EP3797432B1 - Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat - Google Patents

Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat Download PDF

Info

Publication number
EP3797432B1
EP3797432B1 EP19730343.1A EP19730343A EP3797432B1 EP 3797432 B1 EP3797432 B1 EP 3797432B1 EP 19730343 A EP19730343 A EP 19730343A EP 3797432 B1 EP3797432 B1 EP 3797432B1
Authority
EP
European Patent Office
Prior art keywords
resistor
electrically conductive
strips
conductive material
carrier plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19730343.1A
Other languages
English (en)
French (fr)
Other versions
EP3797432A1 (de
Inventor
Bertram Schott
Ondrej SOBORA
Kerstin TILLMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Electronic GmbH
Original Assignee
Vishay Electronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Electronic GmbH filed Critical Vishay Electronic GmbH
Publication of EP3797432A1 publication Critical patent/EP3797432A1/de
Application granted granted Critical
Publication of EP3797432B1 publication Critical patent/EP3797432B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/001Mass resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the present invention relates to a method for producing a multiplicity of resistor modules, each of which comprises a carrier with a group of resistor elements, at the ends of which a respective first and second electrical connection is provided.
  • document US2014055228A1 describes a method for producing a plurality of resistor modules, each comprising a carrier with a group of resistor elements, at the ends of which a respective first and second electrical connection is provided.
  • Processes of this type are used to produce resistor modules that are used in electrical components and / or electrical devices and can be conductively connected to the circuits of the components or devices by means of the electrical connections.
  • the resistor modules can have at least two resistor elements which are formed on one side of a carrier in strips arranged parallel to one another.
  • the strips of the resistor elements can be twice as wide as they are long, which usually results in a roughly square shape for the resistor modules.
  • the resistance material and the electrically conductive material are applied to the carrier plate in a regular manner in strips or zones, the applied resistance material and the applied electrically conductive material overlapping in certain areas. These overlapping areas serve as electrical connections of the resistor modules, by means of which the resistor modules can be conductively connected to the electrical component or device.
  • the transverse direction and the longitudinal direction define two reference directions running perpendicular to one another and do not necessarily designate a longitudinal shape of the carrier plate, the strips of the resistor material, or the resistor module.
  • the size of the electrical connections of the resistance elements formed can be determined in a simple manner and in particular minimized independently of the (not arbitrarily reduced) size of the zones of the electrically conductive material.
  • the intermediate regions of the zones of the electrically conductive material allow the electrical resistance to be tested prior to the separation according to an advantageous embodiment which will be explained below.
  • the rows of strips of the resistance material and the rows of zones of the electrically conductive material are arranged alternately next to one another in the transverse direction, but not necessarily in the same number.
  • a respective row of zones of the electrically conductive material can be arranged between two rows of strips of the resistance material, the number of rows of strips of the resistance material corresponding in particular to the number of rows of zones of the electrically conductive material can.
  • two respective rows of zones of the electrically conductive material are arranged between two rows of strips of the resistance material, the number of rows of zones of the electrically conductive material in particular being twice as large how the number of rows of strips of the resistor material can be.
  • only one of the two ends of a respective zone of the electrically conductive material ultimately overlaps a strip of the resistance material, while the other end of the respective zone is cut off in step d) and thus does not serve to contact a strip of the resistance material.
  • resistor modules of the most varied of sizes can be produced.
  • the method does not impose any restrictions on the dimensions of the resistor modules.
  • the method can be used to produce resistor modules that are characterized by small dimensions and can also be used in components or devices that require a particularly compact design of the resistor modules, such as mobile phones, smartphones, smartwatches, hearing aids or similar devices.
  • the respective resistor assembly formed by severing the carrier plate comprises a portion of the carrier plate that forms the carrier of the resistor assembly, a group of strips of the resistor material that form the group of resistance elements of the resistor assembly, a number of first ends of zones of the electrical conductive material which form the first electrical connections of the resistance elements, and a number of second ends of zones of the electrically conductive material which form the second electrical connections of the resistance elements.
  • each resistance element is electrically conductively connected in the transverse direction by overlapping its two ends with a respective end of a zone of the electrically conductive material, which serve as the respective electrical connection for connection to the electrical component or device.
  • the mutual distances between the transverse directional cuts and the mutual distances between the first and second longitudinal directional cuts are preferably selected such that the resistor module formed, in particular a resistor module with two resistor elements, has a width of less than 0.6 mm and a length of less than 0.8 mm, wherein the width is in particular in a range from 0.3 mm to 0.34 mm and the length is in particular in a range from 0.54 mm to 0.62 mm and the width is preferably approximately 0.32 mm and the length is preferably 0.58 mm.
  • These small dimensions are outside the range of the resistor modules that can be produced by previous methods. In other words, resistor modules in these dimensions can be produced exclusively by the method according to the invention.
  • the group of strips of the resistive material comprises two strips of the resistive material.
  • the resistor module accordingly comprises two resistor elements.
  • Each of the resistance elements can be separately connected to an electrical component or device or to an electrical circuit by means of the first and second ends of two zones of the electrically conductive material or the electrical connections formed thereby.
  • the strips of the resistor material of the respective resistor module formed are of the same size.
  • the strips of the resistance material have the same widths, the same lengths and the same thicknesses.
  • a resistor module is thus formed, the resistor elements of which have the same resistance values.
  • the strips of the resistance material of the resistance module formed are of different sizes, in particular with different widths transversely to the direction of extension of the strips of the resistance material between the first end and the second end. Accordingly, the resistance values of the resistance elements of the respective resistance module formed can be of different sizes.
  • the arrangement of the resistance elements adjoining one another in the form of strips allows different geometries of the resistance elements with correspondingly different resistance values to be achieved in a simple manner. For this purpose, it is sufficient to change the length of the strips of the resistance material in the process and, in accordance with this, also to change the arrangement and the spacing of adjacent zones of the electrically conductive material.
  • the carrier plate preferably comprises a ceramic substrate which, in particular due to its electrically insulating property, prevents electrical contact between the resistance material and the electrically conductive material outside the zones of the electrically conductive material.
  • Such carrier plates are easy to manufacture and can be manufactured inexpensively and in large numbers.
  • the ceramic substrate enables simple and problem-free severing of the carrier plate in step d).
  • the resistance material and the electrically conductive material are only applied to the underside of the carrier plate.
  • the upper side of the carrier of the resistance module formed is free of resistance elements and / or electrical connections.
  • the resistor module is thus designed for assembly and contacting in a flip-chip design.
  • the advantage of this construction is that the resistor module can be connected directly with the electrical connections downwards to the electrical circuit of the device or component and / or can be inserted into it, whereby the attachment of further connecting wires to the resistor module or to the circuit can be dispensed with .
  • step b) of forming the plurality of strips of the resistance material comprises applying a metal layer to the underside of the carrier plate by cathode sputtering and locally removing the metal layer by evaporation.
  • cathode atomization the so-called “sputtering” layers of the resistance material can be applied to the carrier plate in a small thickness, which are characterized by great uniformity and good reproducibility. This enables the production of a large number of resistance elements, the resistance values of which are all in a predetermined, narrow range.
  • the resistance material in the form of a plurality of strips on the carrier plate, can be ablated or evaporated outside the predetermined areas of the strips, for example by a laser.
  • the resistor material can be limited precisely and with great positional accuracy to the areas of the strips.
  • a mask can be applied to the underside of the carrier plate, which mask has a large number of clearances corresponding to the strips.
  • the resistor material can be vapor-deposited onto the underside of the carrier plate.
