EP3702720B1 - Dircm à transfert simplifié entre les modules - Google Patents

Dircm à transfert simplifié entre les modules Download PDF

Info

Publication number
EP3702720B1
EP3702720B1 EP20157227.8A EP20157227A EP3702720B1 EP 3702720 B1 EP3702720 B1 EP 3702720B1 EP 20157227 A EP20157227 A EP 20157227A EP 3702720 B1 EP3702720 B1 EP 3702720B1
Authority
EP
European Patent Office
Prior art keywords
target
module
region
tracking
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20157227.8A
Other languages
German (de)
English (en)
Other versions
EP3702720A1 (fr
Inventor
Andreas von Mirbach
Klaus Dresel
Markus Mauder
Martin Regensburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP3702720A1 publication Critical patent/EP3702720A1/fr
Application granted granted Critical
Publication of EP3702720B1 publication Critical patent/EP3702720B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
    • F41H13/0056Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam for blinding or dazzling, i.e. by overstimulating the opponent's eyes or the enemy's sensor equipment

Definitions

  • the invention relates to DIRCMs (Directed Infrared Counter Measures) or corresponding DIRCM systems.
  • a laser-based DIRCM Directed Infrared Counter Measure
  • the protection system uses high-tech sensors from the manufacturer Elbit Systems to be able to fend off seeker-controlled guided missiles. Such missiles, used by portable air defense systems, pose a great danger, especially during takeoff and landing.
  • a method for operating a DIRCM system for protecting a platform against IR-guided missiles comprising a plurality of DIRCM subsystems operable to track and jam IR-guided missiles; and the DIRCM subsystems comprising a first DIRCM subsystem and a second DIRCM subsystem installed on the platform such that: the first DIRCM subsystem is operable to track and jam IR-guided missiles in a first coverage area; the second DIRCM subsystem is operable to jam IR-guided missiles in a second coverage area; and both the first and second DIRCM subsystems are operable to track and jam IR-guided missiles in an overlap area comprising a first handoff subsection adjacent to the first coverage area and a second handoff subsection adjacent to the second coverage area.
  • the method includes an overlap operation and a handoff operation.
  • the object of the invention is to provide improvements in DIRCMs.
  • the object is achieved by a method according to patent claim 1 for combating an approaching target by means of a DIRCM system, a DIRCM system according to patent claim 12 for carrying out the method and an object according to patent claim 15 with said DIRCM system.
  • the DIRCM system contains an interface to a warning system.
  • the warning system is used to report approaching targets to the DIRCM system via the interface.
  • the DIRCM system contains at least two DIRCM modules or subsystems. Each of the modules is used to track the target in a tracking mode (so-called “tracking") and to attack the target in a beam mode (so-called “jamming").
  • Tracking means locating the target, in particular the above-mentioned IR seeker head, so that targeted irradiation is possible.
  • combating is carried out by irradiation, i.e. emitting radiation, in particular the above-mentioned laser beam, which is beamed into the seeker head in a targeted manner, i.e.
  • the module contains in particular a tracking unit that carries out the tracking and a beam unit that carries out the irradiation.
  • the beam unit contains in particular a jamming laser for irradiating the target.
  • Each module or its tracking/beam units are housed in so-called “turrets" or are structurally concentrated or integrated.
  • Each of the modules has a total area for tracking and/or fighting targets. In particular, tracking and fighting is possible in the total area. However, it is also conceivable that - especially at the edge of the total area - only tracking or fighting is possible. However, these edge areas are so small that they can be neglected.
  • the total area is therefore the entire spatial area in which - especially in the case of a module installed on a platform to be protected - the module has potential targets. can track and/or fight or irradiate.
  • the overall area usually contains a solo area in which the relevant module alone is available for tracking and/or fighting the target. Alternatively or additionally and also usually, the overall area contains an intersection area with at least one, in particular exactly one, of the other modules.
  • the procedure consists of the following steps:
  • a step A) is carried out when the target is reported by the warning system.
  • the modules In this case, exactly one of the modules is selected as the active module for this target.
  • the tracking mode and the beam mode are activated for the target. All other modules remain deactivated for this target.
  • the module in question therefore begins tracking and irradiating or attacking the target and continues to do so until further notice.
  • the statements below always apply to a specific target. The system can attack other targets in parallel. However, this will not be taken into account here.
  • step A a specific module is activated based on the detection of a target by the warning system. This applies in particular to the case where a target is newly reported in the defense area. This means that a target is detected in the defense area for the first time or is detected again after being lost (e.g. if the pursuit is accidentally broken off).
  • step B) is carried out if the target is in one of the solo areas.
  • the tracking mode and the beam mode are switched or remain switched on for the active module associated with the solo area in question. activated.
  • the modes are already activated and therefore remain activated, so they do not need to be reactivated.
  • the active module continues to track and engage the target. Tracking mode and beam mode on all other modules are or remain deactivated (depending on the previous state).
  • a step C) is carried out if the target is in the intersection area between the active module and a second of the modules.
  • the (only) active module forms a first module.
  • a single active module is present in particular or regularly because the target was either detected in the intersection area and exactly one module was activated according to step A) or the target enters the intersection area from a solo area, in which case the only module responsible in the solo area according to step B) is the currently active module.
