), envasada en un recipiente tal como un frasco o recipiente precintado, con una etiqueta prefijada al recipiente o incluida en el envase que describe el uso del compuesto o composición en la práctica del procedimiento. En una realización, el kit contiene un primer recipiente que tiene una composición que comprende una proteína conjugada y un segundo recipiente que tiene una solución de reconstitución fisiológicamente aceptable para la composición en el primer recipiente. En un aspecto, el compuesto o composición se envasa en una forma de dosificación unitaria. El kit puede incluir además un dispositivo adecuado para administrar la composición de acuerdo con una vía de administración específica. Preferentemente, el kit contiene una etiqueta que describe el uso de la composición de la proteína o péptido terapéutico.
En una realización, el derivado retiene la actividad funcional completa de los compuestos terapéuticos naturales, y proporciona una semivida ampliada in vivo, en comparación con los compuestos terapéuticos nativos. En otra realización, el derivado retiene al menos 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 4 1 , 42 , 43, 44. 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, o 150 por ciento (%) de la actividad biológica en relación con el compuesto natural.
ÁCIDO SIÁLICO Y PSA
Como se usa en el presente documento, "restos de ácido siálico" incluye monómeros o polímeros de ácido siálico ("polisacáridos") que son solubles en una solución o suspensión acuosa y tienen poco o ningún impacto negativo, tal como efectos secundarios, en mamíferos tras la administración del conjugado de PSA-proteína en una cantidad farmacéuticamente eficaz. PSA y mPSA se caracterizan, en un aspecto, por tener 1,2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 o 500 unidades de ácido siálico. En determinados aspectos, las diferentes unidades de ácido siálico se combinan en una cadena.
En una realización de la invención, la porción de ácido siálico del compuesto de PSA o mPSA es muy hidrófila y, en otra realización, el compuesto completo es muy hidrófilo. La hidrofilicidad se transmite principalmente por los grupos carboxilo colgantes de las unidades de ácido siálico, así como por los grupos hidroxilo. La unidad de sacárido puede contener otros grupos funcionales, tales como, grupos amina, hidroxilo o sulfato, o combinaciones de los mismos. Estos grupos pueden estar presentes en compuestos sacáridos de origen natural, o introducidos en compuestos derivados de polisacáridos. El PSA y el mPSA usados en los procedimientos y conjugados de la invención pueden caracterizarse adicionalmente como se ha descrito anteriormente en los antecedentes de la invención.
El polímero PSA de origen natural está disponible como una preparación polidispersa que muestra una amplia distribución de tamaños (p. ej., Sigma C-5762) y una alta polidispersidad (PD). Puesto que los polisacáridos se producen usualmente en bacterias que tienen el riesgo inherente de copurificar endotoxinas, la purificación de largas cadenas poliméricas de ácido siálico puede aumentar la probabilidad de un contenido creciente de endotoxinas. Las moléculas de PSA cortas con 1-4 unidades de ácido siálico también pueden prepararse sintéticamente (Kang SH y col., Chem Commun. 2000;227-8; Ress DK y Linhardt RJ, Current Organic Synthesis. 2004;1:31-46), minimizando así el riesgo de altos niveles de endotoxinas. Sin embargo no se pueden fabricar preparaciones de PSA con una distribución estrecha de tamaños y una baja polidispersidad. que estén también exentas de endotoxinas. Los compuestos polisacáridos de uso particular en la invención son, en un aspecto, aquellos producidos por bacterias. Algunos de estos polisacáridos de origen natural se conocen como glicolípidos. En una realización, los compuestos polisacáridos están sustancialmente exentos de unidades de galactosa en los extremos.
En diversas realizaciones, el compuesto se une o se asocia con el compuesto de PSA o de mPSA en cantidades estequiométricas (p. ej., 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:7, 1:8, 1:9, o 1:10, etc.). En diversas realizaciones, 1-6, 7-12 o 13-20 unidades de PSA y/o mPSA están unidas al compuesto. En otras realizaciones adicionales, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 o más unidades de PSA y/o mPSA están unidas al compuesto.
Opcionalmente, el compuesto se modifica para introducir sitios de glicosilación (es decir, sitios diferentes que los sitios de glicosilación naturales). Dicha modificación puede llevarse a cabo usando técnicas biológicas moleculares convencionales en la materia. Además, el compuesto, antes de la conjugación mediante uno o más restos de carbohidrato, puede glicosilarse in vivo o in vitro.
ENLACE AMINOOXI
En un aspecto de la divulgación, la reacción de la hidroxilamina o derivados de la hidroxilamina con aldehídos (p. ej., en un resto carbohidrato tras oxidación con peryodato de sodio) para formar un grupo oxima se aplica a la preparación de conjugados del compuesto. Por ejemplo, una glicoproteína se oxida en primer lugar con un agente oxidante tal como peryodato de sodio (NaIO4) (Rothfus JA y Smith El., J Biol Chem 1963, 238, 1402-10; y Van Lenten L y Ashwell G., J Biol Chem 1971, 246, 1889-94). La oxidación con peryodato de, p. ej., glicoproteínas, se basa en la reacción clásica de Malaprade descrita en 1928, la oxidación de los dioles vecinales con peryodato para formar un grupo aldehído activo (Malaprade L., Analytical application, Bull Soc Chim France, 1928, 43, 683-96). Los ejemplos adicionales de dicho agente oxidante son tetraacetato de plomo (Pb(OAc)4), acetato de manganeso (MnO(Ac)3), acetato de cobalto (Co(OAc)2), acetato de talio (TlOAc), sulfato de cerio (Ce(SO4)2) (documento US 4.367.309) o perrutenato de potasio (KRuO4) (Marko y col., J Am Chem Soc 1997,119, 12661-2) Por "agente oxidante" se entiende un compuesto oxidante suave que es capaz de oxidar dioles vecinales en carbohidratos, generando por tanto grupos aldehído activos en condiciones de reacción fisiológicas.
La segunda etapa es el acoplamiento del polímero que contiene un grupo aminooxi al resto carbohidrato oxidado para formar un enlace oxima. En un aspecto de la divulgación, esta etapa se puede llevar a cabo en presencia de cantidades catalíticas del catalizador nucleofílico anilina o derivados de anilina (Dirksen A et Dawson PE, Bioconjugate Chem.
2008; Zeng Y y col., Nature Methods 2009;6:207-9). El catalizador de anilina acelera drásticamente la ligadura de la oxima permitiendo el uso de concentraciones muy bajas de los reactivos. En otro aspecto de la divulgación, el enlace de oxima se estabiliza mediante reducción con NaCNBH3 para formar un enlace alcoxiamina.
En un aspecto de la divulgación, las etapas de la reacción para conjugar PSA o mPSA a una proteína se llevan a cabo por separado y secuencialmente (es decir, materiales de partida (p, ej., proteína, polímero, etc.), reactivos (p. ej., agentes oxidantes, anilina, etc.) y los productos de reacción (p. ej., carbohidrato oxidado en una proteína, polímero de aminooxi activado, etc.) están separados entre etapas de reacción individuales).
Se puede encontrar información adicional sobre tecnología de aminooxi en las siguientes referencias: documento EP 1681303A1 (eritropoyetina silada con HA); documento WO 2005/014024 (conjugados de un polímero y una proteína unida mediante un grupo de unión a oxima); documento WO96/40662 (compuestos enlazadores que contienen aminooxi y su aplicación en conjugados); documento WO 2008/025856 (Proteínas modificadas); Peri F y col., Tetrahedron 1998, 54, 12269-78; Kubler-Kielb J y Pozsgay V., J Org Chem 2005, 70, 6887-90; Lees A y col., Vaccine 2006, 24(6), 716-29; y Heredia KL y col., Macromoecules 2007, 40(14), 4772-9.
Las ventajas de la invención incluyen una alta recuperación del conjugado, alta retención de la actividad de la glicoproteína conjugada en comparación con la proteína sin conjugar y alta eficacia de la conjugación.
La invención se ilustra ahora con referencia a los siguientes ejemplos. Los Ejemplos 21-25 ilustran realizaciones específicas de la invención. Los Ejemplos 1-20, 26 y 27 se incluyen como ejemplos de referencia por su relevancia en la preparación de los correspondientes conjugados de la invención.
Ejemplos
Ejemplo 1
Preparación del enlazador homobifuncional N ^ rO C ^C ^b O N H ?
El enlazador homobifuncional NH2[OCH2CH2]2ONH2
Figure imgf000009_0001
(3-oxa-pentano-1,5-dioxiamina) que contiene dos grupos aminooxi activos se sintetizó de acuerdo con Boturyn y col. (Tetrahedron 1997;53:5485-92) en una reacción orgánica de dos etapas empleando una síntesis de aminas primarias modificada por Gabriel. En la primera etapa, una molécula de 2,2-clorodietiléter se hizo reaccionar con dos moléculas de endo-N-hidroxi-5-norborneno-2,3-dicarboximida en dimetilformamida (DMF). El producto homobifuncional deseado se preparó a partir del intermedio resultante mediante hidrazinolisis en etanol. Excepto cuando se especifique lo contrario, esto se denomina como el enlazador de diaminooxi en los ejemplos siguientes.
Ejemplo 2
Preparación del enlazador homobifuncional NH?[OCH7CH?l4ONH7
El enlazador homobifuncional NH2[OCH2CH2]4ONH2
Figure imgf000009_0002
(3,6,9-trioxa-undecano-1,11-dioxiamina) que contiene dos grupos aminooxi activos se sintetizó de acuerdo con Boturyn y col. (Tetrahedron 1997;53:5485-92) en una reacción orgánica de dos etapas empleando una síntesis de aminas primarias modificada por Gabriel. En la primera etapa, una molécula de bis-(2-(2-cloroetoxi)-etil)-éter se hizo reaccionar con dos moléculas de endo-N-hidroxi-5-norborneno-2,3-dicarboximida en DMF. El producto homobifuncional deseado se preparó a partir del intermedio resultante mediante hidrazinolisis en etanol.
