EP3699544B1 - Dircm à double suivi d'une cible - Google Patents

Dircm à double suivi d'une cible Download PDF

Info

Publication number
EP3699544B1
EP3699544B1 EP20157233.6A EP20157233A EP3699544B1 EP 3699544 B1 EP3699544 B1 EP 3699544B1 EP 20157233 A EP20157233 A EP 20157233A EP 3699544 B1 EP3699544 B1 EP 3699544B1
Authority
EP
European Patent Office
Prior art keywords
module
target
region
tracking
solo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20157233.6A
Other languages
German (de)
English (en)
Other versions
EP3699544A1 (fr
Inventor
Andreas von Mirbach
Klaus Dresel
Markus Mauder
Martin Regensburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP3699544A1 publication Critical patent/EP3699544A1/fr
Application granted granted Critical
Publication of EP3699544B1 publication Critical patent/EP3699544B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
    • F41H13/0056Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam for blinding or dazzling, i.e. by overstimulating the opponent's eyes or the enemy's sensor equipment

Definitions

  • the invention relates to DIRCMs (Directed Infrared Counter Measures) or corresponding DIRCM systems.
  • a laser-based DIRCM Directed Infrared Counter Measure
  • the protection system uses high-tech sensors from the manufacturer Elbit Systems to be able to fend off seeker-controlled guided missiles. Such missiles, used by portable air defense systems, pose a great danger, especially during take-off and landing.
  • Diehl Defense is integrating three of the tried-and-tested J-MUSIC (Multi-Spectral Infrared Countermeasure) laser devices from Elbit into an expanded overall system To ensure 360° all-round protection for the aircraft.
  • the new DIRCM system works in conjunction with the on-board missile detector and focuses the highly dynamic and precisely guided laser beam directly onto the infrared seeker head of the attacking object.
  • the DIRCM system comprising a plurality of DIRCM subsystems operable to track and jam IR-guided missiles; and wherein the DIRCM subsystems include a first DIRCM subsystem and a second DIRCM subsystem based on the Platform are installed such that: the first DIRCM subsystem is operable to track and jam IR-guided missiles in a first coverage area; the second DIRCM subsystem is operable to track and jam IR-guided missiles in a second coverage area; and both the first and second DIRCM subsystems are operable to track and jam IR-guided missiles in an overlap area that includes a first handover subsection adjacent to the first coverage area and a second handoff subsection adjacent to the second coverage area includes.
  • the procedure includes an overlap operation and a handover operation.
  • a modulation device which supplies optical energy to impede the operation of a mobile tracking device.
  • the optical energy may include multiple optical codes specific to the mobile device directed in parallel at the mobile tracking device.
  • a laser-based system for protecting a platform against armament equipped with an optical seeker head is known.
  • the system includes a command and control arrangement with an interface to a detection and detection system. This detects and locates a threatening weapon and provides a warning about the detection of the threatening weapon in combination with relevant data.
  • the system receives a laser source that can be operated by the command and control assembly to generate the energy required to jam the optical seeker of the threatening weapon.
  • the system additionally includes a sectioned array of multiple end units connected to the laser source for selectively directing laser energy from the source to an end unit selected by the command and control assembly as the end unit most appropriate under the prevailing conditions is to point at the threatening weaponry and attack it by sending a laser beam in its direction.
  • the object of the invention is to provide improvements in DIRCMs.
  • the DIRCM system contains an interface to a warning system.
  • the warning system is used to report approaching targets to the DIRCM system via the interface.
  • the DIRCM system contains at least two DIRCM modules or subsystems. Each of the modules is used to track the target in a pursuit mode (so-called “tracking") and to engage the target in a beam mode (so-called “jamming"). Tracking means locating the target, especially the one mentioned above. IR seeker head, so that targeted irradiation is possible.
  • the fight is carried out by irradiation, i.e. the emission of radiation, in particular the above-mentioned. Laser beam that is irradiated specifically into the search head, i.e. H. that the search head is irradiated.
  • the module contains in particular a tracking unit that carries out the tracking and a beam unit that carries out the irradiation.
  • the beam unit contains in particular a jamming laser for irradiating the target.
  • a respective module or its tracking/beam units are accommodated in particular in so-called “turrets” or are structurally concentrated or integrated.
  • Each of the modules has an overall area for tracking and/or engaging targets.
  • tracking and fighting is possible in the entire area.
  • - especially at the edge of the overall area - only tracking or fighting is possible.
  • these edge areas are so small that they can be neglected.
  • the overall area is therefore the entire spatial area in which - particularly in the case of a module installed on a platform to be protected - the module can track and/or combat or irradiate potential targets.
  • the overall area usually contains a solo area in which only the module in question is available for tracking and/or combating the target.
  • the overall area contains an intersection area with at least one, in particular exactly one, other of the modules.
  • all relevant modules are used to track and/or combat the destination available.
  • the totality or combination of all areas forms a defense area, in which the DIRCM system is able to track and/or combat targets with the help of at least one module.
  • Activating a module means starting and continuing the irradiation or tracking, deactivating means stopping and leaving the irradiation or tracking finished.
  • the procedure has the following steps:
  • a step A) is carried out when the target is reported by the warning system.
  • the active module activates the tracking mode and the beam mode for the target. All other modules remain disabled for this target.
  • the module in question begins with tracking and irradiating or combating the target and continues this until further notice. In general, the statements below always apply to a specific goal. The system can combat other targets in parallel. However, this should be ignored here.
  • step A in particular, a specific module is activated due to the detection of a target by the warning system. This applies in particular to the case where a target is newly reported in the defense area. This means that a target is recognized in the defense area for the first time or is recognized again after losing (e.g. unintentionally breaking off the pursuit).
  • step B) is performed when the target is in one of the solo areas.
  • the tracking mode and the beam mode are activated or remain activated for the active module that is associated with the relevant solo area.
  • the modes are already activated and therefore remain activated and do not need to be activated again.
  • the active module continues to pursue and engage the target. Track mode and beam mode all other modules will be or remain deactivated (depending on their previous status).
  • a step C) is carried out when the target is in the intersection between the active module and a second of the modules.
  • the (only) active module forms a first module.
  • a single active module is particularly or regularly present because the target was either detected in the cutting area and exactly one module was activated according to step A) or the target enters the cutting area from a solo area, in which case the only one in the solo area according to step B).
  • the responsible module is the currently active module.
  • step C either a step C2) or C3) (see below) or a step C1) is carried out as follows: This step is only carried out if the tracking mode is not activated on the second module. For the first (active) module, the tracking mode and beam mode remain activated and for the second module they remain deactivated. In particular, the target continues to be pursued and irradiated or combated by the first module. This applies in particular in the event that a target moves from a solo area in which it has already been or is being tracked and irradiated by the first module into the adjacent cutting area. The first or active module continues tracking and irradiation without interruption.
  • a step C2) is carried out. This step is also only carried out if the tracking mode is not activated on the second module. The tracking mode on the second module will be activated and on the first module the tracking mode and the beam mode will remain activated. This means that the target is tracked twice by the first and second module.
  • a step C3) is carried out. This step is only carried out if the tracking modes are activated on the first and second module. This step enables the beam mode on the second module, disables the beam mode on the first module, and leaves the tracking modes enabled on the first and second modules. If double tracking continues, the irradiation is transferred from the first to the second module. Disabling the first beam mode and enabling the second beam mode can be done in any order.
  • step C3) the target or its combat is transferred from the first to the second module by deactivating the beam mode in the first module and then activating it in the second module.
  • the second module is the active module.
  • step C3 After changing the active module from the first to the second module according to step C3), the following applies:
  • the second module now becomes the "active" and thus the "first” module in a next new step C3).
  • step C3 If step C3 is carried out again, a transfer back to the previous (now “second” module) or a transfer to a third (previously uninvolved, now "second") module can also take place if there are other modules responsible in the cutting area are. Step C3) can therefore be carried out again if necessary or desired.
  • step C2) or C3 one of the modules must be selected, which is then to take over the tracking and/or irradiation of the target as the second module.
  • step C2 Since after executing step C2 once, the tracking mode is activated for the first and second module and none of the tracking modes are deactivated again by (even repeatedly) executing step C3, no return is made to step C1 or C2 as long as the target is Do not leave the cutting area. This means that once the tracking modes have been activated on two modules in the cutting area, there will be no return to a single tracking mode until the target has left the cutting area or has been successfully engaged. This offers the advantage that the irradiation within the cutting area can be taken up again at any time by another module, in particular can be taken back by the originally first active module. There is also redundancy in tracking by at least two tracking units.
  • Steps C1, C2, C3, in this order describe an escalation procedure to make no change to the response - then prepare a handover to another module - and then carry out the handover.
  • the target is in particular a missile or rocket.
  • the warning system is in particular a missile warning system (missile warning system or MWS: Missile Warning System).
  • the invention is based in particular on a DIRCM system that is mounted on a platform/object to be protected. This means that the alignments, placements, relative positions, location, shape and orientation of the resulting overall, solo, cutting areas and the defense area on an object to be protected are fixed and known, since the modules are fixed or in a known manner on the object are arranged.
  • step C3 it is possible to carry out parallel tracking by the first and second module when transferring from one module (in particular turret) to another (in particular another turret) according to step C3).
  • the DIRCM systems according to the invention are used in particular, for. B. installed in aircraft and are used to defend against infrared-guided missiles (target) that come either from the ground (so-called MAN-PADs, Man Portable Air Defense Systems) or from other aircraft (so-called air-to-air missiles). be shot down.
  • MAN-PADs Man Portable Air Defense Systems
  • air-to-air missiles be shot down.
  • more than one DIRCM device (module) is installed in order to cover a larger solid angle and thus be able to offer more protection.
  • Multiple DIRCM devices form a DIRCM system.
  • the part of the DIRCM device (module) that controls (tracking unit) and emits (beam unit) the laser beam is specifically referred to as a turret.
  • the aircraft have missile detectors (warning system) that detect the incoming threat (target) and forward the coordinates (approach area) to the DIRCM system (via the interface). Based on the coordinates, the DIRCM system (or its control and evaluation unit, see below) calculates in particular the best positioned turret (so-called selection criterion, see below), which then swings towards the target, takes over the track (tracking) and the The seeker head of the incoming missile is disrupted (irradiated) by means of a laser and thus deflects (fights) the missile.
  • missile detectors detection system
  • the DIRCM system or its control and evaluation unit, see below
  • the DIRCM system selects a second turret, which is in particular better positioned.
  • the invention is particularly concerned with the transfer of the target from one turret to the second turret, possibly to a third turret, etc., if available.
  • the invention is based on the following findings: Particularly in agile encounter situations between aircraft (object to be protected) and incoming missile (target), it can happen that combating the threat (target) from one turret to the next becomes necessary because the target moved out of the effective range (total range) of the first turret.
  • the DIRCM system decides (handover criterion) about the change from one turret to the next (selection criterion). If a handover is necessary, the newly selected (second) turret pivots towards the incoming threat, e.g. B. based on the information from the warning system regarding the approach area, and activates its tracking mode.
  • the first turret switches off the laser (beam mode) and then or before that, the second turret switches on its laser and begins jamming (irradiating ) of the search head of the incoming missile.
  • the first turret continues to pursue the target in order to provide redundancy or, if necessary, to be able to immediately resume irradiation of the target.
  • the DIRCM system commands the third turret accordingly to the top of the missile. In this case, too, the laser of the second turret is switched off as soon as the third turret's field of vision (detection range of the pivoted tracking unit) has reached the threat or vice versa.
  • the active module is selected according to a selection criterion.
  • selection criteria e.g. B. can be selected or adjusted depending on the combat tactics, threat situation, object to be protected, etc.
  • a corresponding selection criterion can also be used if there are more than two modules in the cutting area that, as a respective second module, could take over the goal of a first module.
  • a selection criterion can be used to determine which of the existing modules should be the second module responsible for additional tracking and, if necessary, for taking over the fight.
  • the basic condition that the module is free and ready for tracking and/or irradiation must be met, in particular for all variants of the selection criterion.
  • the following procedure results: If the target is detected by the warning system in the solo area, combat is started with the module responsible there. If the target is detected by the warning system in the cutting area, a tracking and combat module is selected according to the selection criterion.
  • an interface to a warning system for reporting a respective approach area of an approaching target is used as an interface.
  • the warning system is able to issue an approach area for the target and transmit it to the system.
  • the approach area is in particular an area that is larger than the target area or larger than or equal to the detection area of a module at a specific deflection.
  • the target range indicates the accuracy within which the target is successfully tracked by the module. This is small enough that irradiating the target in the target area results in the interference beam being irradiated precisely into the target's IR seeker head.
  • the detection area is the area in which the target must be in order to do so the module can successfully track, that is, it can successfully capture the target accurately within the target area. In other words, the module enables sufficiently precise aiming to safely irradiate the target.
  • the warning system on the other hand, only provides a rough direction or position of the target, so that targeted irradiation is not always guaranteed.
  • Step C2 is only carried out if an activation criterion is met.
  • the same statements apply to the activation criterion as to the selection criterion above.
  • the specialist has a variety of options available.
  • Certain tactics for tracking and irradiating targets can be implemented using appropriate activation criteria.
  • a handover takes place as soon as, i.e. immediately after, the second module is ready.
  • the basic condition that the second module is free and ready for tracking and/or irradiation must be met, especially for all variants of the activation criteria.
  • Step C3 is only carried out if a handover criterion is met.
  • the handover criterion is also further checked.
  • the handover criterion is permanently, permanently or repeatedly checked for fulfillment. As long as it is not fulfilled, the first module remains active and the handover criterion continues to be checked. When this is fulfilled, step C3) is carried out and the target in terms of irradiation is transferred to the second module, which then becomes the first active module in terms of tracking and irradiation and the previously first module becomes the second.
  • the specialist has a variety of options available.
  • a handover takes place as soon as, i.e. immediately after the second module is ready.
  • the basic condition that the second module is free and ready for tracking and/or irradiation must be met, in particular for all variants of the handover criterion.
  • the first and second modules emit a predeterminable signal pattern for engaging the target.
  • the signal pattern has a time course.
  • the signal patterns of the first and second modules are phase-synchronized with respect to the time course.
  • Phase-synchronized means the following: In general, the irradiation or attack of the target is carried out using a jamming or irradiation code.
  • the code is a specific pattern of radiation pulses/waveforms, where the pattern is broadcast on a specific schedule.
  • Phase-synchronized modules generate the same pattern at the same time and over the same time course or offset by a constant time offset. This means that they emit radiation of the same or different amplitudes at the same time or with a time delay, but over time they are the same signals or in each case sections of a signal that follow the desired time course.
  • the missile is irradiated by the first and second modules at the same time, no destructive interference occurs, but rather the two signals arriving at the target are added there. Therefore, in this case, in particular, the amplitude of the individual signals emitted by the modules can be reduced.
  • the missile is permanently hit by the uninterrupted jamming code. If, on the other hand, a pause of a time interval dT occurs during the change from the first to the second laser beam in step C3) (the missile is not irradiated by either the first or the second module during the pause), in a first embodiment the code can be stopped for the respective time dT become. The first module then ends its irradiation in the code phase P0 and after the time interval dT, the second module adds its signal the same phase P0. At the finish, the execution of the code is paused for the time dT and then continued at the same phase.
  • the fault code phase continues in real time, i.e. H. the first module ends the irradiation in step C3) with the code phase P0, after the time interval dT the second module continues the irradiation at the phase P0 + dT.
  • the code part is then skipped during the time interval dT; the code is transmitted with a "gap", but otherwise in continuous real time.
  • the appropriate approach can again be chosen depending on the combat tactics.
  • step C3) the beam mode is activated on the second module before the beam mode is deactivated on the first module, with the second module deliberately aiming past the target.