  • the resistor material only comes into contact with the carrier plate at the locations of the clearances, as a result of which After the mask has been removed, a plurality of strips of the resistance material is formed on the carrier plate.
  • other methods are also conceivable for forming the strips of the resistor material.
  • step c) of forming the plurality of zones of the electrically conductive material comprises printing the underside of the carrier plate with an electrically conductive paste, in particular with a silver-palladium alloy.
  • an electrically conductive paste in particular with a silver-palladium alloy.
  • a printing plate can be used on which the electrically conductive paste is applied in a regular pattern, the pattern corresponding to the arrangement of the zones.
  • the pattern of the electrically conductive paste applied to the printing plate is matched to the arrangement of the strips of the resistance material.
  • electroplating in particular nickel-tin electroplating, of the zones can also take place.
  • step b) of forming the plurality of strips of the resistance material and step c) of forming the plurality of zones of the electrically conductive material can also be carried out in reverse order or partially simultaneously.
  • the overlapping of the strips of the resistance material with the zones of the electrically conductive material can take place in such a way that the respective strip of the resistance material partially covers the respective zones of the electrically conductive material, or in such a way that the respective zones of the electrically conductive material the respective strip of the resistance material partially cover.
  • the carrier plate is severed in step d) by means of a laser beam.
  • This allows a precise and efficient method of structuring the carrier plate, whereby with this technique it is also possible to carry out several severing cuts in quick succession in one work step.
  • the transverse directional cuts, the first longitudinal directional cuts and the second longitudinal directional cuts can be carried out in any order for severing the carrier plate in step d).
  • the regular arrangement of the transverse directional cuts, the first longitudinal directional cuts and the second longitudinal directional cuts follows or corresponds to the regular pattern of the strips of the resistance material and the regular pattern of the zones of the electrically conductive material.
  • the electrical resistance of a respective strip of the resistance material is measured prior to the severing of the carrier plate by the first and second longitudinal cuts, in particular before step d), with contact probes on that zone of the electrically conductive material which is connected to the first end of the respective Strip of the resistance material overlaps, and are applied to that zone of the electrically conductive material which overlaps with the second end of the respective strip of the resistance material.
  • the measured values can be checked as part of a quality control to determine whether the resistance values are in a specified nominal range or whether deviations from them can be determined.
  • the contact probes can be Kelvin probes which measure the electrical resistance of the respective zone of the resistance material by means of the Kelvin method.
  • Measuring the electrical resistance before cutting through the carrier plate has the advantage that the entire area of a respective zone of the electrically conductive material is available for attaching a contact probe, which is due to the small size of the resistor unit and the small size ratio between the contact probe and the respective zone of the electrically conductive material makes positioning of the contact probe considerably easier or possible in the first place.
  • a second aspect of the invention relates to a resistor assembly that has been produced according to a method according to the invention, with a carrier, a group of resistance elements arranged on the underside of the carrier, first electrical connections which are connected to a respective first end of the resistance elements, and second electrical connections which are connected to a respective second end of the resistor elements, the resistor module having a width of less than 0.6 mm and a length of less than 0.8 mm, the width in particular in a range from 0.3 mm to 0 , 34 mm and the length is in particular in a range from 0.54 mm to 0.62 mm.
  • the resistor module is designed for assembly and contacting in a flip-chip design and, due to its small size, can be used in electrical components or devices that require a particularly compact design of the resistor modules, such as mobile phones, smartphones, smartwatches, hearing aids or similar devices.
  • Fig. 1 shows a section of a carrier plate 10 according to step a) of an embodiment of a method according to the invention for producing a plurality of resistor modules.
  • the carrier plate 10 can be formed from a ceramic substrate which forms an electrically insulating carrier device for receiving a resistor material and an electrically conductive material.
  • Arrows and the letters "Q", "L” denote a transverse direction Q and a longitudinal direction L orthogonal thereto.
  • the transverse direction Q and the longitudinal direction L define two mutually perpendicular reference directions and do not necessarily denote a longitudinal shape of the carrier plate 10 or the resistor modules formed .
  • the carrier plate 10 comprises an upper side 12 and an underside 14, which in FIG Fig. 1 is shown in plan view.
  • step b) of the method according to the invention which is described in Fig. 2 is shown, a plurality of strips 16 of a resistor material is applied to the underside 14 of the carrier plate 10 in a regular pattern.
  • the strips 16 are arranged in rows 18 which extend in the longitudinal direction L and are arranged next to one another with respect to the transverse direction Q.
  • Fig. 2 shows a section of the carrier plate 10 in which, for example, sixteen strips 16 are arranged in four parallel rows 18.
  • the arrangement of the strips 16 can be continued in both the mutually orthogonal directions Q and L in accordance with the pattern shown.
  • the strips 16 have a first end 20 and a second end 22 along the transverse direction Q.
  • the resistor material can be applied, for example, by cathode atomization, a so-called "sputtering" method.
  • This technique has the advantage that the resistor material is removed can be applied in a layer of uniform thickness to the underside 14 of the carrier plate 10 and layers of small thickness can also be produced.
  • other methods of applying the resistance material to the carrier plate 10 are also conceivable.
  • the resistance material can be applied to the carrier plate, for example, in continuous areas extending parallel along the longitudinal direction L.
  • a laser can be used which removes or vaporizes resistance material at predetermined intervals along the longitudinal direction L.
  • a precise and positionally accurate arrangement of the strips 16 can be achieved by means of this method.
  • the underside 14 of the carrier plate 10 can be covered, for example, by a mask (not shown) before the application of the resistance material, which mask has clearances at the location of the strips 16 and can be made of plastic, for example.
  • the strips 16 of the resistor material are of equal size to one another, ie the strips 16 of the resistor material have the same widths and lengths and the same thicknesses. Accordingly, the strips 16 of the resistance material have the same electrical resistance values. In other embodiments, the strips can be of different sizes to provide strips 16 of resistive material with different electrical To generate resistance values. This can be achieved in a simple manner by varying the length of the strips along the longitudinal direction L.
  • Fig. 3 shows step c) of the method according to the invention, in which a plurality of zones 24 of an electrically conductive material is formed on the underside 14 of the carrier plate 10.
  • the zones 24 of the electrically conductive material are applied in a regular pattern to the carrier plate 10, the zones 24 of the electrically conductive material being arranged in a plurality of rows 26 which extend in the longitudinal direction L and are arranged next to one another with respect to the transverse direction Q.
  • the rows 26 of the zones 24 of the electrically conductive material run parallel to the rows 18 of the strips 16 of the resistance material and alternate with them in the transverse direction Q, so that the number of rows 26 of the zones 24 of the electrically conductive material is essentially the Number of rows 18 of strips 16 of the resistor material corresponds.
  • the zones 24 of the electrically conductive material each have a first end 28, an intermediate region 30 and a second end 32 along the transverse direction Q, wherein, except at the edge regions of the carrier plate 10, the strips 16 of the resistance material at their first ends 20 with the overlap first end 28 of a respective zone 24 of the electrically conductive material and overlap at their second ends 22 with the second end 32 of a respective zone 24 of the electrically conductive material.
  • the regular pattern of the zones 24 is matched to the regular pattern of the strips 16 in such a way that on each strip 16 there is an overlap area with a respective zone 24 at its first end 20 and an overlap area with a respective zone 24 at its second end 22 is formed.
  • the zones 24 of the electrically conductive material can for example consist of a silver-palladium alloy.
  • the zones 24 can be attached in Form of a paste, in particular by printing the underside 14 of the carrier plate 10, are formed.
  • the electrically conductive paste is applied to a printing plate (not shown) in a regular pattern corresponding to a predetermined arrangement of the zones 24. Using this technique, a large number of zones 24 of the electrically conductive material can be produced efficiently in one printing process.
  • the illustrated step c) of forming the plurality of zones 24 of the electrically conductive material can also be carried out in reverse order or partially simultaneously.