Ejemplo 3
Preparación de aminooxi-PSA
Se disolvieron 500 mg de PSA oxidado (MW=18,8kD) obtenido del Serum Institute of India (Pune, India)
en 8 ml de tampón acetato de sodio 50 mM, a pH 5,5. A continuación, se añadieron 100 mg de 3-oxa-pentano-1,5-dioxiamina. Tras agitar durante 2 h a temperatura ambiente, se añadieron 44 mg de cianoborohidruro de sodio. Tras agitar durante otras 4 h a 4 °C, la mezcla de reacción se cargó en un casete de diálisis Slide-A-Lyzer (Pierce, Rockford, IL) (membrana de 3,5 kD, celulosa regenerada) y se dializó frente a PBS pH 7,2 durante 4 días. El producto se congeló a -80 °C. En la Figura 2 se ilustra la preparación del aminooxi-PSA de acuerdo con este procedimiento.
Ejemplo 4
Acoplamiento de aminooxi-PSA a rFIX y purificación del conjugado
A 12,6 mg de rFIX, disueltos en 6,3 ml de tampón de acetato de sodio 50 mM, pH 6,0, se añadieron 289 pl de una solución acuosa de peryodato de sodio (10 mM). La mezcla se agitó en la oscuridad durante 1 h a 4 °C y se inactivó durante 15 min a temperatura ambiente mediante la adición de 6,5 pl de glicerol 1 M. Se eliminaron los contaminantes de bajo peso molecular mediante ultrafiltración/diafiltración (UF/d F) empleando concentradores Vivaspin (Sartorius, Goettingen, Alemania) (membrana de 30 kD, celulosa regenerada). A continuación, se añadieron 43 mg de aminooxi-PSA al retentato UF/DF y se agitó la mezcla durante 18 h a 4 °C. Se eliminó el reactivo PSA en exceso mediante cromatografía de interacción hidrófoba (HIC). La conductividad de la mezcla de reacción enfriada se aumentó a 180 mS/cm y se cargó en una columna HIC (1,6 x 2,5 cm) HiTrap Butyl FF de 5 ml (GE Healthcare, Fairfield, CT), preequilibrada con HEPES 50 mM, cloruro de sodio 3 M, cloruro de calcio 6,7 mM, Tween 80 al 0,01 %, a pH 6,9. Se eluyó el conjugado en 2,4 volúmenes de columna (VC) con HEPES 50 mM, cloruro de calcio 6,7 mM, Tween 80 al 0,005 %, pH 7,4, a un caudal de 5 ml/min. La preparación se caracterizó analíticamente midiendo la proteína total (BCA) y la actividad cromogénica FIX. Para el conjugado PSA-rFIX se determinó una actividad específica de 80,2 UI/mg de proteína (56,4 % en comparación con rFIX natural). En la tabla 1 se resumen los resultados.
Tabla 1
Figure imgf000010_0001
Ejemplo 5
Acoplamiento de aminooxi-PSA a rFIX en presencia de anilina como catalizador nucleófilo
A 3,0 mg de rFIX, disueltos en 1,4 ml de tampón de acetato de sodio 50 mM, pH 6,0, se añadieron 14,1 pl de una solución acuosa de peryodato de sodio (10 mM). La mezcla se agitó en la oscuridad durante 1 h a 4 °C y se inactivó durante 15 min a temperatura ambiente mediante la adición de 1,5 pl de glicerol 1 M. Se eliminaron los contaminantes de bajo peso molecular por medio de cromatografía de exclusión molecular (SEC) empleando columnas de desalación PD-10 (GE Healthcare, Fairfield, CT). 1,2 mg de rFIX oxidado, disueltos en 1,33 ml de tampón de acetato de sodio 50 mM, pH 6,0 se mezclaron con 70 pl de anilina (solución madre acuosa 200 mM) y se agitaron durante 45 min a temperatura ambiente. A continuación, se añadieron 4,0 mg de aminooxi-PSA y la mezcla se agitó 2 h a temperatura ambiente y 16 h más a 4 °C. Se retiraron las muestras después de 1 h, después de 2 h al final de la reacción tras 18 h. A continuación, se eliminaron el reactivo PSA en exceso y exento de rFIX por medio de HIC. La conductividad de la mezcla de reacción enfriada se aumentó a 180 mS/cm y se cargó en una columna HIC (1,6 x 2,5 cm) HiTrap Butyl FF de 5 ml (GE Healthcare, Fairfield, CT), preequilibrada con HEPES 50 mM, cloruro de sodio 3 M, cloruro de calcio 6,7 mM, Tween 80 al 0,01 %, a pH 6,9. Se eluyó el conjugado con un gradiente lineal de HEPES 50 mM, cloruro de calcio 6,7 mM, Tween 80 al 0,005 %, pH 7,4, en 20 VC a un caudal de 5 ml/min.
Ejemplo 6
Acoplamiento de aminooxi-PSA a rFIX y reducción con NaCNBH
A 10,5 mg de rFIX, disueltos en 5,25 ml de tampón de acetato de sodio 50 mM, pH 6,0, se añadieron 53 pl de una solución acuosa de peryodato de sodio (10 mM). La mezcla se agitó en la oscuridad durante 1 h a 4 °C y se inactivó durante 15 min a temperatura ambiente mediante la adición de 5,3 pl de glicerol 1 M. Se eliminaron los contaminantes de bajo peso molecular mediante ultrafiltración/diafiltración (UF/d F) empleando concentradores Vivaspin (Sartorius, Goettingen, Alemania) (membrana de 30 kD, celulosa regenerada). A continuación, se añadieron 35,9 mg de aminooxi-PSA al retentato de UF/DF y se agitó la mezcla de 2 h a temperatura ambiente. A continuación se añadieron 53 pl de solución acuosa de cianoborohidruro de sodio (5 M) y se dejó proceder la reacción durante otras 16 h. A continuación se eliminó el reactivo PSA en exceso por medio de HIC. La conductividad de la mezcla de reacción enfriada se aumentó a 180 mS/cm y se cargó en una columna (1,6 x 2,5 cm) HiTrap Buty1 HIC FF de 5 ml (GE Healthcare, Fairfield, CT), preequilibrada con HEPES 50 mM, cloruro de sodio 3 M, cloruro de calcio 6,7 mM, Tween 80 al 0,01 %, a pH 6,9. Se eluyó el conjugado en 2,4 VC con HEPES 50 mM, cloruro de calcio 6,7 mM, Tween 80 al 0,005 %, pH 7,4, a un caudal de 5 ml/min.
Ejemplo 7
Acoplamiento de aminooxi-PSA (enlazador: NH2ÍOCH2CH2I4ONH2) a rFIX y purificación del conjugado
A 5,6 mg de rFIX, disueltos en 2,8 ml de tampón de acetato de sodio 50 mM, pH 6,0, se añadieron 102 pl de una solución acuosa de peryodato de sodio (10 mM). La mezcla se agitó en la oscuridad durante 1 h a 4 °C y se inactivó durante 15 min a temperatura ambiente mediante la adición de 2,9 pl de glicerol 1 M. Se eliminaron los contaminantes de bajo peso molecular mediante ultrafiltración/diafiltración (UF/DF) empleando concentradores Vivaspin (Sartorius, Goettingen, Alemania) (membrana de 30 kD, celulosa regenerada). A continuación, se añadieron 19 mg de aminooxi-PSA al retentato de UF/DF y se agitó la mezcla durante 18 h a 4 °C. Se eliminó el reactivo PSA en exceso mediante HIC. La conductividad de la mezcla de reacción enfriada se aumentó a 180 mS/cm y se cargó en una columna HIC (1,6 x 2,5 cm) HiTrap Butyl FF de 5 ml (GE Healthcare, Fairfield, CT), preequilibrada con HEPES 50 mM, cloruro de sodio 3 M, cloruro de calcio 6,7 mM, Tween 80 al 0,01 %, a pH 6,9. Se eluyó el conjugado en 2,4 VC con HEPES 50 mM, cloruro de calcio 6,7 mM, Tween 80 al 0,005 %, pH 7,4, a un caudal de 5 ml/min.
Ejemplo 8
Acoplamiento de aminooxi-PSA a rFVIII
A 11 mg de rFVIII, disueltos en 11 ml de tampón Hepes pH 6 (Hepes 50 mM, CaCh 5 mM, NaCl 150 mM, Tween al 0,01 %) se añadieron 57 pl de peryodato de sodio 10 mM. La mezcla se agitó en la oscuridad durante 30 min a 4 °C y se inactivó durante 30 min a 4 °C mediante la adición de 107 pl de una solución acuosa de glicerol 1 M. A continuación se añadieron 19,8 mg de aminooxi-PSA (18,8 kD) y se agitó la mezcla durante la noche a 4 °C. Se aumentó la fuerza iónica añadiendo un tampón que contenía acetato de amonio 8 M (acetato de amonio 8 M, Hepes 50 mM, CaCh 5 mM, NaCl 350 mM, Tween 80 al 0,01 %, pH 6,9) hasta llegar a una concentración final de acetato de amonio 2,5 M. A continuación, la mezcla de reacción se cargó en una columna HiTrap Butyl FF (GE Healthcare, Fairfield, CT) que se equilibró con tampón de equilibrio (acetato de amonio 2,5 M, Hepes 50 mM, CaCh 5 mM, NaCl 350 mM, Tween 80 al 0,01 %, pH 6,9). Se eluyó el producto con tampón de elución (Hepes 50 mM, CaCh 5 mM, Tween 80 al 0,01 %, pH 7.4), y se concentró el eluato mediante filtración centrífuga utilizando dispositivos Vivaspin (Sartorius, Goettingen, Alemania) con 30.000 MWCO.