  • step C either a step C2) (see below) or a step C1) is carried out as follows: In a first step C1a), the tracking mode and the beam mode are deactivated on the first module. In a subsequent step C1b), after the first module has been deactivated, the tracking mode and the beam mode are activated on the second module. In particular, in step C1), by deactivating the first module and then activating the second module, the target or its tracking and combat is transferred from the first to the second module. The second module is now the active module.
  • Step C1 After the active module changes from the first to the second module according to step C1), the following applies: The second module now becomes the "active" and thus the "first” module in the next step C). As a result, i.e. when a step C1) is carried out again, a handover back to the previous (but now "second” module) or a handover to a third (previously uninvolved, now "second") module can also take place if other modules are responsible in the cutting area. Step C1 can therefore be carried out again if required or desired.
  • one of the modules is to be selected in step C1) or C1b) which is to then take over tracking and/or irradiating the target as the second module.
  • step C2) is carried out as follows:
  • the tracking mode and beam mode remain activated for the first (active) module.
  • the target continues to be tracked and irradiated or attacked by the first module. This applies in particular if a target moves from a solo area in which it has already been or is being tracked and irradiated by the first module into the adjacent cutting area.
  • the first or active module continues to track and irradiate without interruption.
  • Steps C1) and C2) can therefore also be carried out alternately or repeatedly as long as the target is in the intersection area or has not been successfully attacked, i.e. if either the active module is to remain active or a further handover to another module is to take place.
  • the target is in particular a missile or rocket.
  • the warning system is in particular a missile warning system (MWS).
  • MFS missile warning system
  • the invention is based in particular on a DIRCM system that is mounted on a platform/object to be protected. This means that the alignments, placements, relative positions, location, shape and orientation of the resulting overall, solo, intersection areas and the defense area on an object to be protected are fixed and known, since the modules are fixed or arranged on the object in a known manner.
  • a module when activated, its tracking unit, which carries out the tracking, and its beam unit, which carries out the irradiation, must be "free" or available in order to be able to track and irradiate the target in question.
  • any module that is not occupied by tracking and/or irradiation at a certain point in time is free at any time to track and/or irradiate another target.
  • this provides a possibility for controlling or managing a multiple DIRCM system (with two, three or more modules).
  • step C1 it is not necessary to transfer from one module (in particular turret) to another (in particular other turret) according to step C1), a parallel tracking by the first and second modules.
  • the second tracking unit and beam unit are activated according to step C1b) and the target is irradiated by the second module.
  • an approach range of the target provided by the warning system can be used in particular (see below).
  • the DIRCM systems according to the invention are installed in particular, for example, in aircraft and are used to defend against infrared-guided missiles (targets) that are fired either from the ground (so-called MAN-PADs, Man Portable Air Defense Systems) or from other aircraft (so-called air-to-air missiles).
  • targets infrared-guided missiles
  • MAN-PADs Man Portable Air Defense Systems
  • air-to-air missiles In larger aircraft, including helicopters (platform, object to be protected), more than one DIRCM device (module) is installed in order to be able to cover a larger spatial angle and thus offer more protection.
  • Several DIRCM devices form a DIRCM system.
  • the part of the DIRCM device (module) that controls the laser beam (tracking unit) and emits it (beam unit) is referred to in particular as a turret.
  • the aircraft are equipped with missile warning systems (warning system) that detect the incoming threat (target) and forward the coordinates (approach area) to the DIRCM system (via the interface).
  • the DIRCM system calculates the best positioned turret (so-called selection criterion, see below), which then swivels towards the target, takes over the track (tracking) and uses a laser to disrupt (irradiate) the seeker head of the approaching missile, thus deflecting (combating) the missile.
  • the DIRCM system selects a second turret, which is in particular better positioned.
  • the invention is concerned in particular with with the transfer of the target from one turret to the second turret, possibly to a third turret, etc., if available.
  • the invention is also based on the following findings: Particularly in agile encounter situations between an aircraft (object to be protected) and an approaching missile (target), it may be necessary to combat the threat (target) from one turret to the next because the target moves out of the effective range (total range) of the first turret.
  • the DIRCM system decides (handover criterion) on the change from one turret to the next (selection criterion). If a handover becomes necessary, the newly selected (second) turret swivels towards the incoming threat, e.g. based on the information from the warning system regarding the approach area, without activating its tracking mode.
  • the first turret switches off the laser (beam mode) and then the second turret switches on its laser and begins to jam (irradiate) the seeker head of the approaching missile.
  • the DIRCM system commands the third turret to move to the top of the aircraft.
  • the laser of the second turret is switched off as soon as the third turret has reached the threat with its field of view (detection range of the swiveled-in tracking unit) or vice versa.
  • the active module is selected according to a selection criterion.
  • a selection criterion A wide range of options are available to the expert for such selection criteria, which can be selected or adapted depending on the combat tactics, threat situation, object to be protected, etc.
  • a corresponding selection criterion can also be used if there are more than two modules in the intersection area, which could take over the target from a first module as a second module.
  • the selection criterion can be used to determine which of the existing modules should be responsible for taking over the combat as the second module.
