ES2450591T3 - Reformado termoneutro de hidrocarburos líquidos basados en el petróleo - Google Patents

Reformado termoneutro de hidrocarburos líquidos basados en el petróleo Download PDF

Info

Publication number
ES2450591T3
ES2450591T3 ES05855731.5T ES05855731T ES2450591T3 ES 2450591 T3 ES2450591 T3 ES 2450591T3 ES 05855731 T ES05855731 T ES 05855731T ES 2450591 T3 ES2450591 T3 ES 2450591T3
Authority
ES
Spain
Prior art keywords
hydrogen
gas
reaction
rich
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES05855731.5T
Other languages
English (en)
Inventor
Tomoyuki Inui
Bashir O. Dabbousi
Ahmed Shakeel
Fahad Ibrahim Al-Muhaish
Mohammed Abdul Siddiqui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Original Assignee
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co, King Fahd University of Petroleum and Minerals filed Critical Saudi Arabian Oil Co
Application granted granted Critical
Publication of ES2450591T3 publication Critical patent/ES2450591T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procedimiento de reformado termoneutro para la producción de un gas de síntesis rico en hidrógeno a partirde combustibles hidrocarburos líquidos, que comprende: a) proporcionar una mezcla de un combustible de hidrocarburo, un gas rico en O2 y vapor a una zonainterna de un reactor, incluyendo dicha zona interna un lecho catalítico que consiste de un catalizador Ni-Ce2O3-Pt-Rh combinado de combustión y reformado con vapor y/o CO2, b) precalentar el combustible, el gas rico en O2 y el vapor a una temperatura de entre 380ºC y 450ºC, y c) poner en contacto la mezcla precalentada con el lecho catalítico a una velocidad espacial horaria de gasde 25.000 h-1 o superior, causando una reacción de combustión exotérmica que eleva la temperatura dereacción a un valor de entre 800ºC y 900ºC y que además causa una reacción de reformado con vaporendotérmica durante un periodo de tiempo suficiente para reformar el combustible líquido, rindiendo un gasde síntesis rico en hidrógeno, en el que el combustible hidrocarburo líquido se selecciona de entre el grupo que consiste de isooctano, nafta ligera,nafta pesada, queroseno y gasóleo, y en el que el calor generado en la reacción de combustión exotérmica seneutraliza y se compensa con la reacción endotérmica en el mismo lecho catalítico.