  • the overlapping of the strips 16 of the resistance material with the zones 24 of the electrically conductive material can either take place in such a way that the respective strip 16 of the resistance material partially covers the respective zones 24 of the electrically conductive material, or in such a way that the respective zones 24 of the electrically conductive material Material partially cover the respective strip 16 of the resistance material.
  • Fig. 4 an optional step to check the functionality and / or to characterize the resistance modules formed is shown.
  • contact probes 34 in particular Kelvin probes, are brought into contact with the zones 24 of the electrically conductive material which are assigned to a respective strip 16 of the resistance material.
  • Fig. 4 only the contact points of the contact probes 34 are illustrated.
  • the contact probes 34 are at that zone 24 of the electrically conductive material which overlaps with the first end 20 of the respective strip 16 of the resistance material, and at that zone 24 of the electrically conductive material which overlaps with the second end 22 of the respective strip 16 of the resistance material , created.
  • the contact probes 36 are designed for this purpose, for example to measure the electrical resistance of a respective strip 16 of the resistance material and thus the electrical resistance of the respective resistance element to be formed by means of the Kelvin method. The measured values can then be used to determine whether the resistance values are in a predetermined range or whether there are any deviations.
  • step d By performing the functional test after step c) of the method and before cutting through the carrier plate 10 according to step d), the attachment of the contact probes 34 to the respective zones 24 is facilitated, since at this point in time of the method the area of the intermediate areas 30 of the zones 24 is available for this.
  • at least one pair of contact probes 34 is required (one contact probe 34 each on both sides of the respective strip 16), and several pairs of contact probes 34 can also be used to test several strips 16 at the same time.
  • Fig. 5 shows step d) of the method according to the invention, in which a plurality of resistor modules 44 are separated from the carrier plate 10 occupied by rows 18 of strips 16 of the resistance material and rows 26 of zones 24 of the electrically conductive material by means of a sequence of cuts.
  • the sequence of cuts includes transverse directional cuts 36 along the transverse direction Q, first longitudinal directional cuts 38 along the longitudinal direction L and second longitudinal directional cuts 40 along the longitudinal direction L.
  • the regular arrangement of the transverse directional cuts 36, the first longitudinal directional cuts 38 and the second longitudinal directional cuts 40 corresponds to the regular pattern of the strips 16 of the resistance material and the regular pattern of the zones 24 of the electrically conductive material.
  • the cross-directional cuts 36 run between groups 42 of strips 16 of the resistance material that are assigned to one another and are adjacent to one another in the longitudinal direction L.
  • the groups 42 each comprise two strips 16.
  • the groups 42 can, however, also comprise more or only one strip 16.
  • the number of strips 16 of the resistor material of the resistor modules 44 can be changed by simply adapting the cutting distances.
  • the first longitudinal cuts 38 separate the first ends 28 from the intermediate regions 30 of a respective row 26 of zones 24 of the electrically conductive material.
  • the second longitudinal cuts 40 separate the second ends 32 from the intermediate regions 30 of a respective row 26 of zones 24 of the electrically conductive material.
  • the transverse directional cuts 36, the first longitudinal directional cuts 38 and the second longitudinal directional cuts 40 are generally made in any order.
  • the severing of the carrier plate 10 can be carried out, for example, by means of a laser beam, which allows precise and efficient structuring of the carrier plate 10 in one operation.
  • the strips 16 of the resistance material can generally have a longitudinal shape (in particular essentially rectangular), wherein the respective longitudinal axis of the strips 16 of the resistance material can be aligned along the longitudinal direction L or along the transverse direction Q.
  • the strips 16 of the resistance material can also have an essentially square shape, for example.
  • Fig. 6 shows in a bottom view, by way of example, a resistor module 44 of the plurality of resistor modules which were produced by steps a) to d) of the method explained.
  • Each resistor assembly 44 accordingly comprises a portion of the carrier plate 10 which forms the carrier 48 of the resistor assembly 44, a group 42 of strips 16 of the resistor material which form a group of resistor elements 50 of the resistor assembly 44, a number of first ends 28 of zones 24 of the electrically conductive material, which form first electrical connections 52 of the resistance elements 50, and a number of second ends 32 of zones 24 of the electrically conductive material, which form second electrical connections 54 of the resistance elements 50.
  • the first electrical connections 52 are connected to a respective first end of the resistance elements 50 and the second electrical connections 54 are connected to a respective second end of the resistance elements 50. Due to the arrangement of the resistor elements 50 on the underside of the carrier 48, the resistor module 44 is particularly suitable for mounting and contacting in a flip-chip design.
  • the mutual distances between the transverse directional cuts 36 and the mutual distances between the first and second longitudinal directional cuts 38, 40 are selected such that the resistor assembly 44 has a width of less than 0.6 mm and a length of less than 0.8 mm, the width can in particular be in a range from 0.3 mm to 0.34 mm and the length can in particular be in a range from 0.54 mm to 0.62 mm. Due to its small size, which can be achieved by the method according to the invention, the resistor module 44 can be used in electrical components or devices which require a particularly small and compact design of the resistor modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten, die jeweils einen Träger mit einer Gruppe von Widerstandselementen umfassen, an deren Enden ein jeweiliger erster und zweiter elektrischer Anschluss vorgesehen ist. Dokument US2014055228A1 beschreibt ein Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten, die jeweils einen Träger mit einer Gruppe von Widerstandselementen umfassen, an deren Enden ein jeweiliger erster und zweiter elektrischer Anschluss vorgesehen ist.
  • Derartige Verfahren dienen der Herstellung von Widerstandsbaueinheiten, die in elektrischen Bauteilen und/oder elektrischen Geräten eingesetzt und mittels der elektrischen Anschlüsse mit den Schaltkreisen der Bauteile oder Geräte leitend verbunden werden können. Die Widerstandsbaueinheiten können zumindest zwei Widerstandselemente aufweisen, die auf einer Seite eines Trägers in parallel zueinander angeordneten Streifen ausgebildet sind. Beispielsweise können die Streifen der Widerstandselemente doppelt so breit wie lang sein, wodurch sich für die Widerstandsbaueinheiten zumeist eine ansatzweise quadratische Form ergibt. Für den Einsatz in immer kleineren Bauteilen oder Geräten kann es erforderlich sein, auch die Größe der Widerstandbaueinheiten entsprechend zu verkleinern. Mit den bekannten Verfahren gelingt es bisher jedoch nicht, Widerstandsbaueinheiten herzustellen, deren Abmessungen, ausgedrückt in Länge mal Breite, 0,8 mm x 0,6 mm unterschreiten.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren zu schaffen, mittels dessen sich kostengünstig, zuverlässig und effizient eine Vielzahl von verkleinerten Widerstandsbaueinheiten herstellen lässt.
  • Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst, insbesondere umfassend die Schritte:
    1. a) Bereitstellen einer Trägerplatte, die eine Oberseite und eine Unterseite aufweist;
    2. b) Ausbilden einer Vielzahl von Streifen eines Widerstandsmaterials an der Unterseite der Trägerplatte, die entlang einer Querrichtung ein erstes Ende und ein zweites Ende aufweisen, in einem regelmäßigen Muster dergestalt, dass entlang einer Längsrichtung, die senkrecht zu der Querrichtung verläuft, eine jeweilige Reihe von Streifen des Widerstandsmaterials gebildet ist und dass mehrere derartiger Reihen in Querrichtung nebeneinander angeordnet sind;
    3. c) Ausbilden einer Vielzahl von Zonen eines elektrisch leitenden Materials an der Unterseite der Trägerplatte, die entlang der Querrichtung ein erstes Ende, einen Zwischenbereich und ein zweites Ende aufweisen, in einem regelmäßigen Muster dergestalt, dass entlang der Längsrichtung eine jeweilige Reihe von Zonen des elektrisch leitenden Materials gebildet ist und dass mehrere derartiger Reihen in Querrichtung nebeneinander angeordnet sind, wobei die Reihen von Streifen des Widerstandsmaterials und die Reihen von Zonen des elektrisch leitenden Materials in Querrichtung abwechselnd angeordnet sind, und wobei, mit Ausnahme von Randbereichen der Trägerplatte, die Streifen des Widerstandsmaterials an ihren ersten Enden mit dem ersten Ende einer jeweiligen Zone des elektrisch leitenden Materials überlappen und an ihren zweiten Enden mit dem zweiten Ende einer jeweiligen Zone des elektrisch leitenden Materials überlappen;
    4. d) Durchtrennen der Trägerplatte durch regelmäßige Querrichtungsschnitte entlang der Querrichtung, erste Längsrichtungsschnitte entlang der Längsrichtung und zweite Längsrichtungsschnitte entlang der Längsrichtung dergestalt, dass die Querrichtungsschnitte zwischen Gruppen von einander zugeordneten, in Längsrichtung zueinander benachbarten Streifen des Widerstandsmaterials verlaufen, dass ferner die ersten Längsrichtungsschnitte die ersten Enden von den Zwischenbereichen einer jeweiligen Reihe von Zonen des elektrisch leitenden Materials abtrennen, und dass die zweiten Längsrichtungsschnitte die zweiten Enden von den Zwischenbereichen einer jeweiligen Reihe von Zonen des elektrisch leitenden Materials (insbesondere der vorgenannten Reihe oder einer anderen Reihe) abtrennen, so dass entlang der Querrichtung abwechselnd eine jeweilige Widerstandsbaueinheit und ein jeweiliger Restabschnitt der Trägerplatte gebildet ist, der abgetrennte Zwischenbereiche einer Reihe von Zonen des elektrisch leitenden Materials aufweist.