  • the basic condition that the module is free and ready for tracking and/or irradiation must be met, in particular for all variants of the selection criterion.
  • the following procedure results: If the target is detected by the warning system in the solo area, the attack is initiated by the module responsible there. started. If the target is detected by the warning system in the intersection area, a tracking and combat module is selected according to the selection criteria.
  • an interface to a warning system for reporting a respective approach area of an approaching target is used as the interface.
  • the warning system is able to output an approach area for the target and transmit it to the system.
  • the approach area is in particular an area that is larger than the target area or larger than or equal to the detection area of a module for a specific deflection.
  • the target area indicates the accuracy within which the target is successfully tracked by the module. This is small enough that irradiating the target in the target area results in the interference beam being precisely beamed into the target's IR seeker head.
  • the detection area is the area in which the target must be in order for the module to be able to track it successfully, i.e. to be able to successfully detect the target within the target area.
  • the module enables sufficiently precise targeting to reliably irradiate the target.
  • the warning system on the other hand, only provides a rough direction or rough position of the target, so that targeted irradiation is not always guaranteed.
  • Step C1 is only carried out if a transfer criterion is met.
  • the transfer criterion is also checked further.
  • the transfer criterion is checked permanently, continuously or repeatedly for fulfillment. As long as it is not met, the first module remains active based on step C2) and the transfer criterion is still checked. If it is met, step C1) is carried out and the target is passed on to the second module, which then becomes the first active module in terms of tracking and irradiation and the previously first becomes the second.
  • step C1 is carried out and the target is passed on to the second module, which then becomes the first active module in terms of tracking and irradiation and the previously first becomes the second.
  • the transfer criterion as above for the selection criterion.
  • the expert has a variety of options at his disposal.
  • Certain tactics for target tracking and irradiation can be implemented using appropriate handover criteria.
  • a handover takes place as soon as, i.e. immediately after, the second module is ready.
  • the basic condition that the second module is free and ready for tracking and/or irradiation must be met, especially for all variants of the handover criterion.
  • a handover criterion is used as follows.
  • step C1) before step C1a), the second module is roughly aligned with the target so that the target comes into the detection range of the second module. In an optional embodiment, this is done using the approach range provided by the warning system. This variant assumes that the above-mentioned approach range for the target is available and used by the warning system.
  • the rough alignment ensures that the target safely reaches the (potential) detection range of the second module or is ultimately located in it, so that successful tracking (successful detection of the target in the target range in order to track it precisely) by the second module is possible.
  • the handover criterion is therefore used: that the second module is ready for successful target tracking and/or irradiation when the target reaches the detection range of the second module - in particular of its tracking unit.
  • step C1 it is particularly not necessary, when transferring from one module (first module, in particular turret) to another (in particular second, other turret) according to step C1), to carry out parallel tracking by first and second module.
  • first module first module, in particular turret
  • second module in particular second, other turret
  • the tracking mode of the second module is still deactivated.
  • the second tracking unit and beam unit are activated according to step C1b) and the target is then precisely tracked and irradiated by the second module.
  • the approach range of the target provided by the warning system or any other information is optionally used to guide the second detection range to the target with sufficient accuracy.
  • the first and second modules emit a predeterminable signal pattern to combat the target.
  • the signal pattern has a time profile.
  • the signal patterns of the first and second modules are phase-synchronized with respect to the time profile.
  • Phase-synchronized means the following: In general, the irradiation or attack of the target is carried out using a jamming or irradiation code.
  • the code is a specific pattern of radiation pulses/waveforms, whereby the pattern is emitted according to a certain schedule.
  • Phase-synchronized modules generate the same pattern at the same time and in the same time sequence or offset by a constant time. This means that they emit radiation of the same or different amplitudes simultaneously or with a time delay, but over time they are the same signals or sections of a signal that runs according to the desired time sequence.
  • the missile is irradiated by the first and second modules at the same time, no destructive interference occurs, but the two signals arriving at the target are added together there. In this case, the amplitude of the individual signals emitted by the modules can be reduced.
  • the missile will be permanently hit by the continuous jamming code.
  • the code can be paused for the respective time dT.
  • the first module then ends its irradiation in the code phase P0 and after the time interval dT the second module continues its signal at the same phase P0.
  • the execution of the code is then paused for the time dT and then continued at the same phase.
  • the jamming code phase continues in real time, i.e. the first module ends the irradiation in step C1a) with the code phase P0, after the time interval dT the second module continues the irradiation in the phase P0 + dT.
  • the code part is then skipped during the time interval dT, the code is irradiated with a "gap" but otherwise in continuous real time. The corresponding procedure can again be selected depending on the combat tactics.
  • step C1 before step C1a), the beam mode, but not the tracking mode, is activated on the second module, with the second module deliberately aiming past the target.
  • the target can either be deliberately aimed past the target or the target can be deliberately aimed at.