Description

Reformado termoneutro de hidrocarburos líquidos basados en el petróleo
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un procedimiento termoneutro para el reformado de combustibles hidrocarburos líquidos basados en el petróleo y, más concretamente, a la utilización de un único catalizador con funcionalidad dual en dicho procedimiento, que consigue tanto la combustión como el reformado con vapor y/o CO2.
ANTECEDENTES DE LA INVENCIÓN
Las celdas de combustible basado en hidrógeno para aplicaciones de automoción y estacionarias están ganando popularidad por diversos motivos, incluyendo sus mayores eficiencias y menores emisiones. Sin embargo, la utilización de hidrógeno puro como combustible en aplicaciones de automoción y domésticas presenta muchas limitaciones. La infraestructura para proveer hidrógeno en la actualidad resulta inadecuada; el repostaje con hidrógeno gaseoso puede resultar lento y el almacenamiento seguro del hidrógeno es problemático. Por lo tanto, la utilización de un reformador a bordo para producir un flujo rico en hidrógeno a partir de combustibles como gasolina y metanol está ganando en popularidad. Las alternativas a la producción de hidrógeno van desde la generación futurista de hidrógeno basada en energía solar hasta el reformado más pragmático de hidrocarburos. La utilización de combustibles hidrocarburos líquidos y/o gaseosos para generar hidrógeno se está proponiendo como solución inmediata para la producción de energía ambientalmente respetuosa. Aparte de la más favorable economía y relativa simplicidad del reformado, esta option resulta más práctica ya que puede utilizarse la red de distribución existente.
La conversión de los combustibles hidrocarburo en hidrógeno puede llevarse a cabo mediante varios procedimientos, incluyendo el reformado de vapor de hidrocarburo (HSR), la oxidación parcial (POX) y el reformado autotérmico (ATR). El reformado de vapor de hidrocarburo implica la reacción de vapor con el combustible en presencia de un catalizador para producir hidrógeno y CO, según las ecuaciones (1) y (2) para el metano, CH4 e isooctano, C8H18 (2,2,4-trimetilpentano, que se utiliza como sustituto de la gasolina). Debido a que el reformado con vapor es endotérmico, debe quemarse parte del combustible en un horno externo y transferirse el calor al reformador a través de intercambiadores de calor.
CH4 + H2O < CO + 3H2, LH°298 = +206,2 kJ/mol (1)
C8H18 + 8H2O < 8CO + 17H2, LH°298 = +1273,2 kJ/mol (2)
La oxidación parcial implica la reacción de oxígeno con el combustible para producir hidrógeno y CO, tal como se ilustra en las ecuaciones (3) y (4), en el caso de que la proporción de oxígeno a combustible sea inferior a la requerida para la combustión total, es decir, la conversió completa en CO2 y H2O.
CH4 + ½ O2 < CO + 2H2, LH°298 = -35,7 kJ/mol (3)
C8H18 + 4 O2 < 8CO + 9H2, LH°298 = -158,1 kJ/mol (4)
La oxidación parcial puede llevarse a cabo con un catalizador (oxidación parcial catalítica) o sin un catalizador (oxidación parcial no catalítica). Las velocidades de reacción son mucho más altas para la oxidación parcial que para el reformado con vapor, pero el rendimiento de hidrógeno por cada carbono en el combustible es más bajo. La oxidación parcial no catalítica requiere temperaturas de reacción superiores a 1.000ºC para conseguir velocidades de reacción rápidas. Aunque la reacción es exotérmica, parte del combustible debe combustionarse debido a que la cantidad de calor generado por la reacción no es suficiente para precalentar el flujo de alimentación para conseguir velocidades óptimas. Recientemente ha surgido interés en la oxidación parcial catalítica porque opera a temperaturas más bajas que la ruta no catalítica. Las temperaturas operativas más bajas proporcionan un mejor control de la reacción, minimizando de esta manera la formación de coque y permitiendo una elección más amplia de los materiales de construcción del reactor.
El reformado autotérmico implica la reacción de oxígeno, vapor y combustible para producir hidrógeno y CO2, y puede considerarse una combinación de oxidación parcial y reformado con vapor, según las ecuaciones (5) y (6). Esencialmente este procedimiento puede considerarse una combinación de POX y HSR.
CH4 +½O2+ H2O < CO2 + 3H2, LH°298 = -18,4 kJ/mol (5)
C8H18 + 4O2 + 8H2O < 8CO + 17H2, LH°298 = -236,7 kJ/mol (6)
La elección del procedimiento de reacción que debe utilizarse para el reformado a bordo depende de muchos factores, incluyendo las características operativas de la aplicación (por ejemplo la demanda energética variable,
rápido arranque y frecuentes paradas no planificadas) y el tipo de batería de celdas de combustible. La HSR está limitada por la transferencia de calor y por lo tanto no responde con rapidez a los cambios en la demanda de energía (es decir, el "seguimiento de carga") Al reducirse rápidamente la demanda de energía, el catalizador puede sobrecalentarse, provocando la sinterización, que a su vez resulta en una pérdida de actividad. La ATR puede superar las limitaciones del seguimiento de carga de la HSR debido a que el calor requerido para la reacción endotérmica se genera dentro del lecho catalítico, una propiedad que permite una respuesta más rápida a las variables demandas de energía y un arranque más rápido.