  • step C3) the beam mode on the second module remains activated after deactivation on the first module and the second module consciously aims at the target.
  • the targeting of one of the irradiations can - if desired - take place on the basis of the approach area of the warning system.
  • double or multiple irradiation can generally be carried out - i.e. both in the context of steps C1) to C3) - as soon as the target can be irradiated by at least two beam units:
  • exactly one beam can always be aimed exactly at the target Be aimed at the target and consciously aim the other beams past the target, as explained above.
  • - with phase-synchronized beams any number of phase-synchronized beams can also shine on the target at the same time or at least not consciously radiate past the target.
  • Exactly one beam from the module with tracking mode activated can radiate through precise aiming, the others can radiate in other ways, e.g. B. based on the approach area or the activated tracking mode.
  • the second module aims past the target by aiming at an edge or outside the approach area provided by the warning system, or it does not aim past the target (in conjunction with the embodiment of phase-synchronized modules) by aiming at the edge or within the approach area, especially towards the center of the approach area.
  • correspondingly more precise information is available from a tracking unit for targeting, so that the approach area does not have to be used for this.
  • an additional method step D) is provided: Step D) is carried out when the target is in a solo area starting from step B) and then directly from the current solo area, which then represents a "previous solo area", to another Solo area moves. Then in the previous solo area, the tracking mode and the beam mode are deactivated for the associated module. The tracking mode and the beam mode are then activated in the other solo area with the associated module as the active module. This means that the previously active module (that of the previous solo area) becomes inactive and that of the other solo area becomes the active module. In particular, the target changes from the previous solo area to another solo area, bypassing the cutting areas.
  • At least one or more or all of the areas are defined in a coordinate system as a mathematical model/models. Decisions affecting these areas are then made based on the mathematical model(s).
  • the corresponding areas can thus be stored as data models, in particular in a control and evaluation unit, and processed quickly and effectively with regard to decisions to be made.
  • a DIRCM system for carrying out the method according to the invention, with an interface to a warning system for reporting incoming targets, with at least two DIRCM modules for tracking the target in a pursuit mode and for engaging the target in a beam mode, each of the modules having an overall area for tracking and / or engaging targets, and the overall area including a solo area in which alone the module in question is available for tracking and engaging is, and the overall area contains an intersection area with at least one other of the modules, in which all relevant modules are available for tracking and / or combat, a defense area being the union of all total areas, and with a control and evaluation unit for carrying out the method steps of the invention procedure.
  • Beam mode and tracking mode can be activated and deactivated independently of each other.
  • the control and evaluation unit contains in particular the above-mentioned mathematical models or a corresponding device for implementing and processing the models.
  • the warning system is integrated into the DIRCM system as part of the system, although the warning system can still be an independent system.
  • the interface is an interface to a warning system for reporting a respective approach area of an approaching target, or the warning system is one for outputting the approach area.
  • At least two of the modules are set up to emit a predeterminable signal pattern that has a time course to combat the target, and the modules can be phase-synchronized with respect to the time course or are phase-synchronized during operation if necessary, as described above.
  • the object of the invention is also achieved by an object according to claim 13, which is to be protected from an approaching target, with a DIRCM system according to the invention.
  • the object is a vehicle.
  • the vehicle is an air, land or sea vehicle, an airplane or a helicopter, in particular a transport and/or passenger aircraft or helicopter.
  • Figure 1 shows a DIRCM system 2 combating an incoming target 4.
  • the system 2 is mounted on or on an object 6 to be protected, here a transport aircraft only shown symbolically in a detail.
  • the incoming target 4 is an IR-guided enemy missile that intends to destroy target 4.
  • the system 2 contains an interface 8 to a warning system 10, which is also attached to the object 6.
  • the warning system 10 is used to report approaching targets and is here a MWS. It also serves to report a respective approach area 11 of the respective target.
  • the approach area 11 is a rough area and indicates an approximate location or direction to the target, but an exact or safe location or tracking of the target is not possible. In particular, it is therefore not possible to precisely irradiate the rocket's IR seeker head with a laser.
  • Specific goal 4 is always spoken of as a representative of all potential goals in order to explain the invention.
  • the system 2 also contains two DIRCM modules 12a, b, here so-called turrets, which are attached to the transport aircraft. Both are each suitable for tracking the target 4 in a tracking mode MV, i.e. for locating it precisely, and for irradiating it in a beam mode MS and thereby combating it.
  • each module 12a, b contains a tracking unit 16, and to carry out the beam mode MS a beam unit 18.
  • the target 4 can be tracked by the module 12b, i.e. H.
  • a laser beam 20 can be irradiated into the IR seeker head of the target 4 in order to combat the target 4 by deflecting the target 4 away from the object 6. Thanks to this precise location, a laser beam can be irradiated specifically into the rocket's IR seeker head.
  • Each of the modules 12a, b is assigned a respective overall area BGa, b, in which the respective module 12a, b is able to pursue and combat the target 4.
  • BGa,b For clarification are in Figure 1 the edges of the total areas BGa,b are thickened and shown in dashed lines for BGb.
  • Each of the total areas BGa,b in turn contains a solo area BOa,b.
  • In the solo area BOa only module 12a is able to pursue and combat target 4, in the solo area BOb only module 12b.
  • both modules 12a, b are able to track and combat target 4.
  • a defense area BA is formed by the union of the total areas BGa,b; in this a defense of the target 4 is achieved. at least one of the modules 12a, b or through the system 2 possible.
  • the system 2 also contains a control and evaluation unit 14, which is set up to carry out the following procedure for combating the incoming target 4 by the system 2: Initially, no target 4 flies towards object 6. System 2 is therefore initially on standby. Both modules 12a, b are deactivated.
  • the warning system 10 monitors the object for approaching targets 4. At a certain point in time, the warning system 10 reports the approaching target 4 and additionally via the interface 8 Approach area 11. Since the target 4 is now reported by the warning system 11, exactly one of the modules 12a, b is selected as the active module according to the method and the tracking mode MV and the beam mode MS are activated for the target 4. The selection is made using a selection criterion KA.
  • the selection criterion KA consists in selecting the module 12a, b which is closest to the target 4, in this case the module 12b.
  • the target 4 is tracked by the module 12b and combated by shining the laser beam 20 into the IR seeker head of the target 4 in order to deflect the target 4 away from the object 6.
  • the target moves along arrow 22.
  • the method continues to check whether the target 4 is in one of the solo areas BOa, b or in the intersection area BS. If the target 4 (not shown here) were to be in the solo area BOb or move there, the tracking mode MV and the beam mode MS would remain activated in the currently active module 12b.
  • the target is in the intersection area BS, which is the case here.
  • the active module 12b is defined as the first module and the other module 12a as the second module, which would alternatively be capable of tracking and irradiating the target 4.
  • either the tracking mode MV and the beam mode MS remain activated only in the currently active module 12b or the tracking mode MV is additionally activated in the module 12a or it is transferred to the other module 12a, as will be explained further below.
  • the activation criterion KK here is the achievement of a minimum distance from the solo areas BOa, b, as indicated by the lines 28 . Initially, target 4 is located beyond lines 28, i.e. further away from the solo areas BOa,b than the minimum distance requires. Therefore, the MV tracking mode is also activated on module 12a.
  • the transfer criterion KÜ is that the target 4 reaches an interface 21.
  • target 4 moves - as shown by arrow 22 - in the defense area BA.
  • target 4 actually reaches interface 21.
  • the beam mode MS is deactivated for the first, currently active module 12b.
  • the second module 12a then becomes the active module and its beam mode MS is activated.
  • the handover criterion KÜ will continue to be checked on an ongoing basis.
  • the tracking mode VM in the module 12b remains activated, so that a handover back to the module 12b could take place quickly at any time and redundancy with regard to tracking is also created.
  • target 4 then moves into the solo area BOa, which is why the handover criterion KÜ is not met again.
  • the currently active module 12a remains activated with regard to tracking mode MV and beam mode MS in accordance with the above procedural condition.
  • the tracking mode MV on module 12b is deactivated in the solo area BOa.
  • the fight is successful and target 4 turns away from object 6.
  • Figure 1 also shows how the target 4 moves at a later time along the arrow 24 from the solo area BOa, bypassing the cutting area BS, directly into the solo area BOb.
  • tracking mode MV and beam mode MS are switched directly from module 12a to module 12b, ie deactivated in module 12a and activated in module 12b.
  • Figure 2 shows only by way of example and schematically over time t a signal pattern according to which the laser beam 20 is emitted or its amplitude is modulated in order to deflect the target 4.
  • Figure 2a shows the target course of the signal pattern over a longer period of time.
  • the module 12b generates the laser beam 20 according to Figure 2a .
  • the goal 4 reaches the point P in at time t0 Fig. 1 , so that from this point in time t0 the laser beam no longer comes from the module 12b, but according to Fig. 2b is emitted by module 12a.
  • the signal patterns of the laser beams 20 of the modules 12a, b are phase-synchronized.
  • the irradiation by the module 12b ends at phase P0 of the entire signal curve Fig. 2a
  • the irradiation of the module 12a continues at phase P0.
  • the target 4 is permanently in accordance with the continuous signal pattern Fig. 2a (solid and dashed section) irradiated because the solid signal section in Fig. 2b exactly the dashed line in Fig. 2a corresponds.
  • Fig. 2a the irradiation at time t0+dT from module 12a continues with the phase P0 at which the irradiation of module 12b ended. Accordingly, the target becomes 4 with the complete signal pattern Fig. 2a irradiated, but the signal pattern is paused or stretched or stretched in time for the period dT.
  • the "code" according to Fig. 2a is irradiated completely onto target 4 - albeit with a time gap dT.
  • Figure 3 shows an excerpt from System 2 and an alternative combat situation and alternative variants of the handover in the intersection area BS between the Modules 12a and 12b.
  • the target 4 moves along the arrow 22 and is initially tracked and irradiated by the active first module 12a and tracked by the second module 12b. Even before point P is reached (there fulfillment of the handover criterion KÜ) - here from the earliest possible point in time at which the module 12b is ready for this - the beam mode MS is also activated in the second module 12b.
  • the module 12b Based on the exact tracking by the tracking unit 16 of the module 12b, the module 12b deliberately aims past the target 4, e.g. B. with a predeterminable solid angle WR.
  • the module 12b uses the approach area 11 reported by the warning system 10 to aim past and deliberately aims past the target 4 by aiming at its edge (Situation I in Fig. 3 ).
  • phase synchronization of the signal patterns according to Figure 2 takes place, this would also be possible (Situation I), but in a variant shown here, the module 12b also aims exactly at the target 4 using its tracking unit 16 (alternative situation II in Fig. 3 ). Due to the phase synchronization, both signal patterns are at the same time, so that there is no mutual extinction of the laser beams 20 in the target 4, but rather their addition with respect to the signal pattern.
  • the module 12a is then deactivated with regard to the beam mode MS and the tracking mode MV is maintained for the module 12b.
  • the laser beam 20 is then pivoted onto the target 4, which is possible with precise aim due to the activated tracking mode MV in the module 12b.
  • a mathematical model 26 of the areas BGa,b, BOa,b, BS and BA is present in the control and evaluation unit 14. Goal 4 is then also located in the corresponding model 26 as a virtual goal. Decisions as to whether and where Goal 4 is located in the relevant areas, whether criteria KA, KK, KÜ are met or not, etc. are then made - where necessary - using Model 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Claims (13)

  1. Procédé de combat d'une cible volante en approche (4) par le biais d'un système DIRCM (2), le système DIRCM (2) contenant :
    - une interface (8) avec un système d'alerte (10) destiné à signaler des cibles volantes en approche (4),
    - au moins deux modules DIRCM (12a, b) destinés à poursuivre la cible (4) dans un mode de poursuite (MV) et à combattre par irradiation de la cible (4) dans un mode d'irradiation (MS),
    - chacun des modules (12a,b) comportant une zone totale (BGa,b) destinée à poursuivre et/ou combattre des cibles (4),
    - et la zone totale (BGA,b) contenant une zone solo (BOa,b) dans laquelle seul le module concerné (12a,b) est disponible pour la poursuite et/ou le combat,
    - et la zone totale (BGa,b) contenant une zone d'intersection (BS) avec au moins un autre des modules (12a,b) dans laquelle tous les modules concernés (12a,b) sont disponibles pour la poursuite et/ou le combat,
    - une zone de défense (BA) étant l'union de toutes les zones totales (BGA,b),
    zone de défense dans laquelle
    - A) lorsque la cible (4) est signalée par le système d'alerte (10) :
    exactement un des modules (12a,b) est sélectionné comme module actif et dans ce cas le mode de poursuite (MV) et le mode d'irradiation (MS) sont activés pour la cible (4),
    et une vérification est désormais effectuée pour savoir si la cible (4) se trouve dans une des zones solo (Boa,b) ou dans une zone d'intersection entre le module actif comme premier module (12a,b) et un deuxième des modules (12a,b), et :
    - B) si la cible (4) se trouve dans une des zones solo (BOa,b) :
    dans ce cas le module actif (12a, b) est associé à la zone solo (Boa,b), le mode de poursuite (MV) et le mode d'irradiation (MS) sont activés ou restent activés, et
    le mode de poursuite (MV) et le mode d'irradiation (MS) sont désactivés ou restent désactivés pour tous les autres modules (12a,b),
    et
    - C) si la cible (4) se trouve dans la zone d'intersection (BS) entre le module actif comme premier module (12a, b) et un deuxième des modules (12a,b) : une vérification est effectuée pour savoir si le mode de poursuite (MV) est activé pour le deuxième module (12a,b), et une vérification est effectuée pour savoir si un critère d'activation (KK) est rempli, et :
    - C1) soit dans le cas où le mode de poursuite (MV) n'est pas activé pour le deuxième module (12a,b) et où le critère d'activation (KK) n'est pas rempli :
    - le mode de poursuite (MV) et le mode d'irradiation (MS) sont activés pour le premier module (12a,b) et restent désactivés pour le deuxième module (12a,b),
    - C2) soit, dans le cas où le mode de poursuite (MV) n'est pas activé pour le deuxième module (12a,b) et où le critère d'activation (KK) est rempli :
    - le mode de poursuite (MV) est activé pour le deuxième module (12a,b) et le mode de poursuite (MV) et le mode d'irradiation (MS) restent activés pour le premier module (12a,b),
    et une vérification est effectuée pour savoir si un critère de transfert (KÜ) est rempli, et
    C3) dans le cas où les modes de poursuite (MV) sont activés pour les premier et deuxième modules (12a,b) et où le critère de transfert (KÜ) est rempli :
    - le mode d'irradiation (MS) est activé pour le deuxième module (12a, b), et
    - le mode d'irradiation (MS) est désactivé pour le premier module (12a,b), et les modes de poursuite (MV) restent activés pour les premier et deuxième modules (12a,b),
    - le deuxième module (12a,b) devenant le premier module actif (12a,b) en termes de poursuite et d'irradiation et le précédent premier module (12a,b) devient le deuxième module (12a,b).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    à l'étape A) le module actif (12a,b) est sélectionné selon un critère de sélection (KA).
  3. Procédé selon la revendication 2,
    caractérisé en ce que
    le critère de sélection (KA) utilisé est :
    - pour la cible (4) dans la zone solo (BOa,b) : le module (12a,b) associé à la zone solo (Boa,b),
    - pour la cible (4) dans la zone d'intersection (BS) : le module (12a,b) parmi ceux de la zone d'intersection (BS) :
    - dans une zone d'éloignement spécifiable par rapport à la cible (4),
    - ayant le plus petit écart de la poursuite et/ou du combat en cours par rapport à une position médiane par rapport à une zone de poursuite et/ou de combat du module (12a,b),
    - ayant une zone totale (BGa,b) ou une zone d'intersection (BS) spécifiable,
    - ayant un pronostic de réussite spécifiable pour un combat réussi.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le critère d'activation (KK) utilisé est :
    - que le deuxième module (12a,b) soit prêt pour une poursuite de cible réussie,
    - qu'un paramètre limite spécifiable soit atteint pour le premier et/ou le deuxième module (12a, b),
    - que le premier module (12a, b) ne réussisse plus à poursuivre la cible (4),
    - que la cible (4) atteigne une surface limite spécifiable (21) dans la zone d'intersection (BS),
    - que la cible (4) tombe au-dessous d'un éloignement spécifiable par rapport à la deuxième zone solo (BOa,b),
    - que la cible (4) quitte la zone d'intersection (BS) en direction de la deuxième zone solo (Boa,b).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    le critère de transfert (KÜ) utilisé est :
    - que le deuxième module (12a,b) soit prêt pour une irradiation réussie de la cible,
    - qu'un paramètre limite spécifiable soit atteint pour le premier et/ou le deuxième module (12a, b),
    - que le premier module (12a,b) ne réussisse plus à poursuivre et/ou irradier la cible (4),
    - que la cible (4) atteigne une surface limite spécifiable (21) dans la zone d'intersection (BS),
    - que la cible (4) tombe au-dessous d'un éloignement spécifiable par rapport à la deuxième zone solo (BOa,b),
    - que la cible (4) quitte la zone d'intersection (BS) en direction de la deuxième zone solo (BOa,b).
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    pour combattre la cible (4), au moins deux des modules (12a,b) émettent un modèle de signal spécifiable qui présente une variation dans le temps et, à l'étape C3), les modèles de signal du premier et du deuxième module (12a,b) sont synchronisés en phase en termes de variation dans le temps.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    à l'étape C3)
    - le mode d'irradiation (MS) est activé pour le deuxième module (12a,b) avant que le mode d'irradiation (MS) ne soit désactivé pour le premier module (12a,b), le deuxième module (12a,b) visant délibérément à côté de la cible (4) ou, en liaison avec la revendication 8, visant délibérément à côté de la cible (4) ou visant délibérément la cible (4),
    - après avoir désactivé le mode d'irradiation (MS) pour le premier module (12a,b), le mode d'irradiation (MS) reste activé pour le deuxième module (12a, b) et le deuxième module (12a,b) vise délibérément la cible (4) .
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    - D) si à partir de l'étape B) la cible (4) se déplace directement de la zone solo actuelle (BOa,b) vers une autre zone solo (BOa,b) :
    - dans la zone solo précédente (BOa,b) le mode de poursuite (MV) et le mode d'irradiation (MS) sont désactivés pour le module associé (12a,b),
    - dans l'autre zone solo (BOa,b), le mode de poursuite (MV) et le mode d'irradiation (MS) sont activés pour le module associé (12a,b) comme module actif.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    au moins une ou plusieurs ou la totalité des zones totales, solo et d'intersection et de défense (BGa,b ; Boa,b ; BS ; BA) sont définies dans un système de coordonnées en tant que modèle mathématique (26) et les décisions qui affectent ces zones doivent être réalisées à l'aide du modèle mathématique (26).
  10. Système DIRCM (2) destiné à mettre en œuvre le procédé selon l'une des revendications précédentes, ledit système comprenant
    - une interface (8) avec un système d'alerte pour signaler des cibles volantes en approche (4),
    - au moins deux modules DIRCM (12a,b) destinés à poursuivre la cible (4) dans un mode de poursuite (MV) et à combattre la cible (4) dans un mode d'irradiation (MS),
    - chacun des modules (12a,b) comportant une zone totale (BGa,b) pour poursuivre et/ou combattre des cibles (4),
    - et la zone totale (BGA,b) contenant une zone solo (BOa,b) dans laquelle seul le module concerné (12a,b) est disponible pour la poursuite et le combat,
    - et la zone totale (BGA,b) contenant une zone d'intersection (BS) avec au moins un autre des modules (12a,b), dans laquelle tous les modules concernés (12a,b) sont disponibles pour la poursuite et/ou le combat,
    - une zone de défense (BA) étant l'union de toutes les zones totales (BGA,b),
    - une unité de commande et d'évaluation (14) destinée à réaliser les étapes de procédé du procédé.
  11. Système DIRCM (2) selon la revendication 10,
    caractérisé en ce que
    l'interface (8) est une interface (8) avec un système d'avertissement (10) pour signaler une zone d'approche en vol respective (11) d'une cible volante en approche (4) .
  12. Système DIRCM (2) selon l'une des revendications 10 à 11,
    caractérisé en ce que
    au moins deux des modules (12a,b) sont conçus pour émettre un modèle de signal spécifiable, qui présente une variation dans le temps, afin de combattre la cible (4), et les modules (12a,b) peuvent être synchronisés en phase en termes de variation dans le temps.
  13. Objet (6) qui est destiné à être protégé contre une cible volante en approche (4), ledit objet comprenant un système DIRCM (2) selon l'une des revendications 10 à 12.
EP20157233.6A 2019-02-20 2020-02-13 Dircm à double suivi d'une cible Active EP3699544B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019001217 2019-02-20

Publications (2)

Publication Number Publication Date
EP3699544A1 EP3699544A1 (fr) 2020-08-26
EP3699544B1 true EP3699544B1 (fr) 2024-03-27

Family

ID=69591556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20157233.6A Active EP3699544B1 (fr) 2019-02-20 2020-02-13 Dircm à double suivi d'une cible

Country Status (2)

Country Link
EP (1) EP3699544B1 (fr)
IL (1) IL272708A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004949A1 (de) * 2020-08-14 2022-02-17 Diehl Defence Gmbh & Co. Kg DIRCM mit autarker überschneidungsfreier Übergabe zwischen Modulen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081895A1 (fr) * 2015-04-17 2016-10-19 Elettronica S.p.A. Système dircm à tourelles multiples et procédé de fonctionnement associé

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL179453A (en) * 2006-11-21 2013-10-31 Rafael Advanced Defense Sys Laser-supported method and system
US8367991B2 (en) * 2009-08-14 2013-02-05 The United States Of America As Represented By The Secretary Of The Navy Modulation device for a mobile tracking device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081895A1 (fr) * 2015-04-17 2016-10-19 Elettronica S.p.A. Système dircm à tourelles multiples et procédé de fonctionnement associé

Also Published As

Publication number Publication date
IL272708A (en) 2020-08-31
EP3699544A1 (fr) 2020-08-26

Similar Documents

Publication Publication Date Title
DE102010005199B4 (de) Verfahren und Vorrichtung zur Ortsbestimmung eines fliegenden Ziels
EP0977003A1 (fr) Procédé pour combattre au moins une cible aérienne au moyen d'un groupe de tir, groupe de tir comprenant au moins deux unités de tir et utilisation du groupe de tir
EP3751226B1 (fr) Dircm à transfert prédictif entre les modules
EP2482025B1 (fr) Procédé et dispositif de défense contre l'attaque d'un missile
EP3699544B1 (fr) Dircm à double suivi d'une cible
DE102011009460B4 (de) Verfahren zum Abwehren eines Angriffs eines Flugkörpers
EP3702720B1 (fr) Dircm à transfert simplifié entre les modules
EP3118561B1 (fr) Systeme a energie dirigee et systeme d'arme
EP3118564B1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
DE3013405C2 (de) Verfahren zum Vermeiden des Nachrichtens von Abschußgeräten für ballistische Flugkörper
EP3118567B1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
EP3376154B1 (fr) Procédé de protection d'un missile de croisière
EP3800483A1 (fr) Alignement d'un détecteur d'un module dircm sur une cible
EP3954964B1 (fr) Dircm à transfert autonome sans chevauchement entre les modules
DE102010005198B4 (de) Flugkörper und Verfahren zum Erfassen eines Ziels
EP3894779A1 (fr) Procédé de protection d'objets mobiles ou immobiles contre des menaces guidées par laser qui s'approchent
EP3118566B1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
DE2918858C2 (de) Anordnung zur Zieleinweisung eines Suchkopfes
EP3118563A1 (fr) Procede de protection d'un vehicule contre une attaque par un rayon laser
DE102022003403A1 (de) DIRCM mit Prädiktion von MWS-Daten
EP3118565B1 (fr) Procédé de protection d'un véhicule contre une attaque par un rayon laser
DE102020004681A1 (de) System zur Luftverteidigung, Unterstützungsflugkörper und Verfahren zum Lenken eines Bekämpfungsflugkörpers
WO2011003509A1 (fr) Dispositif servant à lancer un jet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230320

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007444

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240627

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240327