  • step C1b the beam mode then remains activated on the second module and the second module deliberately aims at the target.
  • Targeting can be based on the approach range of the warning system - especially if the tracking mode is deactivated on the associated module.
  • the target will then continue to be targeted if the target has already been targeted previously.
  • double or multiple irradiation can generally be carried out - i.e. both within the scope of step C2) or step C1) - as soon as the target can be irradiated by at least two beam units:
  • exactly one beam can always be aimed exactly at the target and the other beams can deliberately miss the target, as explained above.
  • any number of phase-synchronized beams can also be aimed at the target simultaneously. or at least not deliberately miss the target. This means that exactly one beam of the module with activated tracking mode can be aimed precisely, while the others can be aimed in other ways, e.g. based on the approach area, since their tracking mode is not activated.
  • the second module aims past the target by aiming at an edge or outside the approach area provided by the warning system, or it aims (in connection with the embodiment of phase-synchronized modules) not past the target by aiming at the edge or inside the approach area, in particular at the center of the approach area. In this way, both aiming and aiming past can be carried out without using the active tracking mode on the corresponding module.
  • Step D) is carried out when the target is in a solo area starting from step B) and then moves directly from the current solo area, which then represents a "previous solo area", to another solo area. Then in the previous solo area, the tracking mode and the beam mode are deactivated for the associated module. Then in the other solo area, the tracking mode and the beam mode are activated for the associated module as the active module. This makes the previously active module (that of the previous solo area) inactive and that of the other solo area becomes the active module. In particular, the target changes from the previous to another solo area, bypassing the intersection areas.
  • At least one or several or all of the areas are defined in a coordinate system as a mathematical model/models. Decisions concerning these areas are then made based on the mathematical model/models.
  • the corresponding areas can thus be stored as data models, in particular in a control and evaluation unit, and processed quickly and effectively with regard to decisions to be made.
  • a DIRCM system for carrying out the method according to the invention, with an interface to a warning system for reporting approaching targets, with at least two DIRCM modules for tracking the target in a tracking mode and for engaging the target in a beam mode, wherein each of the modules has an overall area for tracking and/or engaging targets, and the overall area contains a solo area in which the relevant module alone is available for tracking and engaging, and the overall area contains an intersection area with at least one other of the modules in which all relevant modules are available for tracking and/or engaging, wherein a defense area is the union of all overall areas, and with a control and evaluation unit for carrying out the method steps of the method according to the invention.
  • the beam mode and the tracking mode can be activated and deactivated independently of each other.
  • the control and evaluation unit contains in particular the mathematical models mentioned above or a corresponding device for implementing and processing the models.
  • the warning system is integrated into the DIRCM system as part of the system, although the warning system may still be an independent system.
  • the interface is an interface to a warning system for reporting a respective approach area of an approaching target, or the warning system is one for outputting the approach area.
  • At least two of the modules are designed to emit a predeterminable signal pattern having a time profile in order to combat the target, and the modules can be phase-synchronized with respect to the time profile or, if necessary, phase-synchronized during operation, as described above.
  • the object of the invention is also achieved by an object according to claim 16, which is to be protected from an approaching target, with a DIRCM system according to the invention.
  • the object is a vehicle.
  • the vehicle is an air, land or sea vehicle, an aircraft or a helicopter, in particular a transport and/or passenger aircraft or helicopter.
  • Figure 1 shows a DIRCM system 2 engaging an approaching target 4.
  • the system 2 is mounted on or at an object 6 to be protected, here a transport aircraft shown only symbolically in detail.
  • the approaching target 4 here is an IR-guided enemy missile that intends to destroy the target 4.
  • the system 2 contains an interface 8 to a warning system 10, which is also attached to the object 6.
  • the warning system 10 is used to report approaching targets and is an MWS in this case. It is also used to report a respective approach area 11 of the respective target.
  • the approach area 11 is a rough area and indicates an approximate position or direction to the target, but this does not allow exact or safe location or tracking of the target. In particular, it is therefore not possible to precisely irradiate the IR seeker head of the missile with a laser.
  • the specific target 4 is always referred to as a representative of all potential targets in order to explain the invention.
  • the system 2 also contains two DIRCM modules 12a,b, here so-called turrets, which are attached to the transport aircraft. Both are each suitable for tracking the target 4 in a tracking mode MV, i.e. locating it precisely, and for irradiating it in a beam mode MS and thus attacking it.
  • each module 12a,b contains a tracking unit 16, and to carry out the beam mode MS, a beam unit 18.
  • the target 4 can be tracked by the module 12b, i.e. located so precisely that a laser beam 20 can be beamed into the IR seeker head of the target 4 with the help of the beam unit 18 in order to attack the target 4 by directing the target 4 away from the object 6. Thanks to this precise location, it is possible to beam a laser beam into the IR seeker head of the missile.
  • Each of the modules 12a,b is assigned a respective overall area BGa,b in which the respective module 12a,b is able to track and attack the target 4.
  • Figure 1 the edges of the total areas BGa,b are thickened and shown dashed for BGb.
  • Each of the total areas BGa,b in turn contains a solo area BOa,b.