El documento JP nº 2002 220202A se refiere a la utilización de catalizadores de (NiCeO2)-Pt modificados con Rh en un procedimiento de reformado para producir gas hidrógeno a partir de combustibles hidrocarburos líquidos.
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN
La invención se define mediante las reivindicaciones adjuntas.
Se ha encontrado un nuevo procedimiento de alta velocidad espacial horaria de gas denominado reformado termoneutro (RTN), para la producción de gas de síntesis rico en hidrógeno (sintegas) y se ha aplicado al reformado de combustibles hidrocarburos líquidos basados en el petróleo, incluyendo isooctano y nafta. El procedimiento presenta la ventaja de la ausencia detectable de desactivación del catalizador por la formación de coque o la sulfuración por la acción de diferentes funciones catalíticas de efectos de "spillover" tanto del hidrógeno como del oxígeno.
El procedimiento de la invención combina funcionalidades catalíticas de tanto combustión como reformado con vapor y/o CO2, y utiliza un catalizador de cuatro componentes con múltiples funcionalidades. El catalizador ha sido aplicado previamente al reformado del gas natural y del gas licuado del petróleo (GLP) y ahora se ha extendido al reformado de los combustibles hidrocarburos líquidos basados en el petróleo. El procedimiento convierte una mezcla de gases de reacción, por ejemplo que consiste de 2,7% molar de isooctano, 51,7% molar de aire y 46,6% molar de vapor, produciendo una mezcla que contiene 34,5% molar de H2, 7,4% molar de CO, 9,3% molar de CO2, 0,3% molar de CH4, 25,5% molar de N2 y 23,0% molar de vapor. Se produjo gas seco que contenía 54,4% molar de H2 y CO a una conversión superior al 96,5% con un caudal de 80 l/h. El sintegas producido en este procedimiento podía utilizarse para producir aproximadamente 80 vatios (W) de energía eléctrica a partir de una celda de combustible operando con una eficiencia de 40%.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La fig. 1 es una comparación esquemática de tipos convencionales de procedimiento de reformado frente al procedimiento de reformado de la presente invención.
La fig. 2 es una representación esquemática detallada del procedimiento termoneutro de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención comprende la aplicación de un nuevo procedimiento de reformado termoneutro (RTN) de velocidad espacial horaria de gas elevada (VEHG=25.000 a 40.000 h-1) a la producción de sintegas a partir de combustibles hidrocarburos líquidos basados en el petróleo. La presente invención resuelve la hasta ahora difícil tarea de reformar hidrocarburos líquidos sin formación de coque.
En referencia a la fig. 1 pueden apreciarse con facilidad las ventajas que se obtienen con el procedimiento de reformado termoneutro de la presente invención frente al procedimiento convencional de reformado.
En el reformado autotérmico, incluso en las versiones más avanzadas, se utilizan en serie dos tipos de lechos catalíticos: el catalizador de combustión y el catalizador de reformado con vapor. Sin embargo, la resistencia térmica del soporte catalítico y de los ingredientes catalizadores limita la combustión catalítica a una temperatura máxima del lecho catalítico de entre 1.000 y 1.100 ºC, una situación que no es esencialmente diferente de una combustión homogénea a priori.
En contraste, el reformado termoneutro se lleva a cabo sobre la misma superficie catalítica sobre la que se configuran en buen equilibrio la función de combustión y la función de reformado con vapor. Por lo tanto se utiliza directamente el calor de combustión instantáneamente para el calor de reformado con pérdidas mínimas de calor.
El procedimiento utiliza un catalizador compuesto de cuatro componentes: proporciones atómicas de Ni-Ce2O3-Pt-Rh (Ni:Ce:Pt:Rh=100:20:3:1) que presenta una función de reformado pero que también facilita la combustión catalítica. La gran exoterma producida en la combustión catalítica eleva la temperatura del catalizador hasta una temperatura
en el intervalo de entre aproximadamente 800ºC y aproximadamente 900ºC. El reformado con vapor y/o el reformado con CO2 se incrementa instantáneamente, suprimiendo la elevación excesiva de la temperatura del catalizador. De esta manera, este procedimiento termoneutro incrementa la velocidad de la reacción y la estabilidad del catalizador.
El procedimiento de RTN es muy rápido, de más de aproximadamente 25.000 h-1, y no produce cantidades detectables de coque al procesar hidrocarburos líquidos que contienen menos de 200 ppm de azufre y que consisten de menos de 1% de aromáticos.
Resulta preferente que la temperatura para el arranque en la entrada del procesador de combustible o reactor sea de entre aproximadamente 380ºC y aproximadamente 450ºC, que es aproximadamente 500ºC inferior a la del reformado con vapor convencional. Resulta más preferente que la temperatura a la entrada sea de entre aproximadamente 410ºC y aproximadamente 420ºC.