  • Bei dem erfindungsgemäßen Verfahren werden somit das Widerstandsmaterial und das elektrisch leitende Material in jeweils regelmäßiger Weise in Streifen bzw. Zonen auf die Trägerplatte aufgebracht, wobei das aufgebrachte Widerstandsmaterial und das aufgebrachte elektrisch leitende Material sich an bestimmten Bereichen überlappen. Diese Überlappungsbereiche dienen als elektrischer Anschlüsse der Widerstandsbaueinheiten, mittels derer die Widerstandsbaueinheiten leitend mit dem elektrischen Bauteil oder Gerät verbunden werden können.
  • Das Vereinzeln, d.h. die Ausbildung einzelner Widerstandsbaueinheiten erfolgt am Ende des Verfahrens, wobei geeignete Schnitte die Trägerplatte in Längsrichtung und in Querrichtung durchtrennen, und zwar derart, dass sogleich eine Vielzahl von Widerstandsbaueinheiten hergestellt wird. Dabei definieren die Querrichtung und die Längsrichtung zwei senkrecht zueinander verlaufende Bezugsrichtungen, und bezeichnen nicht unbedingt eine Längsform der Trägerplatte, der Streifen des Widerstandsmaterials, oder der Widerstandsbaueinheit.
  • Durch das Abtrennen der Zwischenbereiche der Zonen des elektrisch leitenden Materials werden Restabschnitte der Trägerplatte gebildet, die bei dem Herstellungsverfahren zwar als Ausschuss anfallen. Allerdings kann durch geeignete Wahl der ersten und zweiten Längsrichtungsschnitte die Größe der elektrischen Anschlüsse der gebildeten Widerstandselemente auf einfache Weise festgelegt und insbesondere unabhängig von der (nicht beliebig verkleinerbaren) Größe der Zonen des elektrisch leitenden Materials minimiert werden. Ferner ermöglichen die Zwischenbereiche der Zonen des elektrisch leitenden Materials vor dem Abtrennen gemäß einer nachstehend noch erläuterten vorteilhaften Ausführungsform eine Prüfung des elektrischen Widerstands.
  • Gemäß dem erfindungsgemäßen Verfahren sind die Reihen von Streifen des Widerstandsmaterials und die Reihen von Zonen des elektrisch leitenden Materials in Querrichtung abwechselnd nebeneinander, aber nicht unbedingt in gleicher Anzahl angeordnet. Beispielsweise kann, mit Ausnahme von Randbereichen der Trägerplatte, zwischen zwei Reihen von Streifen des Widerstandsmaterials eine jeweilige Reihe von Zonen des elektrisch leitenden Materials angeordnet sein, wobei die Anzahl der Reihen von Streifen des Widerstandsmaterials insbesondere der Anzahl der Reihen von Zonen des elektrisch leitenden Materials entsprechen kann. Alternativ ist es jedoch auch möglich, dass, mit Ausnahme von Randbereichen der Trägerplatte, zwischen zwei Reihen von Streifen des Widerstandsmaterials zwei jeweilige Reihen von Zonen des elektrisch leitenden Materials angeordnet sind, wobei die Anzahl der Reihen von Zonen des elektrisch leitenden Materials insbesondere doppelt so groß wie die Anzahl der Reihen von Streifen des Widerstandsmaterials sein kann. In dem letztgenannten Fall überlappt letztlich nur eines der beiden Enden einer jeweiligen Zone des elektrisch leitenden Materials mit einem Streifen des Widerstandsmaterials, während das andere Ende der jeweiligen Zone in dem Schritt d) abgetrennt wird und somit nicht zur Kontaktierung eines Streifens des Widerstandsmaterials dient.
  • Durch eine geeignete Wahl der Länge und Breite und der gegenseitigen Abstände von benachbarten Streifen des Widerstandsmaterials und der gegenseitigen Abstände von benachbarten Zonen des elektrisch leitenden Materials lassen sich Widerstandsbaueinheiten verschiedenster Größen herstellen.
  • Aus dem Verfahren ergeben sich keine Einschränkungen bezüglich der Abmessungen der Widerstandsbaueinheiten. Insbesondere sind mittels des Verfahrens Widerstandsbaueinheiten herstellbar, die sich durch kleine Abmessungen auszeichnen und auch in Bauteilen oder Geräten einsetzbar sind, die eine besonders kompakte Ausbildung der Widerstandsbaueinheiten erfordern, wie beispielsweise Mobiltelefone, Smartphones, Smartwatches, Hörgeräte oder ähnliche Geräte.
  • Bevorzugte Ausführungsformen sind den abhängigen Ansprüchen sowie der Beschreibung zu entnehmen.
  • Gemäß einer Ausführungsform umfasst die durch das Durchtrennen der Trägerplatte gebildete jeweilige Widerstandsbaueinheit einen Abschnitt der Trägerplatte, der den Träger der Widerstandsbaueinheit bildet, eine Gruppe von Streifen des Widerstandsmaterials, die die Gruppe von Widerstandselementen der Widerstandsbaueinheit bilden, eine Anzahl von ersten Enden von Zonen des elektrisch leitenden Materials, die die ersten elektrischen Anschlüsse der Widerstandselemente bilden, und eine Anzahl von zweiten Enden von Zonen des elektrisch leitenden Materials, die die zweiten elektrischen Anschlüsse der Widerstandselemente bilden. Somit ist jedes Widerstandselement in der Querrichtung durch Überlappung seiner beiden Enden mit einem jeweiligen Ende einer Zone des elektrisch leitenden Materials elektrisch leitend verbunden, welche als jeweiliger elektrischer Anschluss zur Verbindung mit dem elektrischen Bauteil oder Gerät dienen.
  • Bevorzugt sind die gegenseitigen Abstände der Querrichtungsschnitte und die gegenseitigen Abstände der ersten und zweiten Längsrichtungsschnitte derart gewählt, dass die gebildete Widerstandsbaueinheit, insbesondere eine Widerstandsbaueinheit mit zwei Widerstandselementen, eine Breite kleiner als 0,6 mm und eine Länge kleiner als 0,8 mm aufweist, wobei die Breite insbesondere in einem Bereich von 0,3 mm bis 0,34 mm liegt und die Länge insbesondere in einem Bereich von 0,54 mm bis 0,62 mm liegt und wobei die Breite bevorzugt ca. 0,32 mm und die Länge bevorzugt 0,58 mm beträgt. Diese geringen Abmessungen liegen außerhalb des Bereichs der durch bisherige Verfahren herstellbaren Widerstandsbaueinheiten. Mit anderen Worten sind ausschließlich durch das erfindungsgemäße Verfahren Widerstandsbaueinheiten in diesen Dimensionen herstellbar.
  • Gemäß einer Ausführungsform umfasst die Gruppe von Streifen des Widerstandsmaterials zwei Streifen des Widerstandsmaterials. Die Widerstandsbaueinheit umfasst dementsprechend zwei Widerstandselemente. Aber auch Ausführungsformen mit mehr als zwei, beispielsweise drei oder vier, Streifen des Widerstandsmaterials sind möglich. Dabei ist jedes der Widerstandselemente mittels der ersten bzw. zweiten Enden von zwei Zonen des elektrisch leitendenden Materials bzw. der hierdurch gebildeten elektrischen Anschlüsse separat mit einem elektrischen Bauteil oder Gerät oder mit einer elektrischen Schaltung verbindbar.
  • Durch die regelmäßige Anordnung der Streifen des Widerstandsmaterials und der Zonen des elektrisch leitenden Materials, insbesondere durch die reihenförmig aneinander anschließende Anordnung der Widerstandselemente, lassen sich verschiedene Geometrien der Widerstandsbaueinheiten mit zwei oder mehreren Widerstandselementen in einfacher Weise erreichen. Hierzu genügt es, bei dem Herstellungsverfahren die Einteilung der Gruppen einander zugeordneter benachbarter Streifen und, damit einhergehend, die gegenseitigen Abstände der Querrichtungsschnitte zu verändern.
  • Gemäß einer Ausführungsform sind die Streifen des Widerstandsmaterials der gebildeten jeweiligen Widerstandsbaueinheit gleich groß. Mit anderen Worten weisen die Streifen des Widerstandsmaterials gleiche Breiten, gleichen Längen sowie gleiche Dicken auf. Somit wird eine Widerstandsbaueinheit gebildet, deren Widerstands-'elemente gleiche Widerstandswerte aufweisen.
  • Gemäß einer weiteren Ausführungsform sind die Streifen des Widerstandsmaterials der gebildeten Widerstandsbaueinheit unterschiedlich groß, insbesondere mit unterschiedlicher Breite quer zu der Erstreckungsrichtung der Streifen des Widerstandsmaterials zwischen dem ersten Ende und dem zweiten Ende. Dementsprechend können die Widerstandswerte der Widerstandselemente der gebildeten jeweiligen Widerstandsbaueinheit unterschiedlich groß sein.
  • Durch die streifenförmig aneinander anschließende Anordnung der Widerstandselemente lassen sich verschiedene Geometrien der Widerstandselemente mit entsprechenden verschiedenen Widerstandswerten in einfacher Weise erzielen. Hierzu genügt es, im Verfahren die Länge der Streifen des Widerstandmaterials zu ändern und, darauf abgestimmt, auch die Anordnung und die Abstände benachbarter Zonen des elektrisch leitenden Materials zu ändern.
  • Bevorzugt umfasst die Trägerplatte ein keramisches Substrat, welche insbesondere durch seine elektrisch isolierende Eigenschaft verhindert, dass außerhalb der Zonen des elektrisch leitenden Materials ein elektrischer Kontakt zwischen dem Widerstandmaterial und dem elektrisch leitenden Material besteht. Derartige Trägerplatten sind einfach in der Herstellung und lassen sich kostengünstig und in großen Stückzahlen herstellen. Im Übrigen ermöglicht das keramische Substrat ein einfaches und problemloses Durchtrennen der Trägerplatte in Schritt d).
  • Gemäß einer Ausführungsform werden das Widerstandsmaterial und das elektrisch leitende Material lediglich an der Unterseite der Trägerplatte aufgebracht. Das bedeutet, dass die Oberseite des Trägers der gebildeten Widerstandsbaueinheit frei von Widerstandselementen und/oder elektrischen Anschlüssen ist. Die Widerstandsbaueinheit ist somit für eine Montage und Kontaktierung in einer Flip-Chip Bauweise ausgebildet. Der Vorteil dieser Bauweise liegt darin, dass die Widerstandsbaueinheit direkt mit den elektrischen Anschlüssen nach unten mit dem elektrischen Schaltkreis des Geräts oder Bauteils verbindbar und/oder in diesen einsetzbar ist, wobei auf die Anbringung weiterer Anschlussdrähte an der Widerstandsbaueinheit oder an dem Schaltkreis verzichtet werden kann.
  • Gemäß einer Ausführungsform umfasst der Schritt b) des Ausbildens der Vielzahl von Streifen des Widerstandsmaterials das Aufbringen einer Metallschicht an der Unterseite der Trägerplatte durch Kathodenzerstäubung und ein lokales Abtragen der Metallschicht durch Abdampfen. Durch die Kathodenzerstäubung, das sogenannte "Sputtern", lassen sich Schichten des Widerstandsmaterials in geringer Dicke auf die Trägerplatte aufbringen, die sich durch eine große Gleichmäßigkeit und eine gute Reproduzierbarkeit auszeichnen. Dies ermöglicht die Herstellung einer Vielzahl von Widerstandselementen, deren Widerstandswerte alle in einem vorgegebenen, engen Bereich liegen.
  • Um das Widerstandsmaterial in Form einer Vielzahl von Streifen auf der Trägerplatte aufzubringen, kann das Widerstandsmaterial außerhalb der vorgegebenen Bereiche der Streifen, beispielweise durch einen Laser, abgetragen bzw. abgedampft werden. Mittels dieser Methode lässt sich das Widerstandsmaterial präzise und mit großer Positionsgenauigkeit auf die Bereiche der Streifen begrenzen.