  • In the solo area BOa only module 12a is able to track and attack target 4, in the solo area BOb only module 12b.
  • both modules 12a,b are able to track and attack target 4.
  • a defense area BA is formed by the union of the total areas BGa,b; in this, defense of target 4 is possible by at least one of the modules 12a,b or by system 2.
  • the system 2 also contains a control and evaluation unit 14, which is designed to carry out the following procedure for combating the approaching target 4 by the system 2: Initially, no target 4 flies towards the object 6. The system 2 is therefore initially on standby. Both modules 12a,b are deactivated.
  • the warning system 10 monitors the object for approaching targets 4. At a certain point in time, the warning system 10 reports the approaching target 4 and also its approach area 11 via the interface 8. Since the target 4 is now reported by the warning system 11, according to the method exactly one of the modules 12a,b is selected as the active module and the tracking mode MV and the beam mode MS are activated for the target 4. The selection is made here using a selection criterion KA.
  • the selection criterion KA consists in selecting the module 12a,b that is closest to the target 4, in this case the module 12b.
  • the target 4 is tracked by the module 12b and attacked by shining the laser beam 20 into the IR seeker head of the target 4 in order to direct the target 4 away from the object 6.
  • the procedure continues to check whether the target 4 is in one of the solo areas BOa,b or in the intersection area BS. If the target 4 (not shown here) were in the solo area BOb or moving there, the tracking mode MV and the beam mode MS would remain activated in the currently active module 12b.
  • the active module 12b is defined as the first module and the other module 12a as the second module, which would alternatively be capable of tracking and irradiating the target 4. According to the method, either the tracking mode MV and the beam mode MS remain activated in the currently active module 12b or it is transferred to the other module 12a, as explained below.
  • the selection of these two variants is decided based on a handover criterion KÜ, which is continuously monitored and checked.
  • the handover criterion KÜ is that target 4 reaches a boundary surface 21.
  • target 4 moves - as shown by arrow 22 - in the defense area BA.
  • target 4 actually reaches boundary surface 21.
  • the tracking mode MV and the beam mode MS are deactivated in the first, currently active module 12b.
  • the second module 12a then becomes the active module and its tracking mode MV and beam mode MS are activated.
  • the transfer criterion KÜ continues to be checked continuously.
  • target 4 then moves into the solo area BOa, which is why the handover criterion KÜ is not met again.
  • the currently active module 12a remains activated in terms of tracking mode MV and beam mode MS in accordance with the above procedural condition.
  • the attack is successful and target 4 turns away from object 6.
  • Figure 1 also shows how the target 4 migrates at a later point in time along the arrow 24 from the solo area BOa, bypassing the intersection area BS, directly into the solo area BOb.
  • tracking mode MV and beam mode MS are switched directly from module 12a to module 12b, ie deactivated in module 12a and activated in module 12b.
  • Figure 2 shows only by way of example and schematically over time t a signal pattern according to which the laser beam 20 is emitted or modulated in its amplitude in order to deflect the target 4.
  • Figure 2a shows the desired course of the signal pattern over a longer period of time.
  • the module 12b generates the laser beam 20 according to Figure 2a .
  • the target 4 reaches the point P in Fig.1 , so that from this point in time t0 onwards the laser beam no longer comes from the module 12b, but according to Fig. 2b is emitted by the module 12a.
  • the signal patterns of the laser beams 20 of the modules 12a,b are phase-synchronized.
  • the irradiation by the module 12b ends at phase P0 of the entire signal path after Fig. 2a , the irradiation of module 12a is continued at phase P0.
  • target 4 is permanently illuminated with the continuous signal pattern according to Fig. 2a (solid and dashed section) irradiated, since the solid signal section in Fig. 2b exactly the dashed in Fig. 2a corresponds.
  • the irradiation is continued at time t0+dT by the module 12a with the phase P0 at which the irradiation of the module 12b ended. Accordingly, the target 4 is illuminated with the complete signal pattern according to Fig. 2a irradiated, but the signal pattern is paused or stretched for the time period dT.
  • the "code" according to Fig. 2a is completely radiated onto target 4, albeit with a time gap dT.
  • a mathematical model 26 of the areas BGa,b, BOa,b, BS and BA is present in the control and evaluation unit 14.
  • the target 4 is then also located in the corresponding model 26 as a virtual target. Decisions as to whether and where the target 4 is located in the relevant areas, whether Whether the criteria KA, KÜ are met or not, etc. are then decided - where necessary - using Model 26.
  • Figure 4 illustrates the following variant for transferring the target 4 or the tracking mode MV and beam mode MS from the first module 12a to the second module 12b.
  • the target 4 is successfully tracked by the module 12a (tracking mode MV activated), ie it is precisely located (symbolized by the cross on the target). In addition, it is successfully irradiated by the module 12a in beam mode MS.
  • the module 12b is deactivated (tracking mode MV and beam mode MS deactivated).
  • the detection areas 17a,b of the modules 12a,b or of their tracking units 16 are also shown. As soon as the target 4 is initially located within such a detection area 17a,b of the modules 12a,b, the target can be detected exactly in the respective target area when the tracking mode MV is activated (cross marking).
  • the warning system 10 provides the (rough) approach area 11 of the target 4.
  • This approach area 11 is now used to swivel the second module 12b - with the MV tracking mode and MS beam mode still deactivated - towards the target so far that the target comes into the detection range 17b of the module 12b or of its tracking unit 16.
  • the swiveling is shown by the arrow 28.
  • the tracking unit 16 has not yet swiveled far enough towards the target 4. Its detection range 17b is still far away from the target 4. Activating the MV tracking mode on the module 12b could not yet lead to successful tracking by the module 12b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Claims (15)