Durante el funcionamiento en estado continuo, no resulta necesario suministrar calor adicional para mantener el sitsema de reacción debido a que el calor requerido para el reformado con vapor es suministrado in situ por la reacción de combustión catalítica.
El catalizador presenta funcionalidades de tanto combustión catalítica como de reformado con vapor y/o CO2 sobre la misma superficie catalítica.
Mediante las diferentes funciones de "spillover" de tanto oxígeno como hidrógeno, los precursores de formación del coque y del envenenamiento con azufre resultan oxidados y/o hidrogenados instantáneamente y se evita la desactivación catalítica.
Mediante el suministro de la proporción correcta de una mezcla de combustible, aire y vapor en un intervalo de temperaturas de entre aproximadamente 410ºC y aproximadamente 420ºC, se incrementa la temperatura del lecho catalítico en un periodo muy corto (en 20 segundos o menos) hasta una temperatura de reacción comprendida en el intervalo de entre aproximadamente 800ºC y aproximadamente 900ºC en el estado estacionario. A esta temperatura transcurre la reacción de reformado con vapor sin necesidad de calentamiento externo.
En la figura 2 se muestra una representación esquemática del procedimiento de la presente invención. Mediante el presente procedimiento, utilizando el catalizador de combustión/reformado, se obtienen incrementos significados de rendimiento de sintegas al utilizar flujos de alimentación líquidos, en comparación con procedimientos de la técnica anterior, sin los efectos perjudiciales de la formación de coque.
La exoterma causada por la combustión catalítica del combustible es neutralizada y compensada automáticamente por la endoterma causada por el reformado con vapor de los hidrocarburos. Ello evita el incremento excesivo de la temperatura del catalizador y, por lo tanto, la sinterización de los metales del catalizador y la transformación del soporte catalítico a un estado no poroso. Estas funciones incrementan la estabilidad del catalizador.
La transferencia de calor entre la exoterma y la endoterma se produce directamente en el lecho catalítico. Como resultado, el volumen requerido del reactor catalítico para el reformado de hidrocarburos líquidos según el método de la invención es inferior a 1/20 del tamaño de un reactor convencional de reformado con vapor e inferior a 1/10 del tamaño de un reformador autotérmico. Además, el gran horno necesario para calentar el reactor en el reformado convencional de hidrocarburos con vapor no resulta necesario en el procedimiento de la presente invención.
En la práctica del procedimiento de la presente invención más de 96,5% de la materia prima es convertida en sintegas (H2/CO/CO2/CH4), en comparación con una conversión de sólo 85% de los flujos de alimentación líquidos al utilizar los procedimientos de la técnica anterior.
La presente invención puede utilizarse con una amplia diversidad de combustibles hidrocarburos líquidos, tal como se indica en la reivindicación 1, es decir isooctano, nafta ligera, nafta pesada, queroseno y gasóleo. Puede aplicarse en un amplio abanico de aplicaciones, incluyendo la producción de gas de síntesis (monóxido de carbono + hidrógeno), la conversión hidrocarburo a líquido (HAL) mediante la reacción de Fischer-Tropsch, la producción de metanol, la alimentación de hidrógeno para el hidroprocesamiento, la producción de hidrógeno de alta pureza para diversas aplicaciones, los productos químicos especiales y el reformado de combustibles hidrocarburos líquidos para aplicaciones de celdas de combustible con capacidades comprendidas entre 100 W y varios MW utilizando celdas de combustible de baja temperatura (por ejemplo la celda de combustible de membrana de intercambio protónico (CCMIP)) y las celdas Fitel de alta temperatura (por ejemplo las celdas de combustible de óxido sólido (CCOS) y las celdas de combustible de carbonatos fundidos (CCCF)).
Estos sistemas pueden aplicarse a productos comerciales de pequeño tamaño, a sistemas de cogeneración de uso doméstico y a vehículos de celda de combustible. También pueden utilizarse para producir reformado rico en hidrógeno para el enriquecimiento en hidrógeno en motores de combustión interna, para reducir las emisiones de arranque en frío y extender la gama útil del reciclado de los gases de escape.
Ejemplo 1
Se llevó a cabo una serie de ensayos en un sistema reactor de flujo en lecho fijo con el fin de demostrar el procedimiento de la invención. El sistema de reacción consistía de secciones de alimentación de gas y de líquido, una sección de precalentamiento, una sección de reacción y una sección de recolección de producto. Se alimentaron los gases utilizando controladores de flujo de masa; se bombearon los flujos de alimentación líquidos utilizando bombas para HPLC de precisión. El tubo del reactor era de 12,6 mm de diámetro y estaba realizado en material de aleación Haynes 230. Un horno eléctrico de tres zonas, cuyas temperaturas se monitorizaban y controlaban con controladores de temperatura, calentaba la sección de reactor. Se proporcionar termopares para medir la temperatura interna del reactor. Se vaporizaron el agua y los hidrocarburos en precalentadores y se mezclaron con aire en un mezclador estático antes de entrar en el reactor. La sección de recolección de producto consistía de una válvula de control de la presión, un separador gas-líquido, un controlador del nivel de líquido y un tanque de producto.
Se cargó en el reactor una carga que consistía de 10 ml de catalizador de Ni-Ce2O3-Pt-Rh. Se situó el lecho catalítico en el centro del tubo del reactor entre capas de carburo de silicio inerte. La parte superior de la capa de carburo de silicio también sirvió de zona de precalentamiento. La mezcla de alimentación se calentó a 350ºC en la zona de precalentamiento. Se calentó el reactor hasta la temperatura inicial de 410ºC bajo un flujo de nitrógeno de 20 l/h. Se activó la bomba de agua y se vaporizó agua en un precalentador y se admitió vapor a un caudal de 88,0 l/h. Se introdujo la alimentación de hidrocarburo tras recoger una cantidad suficiente de agua en el tanque de producto. A continuación se alimentó aire al reactor a un caudal de 111 l/h. La temperatura en el reactor se elevó hasta aproximadamente 800ºC-900ºC en unos cuantos segundos. Se continuaron los ensayos durante las dos horas posteriores a que se alcanzase un estado estable. Se recogieron muestras de gas y se analizaron en dos cromatógrafos de gases, uno dotado de un detector de conductividad térmica (DCT) y el otro con un detector de ionización de llama (DILL). Se calcularon el porcentaje de conversión y las composiciones del producto gas a partir de los resultados de la CG.
Se llevó a cabo un ensayo utilizando isooctano como la materia prima. La temperatura inicial del lecho catalítico era 410ºC. La velocidad espacial horaria de gas era 34.129 h-1, a una presión de 2 bar, una proporción de vapor a carbono de 2,1 y una proporción oxígeno/carbono de 0,507. Se muestran los resultados en la Tabla 1.
Tabla 1: resumen de los resultados con alimentacion de isooctano
Materia prima
Unidades Isooctano
Oxígeno/carbono
proporción 0,507
VEHG
h-1 34,129
Conversión de hidrocarburos
% 96,97
Temp. max.
°C 850
Composición del producto
H2
L/h (% molar) 54,7 (55,85)
CO
Uh (% molar) 24,4 (24,93)
CO2
L/h (% molar) 16,1 (16,45)
CH4
L/h (% molar) 2,72 (2,77)
H2/CO+CO2
Uh (% molar) 1,35
Ejemplo 2
El presente ejemplo ilustra el procedimiento para la conversión catalítica de una alimentación de nafta con un contenido de azufre de 200 ppm en sintegas, los detalles de la cual se describen en el Ejemplo 1. La velocidad espacial horaria de gas era de 26.507 h-1, el caudal de vapor era de 146,1 l/h, el caudal de aire era de 111 l/h, la presión era de 2 bar, la proporción de vapor a carbono era de 2,1 y la proporción oxígeno/carbono era de 0,367. Se muestran los resultados en la Tabla 2
Tabla 2: resumen de los resultados experimentales con alimentación de nafta ligera (menos de 200 ppm de azufre)
Materia prima
Unidades Nafta ligera (<200 ppm de S)
Oxígeno/carbono
proporción 0,367
VEHG
h-1 26,507
Conversión de hidrocarburos Temp. max.
% °C 73,0 850
Composición del producto
H2
Uh (% molar) 26,8(40,34)
CO
Uh (% molar) 19,2(28,94)
CO2
Uh (% molar) 11,8(17,82)
CH4
Uh (% molar) 3,77(5,68)
H2/CO+CO2
Uh (% molar) 0,86
5 Ejemplo 3
El presente ejemplo ilustra el procedimiento para la conversión catalítica de una alimentación de nafta ligera con un contenido de azufre inferior a 1 ppm en sintegas, los detalles de la cual se describen en el Ejemplo 1. La velocidad espacial horaria de gas era de 24.997 h-1, el caudal de vapor era de 69,7 l/h, el caudal de aire era de 75,3 l/h, la
10 presión era de 2 bar, la proporción de vapor a carbono era de 2,1 y la proporción oxígeno/carbono era de 0,486. Se muestran los resultados en la Tabla 3.
Tabla 3: resumen de los resultados experimentales con una alimentación de nafta ligera
Materia prima
Unidades Nafta ligera (<1 ppm de S)
Oxígeno/carbono
proporción 0,486
VEHG
h-1 24997
Conversión de hidrocarburos
% 97,0
Temp. max.
°C 880
Composición del producto
H2
L/h (% molar) 36,2 (58,5)
CO
L/h (% molar) 5,9 (9,6)
CO2 CH4
Uh (% molar) Uh (% molar) 16,2(26,1) 3,6(5,8)
H2/CO+CO2
Uh (% molar) 1,640
Ejemplo 4:
El presente ejemplo ilustra el procedimiento para la conversión catalítica de una alimentación de nafta pesada con un contenido de azufre inferior a 10 ppm en sintegas, los detalles de la cual se describen en el Ejemplo 1. La
20 velocidad espacial horaria de gas era de 39.144 h-1, el caudal de vapor era de 118,5 l/h, el caudal de aire era de 110 l/h, la presión era de 2 bar, la proporción de vapor a carbono era de 2,1 y la proporción oxígeno/carbono era de 0,42. Se muestran los resultados en la Tabla 4.
Tabla 4: resumen de los resultados experimentales con una alimentación de nafta
Materia prima
Unidades Nafta pesada (<10 ppm de S)
Oxígeno/carbono
proporción 0,42
VEHG
h-1 39,144
Conversión de hidrocarburos
% 99
Temp. max.
°C 900
Composición del producto
H2
L/h (mol. %) 59,03 (57,70)
CO
L/h (mol. %) 21,38 (20,90)
CO2
L/h (mol.%) 20,85 (20,38)
CH4
L/h (mol. %) 1,04 (1,02)
H2/CO+CO2
L/h (mol.%) 1,40