Ejemplo 9
Preparación del enlazador homobifuncional NH?rOCH?CH?1fiONH?
El enlazador homobifuncional NH2[OCH2CH2]6ONH2
Figure imgf000011_0001
(3,6,9,12,15-pentaoxa-heptadecano-1,17-dioxiamina) que contenía dos grupos aminooxi activos se sintetizó de acuerdo con Boturyn y col. (Tetrahedron 1997; 53:5485-92) en una reacción orgánica en dos etapas que emplea la síntesis de aminas primarias modificada por Gabriel. En la primera etapa, una molécula de dicloruro de hexaetilenglicol se hizo reaccionar con dos moléculas de endo-N-hidroxi-5-norborneno-2,3-dicarboximida en DMF. El producto homobifuncional deseado se preparó a partir del intermedio resultante mediante hidrazinolisis en etanol.
Ejemplo 10
Polisialilación de rFIX empleando un sistema enlazador de maleimido/aminooxi
A. Preparación del reactivo de modificación
Se preparó un reactivo de Aminooxi-PSA mediante el uso de un sistema enlazador de maleimido/aminooxi (Toyokuni y col., Bioconjugate Chem 2003; 14, 1253-9). PSA-SH (20 kD) que contenía un grupo SH libre en el extremo usando un procedimiento en dos etapas: a) Preparación de PSA-NH2 mediante aminación reductora de PSA oxidado con NH4Cl de acuerdo con el documento WO05016973A1 y b) introducción de un grupo sulfhidrilo mediante reacción del grupo amino primario en el extremo con 2-iminotiolano (reactivo de Traut/Pierce, Rockford, IL) como se describe en el documento US7645860. PSA-SH se acopló al grupo maleimido del enlazador a pH 7,5 en tampón PBS usando un exceso molar de 10 veces del enlazador y una concentración de PSA-SH de 50 mg/ml. La mezcla de reacción se incubó durante 2 horas con agitación suave a temperatura ambiente. A continuación, se eliminó el reactivo enlazador en exceso y el aminooxi-PSA se somete a intercambio de tampón en tampón de oxidación (fosfato de sodio 50 mM, pH 6,0) mediante diafiltración. El tampón se intercambió 25 veces empleando una membrana de celulosa Pellicon XL de 5 kD regenerada (Millipore, Billerica, MA).
B. Modificación de rFIX tras una oxidación previa con NaIO4
rFIX se oxidó en tampón fosfato de sodio 50 mM, pH 6,0 empleando peryodato de sodio 100 pM en el tampón. La mezcla se agitó en la oscuridad durante 1 ha 4 °C y se inactivó durante 15 min a temperatura ambiente mediante la adición de glicerol hasta una concentración final de 5 mM. Se eliminaron los contaminantes de bajo peso molecular por medio de cromatografía de exclusión molecular (SEC) empleando columnas de desalación PD-10 (GE Healthcare, Fairfield, CT). rFIX oxidado se enriqueció a continuación con anilina hasta obtener una concentración final de 10 mM y se mezcló con el reactivo aminooxi-PSA hasta conseguir un exceso molar de 5 veces de PSA. Se incubó la mezcla de reacción durante 2 horas con agitación suave en la oscuridad a temperatura ambiente.
C. Purificación de los conjugados
Se eliminó el reactivo PSA en exceso y se eliminó el rFIX libre por medio de HIC. Se aumentó la conductividad de la mezcla de reacción a 180 mS/cm y se cargó en una columna rellena con 48 ml de Butil-Sefarosa FF (GE Healthcare, Fairfield, CT) preequilibrada con Hepes 50 mM, cloruro de sodio 3 M, cloruro de calcio 6,7 mM, Tween 80 al 0,01 %, a pH 6,9. Posteriormente, se eluyó el conjugado con un gradiente lineal de tampón de elución al 60 % (Hepes 50 mM, cloruro de calcio 6,7 mM, pH 7,4) en 40 VC. Finalmente, se recogieron las fracciones que contenían PSA-rFIX y se sometieron a UF/DF mediante el uso de una membrana de 30 kD fabricada de celulosa regenerada (Millipore). La preparación se caracterizó analíticamente midiendo la proteína total (BCA) y la actividad cromogénica FIX. Para los conjugados de PSA-rFIX preparados con ambas variantes, se determinó una actividad específica de > 50 % en comparación con rFIX nativa.
Ejemplo 11
Preparación de reactivo de aminooxi-PSA
Se preparó un reactivo de aminooxi - PSA de acuerdo con el Ejemplo 3. El producto final se diafiltró frente al tampón, pH 7,2 (Hepes 50 mM) usando una membrana de 5 kD (celulosa regenerada, Millipore), congelada a -80 °C y liofilizada. Tras la liofilización, el reactivo se disolvió en el volumen adecuado de agua y se usó para la preparación de conjugados de PSA-proteína mediante la modificación de los carbohidratos.
Ejemplo 12
Síntesis detallada del reactivo de aminooxi-PSA
Se sintetizó 3-oxa-pentano-1,5 dioxiamina de acuerdo con Botyryn y col (Tetrahedron 1997; 53:5485-92) en una síntesis orgánica en dos etapas como se indicó en el Ejemplo 1.
Etapa 1:
A una solución de endo-N-hidroxi-5-norboneno-2,3-dicarboxiimida (59,0 g; 1,00 eq) en 700 ml de N,N-dimetilformamida anhidra, se añadieron K2CO3 anhidro (45,51 g; 1,00 eq) y 2,2-diclorodietileter (15,84 ml; 0,41 eq). La mezcla de reacción se agitó durante 22 horas a 50 °C. La mezcla se evaporó hasta sequedad bajo presión reducida.
El residuo se suspendió en 2 l de diclorometano y se extrajo dos veces con solución acuosa saturada de NaCl (cada 1 l). La capa de diclorometano se secó con Na2SO4 y a continuación se evaporó hasta sequedad a presión reducida y se secó a alto vacío para dar 64,5 g de 3-oxapentano-1,5-dioxi-endo-2',3'-dicarboxidiimidanorborneno Como un sólido de color blanco amarillento (intermedio 1 ).
Etapa 2:
A una solución del intermedio 1 (64,25 g; 1,00 eq) en 800 ml de etanol anhidro, Se añadieron 31,0 ml de hidrato de hidrazina (4,26 eq). La mezcla de reacción se sometió a reflujo durante 2 horas. La mezcla se concentró hasta la mitad del volumen de partida evaporando el disolvente a presión reducida. El precipitado producido se eliminó mediante filtración. La capa de etanol restante se evaporó hasta sequedad a presión reducida. El residuo que contenía el producto bruto de 3-oxa-pentano-1,5-dioxiamina se secó al vacío para dar como resultado 46,3 g. El producto bruto se purificó adicionalmente mediante cromatografía en columna (Silicagel 60; elución isocrática con una mezcla de diclorometano/metanol, 9+1) para dar como resultado 11,7 g del producto final puro 3-oxa-pentano -1,5-dioxiamina.
Ejemplo 13
Preparación de un polímero de aminooxi-PSA
Se disolvieron 1,3 g ácido colomínico oxidado (23 kDa) en 18 ml de acetato de sodio 50 mM pH 5,5±0,02. Se disolvió un exceso molar de 20 veces de 1,11-diamino-3,6,9-trioxaundecano (denominado también 3,6,9-trioxa-undecano-1,11-dioxiamina) en una cantidad mínima de acetato de sodio 50 mM (pH 5,5±0,02) y se añadieron a la solución de PSA. La concentración final de ácido colomínico era de 62,5 mg/ml. Esta mezcla de reacción se incubó durante 2±0,1h a 22±1,0°C en un mezclador a baja velocidad (22 oscilaciones por minuto). Tras esto, se añadieron 0,65 ml de 160 mg/ml de una solución de NaCNBH3 a la mezcla de reacción anterior para preparar la concentración final de 5,00 mg/ml. Esta se incubó durante 3,0±0,20 horas a 4,0±1,0 °C en un agitador (22 oscilaciones por minuto) en un recipiente hermético al aire exento de endotoxinas con suficiente espacio superior para la mezcla. Para la purificación, se diluyó la muestra con trietanolamina 2 mM, pH 8,0±0,02 para preparar la concentración final de ácido colomínico de 20 mg/ml. La mezcla de reacción se desaló para eliminar el exceso de 1,11-diamino-3,6,9-trioxaundecano, NaCNBH3 y los subproductos de la reacción. Esto fue seguido por la desalación en una columna Sephadex G25 usando un tampón de trietanolamina 20 mM (pH 8,0±0,02). El pH de la muestra desalada se ajustó a pH 7,8-8,0 y se ultrafiltró/diafiltró con TEA 20 mM pH 8,0 una vez y trietanolamina 2 mM (TEA) pH 8,0 dos veces. La muestra se criodesecó y se almacenó a -80 °C.
Como alternativa, se llevó a cabo la purificación en presencia de una elevada concentración de sal durante la desalación y etapas de ultrafiltración/diafiltración (UF/DF). Se usó también la cromatografía de intercambio aniónico con una alta concentración de sal para preparar aminooxi-PSA muy puro. Por analogía, se sintetizaron aminooxi-PSA de diferentes pesos moleculares.
