EP3570992B1 - Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform - Google Patents

Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform Download PDF

Info

Publication number
EP3570992B1
EP3570992B1 EP18709763.9A EP18709763A EP3570992B1 EP 3570992 B1 EP3570992 B1 EP 3570992B1 EP 18709763 A EP18709763 A EP 18709763A EP 3570992 B1 EP3570992 B1 EP 3570992B1
Authority
EP
European Patent Office
Prior art keywords
casting
directed
branch
feeder
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18709763.9A
Other languages
English (en)
French (fr)
Other versions
EP3570992A1 (de
Inventor
Gerald KLAUS
Dirk Schnubel
Carmen Schäfer
Christoph Tomczok
Tim Schneider
Steffen Spieß
Paulo Rossi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemak SAB de CV
Original Assignee
Nemak SAB de CV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemak SAB de CV filed Critical Nemak SAB de CV
Priority to PL18709763T priority Critical patent/PL3570992T3/pl
Publication of EP3570992A1 publication Critical patent/EP3570992A1/de
Application granted granted Critical
Publication of EP3570992B1 publication Critical patent/EP3570992B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/086Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds

Definitions

  • the invention relates to a casting mold for casting complex-shaped, large-volume cast parts from a metal melt.
  • Such casting molds usually have a mold cavity that reproduces the cast part and a feed system for feeding the molten metal to be poured into the cast part into the mold cavity.
  • the feed system comprises a sprue, a pouring runner connected to the pouring runner and a feeder system which is connected to the pouring runner, the cavity of the casting mold being connected to the feeder system or the pouring runner via connections
  • the invention also relates to a practical use of such a casting mold.
  • the feeder system serves on the one hand to control the solidification direction of the poured melt, which is optimally directed towards the feeder.
  • the melt volume stored in the feeder system compensates for the reduction in the specific volume of the melt poured during the liquid / solid phase transition.
  • the feeder system represents an additional melt reservoir from which melt can flow into the cast part while it is cooling.
  • Such light metal alloys include, for example, hardenable AlCu alloys.
  • a casting mold for casting a cylinder crankcase for an internal combustion engine in which two separate filling funnels are provided, via which the melt is poured into the casting mold.
  • the melt flows from the filling funnels via a pouring runner into the mold cavity delimited by the casting mold.
  • the runners are guided through a crankcase block core.
  • Runners branch off casting channels that lead to the lower casting contours of the casting mold.
  • the pouring channels are each aligned so that their mouths lie on a horizontal plane.
  • a low-pressure permanent mold casting process for casting metal cast parts is known from US Pat DE 39 24 742 A1 known.
  • the complexity of the cast parts to be cast with this method results from the fact that they have thinner walls in at least one area than in another area.
  • liquid metal is pressed from a melting container through a riser pipe into the mold by means of gas pressure.
  • the mold is arranged in such a way that the thicker walls of the cast part are located on top and thus far from the sprue, via which the metal reaches the cavity of the casting mold that depicts the component.
  • the liquid metal at or near the area of the mold that is located at the bottom near the gate is directed into the sections that form the thinner wall of the casting mold.
  • the liquid metal can be fed via a bottom run at several sprue points to the area of the mold that is near the bottom of the sprue and introduced into the sections of the mold cavity that form the thinner wall of the casting.
  • a method for casting cast parts in which a metal melt is poured via a feeder or separate pouring runners or pouring channels into a mold cavity that is delimited by a casting mold and depicting the cast part.
  • the casting mold includes molded parts that determine the shape of the casting to be cast.
  • the melt is passed through at least two connections, at least one of which is designed as an additional channel leading through one of the molded parts and independent of the contour of the cast part to be cast, into at least two sections of the mold cavity that are assigned to different levels of the cast part to be cast .
  • Documents EP2352608B1 , DE4103802A1 and CN205008543U are further examples of known casting molds in the technical field.
  • casting molds that are completely or partially designed as core packages are particularly suitable.
  • the casting mold is composed of a large number of cores that determine the inner and outer contour of the cast part to be produced.
  • the casting cores are usually made of a molding material or an easily destructible material as so-called "lost cores" which are destroyed when the casting is removed from the mold.
  • lost cores mixed forms of core packages are also known in which, for example, the molded parts that determine the outer contour are designed as reusable permanent molded parts, while the recesses, cavities, channels, lines, etc. to be depicted on the inside in the cast part are depicted by lost cores.
  • Core package casting molds of the type explained above are mainly used in gravity casting processes or in low-pressure casting processes, whereby these processes can also include a rotation of the casting mold after it has been filled with the melt in order to optimize the solidification process and, consequently, an optimal structure of the cast part achieve.
  • the object of the invention was to create a casting mold that reliably allows highly complex-shaped cast parts to be produced from alloys that are difficult to use conventionally and are uncertain in terms of the quality of the casting result let shed.
  • the invention has achieved this object in that such a casting mold is designed according to claim 1.
  • a casting mold designed according to the invention is particularly suitable for use when casting a cylinder crankcase for an internal combustion engine from a light metal melt, in particular an AlCu melt.