  1. Procédé de lutte contre une cible en vol d'approche (4) au moyen d'un système DIRCM (2), le système DIRCM (2) comprenant :
    - une interface (8) avec un système d'alerte (10) pour signaler des cibles (4) en vol d'approche,
    - au moins deux modules DIRCM (12a,b) de poursuite de la cible (4) dans un mode poursuite (MV) et de lutte par irradiation de la cible (4) dans un mode faisceau (MS),
    - chacun des modules (12a,b) comportant une zone globale (BGa, b) de poursuite et/ou de lutte contre des cibles (4),
    - et la zone globale (BGa,b) comprenant une zone solo (BOa,b) dans laquelle seul le module concerné (12a,b) est disponible pour la poursuite et/ou la lutte,
    - et la zone globale (BGa,b) comprenant une zone d'intersection (BS) avec au moins un autre des modules (12a,b), dans laquelle tous les modules concernés (12a,b) sont disponibles pour la poursuite et/ou la lutte,
    - une zone de défense (BA) étant l'ensemble d'union de toutes les zones globales (BGa,b),
    dans lequel :
    - A) lorsque la cible (4) est signalée par le système d'alerte (10) :
    exactement l'un des modules (12a,b) est sélectionné comme module actif et dans celui-ci, le mode poursuite (MV) et le mode faisceau (MS) sont activés pour la cible (4),
    et il est vérifié dès lors si la cible (4) se trouve dans l'une des zones solo (Boa,b) ou dans la zone d'intersection (BS), et :
    - B) lorsque la cible (4) se trouve dans l'une des zones solo (BOa,b) : dans laquelle le mode poursuite (MV) et le mode faisceau (MS) sont activés ou restent activés dans le module actif (12a,b) associé à la zone solo (BOa,b), et le mode poursuite (MV) et le mode faisceau (MS) sont désactivés ou restent désactivés pour tous les autres modules,
    et
    - C) lorsque la cible (4) se trouve dans la zone d'intersection (BS) entre le module actif (12a,b) en tant que premier module (12a,b) et un second des modules (12a,b) :
    - un critère de transfert (KÜ) est vérifié, et
    - C1) lorsque le critère de transfert (KÜ) est satisfait
    - C1a) le mode poursuite (MV) et le mode faisceau (MS) sont désactivés dans le premier module (12a,b),
    - C1b) après la désactivation réussie du premier module (12a,b) : le mode poursuite (MV) est activé dans le second module (12a,b) et le mode faisceau (MS) est activé ou reste activé dans le second module (12a,b),
    - C2) et lorsque le critère de transfert (KÜ) n'est pas satisfait dans le premier module (12a,b), le mode poursuite (MV) et le mode faisceau (MS) restent activés, et le critère de transfert (KÜ) continue d'être vérifié à l'étape C) tant qu'il n'est pas satisfait.
  2. Procédé selon la revendication 1,
    caractérisé en ce que, lors de l'étape A), le module actif (12a,b) est sélectionné selon un critère de sélection (KA).
  3. Procédé selon la revendication 2,
    caractérisé en ce que l'on utilise comme critère de sélection (KA) :
    - pour la cible (4) dans la zone solo (BOa,b) : le module associé (12a,b) à la zone solo (BOa,b),
    ou
    - pour la cible (4) dans la zone d'intersection (BS) :
    le module (12a,b) parmi ceux de la zone d'intersection (BS) :
    - dans une plage de distance prédéterminée par rapport à la cible (4), et/ou
    - ayant le moins d'espacement de la poursuite et/ou de la lutte actuelle par rapport à une position médiane en ce qui concerne une zone de poursuite et/ou de lutte du module (12a,b), et/ou
    - ayant une zone globale (BGa,b) ou une zone d'intersection (BS) prédéfinissable, et/ou
    - ayant un pronostic de réussite prédéfinissable pour une lutte réussie.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on utilise comme interface (8) une interface (8) avec un système d'alerte (10) pour signaler une zone de vol d'approche (11) respective d'une cible (4) en vol d'approche.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on utilise comme critère de transfert (KÜ) :
    - le fait que le second module (12a,b) est prêt pour une poursuite et/ou une irradiation réussie de la cible, et/ou
    - le fait qu'un paramètre limite prédéfinissable est atteint dans le premier et/ou le second module (12a,b), et/ou
    - le fait que le premier module (12a,b) ne parvient plus à poursuivre la cible (4) et/ou à l'irradier, et/ou
    - le fait que la cible (4) atteint une surface limite (21) prédéfinissable dans la zone d'intersection (BS), et/ou
    - le fait que la cible (4) passe en dessous d'une distance prédéfinissable par rapport à la seconde zone solo (BOb), et/ou
    - le fait que la cible (4) quitte la zone d'intersection (BS) pour aller vers la seconde zone solo (BOb).
  6. Procédé selon la revendication 5,
    caractérisé en ce que, lors de l'étape C1) :