Claims (8)

  1. REIVINDICACIONES
    1. Procedimiento de reformado termoneutro para la producción de un gas de síntesis rico en hidrógeno a partir de combustibles hidrocarburos líquidos, que comprende:
    5 a) proporcionar una mezcla de un combustible de hidrocarburo, un gas rico en O2 y vapor a una zona interna de un reactor, incluyendo dicha zona interna un lecho catalítico que consiste de un catalizador Ni-Ce2O3-Pt-Rh combinado de combustión y reformado con vapor y/o CO2, b) precalentar el combustible, el gas rico en O2 y el vapor a una temperatura de entre 380ºC y 450ºC, y c) poner en contacto la mezcla precalentada con el lecho catalítico a una velocidad espacial horaria de gas
    10 de 25.000 h-1 o superior, causando una reacción de combustión exotérmica que eleva la temperatura de reacción a un valor de entre 800ºC y 900ºC y que además causa una reacción de reformado con vapor endotérmica durante un periodo de tiempo suficiente para reformar el combustible líquido, rindiendo un gas de síntesis rico en hidrógeno,
    en el que el combustible hidrocarburo líquido se selecciona de entre el grupo que consiste de isooctano, nafta ligera, 15 nafta pesada, queroseno y gasóleo, y en el que el calor generado en la reacción de combustión exotérmica se neutraliza y se compensa con la reacción endotérmica en el mismo lecho catalítico.
  2. 2. Procedimiento según la reivindicación 1, en el que la velocidad espacial horaria de gas es de entre 25.000 y
  3. 40.000 h-1.
  4. 3. Procedimiento según la reivindicación 1, en el que la temperatura de precalentamiento es de entre 410ºC y 420ºC.
  5. 4. Procedimiento según la reivindicación 1, en el que el sintegas producido en el procedimiento puede 25 purificarse adicionalmente para producir hidrógeno de alta pureza.
  6. 5. Procedimiento según la reivindicación 1, en el que el sintegas rico en hidrógeno se utiliza como materia prima para reformadores a bordo en vehículos que incorporan una celda de combustible de alta temperatura o de baja temperatura.
  7. 6. Procedimiento según la reivindicación 1, en el que el sintegas rico en hidrógeno se utiliza como materia prima para el enriquecimiento en hidrógeno en motores de combustión interna.
  8. 7. Procedimiento según la reivindicación 1, en el que el sintegas rico en hidrógeno se utiliza en aplicaciones 35 estacionarias.
ES05855731.5T 2004-12-23 2005-12-23 Reformado termoneutro de hidrocarburos líquidos basados en el petróleo Active ES2450591T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63853304P 2004-12-23 2004-12-23
US638533P 2004-12-23
PCT/US2005/047220 WO2006071927A1 (en) 2004-12-23 2005-12-23 Thermo-neutral reforming of petroleum-based liquid hydrocarbons

Publications (1)

Publication Number Publication Date
ES2450591T3 true ES2450591T3 (es) 2014-03-25

Family

ID=36615264

Family Applications (1)

Application Number Title Priority Date Filing Date
ES05855731.5T Active ES2450591T3 (es) 2004-12-23 2005-12-23 Reformado termoneutro de hidrocarburos líquidos basados en el petróleo

Country Status (12)

Country Link
US (1) US7820140B2 (es)
EP (1) EP1828085B1 (es)
JP (1) JP4864902B2 (es)
KR (1) KR101301710B1 (es)
CN (1) CN101460437B (es)
AU (1) AU2005321933B2 (es)
BR (1) BRPI0517600B1 (es)
CA (1) CA2592441C (es)
EA (1) EA011521B1 (es)
ES (1) ES2450591T3 (es)
NO (1) NO339383B1 (es)
WO (1) WO2006071927A1 (es)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700005B2 (en) * 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
EP2297027B1 (en) 2008-07-02 2018-09-05 Powercell Sweden AB Reformer reactor and method for converting hydrocarbon fuels into hydrogen rich gas
US8563186B2 (en) * 2009-06-16 2013-10-22 Shell Oil Company Systems and processes of operating fuel cell systems
US8795912B2 (en) * 2009-06-16 2014-08-05 Shell Oil Company Systems and processes for operating fuel cell systems
US8632922B2 (en) * 2009-06-16 2014-01-21 Shell Oil Company Systems and processes for operating fuel cell systems
RU2515326C1 (ru) * 2012-10-04 2014-05-10 Открытое акционерное общество "Центральное конструкторское бюро морской техники "Рубин" Способ конверсии дизельного топлива и конвертор для его осуществления
US9499403B2 (en) 2013-07-10 2016-11-22 Saudi Arabian Oil Company Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
WO2017085626A2 (en) * 2015-11-19 2017-05-26 Sabic Global Technologies B.V. Oxidative conversion of variable feed c1 - oil to olefins, aromatic hydrocarbons, low molecular weight paraffinic hydrocarbons & syngas mixture
US11472700B2 (en) * 2019-12-27 2022-10-18 Saudi Arabian Oil Company Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
US11358128B2 (en) 2019-12-30 2022-06-14 Saudi Arabian Oil Company High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473543A (en) * 1982-04-26 1984-09-25 United Technologies Corporation Autothermal reforming catalyst and process
US4650651A (en) * 1983-06-09 1987-03-17 Union Carbide Corporation Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US4666680A (en) * 1984-01-30 1987-05-19 Fluor Corporation Autothermal production of synthesis gas
CN85102194B (zh) * 1985-04-01 1988-08-24 四川化工厂催化剂分厂 烃类蒸汽重整催化剂
US5122299A (en) * 1989-12-11 1992-06-16 The M. W. Kellogg Company Autothermal steam reforming process
US5248566A (en) * 1991-11-25 1993-09-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell system for transportation applications
JP3225078B2 (ja) 1992-03-24 2001-11-05 東洋エンジニアリング株式会社 合成ガス製造用触媒
JPH05270803A (ja) 1992-03-24 1993-10-19 Toyo Eng Corp メタンと二酸化炭素および水蒸気を原料とする合成ガスの製造方法
GB9412786D0 (en) * 1994-06-24 1994-08-17 Johnson Matthey Plc Improved reformer
JP3589309B2 (ja) * 1994-07-05 2004-11-17 智行 乾 メタンの改質による水素の製造法
US6293979B1 (en) * 1994-12-19 2001-09-25 Council Of Scientific & Industrial Research Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen
EP0979799B1 (en) * 1997-04-11 2004-08-25 Chiyoda Corporation Process for preparing synthesis gas by autothermal reforming
US6303098B1 (en) * 1997-06-02 2001-10-16 University Of Chicago Steam reforming catalyst
WO1999064150A1 (fr) 1998-06-09 1999-12-16 Idemitsu Kosan Co., Ltd. Catalyseur et procede de reformage d'hydrocarbures
CA2282948A1 (en) * 1998-09-16 2000-03-16 University Technologies International, Inc. Low temperature autothermal steam reformation of methane in a fluidized bed
DK173897B1 (da) * 1998-09-25 2002-02-04 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af et carbonhydridfødemateriale indeholdende højere carbonhydrider
AU7765200A (en) * 1999-10-05 2001-05-10 Ballard Power Systems Inc. Autothermal reformer
US6610196B1 (en) 1999-11-24 2003-08-26 Conocophillips Company Catalytic reforming process
US6835354B2 (en) * 2000-04-05 2004-12-28 Hyradix, Inc. Integrated reactor
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas
JP4159874B2 (ja) * 2000-11-08 2008-10-01 出光興産株式会社 炭化水素の改質触媒及びそれを用いた炭化水素の改質方法
JP2002220202A (ja) * 2001-01-23 2002-08-09 Kansai Coke & Chem Co Ltd 水素の製造法
US6713040B2 (en) * 2001-03-23 2004-03-30 Argonne National Laboratory Method for generating hydrogen for fuel cells
US6967063B2 (en) * 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US6884531B2 (en) * 2001-05-21 2005-04-26 Saudi Arabian Oil Company Liquid hydrocarbon based fuels for fuel cell on-board reformers
US7090826B2 (en) * 2002-12-23 2006-08-15 The Boc Group, Inc. Monolith based catalytic partial oxidation process for syngas production