  • a casting mold according to the invention for casting complex-shaped, large-volume cast parts from a metal melt has a mold cavity which depicts the cast part and a feed system for feeding the metal melt to be cast into the cast part into the mold cavity, the feed system having a sprue, a pouring runner connected to the sprue and comprises a feeder system which is connected to the runner, the mold cavity being connected to the feeder system or the runner via connections.
  • the sprue with a branch facing away from the sprue along the feeder system and with a branch directed backwards, which connects to the branch facing away, along in the opposite direction to the branch directed away of the feeder system, wherein the feeder system is connected to both the branch directed away and with the branch directed back via two or more gates distributed along the respective branch.
  • a casting mold according to the invention With the design of a casting mold according to the invention, it is possible to equalize the temperature of the melt provided in the feeder system and guided into the casting mold cavity so that an equally uniform temperature distribution is established in the cast part. This Even in the case of metal melts that are difficult to cast, in particular for light metal melts that are difficult to cast, such as AlCu melts, after the casting mold has been filled, this leads to a uniform solidification process, during which an equally uniform replenishment from the feeder system is ensured. Local temperature differences and the associated non-uniform solidification in the various planes of the cast part, which entails the risk of cavity formation, are avoided in this way. Instead, a solidification front is reliably formed in the melt filled into a casting mold according to the invention, which, starting from the point furthest away from the feeder system, progresses continuously in the direction of the feeder system.
  • the homogenization of the temperature of the melt flow fed to the casting mold cavity is achieved according to the invention in that the melt flow fed via the sprue is first guided along the feeder system in a "directed branch" leading away from the sprue, already through the gates provided along the directed branch into the feeder system runs and is then guided again in the direction of the sprue in a "backward-directed branch” running opposite to the branch directed away from the sprue.
  • a directed branch leading away from the sprue
  • the differently tempered melt streams mix and a mixing temperature is established in the melt contained in this area which, with appropriate coordination of the melt volume flows entering the area concerned, for example corresponds to the mean temperature of the maximum hot and maximum cooled melt streams flowing into this area.
  • melt that entered the feeder system through the last cut of the turned away branch provided in the direction of flow at the end of the branch pointing away and cooled down via the path along the feeder system and the melt that enters the feeder system through the first cut of the backwards directed branch and if only slightly cooled over a comparatively short distance between the last cut of the branch directed away and the first cut of the branch directed back, there is only a correspondingly small temperature difference. Since these melt streams with comparably slightly different temperatures are also fed to the same area of the feeder system, there is also a mixed temperature there.
  • a suitable setting of the gates in the Melt volume flows entering the feeder system can be set so that the mixing temperature that is established in the relevant area is equal to the mixing temperature that is established by mixing the maximum hot and maximum cooled melt in the area of the feeder system next to the pouring.
  • melt streams which are passed into the feeder system via those optionally available further gates, which run along the away and the backward branch of the runner between the - seen in the flow direction of the melt - at the end and at the beginning of the away and of the backward branch are provided.
  • the design of the runner provided in a casting mold according to the invention and its special connection to the feeder system result in a homogeneous temperature distribution over the entire volume of the feeder system.
  • the melt reaching the casting mold cavity via the feeder system also has a uniform temperature distribution, which means that even with a filigree shape of the design elements to be reproduced on the cast part, such as thin walls and fine webs or ribs, not only an optimal mold filling, but an equally uniform one Solidification of the melt is achieved.
  • the mixing temperature established in the feeder system can be adjusted by coordinating the melt volume flows entering the individual areas of the feeder system via the gates provided there can be set.
  • the position on the respective branch of the pouring runner, the number or the geometry, in particular the diameter, of the gates can be adapted so that the desired volume of the total melt contained in the feeder system results from the proportions of the melt streams reaching the feeder system at different temperatures Mixing temperature in the feeder system results.
  • the arrangement of the gates assigned to the away and backward branches can directly influence the mixing of the gates into the feeder system and the associated equalization of the temperature of the melt contained in the feeder system.
  • the inventive design of a casting mold proves to be advantageous for all casting tasks in which a particularly homogeneous temperature distribution in the melt to be cast and a uniform supply of the melt into the casting mold cavity depicting the casting are important for casting success.
  • the invention can be used for cast parts with an elongated, block-like basic shape, such as engine blocks, as well as for cast parts that have a cylindrical basic shape characterized by an ellipsoidal or circular cross-section.
  • one of the gates, via which the backward branch is connected to the feeder system is arranged opposite each gate via which the branch of the pouring runner facing away is connected to the feeder system .
  • This is particularly favorable in the case of a feeder system whose length is significantly greater than its width, that is to say for example a feeder system that has a rectangular basic shape in plan view.
  • the size of the gates assigned to the branch directed away is the same as the size of the gates assigned to the backward branch, i.e. if the gates are dimensioned in such a way that the same volume flows into the feeder system via the gates of the branches of the pouring runner assigned to one another reach.
  • the feeder system is connected to the casting mold cavity or the melt volume required for replenishing the casting mold cavity during the solidification of the melt in the feeder system.
  • the feeder chamber then serves as a mixing area for the melt reaching it via the outward and backward branch and thus contributes to the homogenization of the melt reaching the casting mold cavity.