    - avant l'étape C1a), le second module (12a,b) est orienté grossièrement vers la cible (4), et
    en ce que l'on utilise comme critère de transfert (KÜ) :
    - le fait que le second module (12a,b) est prêt pour une poursuite et/ou - une irradiation réussie de la cible en raison du fait que la cible (4) arrive dans une zone de détection (17a, b) du second module (12a,b).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins deux des modules (12a,b) émettent, pour lutter contre la cible (4), un motif de signal prédéfinissable qui présente une évolution dans le temps, et à l'étape C1) - dans le cas où celle-ci est exécutée - les motifs de signaux du premier et du second module (12a,b) sont synchronisés en phase en ce qui concerne l'évolution dans le temps.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que, à l'étape C1) - si celle-ci est exécutée -
    - avant l'étape C1a), le mode faisceau (MS) est activé dans le second module (12a,b), mais pas le mode poursuite (MV), le second module (12a,b) visant délibérément à côté de la cible (4) ou - en liaison avec la revendication 8
    - vise délibérément à côté de la cible (4) ou vise délibérément la cible (4),
    - à l'étape C1b), le mode faisceau (MS) reste activé dans le second module (12a,b) et est délibérément dirigé vers la cible (4) par le second module (12b).
  9. Procédé selon la revendication 8 en liaison avec la revendication 4,
    caractérisé en ce que le second module (12b) vise la cible (4) en faisant en sorte
    - qu'il vise un bord ou l'extérieur de la zone de vol d'approche (11) fournie par le système d'alerte (10), ou
    - qu'en liaison avec la revendication 7, il ne vise pas à côté de la cible (4) en faisant en sorte de viser le bord ou l'intérieur de la zone de vol d'approche (11).
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que,
    - D) lorsque la cible (4) se déplace, à partir de l'étape B), directement à partir de la zone solo actuelle, en tant que zone solo (BOa,b) précédente, vers une autre zone solo (BOa,b) :
    - dans la zone solo précédente (BOa,b), le mode poursuite (MV) et le mode faisceau (MS) sont désactivés dans le module associé (12a,b),
    - dans l'autre zone solo (BOa,b), le mode poursuite (MV) et le mode faisceau (MS) sont activés dans le module associé (12a,b) en tant que module actif.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une ou plusieurs ou la totalité des zones, à savoir la zone globale, la zone solo et la zone d'intersection et de défense (BGa,b ; BOa,b ; BS ; BA) sont fixées dans un système de coordonnées en tant que modèle mathématique (26) et que des décisions qui concernent ces zones (BGa,b ; BOa,b ; BS ; BA) sont prises à l'aide du modèle mathématique (26) .
  12. Système DIRCM (2) destiné à la mise en œuvre d'un procédé selon l'une des revendications précédentes, comprenant
    - une interface (8) avec un système d'alerte (10) pour signaler des cibles (4) en vol d'approche,
    - au moins deux modules DIRCM (12a,b) de poursuite de la cible (4) dans un mode poursuite (MV) et de lutte contre la cible (4) dans un mode faisceau (MS),
    - chacun des modules (12a,b) comportant une zone globale (BGa, b) de poursuivre et/ou lutter contre des cibles (4),
    - et la zone globale (BGa,b) comprenant une zone solo (BOa,b) dans laquelle seul le module concerné (12a,b) est disponible pour la poursuite et la lutte,
    - et la zone globale (BGa,b) comprenant une zone d'intersection (BS) avec au moins un autre des modules (12a,b), dans laquelle tous les modules concernés (12a,b) sont disponibles pour la poursuite et/ou la lutte,
    - une zone de défense (BA) étant l'ensemble d'union de toutes les zones globales (BGa,b),
    - une unité de commande et d'évaluation (14) pour l'exécution des étapes du procédé.
  13. Système DIRCM (2) selon la revendication 12,
    caractérisé en ce que l'interface (8) est une interface (8) avec un système d'alerte (10) pour signaler une zone de vol d'approche (11) respective d'une cible en vol d'approche (4).
  14. Système DIRCM (2) selon l'une des revendications 12 à 13,
    caractérisé en ce qu'au moins deux des modules (12a,b) sont conçus pour rayonner, aux fins de la lutte contre la cible (4), un motif de signal prédéfinissable qui présente une évolution dans le temps, et en ce que les modules (12a,b) peuvent être synchronisés en phase en ce qui concerne l'évolution dans le temps.
  15. Objet (6) devant être protégé d'une cible (4) en vol d'approche, comprenant un système DIRCM (2) selon l'une des revendications 12 à 14.
EP20157227.8A 2019-02-20 2020-02-13 Dircm à transfert simplifié entre les modules Active EP3702720B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019001215 2019-02-20