  • Alternativ kann eine Maske an die Unterseite der Trägerplatte angelegt werden, welche eine Vielzahl von, den Streifen entsprechenden Freistellungen aufweist. Nach Anlegen der Maske kann das Widerstandsmaterial auf die Unterseite der Trägerplatte aufgedampft werden. Durch die Maske kommt das Widerstandsmaterial nur an den Stellen der Freistellungen mit der Trägerplatte in Kontakt, wodurch sich nach dem Entfernen der Maske auf der Trägerplatte eine Vielzahl von Streifen des Widerstandsmaterials ausbildet. Neben dem großflächigen Aufbringen und lokalen Abtragen des Widerstandmaterials oder dem Anbringen einer Maske sind jedoch auch andere Methoden denkbar, um die Streifen des Widerstandmaterials auszubilden.
  • Gemäß einer Ausführungsform umfasst der Schritt c) des Ausbildens der Vielzahl von Zonen des elektrisch leitenden Materials das Bedrucken der Unterseite der Trägerplatte mit einer elektrisch leitenden Paste, insbesondere mit einer Silber-Palladium Legierung. Hierzu kann beispielsweise eine Druckplatte verwendet werden, auf der in einem regelmäßigen Muster die elektrisch leitende Paste aufgebracht wird, wobei das Muster der Anordnung der Zonen entspricht. Insbesondere ist das Muster der auf die Druckplatte aufgebrachten elektrisch leitenden Paste auf die Anordnung der Streifen des Widerstandmaterials abgestimmt.
  • Nach dem Ausbilden der Vielzahl von Zonen des elektrisch leitenden Materials kann noch eine Galvanisierung, insbesondere eine Nickel-Zinn-Galvanisierung, der Zonen erfolgen.
  • Es versteht sich, dass der Schritt b) des Ausbildens der Vielzahl von Streifen des Widerstandsmaterials und der Schritt c) des Ausbildens der Vielzahl von Zonen des elektrisch leitenden Materials auch in umgekehrter Reihenfolge oder teilweise gleichzeitig ausgeführt werden können. Das Überlappen der Streifen des Widerstandsmaterials mit den Zonen des elektrisch leitenden Materials kann dabei dergestalt erfolgen, dass der jeweilige Streifen des Widerstandsmaterials die jeweiligen Zonen des elektrisch leitenden Materials teilweise überdeckt, oder dergestalt, dass die jeweiligen Zonen des elektrisch leitenden Materials den jeweiligen Streifen des Widerstandsmaterials teilweise überdecken.
  • Gemäß einer Ausführungsform erfolgt das Durchtrennen der Trägerplatte in dem Schritt d) mittels eines Laser-Strahls. Dies erlaubt hierbei eine präzise und effiziente Methode zu einer Strukturierung der Trägerplatte, wobei es bei dieser Technik auch möglich ist, mehrere Durchtrennungsschnitte in kurzer Folge in einem Arbeitsschritt durchzuführen. Generell können für das Durchtrennen der Trägerplatte in dem Schritt d) die Querrichtungsschnitte, die ersten Längsrichtungsschnitte und die zweiten Längsrichtungsschnitte in einer beliebigen Reihenfolge ausgeführt werden. Dabei folgt bzw. entspricht die regelmäßige Anordnung der Querrichtungsschnitte, der ersten Längsrichtungsschnitte und der zweiten Längsrichtungsschnitte dem regelmäßigen Muster der Streifen des Widerstandsmaterials und dem regelmäßigen Muster der Zonen des elektrisch leitenden Materials.
  • Gemäß einer Ausführungsform wird vor dem Durchtrennen der Trägerplatte durch die ersten und zweiten Längsrichtungsschnitte, insbesondere vor dem Schritt d), der elektrische Widerstand eines jeweiligen Streifens des Widerstandsmaterials gemessen, wobei Kontaktsonden an derjenigen Zone des elektrisch leitenden Materials, die mit dem ersten Ende des jeweiligen Streifens des Widerstandsmaterials überlappt, und an derjenigen Zone des elektrisch leitenden Materials, die mit dem zweiten Ende des jeweiligen Streifens des Widerstandsmaterials überlappt, angelegt werden. Die Messwerte können im Rahmen einer Qualitätskontrolle dahingehend überprüft werden, ob die Widerstandswerte in einem vorgegebenen nominellen Bereich liegen oder ob Abweichungen davon festzustellen sind. Insbesondere kann es sich bei den Kontaktsonden um Kelvin-Sonden handeln, welche mittels der Kelvin-Methode den elektrischen Widerstand der jeweiligen Zone des Widerstandsmaterials messen. Die Messung des elektrischen Widerstands vor dem Durchtrennen der Trägerplatte birgt den Vorteil, dass die gesamte Fläche einer jeweiligen Zone des elektrisch leitenden Materials für die Anbringung einer Kontaktsonde zu Verfügung steht, was wegen der geringen Größe der Widerstandbaueinheit und des geringen Größenverhältnisses zwischen der Kontaktsonde und der jeweiligen Zone des elektrisch leitenden Materials eine Positionierung der Kontaktsonde erheblich erleichtert bzw. erst ermöglicht.
  • Ein zweiter Aspekt der Erfindung betrifft eine Widerstandsbaueinheit, die gemäß einem erfindungsgemäßen Verfahren hergestellt worden ist, mit einem Träger, einer an der Unterseite des Trägers angeordneten Gruppe von Widerstandselementen, ersten elektrischen Anschlüssen, die mit einem jeweiligen ersten Ende der Widerstandselemente verbunden sind, und zweiten elektrischen Anschlüssen, die mit einem jeweiligen zweiten Ende der Widerstandselemente verbunden sind, wobei die Widerstandsbaueinheit eine Breite kleiner als 0,6 mm und eine Länge kleiner als 0,8 mm aufweist, wobei die Breite insbesondere in einem Bereich von 0,3 mm bis 0,34 mm liegt und die Länge insbesondere in einem Bereich von 0,54 mm bis 0,62 mm liegt. Die Widerstandsbaueinheit ist für eine Montage und Kontaktierung in einer Flip-Chip Bauweise ausgebildet und ist durch ihre geringe Größe in elektrischen Bauteilen oder Geräten einsetzbar, die eine besonders kompakte Ausbildung der Widerstandsbaueinheiten erfordern, wie beispielsweise Mobiltelefone, Smartphones, Smartwatches, Hörgeräte oder ähnliche Geräte.
  • Nachfolgend wird die Erfindung bespielhaft anhand einer vorteilhaften Ausführungsform unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Es zeigen, jeweils schematisch,
  • Fig. 1
    Schritt a) einer Ausführungsform eines erfindungsgemäßen Verfahrens zur Herstellung einer Vielzahl von Widerstandsbaueinheiten;
    Fig. 2
    Schritt b) der Ausführungsform von Fig. 1;
    Fig. 3
    Schritt c) der Ausführungsform von Fig. 1;
    Fig. 4
    Funktionsüberprüfung der Ausführungsform von Fig. 1;
    Fig. 5
    Schritt d) der Ausführungsform von Fig. 1; und
    Fig. 6
    die Unteransicht einer Ausführungsform einer erfindungsgemäßen Widerstandsbaueinheit.
  • Fig. 1 zeigt einen Ausschnitt einer Trägerplatte 10 gemäß Schritt a) einer Ausführungsform eines erfindungsgemäßen Verfahrens zur Herstellung einer Vielzahl von Widerstandsbaueinheiten. Die Trägerplatte 10 kann aus einem keramischen Substrat ausgebildet sein, welches eine elektrisch isolierende Trägereinrichtung zur Aufnahme eines Widerstandmaterials und eines elektrisch leitenden Materials bildet. In Fig. 1 bezeichnen Pfeile und die Buchstaben "Q", "L" eine Querrichtung Q und eine dazu orthogonale Längsrichtung L. Hierbei definieren die Querrichtung Q und die Längsrichtung L zwei senkrecht zueinander verlaufende Bezugsrichtungen, und bezeichnen nicht unbedingt eine Längsform der Trägerplatte 10 oder der gebildeten Widerstandsbaueinheiten. Die Trägerplatte 10 umfasst eine Oberseite 12 und eine Unterseite 14, welche in Fig. 1 in Draufsicht gezeigt ist.
  • In Schritt b) des erfindungsgemäßen Verfahrens, der in Fig. 2 dargestellt ist, wird an der Unterseite 14 der Trägerplatte 10 in einem regelmäßigen Muster eine Vielzahl von Streifen 16 eines Widerstandmaterials aufgebracht. Die Streifen 16 sind in Reihen 18 angeordnet, die sich in Längsrichtung L erstrecken und bezüglich der Querrichtung Q nebeneinander angeordnet sind. Fig. 2 zeigt hierbei einen Ausschnitt der Trägerplatte 10, in dem beispielhaft sechzehn Streifen 16 in vier parallelen Reihen 18 angeordnet sind. Die Anordnung der Streifen 16 kann entsprechend dem dargestellten Muster in beide der zueinander orthogonalen Richtungen Q und L fortgeführt werden. Die Streifen 16 weisen entlang der Querrichtung Q ein erstes Ende 20 und ein zweites Ende 22 auf. Das Auftragen des Widerstandmaterials kann beispielsweise durch Kathodenzerstäubung, ein sogenanntes "Sputtern", erfolgen. Diese Technik bietet den Vorteil, dass sich das Widerstandmaterial in einer Schicht von gleichmäßiger Dicke auf die Unterseite 14 der Trägerplatte 10 aufbringen lässt und auch Schichten geringer Dicke erzeugt werden können. Denkbar sind jedoch auch andere Methoden, um das Widerstandsmaterial auf die Trägerplatte 10 aufzubringen.
  • Um das Widerstandsmaterial ausschließlich an den Stellen der Streifen 16 auf die Trägerplatte 10 aufzubringen, kann das Widerstandsmaterial beispielsweise in durchgehenden, sich parallel entlang der Längsrichtung L erstreckenden, Bereichen auf die Trägerplatte aufgebracht werden. Zur Ausbildung der einzelnen Streifen 16 (Segmentierung) kann ein Laser eingesetzt werden, der in vorgegebenen Abständen entlang der Längsrichtung L Widerstandsmaterial abträgt bzw. abdampft. Mittels dieser Methode lässt sich eine präzise und positionsgenaue Anordnung der Streifen 16 erzielen. Alternativ kann die Unterseite 14 der Trägerplatte 10 vor der Auftragung des Widerstandsmaterials beispielsweise durch eine nicht gezeigte Maske abgedeckt werden, welche an der Stelle der Streifen 16 Freistellungen aufweist und beispielsweise aus Kunststoff gefertigt sein kann. Nach der Aufbringung des Widerstandsmaterials und der nachfolgenden Entfernung der Maske ergibt sich somit auf der Trägerplatte 10 ein regelmäßiges Muster einer Vielzahl von Streifen 16 des Widerstandsmaterials. Denkbar sind jedoch auch andere Methoden, die alleine oder in Kombination mit einer Maske angewandt werden können, um auf der Trägerplatte 10 die Streifen 16 des Widerstandsmaterials präzise und dabei einfach und effizient auszubilden.
  • In der gezeigten Ausführungsform sind die Streifen 16 des Widerstandsmaterials gleich groß zueinander, d.h. die Streifen 16 des Widerstandsmaterials haben gleiche Breiten und Längen sowie gleiche Dicken. Dementsprechend weisen die Streifen 16 des Widerstandsmaterials gleiche elektrische Widerstandswerte auf. In anderen Ausführungsformen können die Streifen unterschiedliche Größen aufweisen, um damit Streifen 16 des Widerstandsmaterials mit unterschiedlichen elektrischen Widerstandswerten zu erzeugen. In einfacher Weise lässt sich dies durch eine Variation der Länge der Streifen entlang der Längsrichtung L erreichen.