  • a feed chamber can take on a feed function in the sense of replenishing melt into the cavity of the casting mold.
  • the intermixing and the associated equalization of the temperature distribution of the melt contained in the feeder system is to be further optimized, it can be useful to provide two or more feeder chambers in the feeder system, each of which has at least one gate with both the branch pointing away and the backward branch of the pouring runner is connected.
  • the individual chambers each contain only a partial volume of the total melt volume required for replenishing the casting mold cavity.
  • the correspondingly smaller volume of the individual feeder chambers results in a particularly intensive mixing of the melt streams of different temperatures entering them via the branches of the pouring runner. In this way, it can be ensured with comparably little effort that the melt volumes present in the respective melt chamber have the desired mixing temperature overall, and that local temperature differences are avoided. It proves to be particularly favorable in this respect if the volumes enclosed by the feeder chambers are the same.
  • the feeder chambers can be connected to one another via additionally provided gates directly connecting the feeder chambers. Via these additional gates, the melt volumes contained in the feeder chambers are exchanged and, as a result, the possibly different temperatures of the melt portions contained in the chambers are balanced.
  • a variant of the invention which is particularly suitable for casting cylinder crankcases for internal combustion engines with cylinder openings arranged in a row is characterized in that the feeder system comprises at least one, in particular at least two feed chambers arranged side by side, and either the branch facing away is arranged in the space between the feed chambers and along the side of each of the feeder chambers that is on the outer side of the intermediate space is in each case a back-directed branch branching off from the branch directed away or the
  • the branch facing away is divided into two branches facing away, one of which runs along the outer side of the supply chambers in relation to the space between the feeder chambers, whereas at least one branch that is connected to the branches facing away runs in the space between the feeder chambers.
  • the even distribution of the melt to the feeder chambers can be supported by the fact that the pouring runner is branched into two outgoing branches immediately following the sprue, to each of which a returning branch is connected.
  • Another embodiment of the invention that is particularly important for practice consists in the fact that the connection leading from the feeder system or from the pouring runner to the casting mold cavity is guided exclusively outside the volume of the casting mold occupied by the casting mold cavity. Since in a casting mold according to the invention the melt is conducted into the casting mold cavity exclusively via connections which are formed on the outside in the area of the walls of the casting mold bounding the casting mold cavity, the uniformity of the Temperature distribution of the melt flowing into the mold cavity during casting and the uniformity of the mold filling optimized.
  • melt is also conducted into the mold cavity via internal cores heated by the melt flowing into the casting mold cavity, which form recesses, cavities, channels and the like in the casting. Due to the heating of the internal cores, the melt flowing through them would cool down less than the melt fed in via the external connections. Since the melt is only fed into the mold cavity via external connections, this ensures that the melt cools evenly on its way from the feeder system or from the pouring runner into the mold cavity and thus enters the mold cavity at a uniform temperature.
  • the inflow openings of the connections assigned to the feeder system are arranged together in one plane.
  • the melt is in each case discharged from the feeder system at the same level at which there is a uniform temperature of the melt contained in the possibly several chambers. This also contributes to the fact that the melt entering the casting mold cavity has a uniform temperature in the technical sense.
  • the casting mold according to the invention is suitable for gravity casting processes or low-pressure casting processes.
  • casting molds according to the invention can be used to produce cast parts in tilt casting or rotation casting processes, in which the casting mold according to or is moved during the filling from a filling position into a solidification position.
  • a comprehensive explanation of these procedures can be found in EP 2 352 608 B1 and the prior art cited therein.
  • the casting mold according to the invention can be composed as a core package from a large number of cores, of which certain cores represent the outer shape and other cores in the cast part to be made recesses, cavities, channels and the like depict.
  • the cores of the core package can be designed as lost cores that are destroyed when the casting is removed from the mold, or some of the cores can be designed as permanent molded parts that can be used repeatedly.
  • connection of the feeder system to the casting mold cavity is implemented exclusively via connections that are outside the casting mold cavity
  • a cylinder crankcase can thus be represented in the core package process with a feed system in which the melt is divided into two pouring runner branches, so that the feeder system connected to it, ideally comprising pot-like feeder chambers, for homogenizing the temperature distribution in the feeder system and subsequently in the component represented by the casting mold serves.
  • the feeder system in the In the casting operation, the feeder system is filled with melt at different temperatures through its two or more gates on the branches of the runner.
  • the melt in the feeder system is mixed in such a way that overall a homogeneous temperature distribution results in the feeder system.
  • the correspondingly homogeneously tempered melt is fed to the casting mold cavity depicting the cast part.
  • the casting process made possible by the design according to the invention allows it, in particular in combination with the optionally exclusively external supply of the casting mold cavity and the associated avoidance of "internal" supply paths, light metal melts that are difficult to cast, such as Al-Cu-based alloys, despite their generally poor filling and pouring power free from macroscopic defects.
  • the feeder and external connections that are present on the cast part after it has been demolded can easily be made weight-neutral using common processing methods, such as e.g. Drill to be removed.
  • Mass accumulations on the cast part which in the prior art are intended to avoid premature local solidification of the melt, but do not serve any other technical purpose, can be avoided in a casting mold according to the invention, as can complex channel guides when connecting the feeder system to the casting mold cavity in order to avoid the appearance of freezing .