Publications (2)

Publication Number Publication Date
EP3702720A1 EP3702720A1 (fr) 2020-09-02
EP3702720B1 true EP3702720B1 (fr) 2024-05-22

Family

ID=69591552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20157227.8A Active EP3702720B1 (fr) 2019-02-20 2020-02-13 Dircm à transfert simplifié entre les modules

Country Status (2)

Country Link
EP (1) EP3702720B1 (fr)
IL (1) IL272707A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004949A1 (de) 2020-08-14 2022-02-17 Diehl Defence Gmbh & Co. Kg DIRCM mit autarker überschneidungsfreier Übergabe zwischen Modulen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116403A2 (fr) * 2006-04-10 2007-10-18 Elta Systems Ltd. système de brouillage réparti
SG10201602952VA (en) * 2015-04-17 2016-11-29 Sie Soc It Elettronica Multiple turret dircm system and related method of operation

Also Published As

Publication number Publication date
EP3702720A1 (fr) 2020-09-02
IL272707A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
DE102010005199B4 (de) Verfahren und Vorrichtung zur Ortsbestimmung eines fliegenden Ziels
EP0977003A1 (fr) Procédé pour combattre au moins une cible aérienne au moyen d'un groupe de tir, groupe de tir comprenant au moins deux unités de tir et utilisation du groupe de tir
EP1992902B1 (fr) Système de leurrage IR pour une défense anti aérienne contrant les missiles équippés de têtes chercheuses sensibles aux IR
EP3751226B1 (fr) Dircm à transfert prédictif entre les modules
EP3702720B1 (fr) Dircm à transfert simplifié entre les modules
EP2482025B1 (fr) Procédé et dispositif de défense contre l'attaque d'un missile
EP3514477A1 (fr) Système et procédé de perturbation d'une détection de cibles
EP3699544B1 (fr) Dircm à double suivi d'une cible
DE102011009460B4 (de) Verfahren zum Abwehren eines Angriffs eines Flugkörpers
EP3118561B1 (fr) Systeme a energie dirigee et systeme d'arme
DE3013405C2 (de) Verfahren zum Vermeiden des Nachrichtens von Abschußgeräten für ballistische Flugkörper
EP3376154B1 (fr) Procédé de protection d'un missile de croisière
EP3800483A1 (fr) Alignement d'un détecteur d'un module dircm sur une cible
EP3118567B1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
DE3343604C2 (de) Verfahren und Einrichtung zum Bekämpfen von Bodenzielen mittels eines radargelenkten Flugkörpers
EP3954964B1 (fr) Dircm à transfert autonome sans chevauchement entre les modules
EP3282216B1 (fr) Dispositif de dégradation au moyen de rayonnement orienté
DE102013014192B4 (de) Verfahren zum Schützen eines Schutzobjekts
DE102010005198B4 (de) Flugkörper und Verfahren zum Erfassen eines Ziels
EP3894779A1 (fr) Procédé de protection d'objets mobiles ou immobiles contre des menaces guidées par laser qui s'approchent
DE2918858C2 (de) Anordnung zur Zieleinweisung eines Suchkopfes
EP3118566B1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
DE102022003403A1 (de) DIRCM mit Prädiktion von MWS-Daten
DE102020004681A1 (de) System zur Luftverteidigung, Unterstützungsflugkörper und Verfahren zum Lenken eines Bekämpfungsflugkörpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020008038

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN