ES2553207T3 - Nuevo epítopo inmunogénico para inmunoterapia - Google Patents

Nuevo epítopo inmunogénico para inmunoterapia Download PDF

Info

Publication number
ES2553207T3
ES2553207T3 ES10014673.7T ES10014673T ES2553207T3 ES 2553207 T3 ES2553207 T3 ES 2553207T3 ES 10014673 T ES10014673 T ES 10014673T ES 2553207 T3 ES2553207 T3 ES 2553207T3
Authority
ES
Spain
Prior art keywords
cell
peptide
cancer
cells
egfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10014673.7T
Other languages
English (en)
Inventor
Harpreet Singh
Oliver Schoor
Claudia Trautwein
Norbert Hilf
Toni Weinschenk
Steffen Walter
Peter Lewandrowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Application granted granted Critical
Publication of ES2553207T3 publication Critical patent/ES2553207T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/495Transforming growth factor [TGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1157Monocytes, macrophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/02Sulfotransferases (2.8.2)
    • C12Y208/02011Galactosylceramide sulfotransferase (2.8.2.11)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)

Abstract

Péptido consistente en la secuencia ILAPVILYT conforme a la SEQ ID N. º 2 que induce la reacción cruzada de los linfocitos T con dicho péptido.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
5
10
15
20
25
30
35
40
45
50
55
El factor nuclear (NF)-kappaB se activó predominantemente en células de adenoma y adenocarcinoma que expresaban NOX1 en abundancia, lo cual indica que la NOX1 podría estimular las vías antiapoptóticas que dependen del NF-kappaB en los tumores de colon (Fukuyama, M. et al. Overexpression of a novel superoxideproducing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett. 2005, 221, 97-104).
Se ha descrito que la señalización de Wnt3a/beta-catenina induce la expresión de NOX1 (Petropoulos, H. & Skerjanc, I. S. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem. 2002, 277, 15393-15399).
Recientemente se ha planteado que las especies reactivas de oxígeno (ROS) inducen la apoptosis endotelial, fenómeno que a su vez induce la expresión de varias moléculas de adhesión para las células tumorales. Esto significaría que alterando la producción de ROS tal vez se podría impedir la recidiva del tumor en sitios distantes (Ten, KM, van der Wal, JB, Sluiter, W, Hofland, LJ, Jeekel, J, Sonneveld, P, and van Eijck, CH; The role of superoxide anions in the development of distant tumor recurrence, Br J Cancer, 2006, 95,1497-1503).
Antígeno nuclear de células en proliferación (PCNA)
El PCNA se halla en el núcleo y es un cofactor de la ADN-polimerasa delta. La proteína codificada actúa como un homotrímero y ayuda a mejorar la procesividad de la síntesis de la hebra conductora durante la replicación del ADN. Así pues, se expresa en todas las células en proliferación, especialmente en las células tumorales, y se usa como marcador para detectar la proliferación.
ADN-topoisomerasa II
Los genes TOP2A y TOP2B codifican isoformas de una ADN-topoisomerasa, enzima que controla y altera los estados topológicos del ADN durante la transcripción. Esta enzima nuclear interviene en procesos como la condensación cromosómica, la separación de las cromátidas y el alivio de la tensión torsional que aparece durante la replicación y la transcripción del ADN. Las ADN-topoisomerasas catalizan la rotura transitoria y la religazón de las dos hebras de la doble hélice de ADN, lo que las permite girar libremente una respecto a la otra, alterando de ese modo la topología del ADN. Las dos isoformas de la enzima son probablemente el producto de un fenómeno de duplicación génica. El gen que codifica la forma alfa está localizado en el cromosoma 17 y el gen beta en el cromosoma 3.
El gen TOP2A es la diana de varios fármacos antitumorales y diversas mutaciones del mismo han sido vinculadas con el desarrollo de resistencia farmacológica.
TOP2A es adyacente a HER-2, el oncogén amplificado con más frecuencia en el cáncer de mama, en el sitio cromosómico 17ql2-q21 y aparece amplificado o eliminado, con igual frecuencia, en casi el 90% de los tumores primarios de mama HER-2 positivos (Jarvinen, TA and Liu, ET; Topoisomerase II alpha gene (TOP2A) amplification and deletion in cancer-more common than anticipated, Cytopathology, 2003, 14, 309-313). También se han descrito amplificaciones de TOP2A en otros tipos de cáncer.
Sin TOP2A la replicación del ADN y la división celular son imposibles. Ello lo ha convertido en la diana principal de muchos regímenes de tratamiento antitumoral, aunque el mecanismo exacto con el que destruye las células aún escapa a nuestro conocimiento (Kellner, U,Sehested, M, Jensen, PB,Gieseler, F, and Rudolph, P; Culprit and victim -DNA topoisomerase II, Lancet Oncol., 2002, 3, 235-243). El éxito de esta estrategia se ve mermado por la aparición de resistencia espontánea, y los daños del ADN causados por los fármacos pueden potenciar la malignidad. Datos recientes apuntan a que la amplificación y la deleción de TOP2A podrían estar detrás tanto de la sensibilidad como de la resistencia vinculadas a la quimioterapia con inhibidores de TOP2A, dependiendo del defecto genético específico en el locus de TOP2A.
No está claro si la implicación de TOP2B en el cáncer es similar a la de TOP2A o si existe una diferencia importante entre ambas isoformas. TOP2B puede al menos complementar parte de la actividad de TOP2A (Sakaguchi, A and Kikuchi, A; Functional compatibility between isoform alpha and beta of type II DNA topoisomerase, J Cell Sci., 2004, 117, 1047-1054).
Molécula de adhesión celular 5 relacionada con el antígeno carcinoembrionario
El antígeno carcinoembrionario (CEA = CEACAM5) es una proteína de membrana de 180 kDa fuertemente glucosilada compuesta por tres unidades repetidas similares a la región C2 de Ig flanqueadas por una región Nterminal similar a la región V de Ig, y una región C-terminal que alberga una región de enlace con glucofosfatidilinositol (Hegde, P,Qi, R, Gaspard, R, Abernathy, K, Dharap, S, Earle-Hughes, J, Gay, C, Nwokekeh, NU, Chen, T, Saeed, Al, Sharov, V, Lee, NH, Yeatman, TJ, and Quackenbush, J; Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray, Cancer Res., 2001, 61, 7792-7797).
8
imagen7
5
10
15
20
25
30
35
40
45
50
55
En un metanálisis de estudios que investigaron la expresión génica en el carcinoma colorrectal, el TGFBI fue identificado como uno de los nueve únicos genes que aparecían regulados al alza reiteradamente (4 estudios de TGFBI) (Shih, W, Chetty, R, and Tsao, MS; Expression profiling by microarrays in colorectal cancer, Oncol. Rep., 2005, 13, 517-524).
En tejidos de páncreas humano se apreció un incremento de 32,4 veces en los niveles del ARNm del TGFBI en tumores pancreáticos en comparación con los tejidos de control normales. Los análisis de hibridación in situ revelaron que el ARNm del TGFBI se expresaba principalmente en células cancerosas del interior de la masa tumoral pancreática (Schneider, D, Kleeff, J, Berberat, PO, Zhu, Z, Korc, M, Friess, H, and Buchler, MW; Induction and expression of betaig-h3 in pancreatic cancer cells, Biochim. Biophys. Acta, 2002, 1588, 1-6).
El TGFBI ha sido identificado como un gen promotor de la angiogénesis en un modelo in vitro. Además, en varios tumores se ha detectado un aumento drástico de su expresión. Oligonucleótidos antisentido dirigidos contra el TGFBI bloquearon tanto la expresión génica como la formación del tubo endotelial in vitro, lo cual parece indicar que el TGFBI puede desempeñar un papel esencial en las interacciones entre la matriz y la célula endotelial (Aitkenhead, M, Wang, SJ, Nakatsu, MN, Mestas, J, Heard, C, and Hughes, CC; Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM, Microvasc. Res., 2002, 63, 159171).
Proteína tirosina fosfatasa, de tipo receptor, Zeta 1 (PTPRZX)