  • chill molds can of course also be arranged in the region of the casting mold cavity in order to bring about locally accelerated solidification there in a manner known per se for the purpose of forming a locally particularly pronounced structure.
  • these chill molds do not hinder the casting operation either the uniform filling process ensured by the design according to the invention.
  • Mold 1 shown is used to cast the in the Figures 2 - 4 cylinder crankcase Z shown, often also called cylinder blocks, for an internal combustion engine made of an AlCu alloy.
  • Fig. 1 shows a schematic section transverse to the longitudinal extension of the cylinder crankcase Z.
  • the casting mold 1 designed as a core package comprises two outer shells 2, 3 designed as permanent mold parts, between which a larger number of lost casting cores 4 formed from molding sand are arranged.
  • the outer shells 2, 3 and the casting cores 4 delimit a casting mold cavity 5, which depicts the cylinder crankcase Z to be cast with its four cylinder openings Z ⁇ , which are arranged in series here, and the design features usually provided in such cylinder crankcases for internal combustion engines.
  • the casting cores 4 define an in Fig. 1 not visible, perpendicular to the in Fig. 1 the upper side 6 of the casting mold 1 leading downwards, a pouring runner 7 connected to the pouring sprue, a feeder system 8 connected to the pouring runner 7 and the casting mold cavity 5 and connections 9a provided for connecting the casting mold cavity 5 to the casting runner 7 or the feeder system 8, 9b.
  • the mold 1 is in Fig. 1 shown in the position shown for filling with melt, in which the opening of the sprue points upwards and the feeder system 8 is arranged on the underside of the casting mold 1.
  • the casting mold 1 is closed in a manner known per se and rotated in an equally known manner about a pivot axis parallel to the longitudinal extension of the casting mold 1, for example 180 °, until the feeder system 8 is arranged at the top. In this way, a uniform solidification of the melt filled into the casting mold 1 running in the direction of the feeder system 8 is promoted.
  • the feeder system 8 accordingly comprises two rows arranged next to one another and extending in the longitudinal direction L of the cylinder crankcase Z, each with five pot-like feed chambers 11, 12.
  • Feed chambers 11, 12 of each row arranged adjacent to one another are connected to one another by gates 13, 14.
  • the rows of feed chambers 11, 12 delimit an intermediate space 15 between them.
  • the feed chambers 11, 12 are arranged above the cover surface ZD of the cylinder crankcase Z, which is provided for mounting a cylinder head (not shown here), and have identical shapes and volumes.
  • the bottoms of the feed chambers 11, 12 are arranged together in a horizontal plane H1 which is aligned parallel to the top surface ZD of the cylinder crankcase Z.
  • the pouring runner 7 is also arranged in a horizontal plane H2 which is aligned parallel to the top surface ZD and in which the upper side of the feeder chambers 11, 12 also ends.
  • the pouring runner 7 is divided into two branches 18, 19 starting from the head 17 of the crankcase Z when the cylinder crankcase Z is demolded as a pouring rod tapering slightly conically in the direction of the pouring runner 7, which can be seen from the flow direction S of the melt poured into the casting mold 1 during the pouring operation Sprue 10 are directed away.
  • mirror-symmetrically shaped branches 18, 19 directed away from the sprue 10 initially each extend transversely to the longitudinal axis L from the sprue head 17, in order to then merge in a curve and via a filter F into a section which is at a small distance along the gap 15 facing away from the outer side of the respective row of feeder chambers 11,12.
  • branches 18, 19 facing away merge in a further curve into a section oriented towards the other branch 19, 18 facing away and extending over the width of the respective row of feeder chambers 11.12 extends.
  • the branches 18, 19 of the pouring runner 7 directed away from the runner open together in a branch 20 of the pouring runner directed back towards the pouring head 17.
  • This backward branch 20 of the pouring runner 7 has a cross-sectional area which corresponds at least approximately to the sum of the cross-sectional areas of the branches 18, 19 directed away. In this way, the branch 20 that is directed back can safely absorb the melt volumes flowing into it via the branches 18, 19 directed away.
  • the backward branch 20 is arranged in the intermediate space 15 centrally between the rows of feed chambers 11, 12 and, viewed in the direction of flow S, runs opposite to that of the sprue 10 branches 18, 19 directed away towards the sprue 10.
  • the branch 20 directed back ends in front of the pouring head 17, so that in the casting operation melt reaches the branch 20 directed back exclusively via the branches 18, 19 directed away.
  • Each of the feed chambers 11, which are evenly spaced along the longitudinal axis L, is connected to the branch 18 facing away via a respective cut 21, and each of the feed chambers 12, which are also equally spaced in the longitudinal direction L, is connected to the branch 19 directed away via a cut 22.
  • each of the feeder chambers 11 is connected to the branch 20 directed back via a respective cut 23 and each of the feeder chambers 12 via a respective cut 24.
  • the gates 21-24 are also distributed at equal intervals along the longitudinal axis L, the gates 21, 22; respectively assigned to each feeder chamber 11, 12; 23,24 are positioned opposite one another and in the middle with respect to the respective wall of the feeder chambers 11,12.