  • Fig. 3 zeigt Schritt c) des erfindungsgemäßen Verfahrens, in dem eine Vielzahl von Zonen 24 eines elektrisch leitenden Materials an der Unterseite 14 der Trägerplatte 10 ausgebildet wird. Die Zonen 24 des elektrisch leitenden Materials werden in einem regelmäßigen Muster auf der Trägerplatte 10 aufgebracht, wobei die Zonen 24 des elektrisch leitenden Materials in einer Vielzahl von Reihen 26 angeordnet sind, die sich in Längsrichtung L erstrecken und bezüglich der Querrichtung Q nebeneinander angeordnet sind. Hierbei verlaufen die Reihen 26 der Zonen 24 des elektrisch leitenden Materials parallel zu den Reihen 18 der Streifen 16 des Widerstandsmaterials und wechseln sich in der Querrichtung Q mit diesen ab, so dass die Anzahl der Reihen 26 der Zonen 24 des elektrisch leitenden Materials im Wesentlichen der Anzahl der Reihen 18 der Streifen 16 des Widerstandsmaterials entspricht.
  • Die Zonen 24 des elektrisch leitenden Materials weisen entlang der Querrichtung Q jeweils ein erstes Ende 28, einen Zwischenbereich 30 und ein zweites Ende 32 auf, wobei, außer an den Randbereichen der Trägerplatte 10, die Streifen 16 des Widerstandsmaterials an ihren ersten Enden 20 mit dem ersten Ende 28 einer jeweiligen Zone 24 des elektrisch leitenden Materials überlappen und an ihren zweiten Enden 22 mit dem zweiten Ende 32 einer jeweiligen Zone 24 des elektrisch leitenden Materials überlappen. Das regelmäßige Muster der Zonen 24 ist auf das regelmäßige Muster der Streifen 16 abgestimmt, und zwar dergestalt, dass an jedem Streifen 16 jeweils ein Überlappungsbereich mit einer jeweiligen Zone 24 an seinem ersten Ende 20 und ein Überlappungsbereich mit einer jeweiligen Zone 24 an seinem zweiten Ende 22 ausgebildet ist.
  • Die Zonen 24 des elektrisch leitenden Materials können beispielsweise aus einer Silber-Palladium Legierung bestehen. Die Zonen 24 können durch Anbringung in Form einer Paste, insbesondere durch Bedrucken der Unterseite 14 der Trägerplatte 10, gebildet werden. Hierzu wird auf eine nicht gezeigte Druckplatte die elektrisch leitende Paste in einem regelmäßigen, einer vorgegebenen Anordnung der Zonen 24 entsprechenden Muster aufgebracht. Mittels dieser Technik lässt sich eine Vielzahl von Zonen 24 des elektrisch leitenden Materials effizient in einem Druckvorgang erzeugen.
  • Der in Fig. 2 gezeigte Schritt b) des Ausbildens der Vielzahl von Streifen 16 des Widerstandsmaterials und der in Fig. 3 dargestellte Schritt c) des Ausbildens der Vielzahl von Zonen 24 des elektrisch leitenden Materials können auch in umgekehrter Reihenfolge oder teilweise gleichzeitig ausgeführt werden. So kann das Überlappen der Streifen 16 des Widerstandsmaterials mit den Zonen 24 des elektrisch leitenden Materials entweder dergestalt erfolgen, dass der jeweilige Streifen 16 des Widerstandsmaterials die jeweiligen Zonen 24 des elektrisch leitenden Materials teilweise überdeckt, oder dergestalt, dass die jeweiligen Zonen 24 des elektrisch leitenden Materials den jeweiligen Streifen 16 des Widerstandsmaterials teilweise überdecken.
  • In Fig. 4 ist ein optionaler Schritt zur Überprüfung der Funktionsfähigkeit und/oder zur Charakterisierung der gebildeten Widerstandsbaueinheiten dargestellt. Hierfür werden Kontaktsonden 34, insbesondere Kelvin-Sonden, mit den Zonen 24 des elektrisch leitenden Materials in Berührung gebracht, die einem jeweiligen Streifen 16 des Widerstandsmaterials zugeordnet sind. In Fig. 4 sind lediglich die Berührungsstellen der Kontaktsonden 34 illustriert.
  • Die Kontaktsonden 34 werden an derjenigen Zone 24 des elektrisch leitenden Materials, der mit dem ersten Ende 20 des jeweiligen Streifens 16 des Widerstandsmaterials überlappt, und an derjenigen Zone 24 des elektrisch leitenden Materials, die mit dem zweiten Ende 22 des jeweiligen Streifens 16 des Widerstandsmaterials überlappt, angelegt. Dabei sind die Kontaktsonden 36 dazu ausgebildet, beispielsweise mittels der Kelvin-Methode den elektrischen Widerstand eines jeweiligen Streifens 16 des Widerstandsmaterials und somit den elektrischen Widerstand des zu bildenden jeweiligen Widerstandselements zu messen. Aus den Messwerten lässt sich sodann ermitteln, ob die Widerstandswerte in einem vorgegebenen Bereich liegen oder ob Abweichungen vorhanden sind.
  • Durch die Durchführung der Funktionsprüfung nach Schritt c) des Verfahrens und vor dem Durchtrennen der Trägerplatte 10 gemäß dem Schritt d) wird die Anbringung der Kontaktsonden 34 an die jeweiligen Zonen 24 erleichtert, da zu diesem Zeitpunkt des Verfahrens auch die Fläche der Zwischenbereiche 30 der Zonen 24 hierfür zur Verfügung steht. Für das Prüfen der Streifen 16 des Widerstandsmaterials wird wenigstens ein Paar von Kontaktsonden 34 benötigt (je eine Kontaktsonde 34 auf den beiden Seiten des jeweiligen Streifens 16), wobei auch mehrere Paare von Kontaktsonden 34 dazu verwendet werden können, mehrere Streifen 16 gleichzeitig zu prüfen.
  • Fig. 5 zeigt Schritt d) des erfindungsgemäßen Verfahrens, in welchem durch eine Abfolge von Schnitten eine Vielzahl von Widerstandsbaueinheiten 44 aus der, mit Reihen 18 von Streifen 16 des Widerstandsmaterials und Reihen 26 von Zonen 24 des elektrisch leitenden Materials besetzen, Trägerplatte 10 herausgetrennt werden. Die Abfolge von Schnitten umfasst Querrichtungsschnitte 36 entlang der Querrichtung Q, erste Längsrichtungsschnitte 38 entlang der Längsrichtung L und zweite Längsrichtungsschnitte 40 entlang der Längsrichtung L.
  • Die regelmäßige Anordnung der Querrichtungsschnitte 36, der ersten Längsrichtungsschnitte 38 und der zweiten Längsrichtungsschnitte 40 entspricht dem regelmäßigen Muster der Streifen 16 des Widerstandsmaterials und dem regelmäßigen Muster der Zonen 24 des elektrisch leitenden Materials. Hierbei verlaufen die Querrichtungsschnitte 36 zwischen Gruppen 42 von einander zugeordneten, in Längsrichtung L zueinander benachbarten Streifen 16 des Widerstandsmaterials. In der beschriebenen Ausführungsform umfassen die Gruppen 42 jeweils zwei Streifen 16. Die Gruppen 42 können jedoch auch mehr oder auch nur einen Streifen 16 umfassen. Durch eine einfache Anpassung der Schnittabstände kann die Anzahl der Streifen 16 des Widerstandsmaterials der Widerstandsbaueinheiten 44 geändert werden.
  • Die ersten Längsrichtungsschnitte 38 trennen die ersten Enden 28 von den Zwischenbereichen 30 einer jeweiligen Reihe 26 von Zonen 24 des elektrisch leitenden Materials ab. Durch die zweiten Längsrichtungsschnitte 40 werden hingegen die zweiten Enden 32 von den Zwischenbereichen 30 einer jeweiligen Reihe 26 von Zonen 24 des elektrisch leitenden Materials abgetrennt. Somit wird durch die Abfolge von Schnitten 36, 38, 40 entlang der Querrichtung Q abwechselnd eine jeweilige Widerstandsbaueinheit 44 und ein jeweiliger Restabschnitt 46 der Trägerplatte ausgebildet. Der jeweilige Restabschnitt 46 umfasst abgetrennte Zwischenbereiche 30 einer Reihe 26 von Zonen 24 des elektrisch leitenden Materials und wird nach der Beendigung des Herstellungsverfahrens nicht mehr benötigt.
  • Es versteht sich, dass für das Durchtrennen der Trägerplatte 10 die Querrichtungsschnitte 36, die ersten Längsrichtungsschnitte 38 und die zweiten Längsrichtungsschnitte 40 generell in einer beliebigen Reihenfolge ausgeführt werden. Das Durchtrennen der Trägerplatte 10 kann beispielsweise mittels eines Laser-Strahls durchgeführt werden, was eine präzise und effiziente Strukturierung der Trägerplatte 10 in einem Arbeitsgang erlaubt.
  • Die Streifen 16 des Widerstandsmaterials können generell eine Längsform aufweisen (insbesondere im Wesentlichen rechteckig), wobei die jeweilige Längsachse der Streifen 16 des Widerstandsmaterials entlang der Längsrichtung L oder entlang der Querrichtung Q ausgerichtet sein kann. Alternativ hierzu können die Streifen 16 des Widerstandsmaterials beispielsweise auch eine im Wesentlichen quadratische Form aufweisen.
  • Fig. 6 zeigt in einer Unteransicht beispielhaft eine Widerstandsbaueinheit 44 der Vielzahl von Widerstandsbaueinheiten, welche durch die Schritte a) bis d) des erläuterten Verfahrens erzeugt wurden. Jede Widerstandsbaueinheit 44 umfasst dementsprechend einen Abschnitt der Trägerplatte 10, der den Träger 48 der Widerstandsbaueinheit 44 bildet, eine Gruppe 42 von Streifen 16 des Widerstandsmaterials, die eine Gruppe von Widerstandselementen 50 der Widerstandsbaueinheit 44 bilden, eine Anzahl von ersten Enden 28 von Zonen 24 des elektrisch leitenden Materials, die erste elektrischen Anschlüsse 52 der Widerstandselemente 50 bilden, und eine Anzahl von zweiten Enden 32 von Zonen 24 des elektrisch leitenden Materials, die zweite elektrischen Anschlüsse 54 der Widerstandselemente 50 bilden. Dabei sind die ersten elektrische Anschlüsse 52 mit einem jeweiligen ersten Ende der Widerstandselemente 50 verbunden und die zweiten elektrischen Anschlüsse 54 mit einem jeweiligen zweiten Ende der Widerstandselemente 50 verbunden. Durch die Anordnung der Widerstandselemente 50 an der Unterseite des Trägers 48 ist die Widerstandsbaueinheit 44 insbesondere für eine Montage und Kontaktierung in einer Flip-Chip Bauweise geeignet.
  • Im Verfahren sind die gegenseitigen Abstände der Querrichtungsschnitte 36 und die gegenseitigen Abstände der ersten und zweiten Längsrichtungsschnitte 38, 40 derart gewählt, dass die Widerstandsbaueinheit 44 eine Breite kleiner als 0,6 mm und eine Länge kleiner als 0,8 mm aufweist, wobei die Breite insbesondere in einem Bereich von 0,3 mm bis 0,34 mm liegen kann und die Länge insbesondere in einem Bereich von 0,54 mm bis 0,62 mm liegen kann. Durch ihre geringe Größe, die durch das erfindungsgemäße Verfahren erreicht werden kann, ist die Widerstandsbaueinheit 44 in elektrischen Bauteilen oder Geräten einsetzbar, die eine besonders kleine und kompakte Ausbildung der Widerstandsbaueinheiten erfordern.
  • Bezugszeichenliste
  • 10
    Trägerplatte
    12
    Oberseite
    14
    Unterseite
    16
    Streifen des Widerstandsmaterials
    18
    Reihe der Streifen 16 des Widerstandsmaterials
    20
    erstes Ende eines Streifens 16 des Widerstandsmaterials
    22
    zweites Ende eines Streifens 16 des Widerstandsmaterials
    24
    Zone des elektrisch leitenden Materials
    26
    Reihe der Zonen 24 des elektrisch leitenden Materials
    28
    erstes Ende einer Zone 24 des elektrisch leitenden Materials
    30
    Zwischenbereich einer Zone 24 des elektrisch leitenden Materials
    32
    zweites Ende einer Zone 24 des elektrisch leitenden Materials
    34
    Kontaktsonde
    36
    Querrichtungsschnitt
    38
    erster Längsrichtungsschnitt
    40
    zweiter Längsrichtungsschnitt
    42
    Gruppe benachbarter Streifen
    44
    Widerstandsbaueinheit
    46
    Restabschnitt
    48
    Träger
    50
    Widerstandselement
    52
    erster elektrischer Anschluss
    54
    zweiter elektrischer Anschluss
    Q
    Querrichtung
    L
    Längsrichtung