El PTPRZ1 es miembro de la familia de las proteínas tirosina fosfatasa de tipo receptor que codifica una proteína de membrana de un solo paso de tipo 1 dotada de dos dominios citoplasmáticos de tirosina fosfatasa, un dominio alfaanhidrasa carbónica y un dominio de fibronectina de tipo III. La expresión de este gen es inducida en células de cáncer gástrico (Wu, CW, Li, AF, Chi, CW, and Lin, WC; Protein tyrosine-phosphatase expression profiling in gastric cancer tissues, Cancer Lett., 2006, 242, 95-103), en los oligodendrocitos remielinizantes de las lesiones de la esclerosis múltiple (Harroch, S, Furtado, GC, Brueck, W, Rosenbluth, J, Lafaille, J, Chao, M, Buxbaum, JD, and Schlessinger, J; A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions, Nat. Genet., 2002, 32,411-414), y en células de riñón embrionarias humanas en condiciones hipóxicas (Wang, V, Davis, DA, Haque, M, Huang, LE, and Yarchoan, R; Differential gene up-regulation by hypoxiainducible factor-1 alpha and hypoxia-inducible factor-2 alpha in HEK293T-cells, Cancer Res., 2005, 65, 3299-3306).
Tanto la proteína como el transcrito se sobreexpresan en las células de glioblastoma, promoviendo su migración haptotáctica (Lu, KV, Jong, KA, Kim, GY, Singh, J, Dia, EQ, Yoshimoto, K, Wang, MY, Cloughesy, TF, Nelson, SF, and Mischel, PS; Differential induction of glioblastoma migration and growth by two forms of pleiotrophin, J Biol Chem., 2005, 280,26953-26964).
Además, el PTRPZ1 aparece amplificado con frecuencia a nivel del ADN genómico en el glioblastoma (Mulholland, PJ, Fiegler, H, Mazzanti, C, Gorman, P, Sasieni, P, Adams, J, Jones, TA, Babbage, JW, Vatcheva, R, Ichimura, K, East, P, Poullikas, C, Collins, VP, Carter, NP, Tomlinson, IP, and Sheer, D; Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme, Cell Cycle, 2006, 5, 783-791).
Cinasa Janus y proteína interaccionante con los microtúbulos 2 (JAKMIP2)
La JAKMIP2 ha sido identificada como una de las muchas dianas ulteriores confirmadas y presuntas de PAX3-FKHR que aparecen muy sobreexpresadas en el rabdomiosarcoma pediátrico de subtipo alveolar o ARMS (Lae, M, Ahn, E, Mercado, G, Chuai, S, Edgar, M, Pawel, B, Olshen, A, Barr, F, and Ladanyi, M; Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas, J Pathol., 2007, 212,143-151).
Fibronectina 1 (FN1)
La fibronectina es una glucoproteína de alto peso molecular que contiene alrededor de un 5% de glúcidos y que se une a proteínas receptoras que atraviesan la membrana celular, las integrinas. Además de a las integrinas, también se une a componentes de la matriz extracelular como el colágeno, la fibrina y la heparina. Existen varias isoformas de la fibronectina, todas producto del mismo gen. Las fibronectinas desempeñan un papel esencial en el mantenimiento de la morfología celular normal, la adhesión y la migración celular, la hemostasia, la trombosis, la cicatrización de heridas, la diferenciación y la proliferación (Hynes, RO; Fibronectins, Sci. Am., 1987, 254, 42-51).
La fibronectina polimérica, sFN, se forma in vitro tratando la fibronectina soluble con un péptido de 76 aa, el III1-C (llamado anastelina), que deriva de la primera repetición de tipo III de la fibronectina. Los estudios in vivoconratones portadores de tumores han demostrado que la aplicación sistémica de anastelina o de sFN suprimía el crecimiento, la angiogénesis y la metástasis tumorales (Yi, M and Ruoslahti, E; A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis, Proc. Natl. Acad. Sci. U. S. A, 2001, 98, 620-624). Anginex es un péptido sintético de 33 aminoácidos que se modeló originalmente para reproducir la estructura en lámina beta de proteínas antiangiogénicas. Se ha demostrado que anginex inicia la polimerización de la fibronectina y es inactivo en ratones que carecen de fibronectina plasmática (Akerman, ME, Pilch, J, Peters, D, and Ruoslahti, E; Angiostatic peptides use plasma fibronectin to home to angiogenic vasculature, Proc. Natl. Acad. Sci. U. S. A, 2005, 102, 2040-2045). Un
10
imagen8
5
15
25
35
45
55
crecimiento y la capacidad invasiva del tumor en el bazo y sus metástasis en el hígado. En conjunto, tales hallazgos sugieren la posible utilidad del CH50 en la terapia génica contra el cáncer hepático (Liu, Y, Huang, B, Yuan, Y, Gong, W, Xiao, H, Li, D, Yu, ZR, Wu, FH, Zhang, GM, and Feng, ZH; Inhibition of hepatocarcinoma and tumor metastasis to liver by gene therapy with recombinant CBD-HepII polypeptide of fibronectin, Int. J Cancer, 2007 121
(1) 184-92). La fibronectina posee un sitio funcional oculto (secuencia YTIYVIAL dentro de la decimocuarta repetición de tipo III) que se opone a la adhesión de la célula a la matrizextracelular. Un péptido 22-ámero de la fibronectina que contiene este sitio, llamado FNIII14, inhibe la adhesión mediada por la integrina beta-1 sin unirse a las integrinas. El estudio demuestra que el FNIII14 podría impedir la metástasis de las células de linfoma (Kato, R, Ishikawa, T, Kamiya, S, Oguma, F, Ueki, M, Goto, S, Nakamura, H, Katayama, T, and Fukai, F; A new type of antimetastatic peptide derived from fibronectin, Clin Cancer Res., 2002, 8, 2455-2462).
Receptor del factor de crecimiento epidérmico (EGFR)
El EGFR desempeña un papel importante en la regulación de la proliferación, la diferenciación y la supervivencia de las células normales. Por esa razón el estado del EGFR suele aparecer alterado en un abanico de tipos de tumores humanos y en general acarrea un pronóstico malo. Contribuye al crecimiento y supervivencia de las células neoplásicas a través de diversas vías (Maehama, T and Dixon, JE; The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate, J Biol Chem., 1998, 273, 13375-13378). Las anomalías del EGFR constituyen una de las aberraciones moleculares más habituales en el glioblastoma (Zawrocki, A and Biemat, W; Epidermal growth factor receptor in glioblastoma, Folia Neuropathol., 2005,43, 123-132).
La amplificación del EGFR y la sobreexpresión de su ARNm son frecuentes en los gliomas de alto grado de origen astrocítico, y siempre están estrechamente asociadas con un nivel elevado de la proteína EGFR (Wong, AJ, Bigner, SH, Bigner, DD, Kinzler, KW, Hamilton, SR, and Vogelstein, B; Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification, Proc. Natl. Acad. Sci. U. S. A, 1987, 84, 6899-6903; Chaffanet, M, Chauvin, C, Laine, M, Berger, F, Chedin, M, Rost, N, Nissou, MF, and Benabid, AL; EGF receptor amplification and expression in human brain tumors, 1992, Eur. J Cancer, 28, 11-17). La sobreexpresión de la proteína sin amplificación génica ha sido descrita hasta en el 27% de los glioblastomas, pero también se ha descrito que los astrocitomas y los oligodendrogliomas, menos malignos, también la presentan sin la amplificación del gen en cuestión (Reifenberger, J, Reifenberger, G, Ichimura, K, Schmidt, EE, Wechsler, W, and Collins, VP; Epidermal growth factor receptor expression in oligodendroglial tumors, Am. J Pathol., 1996,149, 29-35).
Las implicaciones pronósticas de la amplificación/sobreexpresión del EGFR en los tumores cerebrales son controvertidas. Algunos autores no han hallado ninguna influencia de la amplificación/sobreexpresión del EGFR en la supervivencia de los pacientes (Olson, JJ, Barnett, D, Yang, J, Assietti, R, Cotsonis, G, and James, CD; Gene amplification as a prognostic factor in primary brain tumors, Clin Cancer Res., 1998, 4, 215-222; Newcomb, EW, Cohen, H, Lee, SR, Bhalla, SK, Bloom, J, Hayes, RL, and Miller, DC; Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes, Brain Pathol, 1998, 8, 655-667; Waha, A, Baumann, A, Wolf, HK, Fimmers, R, Neumann, J, Kinderrnann, D, Astrahantseff, K, Blumcke, I, von, DA, and Schlegel, U; Lack of prognostic relevance of alterations in the epidermal growth factor receptortransforming growth factor-alpha pathway in human astrocytic gliomas, J Neurosurg, 1996, 85, 634-641) mientras que otros han llegado a la conclusión de que tales alteraciones influyeron negativamente en el pronóstico (Etienne, MC, Formento, JL, Lebrun-Frenay, C, Gioanni, J, Chatel, M, Paquis, P, Bernard, C, Courdi, A, Bensadoun, RJ, Pignol, JP, Francoual, M, Grellier, P, Frenay, M, and Milano, G; Epidermal growth factor receptor and labelling index are independent prognostic factors in glial tumor outcome, Clin Cancer Res., 1998, 4, 2383-2390; Jaros, E, Perry, RH, Adam, L, Kelly, PJ, Crawford, PJ, Kalbag, RM, Mendelow, AD, Sengupta, RP, and Pearson, AD; Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumors, Br. J Cancer, 1992, 66, 373-385; Schlegel, J, Merdes, A, Sturnm, G, Albert, FK, Forsting, M, Hynes, N, and Kiessling, M; Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma, Int. J Cancer, 1994, 56, 72-77; Zhu, A, Shaeffer, J, Leslie, S, Kolm, P, and El-Mahdi, AM; Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation, Int. J Radiat. Oncol. Biol Phys., 1996, 34, 809-815).