  • the casting mold cavity 5 is connected directly to the runner 7 (connection 9a) or the feeder chambers 11, 12 (connections 9b) via connections 9a, 9b.
  • the connections 9a, 9b are each formed exclusively outside the mold cavity 5, so that no melt reaches the mold cavity 5 via casting cores 4 placed in the mold cavity 5.
  • the melt has one level, consequently part of the melt also reaches the mold cavity 5 via the feeder chambers 11, 12.
  • the solidification in the component then takes place very quickly over the thin walls and the feed only takes place via the locally large volumes in close proximity to the supply requirement.
  • connections 9b connected to the feeder chambers 11, 12 are arranged on a common horizontal plane H3, so that in each case the melt of the same temperature from the feeder chambers 11, 12 into those connected to them Connections 9b reached.
  • the supply of the melt to the mold cavity 5, on the other hand, can extend over a height range or be distributed over several levels.
  • melt can be supplied in a targeted manner through a separate connection 9b in order to feed the respective problem area directly.
  • the casting mold 31 shown is also provided for casting a cylinder block for an internal combustion engine.
  • the casting mold 31 comprises a cover core 32, an outer core 33 carrying the cover core 32, a further outer core 34 carrying the outer core 33, two outer shell cores 35, 36 which form the outer end of the casting mold 31 in the region of the mold cavity of the casting mold 31 and on which the outer cores 33,34 and the cover core 32 are supported, a contouring core 37 which depicts the contour of the interior of the cast part, which forms the lower end of the casting mold and on which the shell cores 35,36 are supported, as well as laterally within the shell cores 35,36 Cores 38,39 arranged in a limited space, which determine the outer contour of the casting.
  • a feeder pot 43, 44 is formed in the cover core 32 and the outer cores 33, 34 in the space between the branch 40, 41 facing away from the outside and the branch 42 facing back.
  • the feeder pots 43, 44 accordingly sit directly on the top surface of the cast part (eg sealing surface to the oil pan or to the cylinder head).
  • the feeder pots 43,44 thus feed all areas which are arranged in direct local proximity to them such as the cylinder head screw pipes.
  • the branches 40, 41 facing away are connected to the respective associated feeder pot 43,44 via connections that are arranged close to the outer core 33, whereas the branch 42 directed back is connected via connections to the feeder pots 43, 44, which point towards the top of the Cover core 32 are offset.
  • the external feeder volumes 45, 46 are filled via the assigned inlet 47, 48, which is always connected to one of the feeder pots 43, 44.
  • the external feeder volumes 45, 46 feed everything in their immediate vicinity, e.g. Mass accumulation through functional integration.
  • the casting mold 31 For filling with melt, the casting mold 31 is rotated, for example, by 180 ° transversely to the longitudinal extension of the cylinder crankcase ZK to be cast, so that the cover core 32 with the branches 40, 41 facing away and the branch 42 facing back is on the underside. Hot melt M is passed through the sprue into the branches 40, 41 facing away. From the branches 40, 41 facing away, the melt M, which has cooled down on the way through the branches 40, 41 facing away, reaches the branch 42 facing backwards and into the feeder pots 43, 44 ( Fig. 6 ).
  • hot melt M With increasing filling of the branches 40, 41 directed away, hot melt M also reaches the corresponding connections from the branches 40, 41 facing away into the feeder pots 43, 44 so that hot melt M and cooled melt M mix in feeder pots 43, 44 and melt M is present in feeder pots 43, 44, which has a homogeneously distributed mixing temperature ( Fig. 7 ).
  • the correspondingly tempered melt M rises via the inlets 47, 48, on the one hand, into the external feeder volumes 45, 46 and, on the other hand, over the gates, via which the feeder pots 43, 44 are connected directly to the casting mold cavity depicting the casting, into the casting mold cavity ( Fig. 8 ).
  • the casting mold 31 After completely filling ( Fig. 9 ) the casting mold 31 is closed in a manner known per se and rotated transversely to its longitudinal extension by 180 ° into the solidification position ( Fig. 10 ).
  • the melt is thus filled into the casting mold via at least one sprue.
  • the melt is then divided into two separate branches facing away from the sprue, which, given a corresponding basic shape of the feeder system, are preferably aligned such that they run parallel at least in sections.
  • the melt, which is divided into branches of the pouring runner directed away, is returned to the pot-like feeder chambers via a deflector.
  • a curve can be provided in the area of the deflection, which leads out of the main plane in which the pouring runner mainly lies in order to slow down the flow speed of the melt flowing through the respective branch directed away.
  • the early separation of the runner system and supply of the melt to several feeder volumes provided by the feeder chambers results in optimized filling conditions.
  • the configuration according to the invention guarantees a rapid, uniform inflow of the molten metal and, as a result, a homogeneous temperature distribution in the feeder system and in the component.
  • the runners are connected to the feeder chambers via gates.
  • the connection of the feeder chambers is selected in such a way that the penetrating melt is optimally mixed in the chambers.
  • the feeder chambers are connected to one another via gates.
  • the melt flow and the achieved temperature distribution can be adapted to the particular casting task. Because the feeder system is arranged above the mold cavity during the solidification, solidification in the direction of the feeder system is achieved. This means that the component cools down and solidifies, starting from the point furthest away from the feeder system, while the melt contained in the feeder system and finally filled into the mold remains hot for longer. If the mold is gravity cast without rotation, i.e. filled with the feeder system at the top, the mold cavity representing the cast part is filled first, and only finally the feeder system is filled.
  • connection points preferably go to existing slugs and sit on surfaces that are part of the standard post-processing.
  • the feeder system can be easily removed during the pre- and post-processing of the respective component (cylinder crankcase Z), for example by drilling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

  • Die Erfindung betrifft eine Gießform zum Gießen von komplex geformten, großvolumigen Gussteilen aus einer Metallschmelze. Solche Gießformen weisen üblicherweise einen das Gussteil abbildenden Formhohlraum und ein Zuführsystem zum Zuführen der zu dem Gussteil zu vergießenden Metallschmelze in den Formhohlraum auf. Das Zuführsystem umfasst dabei einen Einguss, einen an den Einguss angeschlossenen Gießlauf und ein Speisersystem, das an den Gießlauf angeschlossen ist, wobei der Gießformholraum mit dem Speisersystem oder dem Gießlauf über Anbindungen verbunden ist
  • Des Weiteren betrifft die Erfindung eine praxisgerechte Verwendung .einer solchen Gießform.
  • Das Speisersystem dient beim Gießen von Gussteilen mit Gießformen der hier in Rede stehenden Art einerseits der Steuerung der optimalerweise zum Speiser hin gerichteten Erstarrungsrichtung der vergossenen Schmelze. Andererseits gleicht das im Speisersystem vorgehaltene Schmelzenvolumen die Verringerung des spezifischen Volumens der vergossenen Schmelze während des Phasenübergangs Flüssig/Fest aus. Das Speisersystem stellt dabei ein zusätzlich angebrachtes Schmelzereservoir dar, aus dem während der Abkühlung Schmelze in das Gussteil nachfließen kann.
  • Eine besondere Herausforderung stellt das Gießen von modernen Zylinderkurbelgehäusen und vergleichbar filigranen Gussteilen aus Leichtmetalllegierungen dar, die hohe mechanische Eigenschaften oder eine hohe thermische Belastbarkeit entwickeln können. Zu solchen Leichtmetalllegierungen zählen beispielsweise aushärtbare AlCu-Legierungen.
  • Dem hohen Eigenschaftspotenzial von derartigen Leichtmetalllegierungen stehen in der Praxis Probleme bei der zuverlässigen gießtechnischen Erzeugung von hochwertigen Gussteilen im industriellen Maßstab gegenüber. So erweist es sich beispielsweise als schwierig, aus AICu-Legierungen komplex geformte Gussteile zu erzeugen, die frei von Lunkern und Warmrissen sind. Dabei ist festgestellt worden, dass die Qualität des erhaltenen Gussteils entscheidend von der Gleichmäßigkeit der Füllung des Gießformhohlraums und von der Homogenität der Temperaturverteilung in der Schmelze abhängt.
  • Massenanhäufungen sind bei Legierungen mit einer nicht schalenbildenden, breiartigen und/oder schwammartigen Erstarrungsmorphologie zu vermeiden, da Einfalllunker entstehen und die Nachspeisung durch das Nachfließen der Schmelze innerhalb des erstarrenden Gussteils selber erschwert ist.
  • Aus dem Stand der Technik ist eine große Zahl von Vorschlägen für Gießformen bekannt, die diesen Anforderungen genügen sollen.
  • So ist aus der DE 42 44 789 A1 eine Gießform zum Gießen eines Zylinderkurbelgehäuses für einen Verbrennungsmotor bekannt, bei der zwei separate Einfülltrichter vorgesehen sind, über die die Schmelze in die Gießform gegossen wird. Von den Einfülltrichtern fließt die Schmelze jeweils über einen Gießlauf in den von der Gießform umgrenzten Formhohlraum. Dabei sind die Gießläufe durch einen Kurbelraumblockkern geführt. Von den Gießläufen zweigen Gießkanäle ab, die zu unteren Abgusskonturen der Gießform führen. Dabei sind die Gießkanäle jeweils so ausgerichtet, dass ihre Mündungen auf einer Horizontalebene liegen.
  • Ein Niederdruck-Kokillen-Gießverfahren zum Gießen von Metallgussteilen, wie Zylinderköpfen oder Motorblöcken von Brennkraftmaschinen, ist aus der DE 39 24 742 A1 bekannt. Die Komplexität der mit diesem Verfahren zu gießenden Gussteile ergibt sich hier daraus, dass sie in mindestens einem Bereich dünnere Wandungen aufweisen als in einem anderen Bereich. Bei dem bekannten Verfahren wird mittels Gasdruck flüssiges Metall aus einem Schmelzbehälter durch ein Steigrohr in die Form gedrückt. Dabei wird die Form so angeordnet, dass in ihr die dickeren Wandungen des Gussteils oben liegend und damit fern vom Anguss angeordnet sind, über die das Metall in den das Bauteil abbildenden Hohlraum der Gießform gelangt. Gleichzeitig wird das flüssige Metall an oder nahe dem unten angussnahe liegenden Bereich der Form in die Abschnitte geleitet, die die dünnere Wandung der Gießform bilden. Dabei kann das flüssige Metall über einen Bodenlauf an mehreren Angussstellen dem unten angussnahe liegenden Bereich der Form zugeführt und in die die dünnere Wandung des Gußteiles bildenden Abschnitte des Formhohlraums eingeleitet werden.