Ejemplo 14
Acoplamiento de diaminooxi (3.6,9-tr¡oxa-undecano-1.11-d¡ox¡am¡na)-PSA a p-galactosidasa
Para la oxidación de la p-galactosidasa (p-Gal), se usaron diferentes concentraciones de NaIO4 (comprendidas de 0,157 mM a 2 mM). Se oxidaron 0,5 mg de p-Gal a un pH ácido de 5,75 a 4 °C durante 30 minutos en la oscuridad. Se detuvo la oxidación mediante la adición de NaHSO3 a una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando la p-Gal oxidada con un polímero de diaminooxi PSA (22 kDa). La concentración final del polímero en la mezcla de reacción era 1,25 mM mientras que la concentración de p-Gal varió de 0,125 mg/ml a 0,76 mg/ml. Todas las reacciones se llevaron a cabo a pH 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. Se llevó a cabo la reacción a 4 °C y se recogieron las muestras a intervalos de tiempo de 1, 2 y 24 horas. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se confirmó esto también mediante la transferencia western.
Basándose en las mejores condiciones de reacción, se oxidaron 1,9 mg de p-Gal con 1,5 mM de NaIO4 durante 30 minutos a 4 °C y a continuación se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM.
Se llevó a cabo la reacción de conjugación usando la p-Gal oxidada con polímero de diaminooxi PSA. Las concentraciones finales de polímero y de proteína en la mezcla de reacción fueron 1,25 mM y 0,76 mg/ml respectivamente. El pH final de la mezcla de reacción fue de alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La reacción se llevó a cabo a 4 °C durante 2 horas. Se caracterizaron los conjugados purificados y sin purificar usando SDS PAGE y transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y esto se confirmó mediante transferencia western usando un anticuerpo anti-PSA. La actividad in vitro de los conjugados PSA-pGal fue comparable a la de la proteína nativa usando un kit de ensayo de pGal All in one (Pierce). Se observó menos de un 50 % de actividad en conjugados comparables usando la química de enlazadores de aldehido. Además, se escaló hasta 3 veces el procedimiento global.
Ejemplo 15
Acoplamiento de diaminooxi-PSA a fetuína
Se oxidó la fetuína con NaIO4 10 mM durante 60 minutes a 4 °C en la oscuridad y se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 10 mM. Se llevó a cabo la reacción de conjugación usando la fetuína oxidada con un polímero de diaminooxi PSA (23 kDa). La concentración final de polímero en la mezcla de reacción fue de 2,5 mM a pH 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3.17 mg/ml. La concentración final de la proteína en la reacción fue de 0,714 mg/ml y se llevó a cabo la reacción a 4 °C durante 2 horas. Estos conjugados se caracterizaron usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para los conjugados en SDS PAGE y se confirmó esto también mediante la transferencia western.
Para la reacción de escalado, se oxidaron 5 mg de fetuína con 10 mM de NaIO4 durante 60 minutos a 4 °C en la oscuridad y a continuación se detuvo la oxidación añadiendo NaHSO3 a una concentración final de 10 mM. Se llevó a cabo la reacción de conjugación usando la fetuína oxidada con un polímero de diaminooxi PSA (23 kDa). La concentración final de polímero en la mezcla de reacción fue de 2,5 mM a pH de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. Se llevó a cabo la reacción a 4 °C y se recogieron las muestras después de 2 horas. Se caracterizaron los conjugados purificados y sin purificar usando SDS PAGE y transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se confirmó esto también mediante la transferencia western.
Ejemplo 16
Acoplamiento de diaminooxi-PSA a fetuína con anilina para actuar como un catalizador nucleofílico
Se oxidaron 0,2 mg de fetuína con NaIO410 mM durante 30 minutos a 4 °C en la oscuridad y a continuación se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando la fetuína oxidada con un polímero de diaminooxi PSA (23 kDa). La concentración final de polímero en la mezcla de reacción fue de 1,25 mM. El pH final de la mezcla de reacción fue de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La concentración final de proteína en la reacción fue de 0,125 mg/ml. Se añadieron 84,21 pl de una solución de anilina 200 mM a los 1,6 ml de la mezcla de reacción. La reacción se llevó a cabo a 4 °C durante la noche.
Ejemplo 17
Acoplamiento de diaminooxi-PSA a eritropoyetina (EPO)
Se oxidaron 0,2 mg de EPO con 10 mM de NaIO4 durante 30 minutos a 4 °C. se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando la EPO oxidada con un polímero de diaminooxi de 23 kDa. La concentración final de polímero en la mezcla de reacción fue de 1,25 mM. La concentración final de EPO en la mezcla de reacción fue de 0,125 mg/ml. El pH final de la mezcla de reacción fue de alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3.17 mg/ml. La reacción se llevó a cabo a 4 °C durante 24 horas. Se caracterizó el conjugado sin purificar usando SDS PAGE. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE.
Ejemplo 18
Acoplamiento de diaminooxi-PSA a EPO con anilina para actuar como un catalizador nucleofílico
Se oxidaron 0,2 mg de EPO con 10 mM de NaIO4 durante 30 minutos a 4 °C. Se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando la EPO oxidada con un polímero de diaminooxi PSA (22 kDa). La concentración final de polímero en la mezcla de reacción fue de 1,25 mM. El pH final de la mezcla de reacción fue de alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La concentración final de proteína en la reacción fue de 0,125 mg/ml. Se añadieron 84,21 pl de una solución de anilina 200 mM a los 1,6 ml de la mezcla de reacción. La reacción se llevó a cabo a 4 °C durante la noche. Se caracterizaron los conjugados usando SDS PAGE. Se observó un desplazamiento en la banda en los conjugados. No se observaron efectos adversos de la anilina sobre la actividad de los conjugados.
Ejemplo 19
Acoplamiento de diaminooxi-PSA a ADNasa
Para la glicopolisialilación de la ADNasa, la ADNasa de páncreas de bovino se usó para la reacción de conjugación. Esta fuente de ADNasa se suministró como un polvo liofilizado, que se almacenó a -20 °C. Antes de la reacción, este polvo liofilizado se disolvió en tampón acetato de sodio (pH 5,75). El polímero usado para la glicopolisialilación tenía un peso en el intervalo de 10 kDa a 22 kDa. Para la oxidación del resto glicón de la ADNasa, NaIO4 se usó como agente oxidante hasta una concentración final de 1 mM. la ADNasa se oxidó a pH ácido de 5,75 a 4 °C durante 30 minutos. Se detuvo la oxidación mediante la adición de NaHSO3 a una concentración final de 2 mM. Tras completarse la oxidación, se llevó a cabo la reacción de conjugación mediante la adición de polímero de diaminooxi PSA hasta una concentración final de 1,25 mM. Se añadió NaCNBH3 a la mezcla de reacción hasta una concentración final de 50 mM o 3,17 mg/ml y se realizó la polisialilación de la ADNasa a 4,0±1,0 °C durante al menos 2 horas. Se detuvieron las reacciones con un exceso 25 molar de Tris sobre el polímero. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se obtuvo un resultado positivo a partir a partir de la transferencia western. Se midió la actividad como un 95 % (en comparación con el menos del 50 % observado en conjugados comparables preparados usando la química del enlazador de aldehídos).
Ejemplo 20
Acoplamiento de Diaminooxi (enlazador de 3-oxa-pentano-1.5-diox¡am¡na)-PSA a B-Galactosidasa
Para la oxidación de la p-Galactosidasa, NaIO4 se usó a una concentración de 2 mM. Se oxidaron 3 mg de pgalactosidasa a pH ácido de 5,75 a 4 °C durante 30 minutos, a continuación se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 2 mM. Se llevó a cabo la reacción de conjugación usando la p-galactosidasa oxidada con un polímero de diaminooxi PSA (23 kDa). La concentración final de polímero en la mezcla de reacción fue de 1,5 mM. La concentración final de p-galactosidasa en la mezcla de reacción fue de 0,867 mg/ml. El pH final de la mezcla de reacción estuvo alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La reacción se llevó a cabo a 4 °C durante 2 horas. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se obtuvo un resultado positivo a partir a partir de la transferencia western.
Ejemplo 21
Preparación de hidrazida-ácido colomínico
Los inventores utilizaron el siguiente protocolo para preparar una PSA-hidrazida (ácido colomínico-hidrazida) usando dihidrazida de ácido adípico. Se usaron procedimientos análogos para preparar otras PSA-hidrazidas.
1 Disolver 1 g de ácido colomínico activado en ~10 ml de acetato de sodio 20 mM pH 5,5±0,02. La concentración final de ácido colomínico debe ser 62,5 mg/ml
2 Disolver un exceso molar de 25 veces (sobre el ácido colomínico oxidado "CAO") de dihidrazida de ácido adípico (MW= 174,2 g) en una mínima cantidad de acetato de sodio 20 mM (pH 5,5 ±0,02) y añadir a la solución de 1. 3 Cantidad de dihidrazida de ácido adípico que se va a añadir
= Peso de CAO en gramos x 25 x MW de dihidrazida de ácido adípico en g MW de CAO en Daltons
= 1 x 25 x 174,2
15 x 1012345678910
= 0,290 g
4 Tras añadir una solución de dihidrazida de ácido adípico, completar el volumen de ácido colomínico con acetato de sodio hasta una concentración final de 62,5 mg/ml. Por tanto, el volumen total de reacción es 16 ml.
5 Incubar la mezcla de reacción durante 2±0,1 h a 22,0± 1,0 °C en un agitador (22 oscilaciones por minuto). 6 Preparar la solución concentrada de NaCNBH3 (165 mg/ml) y añadir 0,5 ml a una solución de 1 de tal manera que la concentración final de esta llegue a 5,0 mg/ml en la mezcla de reacción final. Incubar la mezcla de reacción durante 3,0±0,20 horas a 4,0±1,0 °C en un agitador (22 oscilaciones por minuto).
7 Mantener la mezcla de reacción en un recipiente hermético al aire, exento de endotoxinas, con un exceso de 50 ml de espacio superior para la mezcla adecuada (debe haber suficiente espacio para que la mezcla de reacción no deba tocar la tapa del recipiente).
8 Después de 3 horas de reacción a 4°C, Diluir la muestra con trietanolamina 2 mM (completar el volumen hasta 50 ml) a pH 8,0±0.02 completar la concentración final de ácido colomínico hasta 20 mg/ml.
9 Desalar la mezcla de reacción para eliminar el exceso de dihidrazida de ácido adípico sin tratar, NaCNBH3 etc., del polímero. Esto se puede llevar a cabo mediante GPC (usando una matriz de medios XK 50 Sephadex G-25; <1,8 mg de matriz CA/ml; 35 cm de altura de lecho;
Volumen de columna= 687 ml) observando UV 224nm y conductividad. Se llevó a cabo la desalación con tampón de trietanolamina 20 mM (pH 8,0±0,02).
10 Tras la desalación, la hidrazida del ácido colomínico se sometió a 1 ciclo de ultrafiltración, 1 ciclo de diafiltración usando TEA 20 mM, pH 8,0±0,02 y al menos 3 ciclos de diafiltración usar TEA 2 mM, pH 8,0±0,02. Esto se puede llevar a cabo usando casetes vivaflow de 3 kDa.
11 Ajustar el pH de la muestra desalada a pH 7,8-8,0. Opcionalmente, Criodesecar la muestra y mantener esta consecutivamente durante el secado secundario para eliminar el exceso de humedad.
Ejemplo 22
Acoplamiento de hidrazida-PSA a Eritropoyetina
Para la oxidación de la eritropoyetina (EPO), se usó NaIO4 a una concentración de 10 mM. Se oxidó EPO (1 mg) a pH 5,75 a 4 °C durante 30 minutos, a continuación se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando EPO oxidada con un polímero de hidrazida-PSA. El peso molecular de la hidrazida-PSA usada para la conjugación fue de 24,34 kDa. La concentración final de hidrazida-PSA en la mezcla de reacción fue de 1,25 mM. La concentración final de EPO en la mezcla de reacción fue de 0,125 mg/ml. El pH final de la mezcla de reacción fue de alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La reacción se llevó a cabo a 4 °C durante 24 horas. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se obtuvo un resultado positivo a partir de la transferencia western.
Ejemplo 23
Acoplamiento de hidrazida-PSA a B-Galactosidasa
Se oxidó p-galactosidasa (0,5 a 4,5 mg) con NaIO4 de 0,625 a 2 mM durante 30 minutos a 4 °C. Se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 mM. Se llevó a cabo la reacción de conjugación usando la p-Galactosidasa oxidada con un hidrazida-PSA de 24,34 a 27,9 kDa. La concentración final de hidrazida-PSA en la mezcla de reacción fue de 1,25 mM. La concentración final de p-galactosidasa en la mezcla de reacción estuvo en el intervalo de 0,125 mg/ml a 0,76 mg/ml. El pH final de la mezcla de reacción debe estar alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. Se llevó a cabo la reacción a 4 °C y se recogieron las muestras a intervalos 1, 2 y 24 horas. Se caracterizaron los conjugados purificados y sin purificar usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se obtuvo un resultado positivo a partir de la transferencia western. Se midió la actividad como el 84 %. Se observó menos de un 50 % de actividad en conjugados comparables usando la química de enlazadores de aldehído.
Ejemplo 24
Acoplamiento de hidrazida-PSA a fetuína
Se oxidó la fetuína (0,25 mg) con NaIO4 (5 o 10 mM) durante 30 o 60 minutos a 4 °C. Se detuvo la oxidación añadiendo NaHSO3 a una concentración final de 5 o 10 mM según sea adecuado para que la concentración de NaIO4 corresponda con la usada para la oxidación. Se llevaron a cabo las reacciones de conjugación usando la fetuína oxidada con un polímero de dihidrazida del ácido adípico-PSA. La concentración final del polímero en la mezcla de reacción fue entre 1,25 y 2,5 mM. El pH final de la mezcla de reacción estuvo alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. La reacción se llevó a cabo a 4 °C durante 1 a 4 horas. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE para cada conjunto de condiciones de reacción y se obtuvo un resultado positivo a partir de la transferencia western.
Se llevó a cabo una reacción escalada para 5 mg de fetuína seguida por purificación del conjugado resultante. se oxidaron 5 mg de fetuína con 10 mM de NaIO4 durante 60 minutos a 4 °C y a continuación se detuvo la oxidación añadiendo NaHSO3 a una concentración final de 10 mM. Se llevó a cabo la reacción de conjugación usando la fetuína oxidada con un polímero de dihidrazida del ácido adípico-PSA. La concentración final de polímero en la mezcla de reacción fue de 2,5 mM. El pH final de la mezcla de reacción estuvo alrededor de 5,75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3,17 mg/ml. Se llevó a cabo la reacción a 4 °C y se recogieron las muestras a las 2 horas. Se caracterizaron los conjugados purificados y sin purificar usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para el conjugado en SDS PAGE y se obtuvo un resultado positivo a partir de la transferencia western.
Ejemplo 25
Acoplamiento de hidrazida-PSA a ADNasa
Se oxidó la ADNasa con NaIO4 hasta una concentración final que variaba de 0,2 mM a 2 mM durante 30 minutos a 4 °C. Se detuvo la reacción de oxidación añadiendo NaHSO3 hasta una concentración final de entre 2 y 5 mM dependiendo de la concentración de NaIO4 usada para la oxidación. Se llevó a cabo la glicopolisialilación de la ADNasa oxidada mediante la adición de polímero de hidrazida-PSA hasta una concentración final de 1,25 mM a la ADNasa oxidada. se añadió cianoborohidruro de sodio a la mezcla de reacción hasta una concentración final de 50 mM o 3,17 mg/ml y se realizó la glicopolisialilación de la ADNasa a 4 °C durante un periodo de tiempo que variaba de 1 hora a 2 horas. Se detuvieron las reacciones con un exceso molar de 25 veces de Tris sobre el polímero. Se caracterizaron los conjugados usando SDS PAGE y la transferencia western. Se observó un desplazamiento en la banda para los conjugados en SDS PAGE y se obtuvo un resultado positivo a partir de la transferencia western. Se midió la actividad como el 49 %.
Ejemplo 26
PEGilación de la B-Galactosidasa usando un enlazador de aminooxi (3-oxa-pentano-1.5-dioxiamina)
Se oxidó la p-galactosidasa (1 mg) con1,5 mM de NaIO4 durante 30 minutos a 4 °C. Se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 1.5 mM.
Se llevó a cabo la reacción de conjugación usando la p-galactosidasa oxidada con un polímero de diaminooxi-PEG (20 kDa). La concentración final de polímero en la mezcla de reacción fue de 1.25 mM. La concentración final de pgalactosidasa en la mezcla de reacción fue de 1 mg/ml. El pH final de la mezcla de reacción debe estar alrededor de 5.75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3.17 mg/ml. La reacción se llevó a cabo a 4 °C durante 2 horas. Se caracterizó el conjugado sin purificar usando SDS PAGE y se observó un desplazamiento en la banda para el conjugado en SDS PAGE. Se midió la actividad como el 59 %.
Ejemplo 27
PEGilación de eritropoyetina usando un enlazador de aminooxi
Se oxidó eritropoyetina (EPO; 0.2 mg) con 5 o 10 mM de NaIO4 en acetato de sodio 50 mM a pH 5.75 durante 45 minutos a 4 °C y a continuación se detuvo la oxidación añadiendo NaHSO3 hasta una concentración final de 5 o 10 mM (para hacer corresponder la concentración de NaIO4 usada para la oxidación). Se llevó a cabo la reacción de conjugación usando la EPO oxidada con un polímero de diaminooxi PEG (20 kDa). La concentración final de polímero en la mezcla de reacción fue de 1.5 mM. El pH final de la mezcla de reacción debe estar alrededor de 5.75. Se añadió cianoborohidruro de sodio a la mezcla de reacción a una concentración de 50 mM o 3.17 mg/ml. La concentración final de proteína en la reacción fue de 0.4 mg/ml. Se llevó a cabo la reacción de conjugación durante la noche a 4 °C.
La invención proporciona por tanto conjugados de compuestos diferentes de las proteínas de coagulación de la sangre con polímeros solubles en agua. en particular PSA y mPSA.

Claims (14)

REIVINDICACIONES
1. Un procedimiento para conjugar ácido polisiálico (PSA) o un PSA modificado (mPSA) a un resto carbohidrato oxidado de una glicoproteína diferente de una proteína de coagulación de la sangre que comprende un grupo carbohidrato, que comprende poner en contacto el resto carbohidrato oxidado con el PSA o el mPSA en condiciones que permitan la conjugación,
en el que dicho PSA o mPSA contiene un grupo hidrazida y se forma un enlace hidrazona entre el resto carbohidrato oxidado y el grupo hidrazida del PSA o mPSA, en el que el PSA modificado es PSA que comprende un resto derivado de un resto de ácido N-acetilneuramínico en el extremo mediante oxidación o reducción.
2. El procedimiento de acuerdo con la reivindicación 1 en el que el PSA o el mPSA es ácido colomínico o ácido colomínico modificado.
3. El procedimiento de acuerdo con la reivindicación 1 o 2 en el que el PSA o el mPSA comprende 2 - 500 unidades de ácido siálico.
4. El procedimiento de acuerdo con cualquier reivindicación previa en el que la glicoproteína se selecciona entre citoquinas tales como interleuquinas, alfa-interferones, beta-interferones y gamma-interferones, factores estimuladores de colonias incluyen factores estimuladores de colonias de granulocitos, factores de crecimiento de fibroblastos, factores de crecimiento derivados de plaquetas, proteína activadora de la fosfolipasa (PUP), insulina, proteínas vegetales tales como lectinas y ricinas, factores de necrosis tumoral y alelos relacionados, formas solubles de receptores de factores de necrosis tumoral, receptores de interleuquinas y formas solubles de receptores de interleuquinas, factores de crecimiento, factores de crecimiento tisular, factores de crecimiento transformante tales como TGFas o TGFp y factores de crecimiento epidérmico, hormonas, somatomedinas, hormonas pigmentarias, factores de liberación hipotalámicos, hormonas antidiuréticas, prolactina, gonadotropina coriónica, hormona estimuladora del folículo, hormona estimuladora del tiroides, activador del plasminógeno tisular, inmunoglobulinas tales como IgG, IgE, IgM, IgA e IgD, anticuerpos monoclonales, eritropoyetina (EPO), factores sanguíneos diferentes que las proteínas de coagulación de la sangre, galactosidasas, a-galactosidasas, p-galactosidasas, ADNasas, fetuína, fragmentos de las mismas y proteínas de fusión que comprende cualquiera de las proteínas anteriormente mencionadas o fragmentos de las mismas.
5. El procedimiento de acuerdo con las reivindicaciones 1 a 3 en el que la glicoproteína se selecciona entre factores de necrosis tumoral y los alelos relacionados, formas solubles de receptores de factores de necrosis tumoral, inmunoglobulinas tales como IgG, IgE, IgM, IgA e IgD, anticuerpos monoclonales, eritropoyetina (EPO), ADNasas, fetuína, fragmentos de las mismas y proteínas de fusión que comprende cualquiera de las proteínas anteriormente mencionadas o fragmentos de las mismas.
6. El procedimiento de acuerdo con cualquier reivindicación anterior, que comprende oxidar el resto carbohidrato incubando la glicoproteína con peryodato de sodio (NaIO4).
7. El procedimiento de acuerdo con cualquier reivindicación anterior, que comprende oxidar el PSA o el mPSA para formar un grupo aldehído en una unidad en el extremo del PSA o el mPSA, y hacer reaccionar el PSA o el mPSA oxidado con un enlazador hidrazida.
8. El procedimiento de acuerdo con la reivindicación 7 que comprende oxidar el PSA o el mPSA usando NaIO4.
9. El procedimiento de acuerdo con cualquier reivindicación anterior que comprende poner en contacto el resto carbohidrato oxidado con PSA o mPSA en un tampón que comprende un catalizador nucleofílico seleccionado entre anilina y derivados de anilina.
10. El procedimiento de acuerdo con cualquier reivindicación anterior en el que el grupo hidrazida se forma haciendo reaccionar PSA o mPSA oxidado con un enlazador hidrazida que es dihidrazida de ácido adípico.
11. El procedimiento de acuerdo con cualquier reivindicación anterior que comprende reducir un enlace hidrazona en la glicoproteína conjugada mediante incubación en presencia de un compuesto reductor.
12. El procedimiento de acuerdo con la reivindicación 11, en el que el compuesto reductor es cianoborohidruro de sodio (NaCNBHa) o ácido ascórbico (vitamina C).
13. Una glicoproteína conjugada obtenible mediante el procedimiento de acuerdo con cualquier reivindicación anterior.
14. Una glicoproteína conjugada diferente de una proteína de coagulación de la sangre que comprende:
(a) la glicoproteína; y
(b) al menos una hidrazida-PSA o -mPSA unida a la glicoproteína de (a),
en la que dicha hidrazida-PSA o -mPSA se une a la glicoproteína mediante uno o más restos carbohidrato, en el que el PSA modificado es PSA que comprende un resto derivado de un resto de ácido N-acetilneuramínico en el extremo mediante oxidación o reducción.
ES16168473T 2009-07-27 2010-07-26 Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre Active ES2856055T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22882809P 2009-07-27 2009-07-27
US34713610P 2010-05-21 2010-05-21

Publications (1)

Publication Number Publication Date
ES2856055T3 true ES2856055T3 (es) 2021-09-27

Family

ID=52845847

Family Applications (1)

Application Number Title Priority Date Filing Date
ES16168473T Active ES2856055T3 (es) 2009-07-27 2010-07-26 Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre

Country Status (11)

Country Link
US (3) US10350301B2 (es)
EP (1) EP3093029A1 (es)
JP (7) JP2015227385A (es)
CN (2) CN104530182A (es)
ES (1) ES2856055T3 (es)
HU (1) HUE028056T2 (es)
NZ (1) NZ623810A (es)
PL (1) PL2459224T3 (es)
PT (1) PT2459224T (es)
RU (2) RU2744370C2 (es)
SG (1) SG10201401194VA (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE028056T2 (en) 2009-07-27 2016-11-28 Baxalta GmbH Blood coagulation protein conjugates
CN109293780B (zh) * 2018-09-04 2021-05-07 厦门宏谱福生物科技有限公司 一种人组织因子凝血复合物及其制备方法
CN109541115B (zh) * 2018-11-28 2021-04-20 西北大学 唾液酸化糖链同分异构体的高分辨顺序分离和准确定量分析方法
US11845989B2 (en) 2019-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11767526B2 (en) 2019-01-23 2023-09-26 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
AU2020219736A1 (en) * 2019-02-04 2021-09-30 Xenetic Biosciences, Inc. Methods of using glycopolysialylated therapeutic proteins
US20230133656A1 (en) * 2019-07-03 2023-05-04 Molly Sandra Shoichet Hydrogel compositions and uses thereof
US11865134B2 (en) 2021-02-26 2024-01-09 Regeneron Pharmaceuticals, Inc. Treatment of inflammation with glucocorticoids and angiopoietin-like 7 (ANGPTL7) inhibitors
WO2023119230A1 (en) 2021-12-22 2023-06-29 L'oreal Coagulation pathway and nicotinamide-adenine dinucleotide pathway modulating compositions and methods of their use

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA647314A (en) 1962-08-21 J. Lewis Richard Tire tool
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
JPS54113492A (en) 1978-02-24 1979-09-05 Sanyo Chem Ind Ltd Preparation of glucoprotein derivative
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4970300A (en) 1985-02-01 1990-11-13 New York University Modified factor VIII
US5250421A (en) 1986-01-03 1993-10-05 Genetics Institute, Inc. Method for producing factor VIII:C-type proteins
US5198349A (en) 1986-01-03 1993-03-30 Genetics Institute, Inc. Method for producing factor VIII:C and analogs
JPH0387173A (ja) 1987-09-10 1991-04-11 Teijin Ltd ヒト活性化天然型ファクター8cの製造方法及びそれに用いる形質転換体
US4847325A (en) * 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US5153265A (en) 1988-01-20 1992-10-06 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US4966999A (en) 1988-06-07 1990-10-30 Cytogen Corporation Radiohalogenated compounds for site specific labeling
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
SE465222C5 (sv) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab Ett rekombinant, humant faktor VIII-derivat och förfarande för dess framställning
SE466754B (sv) 1990-09-13 1992-03-30 Berol Nobel Ab Saett att kovalent binda biopolymerer till hydrofila ytor
WO1992008790A1 (en) 1990-11-14 1992-05-29 Cargill, Incorporated Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
WO1992016555A1 (en) 1991-03-18 1992-10-01 Enzon, Inc. Hydrazine containing conjugates of polypeptides and glycopolypeptides with polymers
GB9112212D0 (en) * 1991-06-06 1991-07-24 Gregoriadis Gregory Pharmaceutical compositions
US5846951A (en) 1991-06-06 1998-12-08 The School Of Pharmacy, University Of London Pharmaceutical compositions
US6037452A (en) 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
AU5098193A (en) 1992-09-01 1994-03-29 Berlex Laboratories, Inc. Glycolation of glycosylated macromolecules
DK0627924T3 (da) 1992-10-02 2001-04-30 Genetics Inst Sammensætning, der omfatter koagulationsfaktor VIII formulering, fremgangsmåde til dens fremstilling og anvendelse af et overfladeaktivt middel som stabilisator
NO934477L (no) * 1992-12-09 1994-06-10 Ortho Pharma Corp PEG hydrazon- og PEG oksim-bindingdannende reagenser og proteinderivater derav
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
US5298643A (en) 1992-12-22 1994-03-29 Enzon, Inc. Aryl imidate activated polyalkylene oxides
WO1994015625A1 (en) 1993-01-15 1994-07-21 Enzon, Inc. Factor viii - polymeric conjugates
WO1994028024A1 (en) * 1993-06-01 1994-12-08 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
US5621039A (en) * 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
SE504074C2 (sv) 1993-07-05 1996-11-04 Pharmacia Ab Proteinberedning för subkutan, intramuskulär eller intradermal administrering
EP0788375A2 (en) 1994-11-09 1997-08-13 Robin Ewart Offord Functionalized polymers for site-specific attachment
AU6255096A (en) 1995-06-07 1996-12-30 Mount Sinai School Of Medicine Of The City University Of New York, The Pegylated modified proteins
WO1996040662A2 (en) 1995-06-07 1996-12-19 Cellpro, Incorporated Aminooxy-containing linker compounds and their application in conjugates
SE9503380D0 (sv) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
RU2199347C2 (ru) * 1996-08-02 2003-02-27 Орто-Макнейл Фармасьютикал, Инк. Полипептиды, обладающие единственным ковалентно связанным n-концевым водорастворимым полимером
WO1998049198A1 (en) 1997-04-30 1998-11-05 Enzon, Inc. Single-chain antigen-binding proteins capable of glycosylation, production and uses thereof
US6183738B1 (en) 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
US20020160948A1 (en) 1998-07-21 2002-10-31 Aprile Pilon Recombinant human uteroglobin in treatment of inflammatory and fibrotic conditions
CA2292760A1 (en) 1997-06-04 1998-12-10 Oxford Biomedica (Uk) Limited Vector
WO1999003496A1 (en) 1997-07-21 1999-01-28 The University Of North Carolina At Chapel Hill Factor ix antihemophilic factor with increased clotting activity
DE59813187D1 (de) 1997-12-03 2005-12-15 Roche Diagnostics Gmbh Verfahren zur herstellung von polypeptiden mit geeigneter glykosilierung
US5985263A (en) 1997-12-19 1999-11-16 Enzon, Inc. Substantially pure histidine-linked protein polymer conjugates
DE19829289C2 (de) 1998-06-30 2001-12-06 Siemens Ag Verfahren zur Berechnung der Koeffizienten eines nichtrekursiven digitalen Filters
AU764144B2 (en) 1998-08-28 2003-08-14 Gryphon Therapeutics, Inc. Polyamide chains of precise length, methods to manufacture them and their conjugates
EP1656952B1 (en) 1998-10-16 2013-12-18 Biogen Idec MA Inc. Polyalkylene glycol conjugates of interferon beta-1A and uses thereof
DE19852729A1 (de) 1998-11-16 2000-05-18 Werner Reutter Rekombinante Glycoproteine, Verfahren zu ihrer Herstellung, sie enthaltende Arzneimittel und ihre Verwendung
BR0008405B1 (pt) 1999-02-22 2014-04-22 Baxter Int Composição de fator viii formulada sem a adição de albumina, uso de uma composição de fator viii, e, método de liofilizar uma formulação farmacêutica aquosa
AU779887B2 (en) * 1999-06-08 2005-02-17 La Jolla Pharmaceutical Company Valency platform molecules comprising aminooxy groups
US6697436B1 (en) 1999-07-13 2004-02-24 Pmc-Sierra, Inc. Transmission antenna array system with predistortion
US6531122B1 (en) 1999-08-27 2003-03-11 Maxygen Aps Interferon-β variants and conjugates
US7230081B1 (en) 1999-11-12 2007-06-12 Maxygen Holdings, Ltd. Interferon gamma conjugates
US7074878B1 (en) 1999-12-10 2006-07-11 Harris J Milton Hydrolytically degradable polymers and hydrogels made therefrom
US6413507B1 (en) 1999-12-23 2002-07-02 Shearwater Corporation Hydrolytically degradable carbamate derivatives of poly (ethylene glycol)
RU2278123C2 (ru) * 2000-02-11 2006-06-20 Максиджен Холдингз Лтд. Молекулы, подобные фактору vii или viia
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
AU2001254624A1 (en) 2000-05-03 2001-11-12 Novo-Nordisk A/S Human coagulation factor vii variants
AU2001256148A1 (en) 2000-05-03 2001-11-12 Novo-Nordisk A/S Subcutaneous administration of coagulation factor vii
JP2003533537A (ja) * 2000-05-16 2003-11-11 リポクセン テクノロジーズ リミテッド タンパク質の誘導体化
WO2001093914A2 (en) 2000-06-08 2001-12-13 La Jolla Pharmaceutical Company Multivalent platform molecules comprising high molecular weight polyethylene oxide
US6423826B1 (en) 2000-06-30 2002-07-23 Regents Of The University Of Minnesota High molecular weight derivatives of vitamin K-dependent polypeptides
US7118737B2 (en) 2000-09-08 2006-10-10 Amylin Pharmaceuticals, Inc. Polymer-modified synthetic proteins
EP1319067A2 (en) 2000-09-13 2003-06-18 Novo Nordisk A/S Human coagulation factor vii variants
DE60137950D1 (de) 2000-10-02 2009-04-23 Novo Nordisk Healthcare Ag Verfahren zur herstellung vitamin-k-abhängiger proteine
US7001994B2 (en) * 2001-01-18 2006-02-21 Genzyme Corporation Methods for introducing mannose 6-phosphate and other oligosaccharides onto glycoproteins
AU2002249096B2 (en) 2001-03-22 2007-06-28 Novo Nordisk Health Care Ag Coagulation factor VII derivatives
CA2452501A1 (en) 2001-07-05 2003-01-16 Incyte Genomics, Inc. Secreted proteins
US6913915B2 (en) 2001-08-02 2005-07-05 Phoenix Pharmacologics, Inc. PEG-modified uricase
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
DK1578771T3 (da) 2001-10-10 2013-06-10 Novo Nordisk As Remodellering og glycokonjugering af peptider
KR100948532B1 (ko) 2001-11-07 2010-03-23 넥타르 테라퓨틱스 분지형 중합체 및 그의 공액체
DE60228492D1 (de) 2001-11-28 2008-10-02 Neose Technologies Inc Remodellierung von glycoproteinen unter verwendung von endoglycanasen
EP1461444A2 (en) 2001-11-28 2004-09-29 Neose Technologies, Inc. Glycopeptide remodeling using amidases
UA86744C2 (en) 2002-06-21 2009-05-25 Ново Нордиск Хэлс Кеа Аг Pegylated factor vii glycoforms
DE10228657A1 (de) 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
US7122189B2 (en) 2002-08-13 2006-10-17 Enzon, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
US7087229B2 (en) 2003-05-30 2006-08-08 Enzon Pharmaceuticals, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
EP1400533A1 (en) * 2002-09-11 2004-03-24 Fresenius Kabi Deutschland GmbH HASylated polypeptides, especially HASylated erythropoietin
IL166506A0 (en) 2002-09-11 2006-01-15 Fresenius Kabi De Gmbh Hasylated polypeptides especially hasylated erythropoietin
EP1681303B1 (en) 2002-09-11 2013-09-04 Fresenius Kabi Deutschland GmbH HASylated polypeptides, especially HASylated erythropoietin
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
ES2308032T5 (es) 2002-12-31 2017-04-24 Nektar Therapeutics Derivados poliméricos de ácido maleámico y sus bioconjugados
WO2004060965A2 (en) 2002-12-31 2004-07-22 Nektar Therapeutics Al, Corporation Hydrolytically stable maleimide-terminated polymers
CN1767857A (zh) 2003-02-26 2006-05-03 尼克塔治疗亚拉巴马公司 聚合物-因子ⅷ部分共轭物
JP2006523211A (ja) * 2003-03-14 2006-10-12 ネオス テクノロジーズ インコーポレイテッド 分岐水溶性ポリマーとその複合物
DK1620118T3 (da) 2003-04-08 2014-09-29 Yeda Res & Dev Reversible pegylerede lægemidler
DE10330674B4 (de) 2003-07-08 2007-01-11 Eppendorf Ag Zellbehandlungskammer
JP2007501870A (ja) * 2003-08-08 2007-02-01 フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ヒドロキシアルキルデンプンとg−csfの複合体
WO2005014035A2 (en) 2003-08-08 2005-02-17 Novo Nordisk Health Care Ag Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest
CN1863549A (zh) * 2003-08-08 2006-11-15 费森尤斯卡比德国有限公司 通过肟连接基团进行连接的聚合物和蛋白质的缀合物
WO2005014655A2 (en) * 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
US20080206182A1 (en) * 2003-08-08 2008-08-28 Fresenius Kabi Deutschland Gmbh Conjugates of a Polymer and a Protein Linked by an Oxime Group
WO2005016949A2 (en) 2003-08-12 2005-02-24 Lipoxen Technologies Limited Sialic acid derivatives
ES2294535T3 (es) 2003-08-12 2008-04-01 Lipoxen Technologies Limited Derivados del acido polisialico.
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US20070254836A1 (en) 2003-12-03 2007-11-01 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
AU2004296860B2 (en) 2003-12-03 2010-04-22 Novo Nordisk A/S Glycopegylated factor IX
US20060040856A1 (en) 2003-12-03 2006-02-23 Neose Technologies, Inc. Glycopegylated factor IX
ZA200604869B (en) * 2003-12-04 2007-11-28 Univ Utah Res Found Modified macromolecules and methods of making and using thereof
ES2560657T3 (es) 2004-01-08 2016-02-22 Ratiopharm Gmbh Glicosilación con unión en O de péptidos G-CSF
US20050169941A1 (en) * 2004-01-29 2005-08-04 Andrew Lees Use of amino-oxy functional groups in the preparation of protein-polysaccharide conjugate vaccines
GB0412291D0 (en) 2004-06-02 2004-07-07 Enersys Ltd A battery
RU2276123C2 (ru) 2004-07-06 2006-05-10 Центральный научно-исследовательский институт геологии нерудных полезных ископаемых (ЦНИИгеолнеруд) Способ получения комплексного минерального удобрения
WO2006020372A2 (en) 2004-07-23 2006-02-23 Neose Technologies, Inc. Enzymatic modification of glycopeptides
US20090176967A1 (en) 2004-08-02 2009-07-09 Novo Nordisk Healthcare A/G Conjugation of FVII
WO2006016161A1 (en) * 2004-08-12 2006-02-16 Lipoxen Technologies Limited Fractionation of charged polysaccharide
US7875708B2 (en) 2004-08-12 2011-01-25 Lipoxen Technologies Limited Sialic acid derivatives
CN101039965A (zh) * 2004-08-12 2007-09-19 利普生技术有限公司 唾液酸衍生物
EP1799249A2 (en) 2004-09-10 2007-06-27 Neose Technologies, Inc. Glycopegylated interferon alpha
WO2006053299A2 (en) 2004-11-12 2006-05-18 Bayer Healthcare Llc Site-directed modification of fviii
ES2434035T3 (es) * 2004-12-27 2013-12-13 Baxter International Inc. Conjugados de polímero-factor von Willebrand
JP2008526864A (ja) 2005-01-06 2008-07-24 ネオス テクノロジーズ インコーポレイテッド 糖断片を用いる糖結合
CN101160326B (zh) * 2005-02-23 2013-04-10 利普生技术有限公司 用于蛋白质衍生和缀合的活化的唾液酸衍生物
US7341720B2 (en) * 2005-04-06 2008-03-11 Genzyme Corporation Targeting of glycoprotein therapeutics
EP2975135A1 (en) 2005-05-25 2016-01-20 Novo Nordisk A/S Glycopegylated factor IX
EP2279758B1 (en) 2005-06-16 2015-02-25 Nektar Therapeutics Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates
EP2360170A3 (en) 2005-06-17 2012-03-28 Novo Nordisk Health Care AG Selective reduction and derivatization of engineered proteins comprinsing at least one non-native cysteine
US8115585B2 (en) 2005-07-11 2012-02-14 Sharp Kabushiki Kaisha Variable resistance element
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
EP1919498A2 (en) 2005-08-26 2008-05-14 Maxygen Holdings Ltd. Liquid factor vii composition
EP1962907A2 (en) 2005-12-21 2008-09-03 Wyeth a Corporation of the State of Delaware Protein formulations with reduced viscosity and uses thereof
US7645860B2 (en) * 2006-03-31 2010-01-12 Baxter Healthcare S.A. Factor VIII polymer conjugates
CA2647314A1 (en) 2006-03-31 2007-11-08 Baxter International Inc. Pegylated factor viii
EP2089052A4 (en) 2006-05-24 2011-02-16 Peg Biosciences POLYETHYLENE GLYCOL-BASED LINK COMPOUNDS AND BIOLOGICALLY ACTIVE CONJUGATES BASED ON SAID COMPOUNDS
US7939632B2 (en) 2006-06-14 2011-05-10 Csl Behring Gmbh Proteolytically cleavable fusion proteins with high molar specific activity
PT2049692E (pt) 2006-07-13 2016-02-22 Serum Inst India Ltd Processo para a preparação de ácido polissiálico de elevada pureza
JP2009544681A (ja) * 2006-07-25 2009-12-17 リポクセン テクノロジーズ リミテッド エリスロポエチンの多糖誘導体
WO2008025856A2 (en) * 2006-09-01 2008-03-06 Novo Nordisk Health Care Ag Modified glycoproteins
EP2054521A4 (en) 2006-10-03 2012-12-19 Novo Nordisk As METHODS OF PURIFYING CONJUGATES OF POLYPEPTIDES
DK2101821T3 (da) * 2006-12-15 2014-10-06 Baxter Healthcare Sa Faktor VIIA-(poly)sialinsyre-konjugat med forlænget halveringstid in vivo
EP2099475B1 (en) 2007-01-03 2016-08-24 Novo Nordisk Health Care AG Subcutaneous administration of coagulation factor viia-related polypeptides
CN102978185B (zh) * 2007-01-18 2015-02-11 建新公司 包含氨基氧基基团的寡糖及其轭合物
WO2008119815A1 (en) 2007-04-02 2008-10-09 Novo Nordisk A/S Subcutaneous administration of coagulation factor ix
CN101687048B (zh) * 2007-06-26 2013-02-27 巴克斯特国际公司 可水解的聚合fmoc-连接体
US9333247B2 (en) 2007-07-03 2016-05-10 Children's Hospital & Research Center At Oakland Oligosialic acid derivatives, methods of manufacture, and immunological uses
WO2009047500A1 (en) 2007-10-09 2009-04-16 Polytherics Limited Novel conjugated proteins and peptides
NZ603812A (en) * 2007-11-20 2014-06-27 Ambrx Inc Modified insulin polypeptides and their uses
JP5647899B2 (ja) 2008-01-08 2015-01-07 ラツィオファルム ゲーエムベーハーratiopharm GmbH オリゴサッカリルトランスフェラーゼを使用するポリペプチドの複合糖質化
PL2257311T3 (pl) 2008-02-27 2014-09-30 Novo Nordisk As Koniugaty cząsteczek czynnika VIII
EP2280734B1 (en) 2008-04-24 2014-02-26 Cantab Biopharmaceuticals Patents Limited Factor ix conjugates with extended half-lives
CN102065899A (zh) 2008-05-23 2011-05-18 诺沃-诺迪斯克保健股份有限公司 含有高浓度的芳香族防腐剂的peg-官能化的丝氨酸蛋白酶的制剂
EP2285401A1 (en) 2008-05-23 2011-02-23 Novo Nordisk Health Care AG Low viscosity compositions comprising a pegylated gla-domain containing protein
KR20110017420A (ko) 2008-06-04 2011-02-21 바이엘 헬스케어 엘엘씨 폰 빌레브란트 질환의 치료를 위한 fviii 뮤테인
JP5622117B2 (ja) 2008-07-21 2014-11-12 ポリテリクスリミテッド 生体分子を接合するための新規な試薬及び方法
KR20110071012A (ko) * 2008-10-17 2011-06-27 백스터 인터내셔널 인코포레이티드 낮은 수준의 수용성 중합체를 포함하는 개질된 혈액 인자
EP2352515A4 (en) 2008-11-03 2012-04-25 Bayer Healthcare Llc METHOD FOR TREATING HEMOPHILIA
EP2387413A4 (en) 2009-01-19 2015-12-23 Bayer Healthcare Llc PROTEIN CONJUGATE WITH AN ENDOPEPTIDASE-SPLICABLE BIOPROTEKTIVES PART
CN102333788A (zh) 2009-02-19 2012-01-25 诺沃—诺迪斯克有限公司 因子viii的修饰
US9005598B2 (en) 2009-03-04 2015-04-14 Polytherics Limited Conjugated proteins and peptides
WO2010120365A2 (en) 2009-04-16 2010-10-21 Wu Nian Protein-carrier conjugates
GB0908393D0 (en) 2009-05-15 2009-06-24 Almac Sciences Scotland Ltd Labelling method
JP5908401B2 (ja) * 2009-07-27 2016-04-26 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 血液凝固タンパク質複合体
HUE028056T2 (en) * 2009-07-27 2016-11-28 Baxalta GmbH Blood coagulation protein conjugates
WO2011012850A2 (en) 2009-07-27 2011-02-03 Lipoxen Technologies Limited Glycopolysialylation of non-blood coagulation proteins
EP2461821A4 (en) 2009-07-31 2013-07-03 Bayer Healthcare Llc MODIFIED POLYPEPTIDES OF FACTOR IX AND USES THEREOF
DE102009028526A1 (de) 2009-08-13 2011-02-24 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Modifikation und Funktionalisierung von Sacchariden
WO2011037896A2 (en) 2009-09-25 2011-03-31 Vybion, Inc. Polypeptide modification
CN102639553A (zh) 2009-11-24 2012-08-15 诺沃—诺迪斯克保健股份有限公司 纯化聚乙二醇化蛋白质的方法
CN102770449B (zh) 2010-02-16 2016-02-24 诺沃—诺迪斯克有限公司 具有降低的vwf结合的因子viii分子
GB201007357D0 (en) 2010-04-30 2010-06-16 Leverton Licence Holdings Ltd Conjugated factor VIII
GB201007356D0 (en) 2010-04-30 2010-06-16 Leverton Licence Holdings Ltd Conjugated factor VIIa
EP2640483A1 (en) 2010-11-15 2013-09-25 Biogen Idec Inc. Enrichment and concentration of select product isoforms by overloaded bind and elute chromatography
RS58578B1 (sr) 2011-07-08 2019-05-31 Bioverativ Therapeutics Inc Faktor viii himernih i hibridnih polipeptida i postupci za njihovu upotrebu

Also Published As

Publication number Publication date
RU2016121611A (ru) 2018-11-29
SG10201401194VA (en) 2014-07-30
CN104530182A (zh) 2015-04-22
JP2018024882A (ja) 2018-02-15
CN106110311A (zh) 2016-11-16
US20190314516A1 (en) 2019-10-17
RU2744370C2 (ru) 2021-03-05
JP2015227385A (ja) 2015-12-17
RU2016121611A3 (es) 2019-12-10
JP2018035192A (ja) 2018-03-08
RU2014123260A (ru) 2015-12-20
US20180200380A1 (en) 2018-07-19
EP3093029A8 (en) 2016-12-28
EP3093029A1 (en) 2016-11-16
US10350301B2 (en) 2019-07-16
HUE028056T2 (en) 2016-11-28
PT2459224T (pt) 2016-09-05
JP2020037701A (ja) 2020-03-12
US20160361430A1 (en) 2016-12-15
JP6208269B2 (ja) 2017-10-04
PL2459224T3 (pl) 2017-08-31
JP7071093B2 (ja) 2022-05-18
NZ623810A (en) 2015-10-30
RU2662807C2 (ru) 2018-07-31
US10772968B2 (en) 2020-09-15
JP2021042244A (ja) 2021-03-18
JP2022058911A (ja) 2022-04-12
US11040109B2 (en) 2021-06-22
JP2016113626A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
ES2590679T3 (es) Glicopolisialilación de proteínas diferentes a proteínas de coagulación de la sangre
ES2856055T3 (es) Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre
KR101759300B1 (ko) 비혈액 응고 단백질의 글리코폴리시알화
ES2647528T3 (es) Polisialilación N-terminal
US5006333A (en) Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
US7846893B2 (en) Drug-polymer conjugates coupled to a peptidic carrier
AU2006260914A1 (en) N, N-bis- (2-hydroxyethyl) glycine amide as linker in polymer conjugated prodrugs
KR102227919B1 (ko) 당쇄 부가 링커, 당쇄 부가 링커와 생리 활성 물질을 포함하는 화합물 또는 그 염, 및 그것들의 제조 방법
EP2924053B1 (en) Glycosylated linker, compound containing glycosylated linker moiety and physiologically active substance moiety or salt thereof, and methods for producing said compound or salt thereof
US20060286657A1 (en) Novel bioconjugation reactions for acylating polyethylene glycol reagents
US20220023430A1 (en) Glycopolysialylation of blinatumomab
JPWO2003000278A1 (ja) 軟膏剤