Existen algunas estrategias terapéuticas relacionadas con la molécula del EGFR en las células cancerosas. Las más ampliamente estudiadas son: El tratamiento con anticuerpos específicos por medio de anticuerpos desnudos o conjugados con toxinas, liposomas o radionúclidos, y el uso de inhibidores de la tirosina-cinasa de receptor. Existen varios tipos de anticuerpos monoclonales dirigidos contra el EGFRwt. Unos bloquean el acceso de los ligandos al receptor (cetuximab) y otros provocan la rápida internalización del receptor (ABX-EGF) (Sridhar, SS, Seymour, L, and Shepherd, FA; Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on nonsmall-cell lung cancer, Lancet Oncol., 2003, 4, 397-406). Pero como el EGFRwt también se halla presente en la superficie de las células normales, los efectos secundarios pueden limitar su uso.
El EGFR aparece sobreexpresado en el carcinoma escamoso de cabeza y cuello (HNSCC) dondesus niveles de expresión se correlacionan con la reducción de la supervivencia. Los tratamientos que bloquean el EGFR han demostrado poca eficacia en los ensayos clínicos y básicamente en combinación con el tratamiento estándar. El EGFRvIII se expresa en el HNSCC, donde contribuye a reforzar el crecimiento y la resistencia frente a los
12 5
10
15
20
25
30
35
40
45
50
55
60
tratamientos dirigidos contra el EGFR natural. La eficacia antitumoral de las estrategias dirigidas contra el EGFR podría mejorar con la adición del bloqueo específico del EGFRvIII (Sok, JC, Coppelli, FM, Thomas, SM, Lango, MN, Xi, S, Hunt, JL, Freilino, ML, Graner, MW, Wikstrand, CJ, Bigner, DD, Gooding, WE, Furnari, FB, and Grandis, JR; Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting, Clin Cancer Res., 2006, 12, 5064-5073).
Otra estrategia consiste enprovocar la muerte selectiva de las células del glioblastoma y de otros tipos de cáncer que sobreexpresen el receptor del EGF. Con un vector no viral que reconoce específicamente el receptor del EGF se ha conseguido introducir de forma selectiva en células cancerosas un ARNdc sintético antiproliferativo (poliinosina-citosina [poli-IC]). La poli-IC dirigida contra el EGFR indujo con rapidez la apoptosis en las células diana tanto en condiciones in vitro como in vivo. La liberación en el tumor de la poli-IC dirigida contra el EGFR propició la regresión completa de tumores intracraneales preestablecidos en ratones atímicos, sin que se apreciaran efectos adversos tóxicos en el tejido cerebral normal. Un año después de la conclusión del tratamiento los ratones tratados seguían sanos y sin cáncer (Shir, A, Ogris, M, Wagner, E, and Levitzki, A; EGF receptor-targeted synthetic doublestranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice, PLoS. Med, 2006 Jan; 3(l):e6. Epub 2005 Dec 6).
La aplicación de ARN pequeños de interferencia (ARNsi) se ha convertido en una herramienta eficaz y altamente específica para modular la expresión génica, y con ella se hasilenciado una amplia gama de oncogenes. La regulación a la baja del EGFR mediante ARNsi ha sido demostrada en dos estirpes celulares de glioma que presentaban diferentes niveles de expresión del citado receptor (U373 MG, LN18). La expresión del ARNm y de la proteína del EGFR se redujo de un 70% a un 90%. Con todo, el tratamiento con ARNsi no inhibe la proliferación y la migración celular ni el estado de activación de las cascadas de señalización acopladas al EGFR. En concordancia con estos resultados, los análisis de la expresión génica con micromatrices solo revelaron pequeños cambios, aunque específicos, en los patrones de expresión. En suma, estos datos indican que la regulación a la baja del EGFR podría no bastar como monoterapia contra el glioma maligno (Vollmann, A, Vornlocher, HP, Stempfl, T, Brockhoff, G, Apfel, R, and Bogdahn, U; Effective silencing of EGFR with RNAi demonstrates non-EGFR dependent proliferation of glioma cells, Int. J Oncol., 2006, 28, 1531-1542).
Diversos estudios clínicos han ofrecido resultados prometedores. Por ejemplo: El h-R3 es un anticuerpo monoclonal humanizado que reconoce el dominio externo del EGFR con alta afinidad, inhibiendo así la activación de la tirosinacinasa. Con el fin de evaluar la seguridad, la inmunogenicidad y la eficacia preliminar del h-R3 en pacientes con glioma de alto grado recién diagnosticado se llevó a cabo un estudio de fase I/II (Ramos, TC, Figueredo, J, Catala, M, Gonzalez, S, Selva, JC, Cruz, TM, Toledo, C, Silva, S, Pestano, Y, Ramos, M, Leonard, I, Torres, O, Marinello, P, Perez, R, and Lage, A; Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial, Cancer Biol Ther., 2006, 5, 375-379).
El EKB-569 es un potente inhibidor de bajo peso molecular, selectivo e irreversible del receptor del factor de crecimiento epidérmico (EGFR) que está siendo desarrollado como antineoplásico. Se ha llevado a cabo un estudio de fase 1 de aumento de la dosis en pacientes japoneses. De acuerdo con los criterios RECIST, presentaron enfermedad estable pero regresión radiográfica del tumor (Yoshimura, N, Kudoh, S, Kimura, T, Mitsuoka, S, Matsuura, K, Hirata, K, Matsui, K, Negoro, S, Nakagawa, K, and Fukuoka, M; EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib, Lung Cancer, 2006, 51, 363-368).
Gefitinib, un inhibidor específico de la tirosina-cinasa acoplada al receptor del factor de crecimiento epidérmico (EGFR) ha demostrado su eficacia en un subgrupo de pacientes con carcinoma de pulmón amicrocítico (NSCLC) que fracasan con la quimioterapia convencional. También se le ha atribuido un efecto antitumoral en metástasis cerebrales del NSCLC. Además, las mutaciones del EGFR han demostrado una estrecha asociación con la sensibilidad del NSCLC al gefitinib. Asimismo se ha evaluado su eficacia en metástasis cerebrales de NSCLC, así como el vínculo entre dicha eficacia y mutaciones del EGFR. Gefitinib parece ser eficaz como tratamiento contra las metástasis cerebrales en un subgrupo depacientes. Los datos apuntan a la posible relación entre la eficacia del gefitinib en el tratamiento de las metástasis cerebrales y las mutaciones del EGFR (Shimato, S, Mitsudomi, T, Kosaka, T, Yatabe, Y, Wakabayashi, T, Mizuno, M, Nakahara, N, Hatano, H, Natsume, A, Ishii, D, and Yoshida, J; 2006, EGFR mutations in patients with brain metastases from lung cancer: association with the efficacy of gefitinib, Neuro. Oncol., 8, 137-144).
Quitinasa 3-Like 2 (CHI3L2)
La CHI3L2 se descubrió inicialmente en condrocitos. Ha sido descrita frecuentemente como un antígeno diana en la artritis reumatoide. No se ha descubierto ninguna relación relevante de la CHI3L2 con el cáncer. Las proteínas quitinasa 3-like han sido implicadas en la estimulación de la proliferación de las células del tejido conectivo humano, entre ellas los fibroblastos, a través de la activación de la vía de señalización mediada por la PKB y la vía de la cinasa regulada por señales extracelulares (Recklies AD, White C, Ling H; The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase-and protein kinase B-mediated signalling pathways; Biochem J. 2002; 365:119126). En ratón las proteínas quitinasa 3-like se han hallado muy reguladas al alza en modelos de cáncer gástrico
13
imagen9
5
10
15
20
25
30
35
40
45
50
55
60
edematoso cerebral y el KCNJ10 amortigua el K+ extracelular elevado (Saadoun, S, Papadopoulos, MC, and Krishna, S; Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumors: immunohistochemical case review, J Clin Pathol., 2003, 56, 972-975).