Claims (13)

  1. Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten (44), die jeweils einen Träger (46) mit einer Gruppe von Widerstandselementen (50) umfassen, an deren Enden ein jeweiliger erster und zweiter elektrischer Anschluss (52, 54) vorgesehen ist,
    mit den Schritten:
    a) Bereitstellen einer Trägerplatte (10), die eine Oberseite (12) und eine Unterseite (14) aufweist;
    b) Ausbilden einer Vielzahl von Streifen (16) eines Widerstandsmaterials an der Unterseite (14) der Trägerplatte (10), die entlang einer Querrichtung (Q) ein erstes Ende (20) und ein zweites Ende (22) aufweisen, in einem regelmäßigen Muster dergestalt, dass entlang einer Längsrichtung (L), die senkrecht zu der Querrichtung (Q) verläuft, eine jeweilige Reihe (18) von Streifen (16) des Widerstandsmaterials gebildet ist und dass mehrere derartiger Reihen (18) in Querrichtung (Q) nebeneinander angeordnet sind;
    c) Ausbilden einer Vielzahl von Zonen (24) eines elektrisch leitenden Materials an der Unterseite (14) der Trägerplatte (10), die entlang der Querrichtung (Q) ein erstes Ende (28), einen Zwischenbereich (30) und ein zweites Ende (32) aufweisen, in einem regelmäßigen Muster dergestalt, dass entlang der Längsrichtung (L) eine jeweilige Reihe (26) von Zonen (24) des elektrisch leitenden Materials gebildet ist und dass mehrere derartiger Reihen (26) in Querrichtung (Q) nebeneinander angeordnet sind, wobei die Reihen (18) von Streifen (16) des Widerstandsmaterials und die Reihen (26) von Zonen (24) des elektrisch leitenden Materials in Querrichtung (Q) abwechselnd angeordnet sind, und wobei, mit Ausnahme von Randbereichen der Trägerplatte (10), die Streifen (16) des Widerstandsmaterials an ihren ersten Enden (20) mit dem ersten Ende (28) einer jeweiligen Zone (24) des elektrisch leitenden Materials überlappen und an ihren zweiten Enden (22) mit dem zweiten Ende (32) einer jeweiligen Zone (24) des elektrisch leitenden Materials überlappen;
    d) Durchtrennen der Trägerplatte (10) durch regelmäßige Querrichtungsschnitte (36) entlang der Querrichtung (Q), erste Längsrichtungsschnitte (38) entlang der Längsrichtung (L) und zweite Längsrichtungsschnitte (40) entlang der Längsrichtung (L) dergestalt, dass die Querrichtungsschnitte (36) zwischen Gruppen (42) von einander zugeordneten, in Längsrichtung (L) zueinander benachbarten Streifen (16) des Widerstandsmaterials verlaufen, dass ferner die ersten Längsrichtungsschnitte (38) die ersten Enden (28) von den Zwischenbereichen (30) einer jeweiligen Reihe (26) von Zonen (24) des elektrisch leitenden Materials abtrennen, und dass die zweiten Längsrichtungsschnitte (40) die zweiten Enden (32) von den Zwischenbereichen (30) einer jeweiligen Reihe (26) von Zonen (24) des elektrisch leitenden Materials abtrennen, so dass entlang der Querrichtung (Q) abwechselnd eine jeweilige Widerstandsbaueinheit (44) und ein jeweiliger Restabschnitt (46) der Trägerplatte (10) gebildet ist, der abgetrennte Zwischenbereiche (30) einer Reihe (26) von Zonen (24) des elektrisch leitenden Materials aufweist.
  2. Verfahren nach Anspruch 1, wobei die durch das Durchtrennen der Trägerplatte (10) gebildete jeweilige Widerstandsbaueinheit (44)
    - einen Abschnitt der Trägerplatte (10), der den Träger (48) der Widerstandsbaueinheit (44) bildet,
    - eine Gruppe (42) von Streifen (16) des Widerstandsmaterials, die die Gruppe von Widerstandselementen (50) der Widerstandsbaueinheit (44) bilden,
    - eine Anzahl von ersten Enden (28) von Zonen (24) des elektrisch leitenden Materials, die die ersten elektrischen Anschlüsse (52) der Widerstandselemente (50) bilden, und
    - eine Anzahl von zweiten Enden (32) von Zonen (24) des elektrisch leitenden Materials, die die zweiten elektrischen Anschlüsse (54) der Widerstandselemente (44) bilden,
    aufweist.
  3. Verfahren nach Anspruch 1 oder 2, wobei die gegenseitigen Abstände der Querrichtungsschnitte (36) und die gegenseitigen Abstände der ersten und zweiten Längsrichtungsschnitte (38, 40) derart gewählt sind, dass die gebildete jeweilige Widerstandsbaueinheit (44) eine Breite kleiner als 0,6 mm und eine Länge kleiner als 0,8 mm aufweist, wobei die Breite insbesondere in einem Bereich von 0,3 mm bis 0,34 mm liegt und die Länge insbesondere in einem Bereich von 0,54 mm bis 0,62 mm liegt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gruppe (42) von Streifen (16) des Widerstandsmaterials zwei Streifen (16) des Widerstandsmaterials umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Streifen (16) des Widerstandsmaterials der gebildeten Widerstandsbaueinheit (44) gleich groß sind.
  6. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Streifen (16) des Widerstandsmaterials der gebildeten Widerstandsbaueinheit (44) unterschiedlich groß sind, insbesondere mit unterschiedlicher Breite quer zu der Erstreckung der Streifen (16) des Widerstandsmaterials zwischen dem ersten Ende (20) und dem zweiten Ende (22).
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Trägerplatte (10) ein keramisches Substrat umfasst.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Widerstandsmaterial und das elektrisch leitende Material lediglich an der Unterseite (14) der Trägerplatte (10) aufgebracht werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Schritt b) des Ausbildens der Vielzahl von Streifen (16) des Widerstandsmaterials umfasst:
    Aufbringen einer Metallschicht an der Unterseite (14) der Trägerplatte (10) durch Kathodenzerstäubung; und
    lokales Abtragen der Metallschicht durch Abdampfen.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Schritt c) des Ausbildens der Vielzahl von Zonen (24) des elektrisch leitenden Materials umfasst:
    Bedrucken der Unterseite (14) der Trägerplatte (10) mit einer elektrisch leitenden Paste.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Durchtrennen der Trägerplatte (10) in dem Schritt d) mittels eines Laser-Strahls erfolgt.
  12. Verfahren nach einem der vorhergehenden Ansprüche, wobei vor dem Durchtrennen der Trägerplatte (10) durch die ersten und zweiten Längsrichtungsschnitte (38, 40) der elektrische Widerstand eines jeweiligen Streifens (16) des Widerstandsmaterials gemessen wird, wobei Kontaktsonden (34) an derjenigen Zone (24) des elektrisch leitenden Materials, die mit dem ersten Ende (20) des jeweiligen Streifens (16) des Widerstandsmaterials überlappt, und an derjenigen Zone (24) des elektrisch leitenden Materials, die mit dem zweiten Ende (22) des jeweiligen Streifens (16) des Widerstandsmaterials überlappt, angelegt werden.
  13. Widerstandsbaueinheit (44), die gemäß einem Verfahren nach einem der vorhergehenden Ansprüche hergestellt worden ist, mit einem Träger (48), einer an der Unterseite des Trägers (48) angeordneten Gruppe von Widerstandselementen (50), ersten elektrischen Anschlüssen (52), die mit einem jeweiligen ersten Ende der Widerstandselemente (50) verbunden sind, und zweiten elektrischen Anschlüssen (54), die mit einem jeweiligen zweiten Ende der Widerstandselemente (50) verbunden sind,
    wobei die Widerstandsbaueinheit (44) eine Breite kleiner als 0,6 mm und eine Länge kleiner als 0,8 mm aufweist, wobei die Breite insbesondere in einem Bereich von 0,3 mm bis 0,34 mm liegt und die Länge insbesondere in einem Bereich von 0,54 mm bis 0,62 mm liegt.
EP19730343.1A 2018-06-25 2019-06-12 Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat Active EP3797432B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018115205.1A DE102018115205A1 (de) 2018-06-25 2018-06-25 Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten
PCT/EP2019/065399 WO2020001982A1 (de) 2018-06-25 2019-06-12 Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat

Publications (2)

Publication Number Publication Date
EP3797432A1 EP3797432A1 (de) 2021-03-31
EP3797432B1 true EP3797432B1 (de) 2021-09-15

Family

ID=66857908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19730343.1A Active EP3797432B1 (de) 2018-06-25 2019-06-12 Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat

Country Status (10)

Country Link
US (1) US11302462B2 (de)
EP (1) EP3797432B1 (de)
JP (1) JP2021529434A (de)
KR (1) KR20210024096A (de)
CN (1) CN112384998B (de)
CA (1) CA3104943A1 (de)
DE (1) DE102018115205A1 (de)
ES (1) ES2896949T3 (de)
HU (1) HUE057294T2 (de)
WO (1) WO2020001982A1 (de)

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2515445A1 (fr) 1981-10-28 1983-04-29 Trt Telecom Radio Electr Procede de realisation d'un pont d'alimentation soumis a des surcharges importantes et pont d'alimentation realise suivant ce procede
JPS60166102U (ja) 1984-04-11 1985-11-05 シャープ株式会社 チツプ部品
JPH0632650Y2 (ja) 1989-08-01 1994-08-24 ローム株式会社 抵抗器用基板
US5104480A (en) 1990-10-12 1992-04-14 General Electric Company Direct patterning of metals over a thermally inefficient surface using a laser
DE9015206U1 (de) 1990-11-05 1991-01-17 Isabellenhütte Heusler GmbH KG, 6340 Dillenburg Widerstandsanordnung in SMD-Bauweise
JP2788156B2 (ja) 1992-09-18 1998-08-20 ローム株式会社 多連型チップ抵抗器における捺印方法
JP3309010B2 (ja) * 1993-09-02 2002-07-29 コーア株式会社 電子部品の製造方法
JPH07302704A (ja) 1994-05-10 1995-11-14 Matsushita Electric Ind Co Ltd 抵抗器
JPH08102401A (ja) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
US5976392A (en) 1997-03-07 1999-11-02 Yageo Corporation Method for fabrication of thin film resistor
DE19755753A1 (de) * 1997-12-16 1999-06-17 Bosch Gmbh Robert Widerstandsbauelement und Verfahren zu seiner Herstellung
JPH11204315A (ja) * 1998-01-12 1999-07-30 Matsushita Electric Ind Co Ltd 抵抗器の製造方法
JPH11340002A (ja) * 1998-05-26 1999-12-10 Rohm Co Ltd チップ型抵抗器用集合基板
JP3358990B2 (ja) 1998-06-22 2002-12-24 ローム株式会社 チップ型抵抗器の製造方法
DE10110179B4 (de) * 2001-03-02 2004-10-14 BCcomponents Holding B.V. Verfahren zum Herstellen von Dünnschicht-Chipwiderständen
JP3967553B2 (ja) * 2001-03-09 2007-08-29 ローム株式会社 チップ型抵抗器の製造方法、およびチップ型抵抗器
JP3958532B2 (ja) * 2001-04-16 2007-08-15 ローム株式会社 チップ抵抗器の製造方法
JP4078042B2 (ja) 2001-06-12 2008-04-23 ローム株式会社 複数の素子を有するチップ型電子部品の製造方法
JP2003124010A (ja) * 2001-10-18 2003-04-25 Rohm Co Ltd チップ型電子部品の製造方法、およびチップ型電子部品
JP3846312B2 (ja) * 2002-01-15 2006-11-15 松下電器産業株式会社 多連チップ抵抗器の製造方法
EP2216128B1 (de) * 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Verfahren zum Schneiden eines bearbeiteten Gegenstands
TWI520269B (zh) * 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
JP4047760B2 (ja) * 2003-04-28 2008-02-13 ローム株式会社 チップ抵抗器およびその製造方法
JP4358664B2 (ja) * 2004-03-24 2009-11-04 ローム株式会社 チップ抵抗器およびその製造方法
JP4380586B2 (ja) 2005-05-06 2009-12-09 住友金属鉱山株式会社 薄膜抵抗体およびその製造方法
US20060261924A1 (en) 2005-05-20 2006-11-23 Swenson Edward J Method of forming passive electronic components on a substrate by direct write technique using shaped uniform laser beam
JP2007073693A (ja) * 2005-09-06 2007-03-22 Rohm Co Ltd チップ抵抗器とのその製造方法
JP4745027B2 (ja) * 2005-11-09 2011-08-10 太陽社電気株式会社 チップ抵抗器の製造方法
TWI287806B (en) * 2006-02-22 2007-10-01 Walsin Technology Corp Method of manufacturing chip resistor
US7882621B2 (en) * 2008-02-29 2011-02-08 Yageo Corporation Method for making chip resistor components
CN102394164B (zh) * 2011-07-11 2014-04-16 广东风华高新科技股份有限公司 一种小型片式电阻的制造方法
TW201409493A (zh) * 2012-08-24 2014-03-01 Ralec Electronic Corp 晶片式排列電阻器及其製造方法
CN107622848A (zh) * 2017-09-22 2018-01-23 中国振华集团云科电子有限公司 一种***式印刷结构以及导体印刷结构的制备方法

Also Published As

Publication number Publication date
EP3797432A1 (de) 2021-03-31
KR20210024096A (ko) 2021-03-04
US20210272724A1 (en) 2021-09-02
JP2021529434A (ja) 2021-10-28
CA3104943A1 (en) 2020-01-02
US11302462B2 (en) 2022-04-12
DE102018115205A1 (de) 2020-01-02
CN112384998B (zh) 2022-06-07
HUE057294T2 (hu) 2022-05-28
TW202001940A (zh) 2020-01-01
WO2020001982A1 (de) 2020-01-02
ES2896949T3 (es) 2022-02-28
CN112384998A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
DE1816067A1 (de) Elektrischer Widerstand
DE1069236B (de)
DE2225825B2 (de) Verfahren zum Herstellen einer Anzahl plättchenförmiger Festkörper-Elektrolytkondensatoren
EP0046975A2 (de) Elektrisches Netzwerk und Verfahren zu seiner Herstellung
DE10217565A1 (de) Halbleiterbauelement mit integrierter gitterförmiger Kapazitätsstruktur
DE2103064A1 (de) Vorrichtung zur Herstellung von Modulelementen
WO2013182358A1 (de) Verfahren zur herstellung von optoelektronischen halbleiterbauteilen, leiterrahmenverbund und optoelektronisches halbleiterbauteil
EP3599636A1 (de) Keramischer schaltungsträger und elektronikeinheit
EP2234146A2 (de) Verfahren zum Herstellen einer Mehrzahl von integrierten Halbleiterbauelementen
EP3797432B1 (de) Verfahren zur herstellung einer vielzahl von widerstandsbaueinheiten über ein keramiksubstrat
EP2044405B1 (de) Temperaturmesssensor und verfahren zu dessen herstellung
DE2303537A1 (de) Anschlusschiene und verfahren zu ihrer herstellung
DE102004060369A1 (de) Halbleiterscheibe mit Teststruktur
EP1692476B1 (de) Bauelement und verfahren zu dessen herstellung
EP2165363B1 (de) Elektrische schaltung mit vertikaler kontaktierung
WO2016128214A1 (de) Schaltungsträger, elektronisches modul und verfahren zur herstellung eines schaltungsträgers
WO2020002560A2 (de) Vorrichtung mit elektrischer kontaktstruktur
WO2001046973A1 (de) Verfahren zur herstellung eines regelmässigen mehrschichtaufbaus für insbesondere elektrische doppelschichtkondensatoren und vorrichtung dafür
EP3347926B1 (de) Verfahren zum herstellen eines als stapel ausgebildeten vielschichtaktors
DE102008044379A1 (de) Drahtbasierte Schaltungsvorrichtung und Verfahren zur Herstellung einer drahtbasierten Schaltungsvorrichtung
DE102015005690A1 (de) Leiterbahnstruktur mit mindestens zwei übereinanderliegenden Leiterbahnen sowie ein Verfahren zur Herstellung einer derartigen Leiterbahnstruktur
DE1804349C3 (de) Elektrische Kontaktanordnung an einem Halbleiterabschnitt und Verfahren zu ihrer Herstellung
WO1997026780A1 (de) Leiterplatten-trägervorrichtung
DE202015001622U1 (de) Elektrische Kontaktvorrichtung
DE102008024071B4 (de) Verfahren zur Herstellung von Piezobiegewandlern sowie Piezonutzen zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210503

RIC1 Information provided on ipc code assigned before grant

Ipc: H01C 17/00 20060101ALI20210416BHEP

Ipc: H01C 17/242 20060101ALI20210416BHEP

Ipc: H01C 17/28 20060101ALI20210416BHEP

Ipc: H01C 7/00 20060101AFI20210416BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002308

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1431156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2896949

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220228

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E057294

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002308

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230606

Year of fee payment: 5

Ref country code: FR

Payment date: 20230628

Year of fee payment: 5

Ref country code: DE

Payment date: 20230620

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230622

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 5

Ref country code: GB

Payment date: 20230622

Year of fee payment: 5

Ref country code: ES

Payment date: 20230830

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915