EP3677100A2 - Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre - Google Patents

Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre

Info

Publication number
EP3677100A2
EP3677100A2 EP18765807.5A EP18765807A EP3677100A2 EP 3677100 A2 EP3677100 A2 EP 3677100A2 EP 18765807 A EP18765807 A EP 18765807A EP 3677100 A2 EP3677100 A2 EP 3677100A2
Authority
EP
European Patent Office
Prior art keywords
anode
cathodes
cathode
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18765807.5A
Other languages
German (de)
English (en)
French (fr)
Inventor
Stefan Fritz
Jörg Rehrmann
Houman Jafari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetteen GmbH
Original Assignee
Cetteen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetteen GmbH filed Critical Cetteen GmbH
Publication of EP3677100A2 publication Critical patent/EP3677100A2/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/22Power supply arrangements for feeding the X-ray tube with single pulses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control

Definitions

  • a method for driving an X-ray tube is known, for example, from US Pat. No. 7,751,528 B2.
  • the x-ray system is designed as a tomosynthesis system which has a large number of stationary x-ray sources arranged in a row.
  • x-ray tubes have electron emitters whose function can be based on various physical principles.
  • dispenser cathodes are mentioned as thermal emitters.
  • Electronic control devices for multi-focus X-ray tubes whose cathodes are provided for the thermal emission of electrons, are known for example from the documents EP 1 617 764 Bl and EP 1 618 368 Bl.
  • Emitters that contain nanorods, in particular carbon nanotubes are particularly suitable for the field emission of electrons.
  • a method for emission current control for X-ray tubes is disclosed in DE 10 2009 017 649 B4.
  • a current regulation can be superimposed on a voltage regulation.
  • the invention is based on the object, the control of X-ray tubes, in particular X-ray tubes with field emission cathodes, compared to the prior art
  • the drive device is provided for actuating an X-ray tube which comprises an anode formed as an X-ray emitter and a plurality of cathodes which are provided for generating electron beams directed onto the anode.
  • a housing designed as a shield, in which an anode current control unit is arranged.
  • the anode current control unit is connected to a cathode power supply unit, with a plurality of each to be connected to a cathode cathode voltage switching, as well as with a
  • the cathode power supply unit, the cathode voltage switch, and the programmable module are arranged in said housing.
  • the shielded housing of the power and control electronics for the X-ray tube in the common housing together with a suitable board layout the electromagnetic radiation is significantly reduced compared to conventional solutions.
  • the programmable module of the drive device comprises, for example, an FPGA (Field Programmable Gate Array) and at least one digital-to-analog converter.
  • Power source is controlled by the FPGA or other programmable device or an array of such devices via the at least one digital-to-analog converter.
  • the FPGA or an equivalent feature controls a number of subsystems. Possible subsystems in the present case are the voltage supply unit-that is to say the energy supply unit-of the cathodes, an anode energy supply unit, various supply units for focusing devices and gratings, and a current source to be allocated to the anode current control unit
  • the FPGA is already programmed prior to performing a pulse train of the cathodes in such a way that the pulse sequence is triggered in real time.
  • the timing of the pulse sequence is purely by the FPGA or a functionally identical element.
  • two A / D converters are respectively programmed with the voltage value corresponding to the equivalent current.
  • the boost here means a peak generated at the beginning of the pulse with which a rectangular shape of the pulse is achieved in comparison to pulses which are generated without a short-term voltage increase, with improved approximation to the theoretical ideal shape.
  • High voltage switch bank formed with a number of MOSFETs.
  • a plurality of MOSFETs are optionally connected in series within a single cathode voltage switch.
  • the anode current control unit makes it possible to regulate the electron current emitted by the cathodes, that is to say electron emitters, from cathode to cathode in real time.
  • an actual current flowing through the anode and an assigned desired value enter into the regulation.
  • currents which flow through extraction grids and through focusing devices can enter into the control.
  • the order in which the high-voltage switches are controlled by the FPGA is freely programmable, the order and number of emitters used can also be freely programmed. Thus, not all emitters must be operated and the X-ray tube can also be operated as a single-beam tube. If a corresponding multiplexer is used, several or all channels can also be activated simultaneously and thus electron emitters activated in parallel.