Es sabido que los péptidos que son presentados por MHC de clase II están compuestos por una «secuencia central» dotada de un secuencia de aminoácidos que se ajusta a cierto motivo específico del alelo de HLA y, opcionalmente, de extensiones N y/o C-terminales que no interfieren con la función de la secuencia central (es decir, que se consideran irrelevantes para la interacción del péptido y todos o una parte de los clones de linfocitos T que reconocen la contrapartida natural). Las extensiones N y/o C-terminales pueden, por ejemplo, tener entre 1 y 10 aminoácidos de longitud, respectivamente. Estos péptidos se pueden utilizar directamente para cargar las moléculas MHC de clase II o bien la secuencia se puede clonar en vectores de acuerdo con la descripción ofrecida abajo en la presente memoria. Dado que estos péptidos constituyen el producto final del procesamiento de péptidos más grandes en el interior de la célula, también pueden utilizarse péptidos más largos. Los péptidos descritos pueden tener cualquier tamaño, pero normalmente suelen tener un peso molecular inferior a 100. 000, preferiblemente inferior a 50. 000, más preferiblemente inferior a 10. 000 y normalmente unos 5. 000. En cuanto al número de residuos de aminoácidos, los péptidos descritos pueden tener menos de 1. 000 residuos, preferiblemente menos de 500 residuos y más preferiblemente menos de 100.
En consecuencia, las variantes naturales o artificiales que estimulan la reacción cruzada de los linfocitos T con un péptido como el descrito son a menudo variantes de longitud. La Tabla 1 ofrece ejemplos de tales variantes de longitud naturales en las SEQ ID N. º 11 y 12, y 21 y 24, respectivamente.
Si un péptido más largo de aproximadamente 12 residuos de aminoácidos se utiliza directamente para unirse a una molécula MHC de clase II, es preferible que los residuos que flanquean la región de unión a HLA central sean residuos que no afecten sustancialmente a la capacidad del péptido para unirse específicamente a la hendidura de unión de la molécula MHC de clase II o presentar el péptido al CTL. No obstante, como se ha indicado arriba, se apreciará que es posible usar péptidos más grandes, p. ej. los codificados por un polipéptido, ya que estos péptidos más grandes pueden ser fragmentados por células presentadoras de antígeno adecuadas.
También es posible que los epítopos de MHC de clase I, aunque suelen tener entre 8 y 10 aminoácidos de longitud, sean generados por el procesamiento de péptidos más largos o proteínas que incluyen el epítopo real. A semejanza de los epítopos de MHC de clase II, es preferible que los residuos que flanquean la región de unión no alteren sustancialmente la capacidad del péptido para unirse específicamente a la hendidura de unión de la molécula MHC de clase I o para presentar el péptido al CTL ni enmascarar los sitios de escisión proteolítica necesarios para exponer el auténtico epítopo durante el procesamiento.
Por supuesto, el péptido conforme a la presente invención tendrá la capacidad para unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I. La unión de un péptido a un complejo MHC puede ser analizada con métodos conocidos en la técnica, como por ejemplo los descritos en el ejemplo 4 de la presente invención o los descritos en la bibliografía para diferentes alelos de MHC de clase II (p. ej. Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R; Ligand motifs of HLA-DRB5*0T01 and DRB1*1501 molecules delineated from self-peptides; J Immunol. 1994; 153(4): 1665-1673; Malcherek G, Gnau V, Stevanovic S, Rammensee HG, Jung G, Melms A; Analysis of allele-specific contact sites of natural HLA-DR17 ligands; J Immunol. 1994; 153(3):1141-1149; Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP; Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11; J Exp Med. 1999; 189(5): 871876; Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, Nagy ZA, Sinigaglia F; Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association; J Exp Med. 1995 181(5):1847-1855; Tompkins SM, Rota PA, Moore JC, Jensen PE; A europium fluoroimmunoassay for measuring binding of antigen to class II MHC glycoproteins; J Immunol Methods. 1993; 163(2): 209-216; Boyton RJ, Lohmann T, Londei M, Kalbacher H, Haider T, Frater AJ, Douek DC, Leslie DG, Flaveli RA, Altmann DM; Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice; Int Immunol. 1998 (12):1765-1776).
No obstante, dichos segmentos pueden ser importantes para facilitar la introducción eficaz del péptido conforme a la presente invención en las células. En una forma de realización de la presente invención, el péptido es una proteína de fusión que comprende los 80 aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (p33, en lo sucesivo “Ii”) como la derivada del NCBI, número de acceso de GenBank X00497 (Strubin, M., Mach, B. and Long, E. O. The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity EMBO J. 1984 3 (4), 869-872).
En un enlace peptídico inverso los residuos de aminoácido no están unidos por enlaces peptídicos (-CO-NH-) sino que el enlace peptídico está invertido. Estos peptidomiméticos retro-inversos pueden sintetizarse con métodos conocidos en la técnica, como por ejemplo los descritos por Meziere et al. J. Immunol. 1997, 159, 3230-3237. Esta estrategia implica la síntesis de seudopéptidos que contengan cambios en la estructura principal, pero no en la orientación de las cadenas laterales. Meziere et al. (1997) demuestran que estos seudopéptidos resultan útiles para las respuestas de MHC y de los linfocitos T cooperadores. Los péptidos retro-inversos, que contienen enlaces NH
15
imagen10
imagen11
imagen12
5
10
15
20
25
30
35
40
45
50
55
proteína de fusión recombinante que contiene fosfatasa ácida prostática (PAP) están siendo investigadas en este momento como tratamiento para el cáncer de próstata (Sipuleucel-T) (Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM.; Placebo-controlled phase 3 trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer; J Clin Oncol. 2006; 24(19):3089-3094; Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ; Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy; Cancer. 2006; 107(l):67-74).
Otro aspecto de la invención proporciona un método para producir un péptido. El método comprende el cultivo de la célula hospedadora y el aislamiento del péptido a partir de dicha célula o de su medio de cultivo.
En otra forma de realización el péptido, el ácido nucleico o el vector de expresión de la invención se emplean en medicina. Por ejemplo, el péptido puede ser preparado para la inyección por vía intravenosa (i. v.), subcutánea (s. c.), intradérmica (i. d.), intraperitoneal (i. p.) o intramuscular (i. m.). Las vías preferidas para la inyección del péptido son s. c, i. d., i. p., i. m. e i. v. Los métodos preferidos para la inyección del ADN son i. d., i. m., s. c., i. p. e i. v. Según el péptido o ADN de que se trate se pueden administrar dosis de, por ejemplo, entre 50 µg y 1,5 mg, preferiblemente de 125 µg a 500 µg de péptido o ADN. Dosis de este rango se han utilizado con éxito en varios ensayos (Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Møller M, Eriksen JA, Gaudernack G; Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer; Cancer Immunol Immunother. 2006; 55(12):1553-1564; M. Staehler, A. Stenzl, P. Y. Dietrich, T. Eisen, A. Haferkamp, J. Beck, A. Mayer, S. Walter, H. Singh, J. Frisch, C. G. Stief; An open label study to evaluate the safety and immunogenicity of the peptide based cancer vaccine IMA901, Reunión de ASCO 2007; Resumen N. º 3017).
Un aspecto importante de la presente invención es un método in vitro para producir CTL activados. El método comprende la puesta en contacto en condiciones in vitro de CTL con moléculas MHC de clase I o II humanas cargadas con antígeno y expresadas en la superficie de una célula presentadora de antígeno adecuada por tiempo suficiente para activar dichos CTL de una manera específica de antígeno. El antígeno es un péptido conforme a la invención. Preferentemente se emplea una cantidad suficiente del antígeno con una célula presentadora de antígeno.
Cuando se utilice como antígeno un epítopo de MHC de clase II, los CTL serán linfocitos cooperadores CD4positivos, preferiblemente del tipo TH1. Las moléculas MHC de clase II pueden expresarse en la superficie de cualquier célula adecuada pero es preferible que la célula no exprese de forma natural moléculas MHC de clase II (en cuyo caso la célula será transfectada para expresar dicha molécula). Si, en cambio, la célula expresa de forma natural moléculas MHC de clase II es preferible que sea defectuosa en los mecanismos de procesamiento o de presentación de los antígenos. De ese modo será posible que la célula que expresa la molécula MHC de clase II quede completamente sensibilizada con el antígeno peptídico escogido antes de activar al CTL.