Also Published As

Publication number Publication date
CN101460437A (zh) 2009-06-17
NO339383B1 (no) 2016-12-05
WO2006071927A1 (en) 2006-07-06
KR101301710B1 (ko) 2013-08-30
CA2592441A1 (en) 2006-07-26
AU2005321933A1 (en) 2006-07-06
BRPI0517600A (pt) 2008-10-14
US7820140B2 (en) 2010-10-26
CN101460437B (zh) 2013-05-29
NO20073515L (no) 2007-09-21
CA2592441C (en) 2013-05-28
JP4864902B2 (ja) 2012-02-01
EA011521B1 (ru) 2009-04-28
AU2005321933B2 (en) 2011-09-08
EP1828085B1 (en) 2013-12-11
EP1828085A1 (en) 2007-09-05
US20080081018A1 (en) 2008-04-03
EA200701343A1 (ru) 2007-10-26
KR20080015773A (ko) 2008-02-20
JP2008525303A (ja) 2008-07-17
BRPI0517600B1 (pt) 2018-11-21
EP1828085A4 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
ES2450591T3 (es) Reformado termoneutro de hidrocarburos líquidos basados en el petróleo
KR101419567B1 (ko) 다성분 촉매를 사용한 유성 열-중화 개질 방법
ES2381789T3 (es) Método para producir electricidad usando reformado por variación de temperatura y pila de combustible de óxido sólido
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
CN101682063A (zh) 燃料电池***和其起动方法
JP2011507214A (ja) 燃料電池による電力発生方法
JP2010513189A (ja) 燃料処理用途において触媒プレバーナーを使用するための方法
CN113474284A (zh) 化工设备中的并联重整
US20040209131A1 (en) Process and apparatus for producing hydrogen
Lee et al. Start-up characteristics of commercial propane steam reformer for 200 We portable fuel cell system
CA2405927A1 (en) Fuel processor
WO2015198186A1 (en) An autothermal reformer reactor and a feeding system thereof
JP5078426B2 (ja) 一酸化炭素除去器および水素製造装置
Erickson et al. Reformation of hydrocarbon fuels
JP2003303610A (ja) 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置
JP3763092B2 (ja) 燃料電池用水素製造装置
US20090035621A1 (en) Process for generating electricity and hydrogen that comprises a hybrid reformer