  • the thermal spot size on the anode can be adjusted individually from emitter to emitter.
  • the thermal focal spot size is to be considered without projection.
  • the X-ray focal spot size to be considered under a projection.
  • the focal spot size can be adjusted by the variation of the grid voltage, also in the form of a fine tuning. This applies both in continuous mode and for a pulsed mode, wherein in each case different settings are possible from emitter to emitter.
  • a monitoring of the drive device is particularly important in terms of flashovers, which are conceivable during operation of the X-ray tube due to the high voltages at the anode, of importance.
  • a rollover is a short between
  • the electron emitter and anode In the anode current can lead to a current peak that lasts only nanoseconds. Due to the speed of the anode current control in the microsecond range, this current pulse is controlled by the controller
  • Detection mechanism depends almost exclusively on the duration of the detection of the comparator. Depending on the comparator, this is in the pico or nanosecond range. As soon as the maximum value is exceeded, the digital value of the comparator is transmitted by means of an optocoupler via a further connecting cable between the anode power supply unit and the voltage supply unit of the cathodes and
  • dispenser cathodes are used as electron emitters.
  • the cathodes of the x-ray tube are field emission cathodes, in particular cathodes with nanorods, that is nanosticks.
  • pulsed operation of the cathodes pulsed operation of the anode of the x-ray tube is also possible in a preferred embodiment. This is by a
  • Anodennapssmakersshim provided a DC voltage in the form of a pulsed unipolar voltage.
  • the anode voltage supply unit which is attributable to the drive device, preferably comprises a Marx generator.
  • the level of voltage pulses applied to the anode may differ from pulse to pulse.
  • Cathode current is different. Therefore, even without active control by determining the transmission factor in an initial calibration run and storing the transmission factor in a lookup table, the anode current can be adjusted. These two control methods can also be combined so that the transmission factor is first determined and the anode current is adjusted with this and thereafter the anode current is kept constant even with a change in the transmission rate with the analog or digital control.
  • the X-ray tube can be generated by the aforementioned focusing devices, which are each associated with a cathode, focal spots on the anode, which are different from cathode to cathode.
  • a variation of the focal spot size is possible both with constant anode voltage and with pulsed anode voltage with different voltage from pulse to pulse. Likewise, the possibility exists, the
  • Wavelengths are tunable to X-ray absorption properties of various materials located in the object of interest. In this way it is very easy to distinguish between different materials in the examination subject. This is preferably done in a stationary, in particular non-rotating, arrangement of the X-ray sources.
  • FIG. 11 is a block diagram of the structure of a high-voltage switch bank, which is supplied via the power source in Fig. 10 with energy,
  • Fig. 17 is a block diagram showing the structure of a cathode drive device of the
  • X-ray device according to Fig. 1 generated current pulse.
  • Components of the X-ray tube 2 are a cathode 4 as an electron source and a
  • a focusing device 6 for the electron beam EB is a focusing device 6 for the electron beam EB.
  • the electron source 4 is formed as a field emission cathode.
  • a metallization 8 and an emitter layer 9, which contains carbon nanotubes, are located on a ceramic substrate 7.
  • An extraction grid 10 is slightly spaced from the emitter layer 9.
  • FIGS. 13 and 14 relate to X-ray devices 1 which are operated with dispenser cathodes.
  • the X-ray device 1 supplied with the anode power supply unit 14 according to FIG. 13 has, within the X-ray tube 2, two gratings which are connected to electrical voltage via grid connections GA1, GA2. Furthermore, a heating element is present, which has a heating connection HA
  • T1J2J3 trigger signals

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)
  • Cold Cathode And The Manufacture (AREA)
EP18765807.5A 2017-09-02 2018-08-31 Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre Pending EP3677100A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017008264 2017-09-02
PCT/EP2018/025225 WO2019042587A2 (de) 2017-09-02 2018-08-31 Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre

Publications (1)

Publication Number Publication Date
EP3677100A2 true EP3677100A2 (de) 2020-07-08

Family

ID=63524237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18765807.5A Pending EP3677100A2 (de) 2017-09-02 2018-08-31 Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre

Country Status (5)

Country Link
US (1) US11558950B2 (zh)
EP (1) EP3677100A2 (zh)
JP (1) JP2020532089A (zh)
CN (1) CN111602470B (zh)
WO (1) WO2019042587A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125350A1 (de) 2019-09-20 2021-03-25 DENNEC GmbH Computertomograph
CN110793981B (zh) * 2019-10-30 2022-03-22 新鸿电子有限公司 分时复用控制装置和***
WO2022059821A1 (ko) * 2020-09-18 2022-03-24 어썸레이 주식회사 전자기파 발생 장치 및 그 제어 방법
EP4213734B1 (de) 2020-09-19 2024-04-24 Esspen GmbH Computertomograph und verfahren zum betrieb eines computertomographen
DE102022206833A1 (de) * 2021-09-01 2023-03-02 Siemens Healthcare Gmbh Betreiben einer Röntgenröhre
WO2024074737A1 (es) * 2022-10-04 2024-04-11 Sociedad Española De Electromedicina Y Calidad, S.A. Circuito de control directo de la corriente del ánodo de un tubo de rayos-x con alimentación monopolar o bipolar por medio de la regulación automática de la corriente de rejilla

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783288A (en) * 1972-06-26 1974-01-01 Field Emission Corp Pulsed vacuum arc operation of field emission x-ray tube without anode melting
US4082639A (en) * 1976-09-22 1978-04-04 Olin Corporation Method and apparatus for mercury cell anode adjustment
JPH0278199A (ja) * 1988-09-13 1990-03-19 Toshiba Corp パルスx線源駆動装置
DE3930699C2 (de) * 1989-09-14 1994-02-03 Perzl Peter Vorrichtung zur Energieeinkopplung in eine durchströmte elektrische Gasentladung
US5056125A (en) 1989-12-07 1991-10-08 Robert Beland Discharge module for X-ray cable
JPH06251733A (ja) * 1993-02-24 1994-09-09 Shimadzu Corp X線管装置
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
GB0309387D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-Ray scanning
US7215739B2 (en) * 2004-07-20 2007-05-08 Communications & Power Industries Canada Inc. Active dose reduction device and method
JP5538880B2 (ja) * 2006-04-14 2014-07-02 ウィリアム・ボーモント・ホスピタル 4面体ビームコンピュータ断層撮影
US8189893B2 (en) * 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
WO2009012453A1 (en) * 2007-07-19 2009-01-22 The University Of North Carolina At Chapel Hill Stationary x-ray digital breast tomosynthesis systems and related methods
EP2180343B1 (en) * 2008-10-27 2018-07-25 Dental Imaging Technologies Corporation System and method of x-ray detection with a sensor
DE102009002114B4 (de) * 2009-04-01 2012-03-15 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur Elektronenstrahltomographie
DE102009017649B4 (de) 2009-04-16 2015-04-09 Siemens Aktiengesellschaft Emissionsstromregelung für Röntgenröhren
DE102009035547A1 (de) * 2009-07-31 2011-02-03 Siemens Aktiengesellschaft Spannungsstellglied
DE102009042048B4 (de) * 2009-09-17 2016-08-11 Siemens Healthcare Gmbh Kathode
DE102010043540A1 (de) * 2010-11-08 2012-03-15 Siemens Aktiengesellschaft Röntgenröhre
DE102010043561B4 (de) 2010-11-08 2020-03-05 Nuray Technology Co., Ltd. Elektronenquelle
DE102011076912B4 (de) 2011-06-03 2015-08-20 Siemens Aktiengesellschaft Röntgengerät umfassend eine Multi-Fokus-Röntgenröhre
US8748828B2 (en) * 2011-09-21 2014-06-10 Kla-Tencor Corporation Interposer based imaging sensor for high-speed image acquisition and inspection systems
WO2015016117A1 (ja) * 2013-07-31 2015-02-05 株式会社 日立メディコ X線ct装置、x線高電圧装置、および、x線撮影装置
GB2523796A (en) 2014-03-05 2015-09-09 Adaptix Ltd X-ray generator
TWI580315B (zh) * 2015-01-15 2017-04-21 能資國際股份有限公司 手持式冷陰極x光機
DE102016013279A1 (de) 2016-11-08 2018-05-09 H&P Advanced Technology GmbH Verfahren zur Herstellung eines Elektronenemitters mit einer Kohlenstoffnanoröhren enthaltenden Beschichtung
DE102016013533A1 (de) * 2016-11-12 2018-05-17 H&P Advanced Technology GmbH Computertomograph
CN106531071B (zh) * 2016-12-29 2018-06-05 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示面板