La célula presentadora de antígeno (o célula estimuladora) normalmente posee moléculas MHC de clase II en su superficie y es preferible que sea básicamente incapaz de cargar dicha molécula de MHC de clase II con el antígeno seleccionado. La molécula MHC de clase II puede cargarse fácilmente in vitro con el antígeno seleccionado.
Preferiblemente, la célula de mamífero carecerá del transportador de péptidos TAP o bien este estará presente en un nivel reducido o escasamente funcional. Las células adecuadas que carecen del transportador de péptidos TAP incluyen las células T2, RMA-S y de Drosophila. TAP es el transportador relacionado con el procesamiento de los antígenos.
La estirpe celular humana deficiente en carga de péptidos T2 está disponible en la American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, EE. UU. con el N. º de catálogo CRL 1992; la estirpe de células de Drosophila Schneider line 2 está disponible en la ATCC con el N. º de catálogo CRL 19863; la estirpe de células de ratón RMA-S está descrita en Karre and Ljunggren (1985) J. Exp. Med. 162,1745.
Es preferible que la célula hospedadora no exprese las moléculas MHC de clase I antes de la transfección. Preferiblemente la célula estimuladora expresará una molécula importante para la coestimulación de los linfocitos T, como cualquiera de las siguientes: B7. 1, B7. 2, ICAM-1 o LFA3.
Las secuencias de ácidos nucleicos de numerosas moléculas MHC de clase II y de las moléculas co-estimuladoras están disponibles públicamente en las bases de datos GenBank y EMBL.
De forma similar, en el caso del epítopo de MHC de clase I usado como antígeno, las CTL son linfocitos cooperadores CD8-positivos. Las moléculas MHC de clase I pueden expresarse en la superficie de cualquier célula adecuada y es preferible que la célula no exprese de forma natural moléculas MHC de clase I (en cuyo caso la célula será transfectada para expresar dicha molécula). Si, en cambio, la célula expresa de forma natural moléculas MHC de clase I ha de ser defectuosa en los mecanismos de procesamiento o de presentación de los antígenos.
19
imagen13
5
15
25
35
45
55
Yang, JC, Seipp, CA, et al.; Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report, N. Engl. J Med, 1988, 319, 1676-1680; Dudley, ME, Wunderlich, JR, Robbins, PF, Yang, JC, Hwu, P, Schwartzentruber, DJ, Topalian, SL, Sherry, R, Restifo, NP, Hubicki, AM, Robinson, MR, Raffeld, M, Duray, P, Seipp, CA, Rogers-Freezer, L, Morton, KE, Mavroukakis, SA, White, DE, and Rosenberg, SA; Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, 2002, 298, 850-854; Yee, C, Thompson, JA, Byrd, D, Riddell, SR, Roche, P, Celis, E, and Greenberg, PD; Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc. Natl. Acad. Sci. U. S. A, 2002, 99, 16168-16173; Dudley, ME, Wunderlich, JR, Yang, JC, Sherry, RM, Topalian, SL, Restifo, NP, Royal, RE, Kammula, U, White, DE, Mavroukakis, SA, Rogers, LJ, Gracia, GJ, Jones, SA, Mangiameli, DP, Pelletier, MM, Gea-Banacloche, J, Robinson, MR, Berman, DM, Filie, AC, Abati, A, and Rosenberg, SA; Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma,
J. Clin. Oncol., 2005, 23, 2346-2357); y aparecen revisados en (Gattinoni, L, Powell, DJ, Jr., Rosenberg, SA, and Restifo, NP; Adoptive immunotherapy for cancer: building on success, Nat. Rev. Immunol., 2006, 6, 383-393) y (Morgan, RA, Dudley, ME, Wunderlich, JR, Hughes, MS, Yang, JC, Sherry, RM, Royal, RE, Topalian, SL, Kammula, US, Restifo, NP, Zheng, Z, Nahvi, A, de Vries, CR, Rogers-Freezer, LJ, Mavroukakis; SA, and Rosenberg, SA; Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes, Science, 2006, 314 (5796): 126-129).
Cualquier molécula de la invención, ya sea péptido, ácido nucleico, vector de expresión, célula o CTL activado es útil para el tratamiento de trastornos caracterizados por células que eluden la respuesta inmunitaria. Por consiguiente, cualquier molécula de la presente invención puede ser utilizada como medicamento o en la fabricación de un medicamento. La molécula puede ser utilizada sola o combinada con otra molécula o moléculas de la invención o con cualquier o cualesquier moléculas conocidas.
Preferiblemente, el medicamento es una vacuna. La vacuna puede administrarse directamente al paciente, en el órgano afectado o por vía sistémica, o aplicarse ex vivo a células derivadas del paciente o a una estirpe celular humana que después se administra al paciente, o utilizarse in vitro para seleccionar una subpoblación de células inmunitarias derivadas del paciente que después se le vuelven a administrar. Si el ácido nucleico se administra a células in vitro, puede ser útil que estas células sean transfectadas para que expresen simultáneamente citocinas inmunoestimuladoras, como la interleucina-2. El péptido puede ser sustancialmente puro, o combinarse con un adyuvante inmunoestimulador (véase abajo) o utilizarse en combinación con citocinas inmunoestimuladoras, o bien administrarse mediante otro sistema de liberación adecuado, como por ejemplo liposomas. El péptido también se puede conjugar con un transportador adecuado como la hemocianina de lapa californiana (KLH) o el manano (véase WO 95/18145 y Longenecker et al. (1993) Ann. NY Acad. Sci. 690, 276-291). El péptido también puede estar marcado, o ser una proteína de fusión, o ser una molécula híbrida. Se espera que los péptidos de la presente invención estimulen a los CTL CD4 o CD8. No obstante, la estimulación es más eficiente si se cuenta con la ayuda de los linfocitos T positivos para el CD opuesto. Así pues, en el caso de los epítopos de MHC de clase II que estimulan a los CTL CD4, el compañero de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD8-positivos. Y viceversa, en los epítopos de MHC de clase I que estimulan a los CTL CD8, la pareja de fusión o las secciones de una molécula híbrida proporcionan epítopos que estimulan a los linfocitos T CD4-positivos. Los epítopos estimuladores de los CD4 y los CD8 son bien conocidos en la técnica e incluyen los identificados en la presente invención.
En un aspecto de la invención, la vacuna comprende al menos un péptido, preferiblemente dos a 50, más preferiblemente dos a 25, incluso más preferiblemente dos a 15 y más preferiblemente dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce o trece péptidos como los dados a conocer o péptidos adicionales. Los péptidos pueden derivar de uno o más TAA específicos y se pueden unir a moléculas MHC de clase I y/o II.
Preferiblemente, cuando el péptido de la invención se usa en una vacuna o medicamento de la invención, está presente en forma de sal, como por ejemplo, una sal de acetato o una sal de cloruro. El ejemplo 7 presenta estudios con la vacuna IMA-910, que contiene algunos de los péptidos de la presente invención y describe la preparación de la misma con péptidos en forma de sal y su tamaño de partícula.
El polinucleótido puede ser sustancialmente puro, o estar contenido en un vector o en un sistema de liberación adecuado. El ácido nucleico puede ser ADN, ADNc, ARN o una combinación de los mismos. Los métodos para diseñar e introducir ese ácido nucleico son bien conocidos por los expertos en la materia. Se puede obtener una visión general por ejemplo en S. Pascolo: Vaccination with messenger RNA Methods Mol Med 2006, 127; 23-40; R. Stan, JD Wolchok and AD Cohen DNA vaccines against cancer Hematol Oncol Clin North Am 2006, 3; 613-636 or A Mahdavi and BJ Monk Recent advances in human papillomavirus vaccines Curr Oncol Rep 2006, 6, 465-472. Las vacunas polinucleotídicas son fáciles de preparar, pero el mecanismo por el cual tales vectores inducen la respuesta inmunitaria no se conoce con exactitud. Los vectores y sistemas de liberación adecuados incluyen los de ADN y/o ARN viral, como los sistemas basados en adenovirus, virus vacunal, retrovirus, herpesvirus, virus adeno-asociados o híbridos que contienen elementos de varios virus. Los sistemas de liberación no virales incluyen lípidos catiónicos y polímeros catiónicos que son bien conocidos como técnicas para la introducción de ADN. Los métodos de introducción físicos, como la «pistola génica», también pueden utilizarse. El péptido o péptidos codificados por el ácido núcleico pueden ser una proteína de fusión, por ejemplo con un epítopo que estimule los linfocitos T para el
21
imagen14
imagen15
imagen16
imagen17
imagen18
imagen19
imagen20
imagen21
imagen22
imagen23
imagen24

Claims (1)

  1. imagen1
ES10014673.7T 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia Active ES2553207T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07014797 2007-07-27
EP07014797 2007-07-27
US95316107P 2007-07-31 2007-07-31
US953161P 2007-07-31

Publications (1)

Publication Number Publication Date
ES2553207T3 true ES2553207T3 (es) 2015-12-07

Family

ID=39766525

Family Applications (7)

Application Number Title Priority Date Filing Date
ES08785106.9T Active ES2689725T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191621.7T Active ES2553270T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191623.3T Active ES2551589T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES15193843.8T Active ES2689851T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191631.6T Active ES2553229T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES10014673.7T Active ES2553207T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191628.2T Active ES2555282T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia

Family Applications Before (5)

Application Number Title Priority Date Filing Date
ES08785106.9T Active ES2689725T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191621.7T Active ES2553270T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191623.3T Active ES2551589T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES15193843.8T Active ES2689851T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191631.6T Active ES2553229T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES12191628.2T Active ES2555282T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia

Country Status (17)

Country Link
US (5) US8080634B2 (es)
EP (7) EP2562182B1 (es)
JP (4) JP5484326B2 (es)
KR (3) KR101291394B1 (es)
CN (3) CN103864893B (es)
AU (1) AU2008281014B2 (es)
BR (1) BRPI0813626A2 (es)
CA (1) CA2694805C (es)
EA (1) EA018456B1 (es)
ES (7) ES2689725T3 (es)
HK (7) HK1159129A1 (es)
HU (5) HUE026142T2 (es)
MX (1) MX2010001090A (es)
NZ (1) NZ582822A (es)
PL (7) PL3042914T3 (es)
UA (2) UA101810C2 (es)
WO (1) WO2009015842A2 (es)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918293A (zh) * 2004-02-20 2007-02-21 莫洛根股份公司 用于对人及高等动物进行治疗性和预防性免疫刺激的取代的非编码核酸分子
US9732131B2 (en) 2006-02-27 2017-08-15 Calviri, Inc. Identification and use of novopeptides for the treatment of cancer
US20090004213A1 (en) 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
GB201019331D0 (en) * 2010-03-19 2010-12-29 Immatics Biotechnologies Gmbh Methods for the diagnosis and treatment of cancer based on AVL9
GB201004551D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201004575D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
CN102183640A (zh) * 2011-01-31 2011-09-14 浙江大学 筛选和鉴定乙肝病毒特异性细胞毒性t淋巴细胞表位方法
CN102168066A (zh) * 2011-01-31 2011-08-31 浙江大学 体外诱导乙型肝炎病毒特异性细胞毒性t淋巴细胞的方法
WO2013054320A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
US20130302366A1 (en) * 2012-05-09 2013-11-14 Christopher Marshall Conformationally Specific Viral Immunogens
HRP20211852T1 (hr) * 2013-08-05 2022-03-18 Immatics Biotechnologies Gmbh Nova imunoterapija protiv nekoliko tumora, poput raka pluća, uključujući nsclc
MX2019013161A (es) * 2013-11-04 2020-02-03 Immatics Biotechnologies Gmbh Inmunoterapia personalizada contra diversos tumores cerebrales y neuronales.
GB201319446D0 (en) 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
WO2015149016A2 (en) 2014-03-28 2015-10-01 University Of Washington Through Its Center For Commercialization Breast and ovarian cancer vaccines
CR20160534A (es) 2014-04-27 2017-04-25 Ccam Biotherapeutics Ltd Anticuerpos humanizados contra la molécula de adhesión celular relacionada al antígeno carcinoembriónico 1 (ceacam1)
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
GB201408255D0 (en) 2014-05-09 2014-06-25 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumours of the blood, such as acute myeloid leukemia (AML)
IL248203A0 (en) 2014-05-09 2016-11-30 Immatics Biotechnologies Gmbh Innovative immunotherapy against blood tumors such as acute leukemia in the spinal cord
GB201504502D0 (en) * 2015-03-17 2015-04-29 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
MY190083A (en) 2015-03-17 2022-03-25 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
GB201505305D0 (en) 2015-03-27 2015-05-13 Immatics Biotechnologies Gmbh Novel Peptides and combination of peptides for use in immunotherapy against various tumors
IL254129B2 (en) 2015-03-27 2023-10-01 Immatics Biotechnologies Gmbh New peptides and a combination of peptides for use in immunotherapy against various tumors
GB201505585D0 (en) 2015-03-31 2015-05-13 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds for use in immunotherapy against renal cell carinoma (RCC) and other cancers
GB201507030D0 (en) * 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
GB201507719D0 (en) * 2015-05-06 2015-06-17 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds thereof for use in immunotherapy against colorectal carcinoma (CRC) and other cancers
CN107810193B (zh) * 2015-05-06 2022-03-22 伊玛提克斯生物技术有限公司 用于结直肠癌(crc)和其他癌症免疫治疗的新型肽和肽组合物及其支架
NL2014935B1 (en) 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
SG10202107374UA (en) 2015-06-19 2021-08-30 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy and methods for generating scaffolds for the use against pancreatic cancer and other cancers
GB201510771D0 (en) * 2015-06-19 2015-08-05 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy and methods for generating scaffolds for the use against pancreatic cancer
GB201511191D0 (en) * 2015-06-25 2015-08-12 Immatics Biotechnologies Gmbh T-cell epitopes for the immunotherapy of myeloma
GB201511546D0 (en) * 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
PE20230321A1 (es) 2015-07-01 2023-02-22 Immatics Biotechnologies Gmbh Nuevos peptidos y nuevas combinaciones de peptidos para el uso en la inmunoterapia contra el cancer de ovario y otros tipos de cancer
GB201512369D0 (en) * 2015-07-15 2015-08-19 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
TWI796642B (zh) 2015-08-28 2023-03-21 德商英麥提克生物技術股份有限公司 用於多種癌症之免疫治療的新穎胜肽、胜肽的組合物及支架
US10130693B2 (en) 2015-08-28 2018-11-20 Immatics Biotechnologies Gmbh Peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
GB201515321D0 (en) 2015-08-28 2015-10-14 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
LU92821B1 (en) 2015-09-09 2017-03-20 Mologen Ag Combination comprising immunostimulatory oligonucleotides
GB2542425A (en) 2015-09-21 2017-03-22 Mologen Ag Means for the treatment of HIV
GB201521894D0 (en) * 2015-12-11 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against various cancers
IL259931B2 (en) 2015-12-16 2024-02-01 Gritstone Bio Inc Identification of neo-antigens, preparation, and use
GB201603987D0 (en) * 2016-03-08 2016-04-20 Immatics Biotechnologies Gmbh Uterine cancer treatments
GB201604458D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against cancers
GB201609193D0 (en) 2016-05-25 2016-07-06 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers
JP7075125B2 (ja) 2016-05-25 2022-05-25 イマティクス バイオテクノロジーズ ゲーエムベーハー 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ
TW202304970A (zh) * 2016-08-26 2023-02-01 德商英麥提克生物技術股份有限公司 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架
EP4317432A3 (en) 2016-12-08 2024-04-17 Immatics Biotechnologies GmbH T cell receptors with improved pairing
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
IL299051A (en) 2017-01-27 2023-02-01 Immatics Biotechnologies Gmbh New peptides and their combinations for immunotherapy against ovarian cancer and other cancers
MA47367B1 (fr) * 2017-01-27 2023-06-28 Immatics Biotechnologies Gmbh Nouveaux peptides et combinaison de peptides à utiliser en immunothérapie contre le cancer de l'ovaire et d'autres cancers
AR110857A1 (es) 2017-01-27 2019-05-08 Immatics Biotechnologies Gmbh Péptidos y combinaciones de péptidos para el uso en la inmunoterapia contra el cáncer de ovario y otros tipos de cáncer
CA3065325A1 (en) 2017-06-02 2018-12-06 Arizona Board Of Regents On Behalf Of Arizona State University A method to create personalized cancer vaccines
WO2019055618A1 (en) 2017-09-15 2019-03-21 Arizona Board Of Regents On Behalf Of Arizona State University METHODS OF CLASSIFYING RESPONSES TO ANTICANCER IMMUNOTHERAPY
CN111465989B (zh) 2017-10-10 2024-06-25 磨石生物公司 使用热点进行的新抗原鉴别
CN111630602A (zh) 2017-11-22 2020-09-04 磨石肿瘤生物技术公司 减少新抗原的接合表位呈递
WO2019105485A1 (zh) * 2017-12-01 2019-06-06 上海桀蒙生物技术有限公司 个性化癌症疫苗的制备方法
CN109045290B (zh) * 2018-11-02 2021-08-31 遵义医学院附属医院 基于内皮细胞特异分子-1的双靶标肿瘤疫苗及其制备方法
EP4038222A4 (en) 2019-10-02 2023-10-18 Arizona Board of Regents on behalf of Arizona State University METHODS AND COMPOSITIONS FOR IDENTIFYING NEOANTIGENS FOR USE IN THE TREATMENT AND PREVENTION OF CANCER
CN114945584A (zh) * 2019-12-11 2022-08-26 分子合作伙伴股份公司 重组肽-mhc复合物结合蛋白及其生成和用途
CA3161326A1 (en) 2019-12-11 2021-06-17 Molecular Partners Ag Designed ankyrin repeat domains with altered surface residues
CN113881707B (zh) * 2021-10-25 2023-07-14 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
IN151589B (es) 1978-12-22 1983-05-28 Biogen Nv
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
JPS6081130A (ja) * 1983-10-07 1985-05-09 Fujisawa Pharmaceut Co Ltd 抗hla−a2抗体およびそれを産生するハイブリド−マ
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
EP0402354A4 (en) 1987-08-10 1991-03-20 The University Of Melbourne Molecular cloning of human rotavirus serotype 4 gene 9 encoding vp7, the major outer capsid neutralisation specific glycoprotein and expression of vp7 and fragments thereof for use in a vaccine
US5651972A (en) 1989-04-21 1997-07-29 University Of Florida Research Foundation, Inc. Use of recombinant swine poxvirus as a live vaccine vector
US5119700A (en) 1991-03-01 1992-06-09 Titan Tool Company Automatic stud driving tool having collarless retention mechanism for driven head
US20020168374A1 (en) * 1992-08-07 2002-11-14 Ralph T. Kubo Hla binding peptides and their uses
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
CA2213620A1 (en) * 1995-04-07 1996-10-10 The Regents Of The University Of California Antibodies for the detection of hla-g
ATE244300T1 (de) 1996-01-17 2003-07-15 Imp College Innovations Ltd Immunotherapie mit verwendung von zytotoxischen t lymphozyten (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
BR9708220A (pt) * 1996-03-21 2000-01-04 Epimmune Inc Peptìdios de ligação hla-a2.1 e seus usos
JP4063359B2 (ja) * 1997-01-23 2008-03-19 タカラバイオ株式会社 硫酸基転移酵素遺伝子
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
ATE487737T1 (de) * 1997-05-30 2010-11-15 Human Genome Sciences Inc 32 humane sekretierte proteine
DE19739089A1 (de) 1997-09-06 1999-03-11 Hella Kg Hueck & Co Scheinwerfer für Fahrzeuge
WO1999014353A2 (en) * 1997-09-19 1999-03-25 Dana-Farber Cancer Institute, Inc. Intrabody-mediated control of immune reactions
US6747137B1 (en) 1998-02-13 2004-06-08 Genome Therapeutics Corporation Nucleic acid sequences relating to Candida albicans for diagnostics and therapeutics
AU5284200A (en) 1999-06-03 2000-12-28 Cold Spring Harbor Laboratory Substrate trapping protein tyrosine phosphatases
AU7721500A (en) * 1999-09-29 2001-04-30 Human Genome Sciences, Inc. Colon and colon cancer associated polynucleotides and polypeptides
CA2395816A1 (en) * 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins and antibodies
US20020048763A1 (en) * 2000-02-04 2002-04-25 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis
EP1292330A1 (en) * 2000-03-31 2003-03-19 Vaccine Chip Technology APS Immunostimulating properties of a fragment of tgf- beta
GB0011220D0 (en) 2000-05-10 2000-06-28 Blockfoil Group Limited Foil embossing
JP2004512023A (ja) * 2000-06-09 2004-04-22 コリクサ コーポレイション 結腸癌の治療および診断のための組成物および方法
US20030017167A1 (en) * 2000-06-09 2003-01-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
EP1705487A3 (en) * 2000-07-17 2008-03-19 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating colon cancer
JP2004520810A (ja) * 2000-08-24 2004-07-15 ジェネンテック・インコーポレーテッド 腫瘍の診断と治療のための組成物と方法
JP2002173450A (ja) * 2000-12-07 2002-06-21 Hokkaido Technology Licence Office Co Ltd 糖脂質特異的硫酸転移酵素遺伝子を含む医薬組成物
WO2002059609A2 (en) * 2000-12-08 2002-08-01 Eos Biotechnology, Inc. Methods of diagnosing colorectal cancer and/or breast cancer, compositions, and methods of screening for colorectal cancer and/or breast cancer modulators
US6455026B1 (en) 2001-03-23 2002-09-24 Agy Therapeutics, Inc. Use of protein tyrosine phosphatase zeta as a biomolecular target in the treatment and visualization of brain tumors
US20030118585A1 (en) 2001-10-17 2003-06-26 Agy Therapeutics Use of protein biomolecular targets in the treatment and visualization of brain tumors
JP2003012544A (ja) * 2001-03-27 2003-01-15 Kouji Egawa 癌予防・治療剤
AU2002311787A1 (en) * 2001-03-28 2002-10-15 Zycos Inc. Translational profiling
KR100607612B1 (ko) * 2001-06-20 2006-08-02 제넨테크, 인크. 종양의 진단 및 치료를 위한 방법 및 이를 위한 조성물
WO2003042661A2 (en) 2001-11-13 2003-05-22 Protein Design Labs, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
DE10225144A1 (de) * 2002-05-29 2003-12-18 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
WO2003104454A1 (ja) * 2002-06-06 2003-12-18 山之内製薬株式会社 新規オキシダーゼ
AU2003295328A1 (en) * 2002-10-02 2004-04-23 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20060188889A1 (en) 2003-11-04 2006-08-24 Christopher Burgess Use of differentially expressed nucleic acid sequences as biomarkers for cancer
KR100494979B1 (ko) 2003-07-14 2005-06-14 주식회사 정우인터내셔날 조직 절편 보호 및 해상력 증진용 액상 커버 슬립, 그제조용 조성물, 그로부터 제조된 커버슬립을 구비한슬라이드 구조체 및 그 제조방법
EP1674564A4 (en) * 2003-09-01 2007-10-10 Kureha Corp ANTIBODY AGAINST NOX1 POLYPEPTIDE, METHOD FOR CANCER DIAGNOSIS USING THE NOX1 GENE AND SCREENING METHOD FOR A CANCER GROWTH INHIBITOR
EP1716227A4 (en) 2004-01-27 2010-01-06 Compugen Ltd METHOD OF IDENTIFYING PUTATIVE GENE PRODUCTS USING THE INTERSPEZIES SEQUENCE COMPARISON AND BIOMOLECULAR SEQUENCES DISCOVERED THEREFOR
DE102004026135A1 (de) * 2004-05-25 2006-01-05 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
AU2006249199A1 (en) * 2005-05-12 2006-11-23 Introgen Therapeutics, Inc. P53 vaccines for the treatment of cancers
EP1748067A1 (en) * 2005-07-29 2007-01-31 Institut Pasteur Polynucleotides encoding MHC class I-restricted hTERT epitopes, analogues thereof or polyepitopes
JP4803460B2 (ja) * 2005-08-09 2011-10-26 学校法人 久留米大学 Hla−a24分子結合性扁平上皮癌抗原由来ペプチド
ATE440107T1 (de) * 2005-09-05 2009-09-15 Immatics Biotechnologies Gmbh Tumorassoziierte peptide, die hla klasse i oder ii-moleküle binden, und anti-tumor impfstoffe
EP1806359B1 (en) * 2005-09-05 2010-03-17 Immatics Biotechnologies GmbH Tumor-associated peptides binding promiscuously to human leukocyte antigen (HLA) class II molecules
WO2007097923A2 (en) * 2006-02-20 2007-08-30 Phylogica Limited Method of constructing and screening libraries of peptide structures
JPWO2007119515A1 (ja) * 2006-03-28 2009-08-27 昇志 佐藤 新規腫瘍抗原ペプチド
WO2008108257A1 (ja) * 2007-03-05 2008-09-12 International Institute Of Cancer Immunology, Inc. 癌抗原特異的t細胞のレセプター遺伝子およびそれによりコードされるペプチドならびにそれらの使用
US20090004213A1 (en) * 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
SI2113253T1 (sl) 2008-04-30 2010-06-30 Immatics Biotechnologies Gmbh Nove formulacije s tumorjem povezanih peptidov ki se vežejo na molekule humanega levkocitnega antigena HLA razreda I ali II za cepiva