Also Published As

Publication number Publication date
US11558950B2 (en) 2023-01-17
JP2020532089A (ja) 2020-11-05
CN111602470B (zh) 2024-03-26
CN111602470A (zh) 2020-08-28
WO2019042587A2 (de) 2019-03-07
WO2019042587A8 (de) 2020-02-06
WO2019042587A3 (de) 2019-04-25
US20200367350A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019042587A2 (de) Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre
DE102010043561B4 (de) Elektronenquelle
EP2936542B1 (de) Arclöschverfahren und leistungsversorgungssystem mit einem leistungswandler
EP1248499B1 (de) Verfahren und Vorrichtung zum Erzeugen von extrem ultravioletter Strahlung
DE102010031568A1 (de) Arclöschanordnung und Verfahren zum Löschen von Arcs
DE10015244C2 (de) Verfahren und Schaltungsanordnung zur pulsförmigen Energieeinspeisung in Magnetronentladungen
EP2164309B1 (de) Verfahren und Vorrichtung zum Betreiben einer Hohlkathoden-Bogenentladung
EP2412094B1 (de) Schaltungsanordnung sowie verfahren zur versorgung einer hochenergie-funktionskomponente mit hochspannungspulsen
DE102009037688A1 (de) Vorrichtung und Verfahren zur Steuerung eines Elektronenstrahls für die Erzeugung von Röntgenstrahlung sowie Röntgenröhre
WO2013060415A1 (de) Verfahren zur bereitstellung sequenzieller leistungspulse
DE2924170A1 (de) Kondensator-stromversorgung fuer elektrische bearbeitung
DE2153695C3 (de) Verfahren und Einrichtung zur Regelung des Strahlstroms in technischen Ladungsträgerstrahlgeräten, insb. Elektronenstrahl-Materialbearbeitungsmaschinen
DE10301068B4 (de) Röntgeneinrichtung mit einer Röntgenröhre
DE19513441B4 (de) Verfahren zur Erzeugung einer Prüfspannung für die Prüfung elektrischer Betriebsmittel sowie Schaltungsanordnung zur Ausführung des Verfahrens
DE102005045569A1 (de) Ladevorrichtung für einen Ladekondensator, insbesondere zur Speisung von Entladungslampen
EP2316123B1 (de) Anordnung und verfahren zur erzeugung eines plasmas mit definiertem und stabilem ionisierungszustand
EP1530408A2 (de) Microfocus-Röntgeneinrichtung
DE2167212C2 (de) Schaltungsanordnung zur Erzeugung wenigstens einer vorgegebenen Ausgangsspannung, deren Größe von einer Eingangsspannung unabhängig ist
EP1786075B1 (de) Verfahren zum Betrieb einer Vakuumplasmaprozessanlage
EP1280389A1 (de) Röntgensystem zur Erzeugung von Röntgenaufnahmen
DE4031286C2 (de) Einrichtung für die Stromversorgung einer Glühkathode
DE2249365B2 (de) Röntgengerät mit einer der Glühkathode der Röntgenröhre vorgelagerten Rechteckblende, an der eine einstellbare Spannung liegt
DE1615226C3 (de) Schaltungsanordnung zum Verhindern schädlicher Auswirkungen von Kurzschlüssen bei Funkenerosionsmaschinen
EP3449688B1 (de) Anordnung zum schalten eines widerstands
AT405582B (de) Vorrichtung zum behandeln eines werkstückes in einer gasentladung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230123

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CETTEEN GMBH

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CETTEEN GMBH