Also Published As

Publication number Publication date
KR101291394B1 (ko) 2013-08-07
JP5818920B2 (ja) 2015-11-18
CA2694805C (en) 2014-09-09
CN103864893A (zh) 2014-06-18
CN105566450A (zh) 2016-05-11
US8080634B2 (en) 2011-12-20
US9511128B2 (en) 2016-12-06
EP2562182B1 (en) 2015-10-07
ES2689725T3 (es) 2018-11-15
ES2553229T3 (es) 2015-12-07
BRPI0813626A2 (pt) 2014-12-23
PL2562183T3 (pl) 2016-03-31
EP2183278B1 (en) 2018-07-04
WO2009015842A3 (en) 2009-04-02
EP2562183A8 (en) 2013-05-08
EP2565204A1 (en) 2013-03-06
EA018456B1 (ru) 2013-08-30
US20090136528A1 (en) 2009-05-28
MX2010001090A (es) 2010-04-07
AU2008281014A1 (en) 2009-02-05
HK1183039A1 (en) 2013-12-13
EP2565204B1 (en) 2015-10-07
NZ582822A (en) 2012-06-29
CN101765610A (zh) 2010-06-30
AU2008281014A2 (en) 2010-04-29
HK1183038A1 (en) 2013-12-13
KR101313915B1 (ko) 2013-10-01
HK1223382A1 (zh) 2017-07-28
CN103864893B (zh) 2017-01-04
JP5484326B2 (ja) 2014-05-07
PL2562182T3 (pl) 2016-03-31
US10420800B2 (en) 2019-09-24
PL2338907T3 (pl) 2016-03-31
EP3042914A1 (en) 2016-07-13
HUE026142T2 (en) 2016-05-30
US9950048B2 (en) 2018-04-24
JP2010534463A (ja) 2010-11-11
WO2009015842A2 (en) 2009-02-05
EP2562184B1 (en) 2015-10-07
US20160051654A1 (en) 2016-02-25
CA2694805A1 (en) 2009-02-05
UA101810C2 (ru) 2013-05-13
EP3042914B1 (en) 2018-07-04
US20110117117A1 (en) 2011-05-19
PL2562184T3 (pl) 2016-03-31
ES2555282T3 (es) 2015-12-30
KR20120087897A (ko) 2012-08-07
ES2689851T3 (es) 2018-11-16
US20140271692A1 (en) 2014-09-18
HK1183040A1 (en) 2013-12-13
EP2562182A1 (en) 2013-02-27
EP2562183A1 (en) 2013-02-27
US20190076476A1 (en) 2019-03-14
CN101765610B (zh) 2014-01-29
ES2553270T3 (es) 2015-12-07
JP2016040257A (ja) 2016-03-24
HK1223381A1 (zh) 2017-07-28
EP2562183B1 (en) 2015-10-07
PL3042914T3 (pl) 2019-01-31
HUE025636T2 (en) 2016-04-28
JP2014138588A (ja) 2014-07-31
HUE027057T2 (en) 2016-08-29
JP6130469B2 (ja) 2017-05-17
PL2565204T3 (pl) 2016-03-31
EP2562184A1 (en) 2013-02-27
KR20100040889A (ko) 2010-04-21
HK1183041A1 (en) 2013-12-13
EP2183278A2 (en) 2010-05-12
EA201000207A1 (ru) 2010-08-30
HUE026776T2 (en) 2016-08-29
PL2183278T3 (pl) 2018-12-31
AU2008281014B2 (en) 2012-06-28
UA103751C2 (ru) 2013-11-25
JP2016074693A (ja) 2016-05-12
HK1159129A1 (en) 2012-07-27
EP2338907B1 (en) 2015-09-30
KR101351195B1 (ko) 2014-01-14
KR20130079650A (ko) 2013-07-10
US8669230B2 (en) 2014-03-11
ES2551589T3 (es) 2015-11-20
HUE027164T2 (en) 2016-08-29
EP2338907A1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
ES2553207T3 (es) Nuevo epítopo inmunogénico para inmunoterapia
US8614176B2 (en) Peptide vaccines for lung cancers expressing TTK, URLC10 or KOC1 polypeptides
AU2012216641B2 (en) Novel immunogenic epitopes for immunotherapy