  • Aus der WO 2014/111573 A1 ist schließlich ein Verfahren zum Gießen von Gussteilen bekannt, bei dem eine Metallschmelze über einen Speiser oder separate Gießläufe oder Gießkanäle in einen von einer Gießform umgrenzten, das Gussteil abbildenden Formhohlraum abgegossen wird. Die Gießform umfasst dabei Formteile, die die Form des zu gießenden Gussteils bestimmen. Die Schmelze wird über mindestens zwei Anbindungen, von denen mindestens eine als zusätzlicher, durch eines der Formteile führender und von der Kontur des zu gießenden Gussteils unabhängiger Kanal ausgebildet ist, in mindestens zwei Abschnitte des Formhohlraums geleitet, die unterschiedlichen Ebenen des zu gießenden Gussteils zugeordnet sind. Dokumente EP2352608B1 , DE4103802A1 und CN205008543U sind weitere Beispiele von bekannte Gießformen im technischen Bereich.
  • Für das Gießen von Gussteilen der hier betrachteten Art eignen sich insbesondere Gießformen, die vollständig oder teilweise als Kernpaket ausgebildet sind. Bei einem solchen Kernpaket ist die Gießform aus einer größeren Zahl von Kernen zusammengesetzt, die die innere und äußere Kontur des herzustellenden Gussteils bestimmen. Die Gießkerne sind dabei in der Regel aus einem Formstoff oder einem leicht zerstörbarem Material als so genannte "verlorene Kerne" gefertigt, die beim Entformen des Gussteils zerstört werden. Es sind jedoch auch Mischformen von Kernpaketen bekannt, bei denen beispielsweise die die äußere Kontur bestimmenden Formteile als vielfach wiederverwendbare Dauerformteile ausgebildet sind, während die im Gussteil innen liegend abzubildenden Ausnehmungen, Höhlungen, Kanäle, Leitungen etc. durch verlorene Kerne abgebildet werden.
  • Kernpaket-Gießformen der voranstehend erläuterten Art werden hauptsächlich in Schwerkraftguss-Verfahren oder in Niederdruck-Gießverfahren eingesetzt, wobei diese Verfahren auch ein Rotieren der Gießform nach ihrer Befüllung mit der Schmelze umfassen können, um einen optimierten Erstarrungsverlauf und damit einhergehend eine optimale Gefügebeschaffenheit des Gussteils zu erzielen.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, eine Gießform zu schaffen, die es zuverlässig erlaubt, hoch komplex geformte Gussteile auch aus Legierungen zu erzeugen, die sich bei konventioneller Vorgehensweise nur schwer und hinsichtlich der Qualität des Gießergebnisses unsicher vergießen lassen.
  • Darüber hinaus sollte eine besonders vorteilhafte Verwendung einer solchen Gießform angegeben werden.
  • In Bezug auf die Gießform hat die Erfindung diese Aufgabe dadurch gelöst, dass eine solche Gießform gemäß Anspruch 1 ausgebildet ist.
  • Eine erfindungsgemäß gestaltete Gießform eignet sich insbesondere zur Verwendung beim Gießen eines Zylinderkurbelgehäuses für einen Verbrennungsmotor aus einer Leichtmetallschmelze, insbesondere einer AlCu-Schmelze.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Eine erfindungsgemäße Gießform zum Gießen von komplex geformten, großvolumigen Gussteilen aus einer Metallschmelze weist einen das Gussteil abbildenden Formhohlraum und ein Zuführsystem zum Zuführen der zu dem Gussteil zu vergießenden Metallschmelze in den Formhohlraum auf, wobei das Zuführsystem einen Einguss, einen an den Einguss angeschlossenen Gießlauf und ein Speisersystem umfasst, das an den Gießlauf angeschlossen ist, wobei der Gießformholraum mit dem Speisersystem oder dem Gießlauf über Anbindungen verbunden ist.
  • Erfindungsgemäß ist nun - in Strömungsrichtung der im Gießbetrieb vom Einguss in den Gießlauf strömenden Metallschmelze gesehen - der Gießlauf mit einem vom Einguss weggerichteten Ast entlang des Speisersystems und mit einem zurückgerichteten Ast, der sich an den weggerichteten Ast anschließt, in zum weggerichteten Ast entgegengesetzter Richtung entlang des Speisersystems geführt, wobei das Speisersystem sowohl mit dem weggerichteten Ast als auch mit dem zurückgerichteten Ast über zwei oder mehr längs des jeweiligen Asts verteilt angeordnete Anschnitte verbunden ist.
  • Mit der erfindungsgemäßen Gestaltung einer Gießform gelingt es, die Temperatur der im Speisersystem bereitgestellten und in den Gießformhohlraum geleiteten Schmelze so zu vergleichmäßigen, dass sich im Gussteil eine ebenso gleichmäßige Temperaturverteilung einstellt. Dies führt auch bei schwierig zu vergießenden Metallschmelzen, insbesondere bei schwer zu vergießenden Leichtmetallschmelzen, wie AlCu-Schmelzen, nach der Befüllung der Gießform zu einem gleichmäßigen Erstarrungsverlauf, während dessen eine ebenfalls gleichmäßige Nachspeisung aus dem Speisersystem sichergestellt ist. Lokale Temperaturunterschiede und ein damit einhergehendes, die Gefahr von Lunkerbildung mit sich bringendes ungleichförmiges Erstarren in den verschiedenen Ebenen des Gussteils werden auf diese Weise vermieden. In der in eine erfindungsgemäße Gießform gefüllten Schmelze bildet sich stattdessen zuverlässig eine Erstarrungsfront, die ausgehend vom zum Speisersystem entferntesten Punkt kontinuierlich in Richtung des Speisersystems fortschreitet.
  • Es versteht sich an dieser Stelle von selbst, dass die hier verwendeten Begriffe "gleichmäßige Temperaturverteilung", "mittlere Temperatur", "Homogenisierung der Temperaturverteilung", "gleiche Temperaturen", "einheitliche Temperatur" und desgleichen jeweils im technischen Sinne zu verstehen sind, d.h. im Rahmen der technischen Möglichkeiten mit den vom Fachmann als üblich angesehenen Toleranzen belegt sein können.
  • Die Homogenisierung der Temperatur des dem Gießformhohlraum zugeführten Schmelzenstroms wird erfindungsgemäß dadurch erzielt, dass der über den Einguss zugeführte Schmelzenstrom zunächst in einem vom Einguss wegführenden "weggerichteten Ast" entlang des Speisersystems geführt wird, dabei bereits über die längs des weggerichteten Asts vorgesehenen Anschnitte in das Speisersystems läuft und dann in dem in einer entgegengesetzt zum vom Einguss weggerichteten Ast verlaufenden, "zurückgerichteten Ast", sinngemäß wieder in Richtung des Eingusses geführt wird. Eine direkte Verbindung zwischen dem Einguss und dem zurückgerichteten Ast besteht dabei allerdings nicht. Vielmehr läuft nur Schmelze aus dem weggerichteten Ast des Gießlaufs in dessen zurückgerichteten Ast.
  • Die Temperatur der beim Eingießen in die Gießform durch den Gießlauf strömenden Schmelze nimmt mit zunehmender Entfernung zum Einguss ab. Dementsprechend gelangt bei einer erfindungsgemäßen Gießform über den zum Einguss nächstbenachbarten Anschnitt des weggerichteten Astes maximal heiße Schmelze in das Speisersystem, wogegen die Schmelze, die über den am weitesten vom Einguss entfernten, in Strömungsrichtung letzten Anschnitt des zurückgerichteten Astes in das Speisersystem läuft, maximal abgekühlt ist. Zwischen der über den ersten Anschnitt des weggerichteten Astes und den letzten Anschnitt des zurückgerichteten Anschnitts in das Speisersystem gelangenden Schmelze besteht deshalb ein maximaler Temperaturunterschied. Indem die maximal heiße und die maximal abgekühlte Schmelze demselben Bereich der Gießform zugeführt werden, mischen sich die unterschiedlich temperierten Schmelzenströme und es stellt sich in der in diesem Bereich enthaltenen Schmelze eine Mischtemperatur ein, die bei entsprechender Abstimmung der in den betreffenden Bereich eintretenden Schmelzenvolumenströme beispielsweise der mittleren Temperatur der in diesen Bereich einströmenden, maximal heißen und maximal abgekühlten Schmelzenströme entspricht.
  • Zwischen der Schmelze, die durch den in Strömungsrichtung am Ende des weggerichteten Astes vorgesehenen letzten Anschnitt des weggerichteten Astes in das Speisersystem gelangenden und über den Weg entlang des Speisersystems abgekühlt ist, und der Schmelze, die durch den ersten Anschnitt des zurückgerichteten Astes in das Speisersystem gelangt und über eine vergleichbar kurze Strecke zwischen dem letzten Anschnitt des weggerichteten Asts und dem ersten Anschnitt des zurückgerichteten Asts nur wenig abgekühlt ist, besteht dagegen nur ein entsprechend geringer Temperaturunterschied. Da auch diese vergleichbar gering unterschiedlich temperierten Schmelzenströme demselben Bereich des Speisersystems zugeführt werden, liegt auch dort eine Mischtemperatur vor. Diese kann wiederum durch eine geeignete Einstellung der über die Anschnitte in das Speisersystem eintretenden Schmelzenvolumenströme so eingestellt werden, dass die sich im betreffenden Bereich einstellende Mischtemperatur gleich der Mischtemperatur ist, die sich durch Mischung der maximal heißen und der maximal abgekühlten Schmelze im zum Einguss nächtbenachbarten Bereich des Speisersystems einstellt.
  • In gleicher Weise verhält es sich mit den Schmelzenströmen, die über diejenigen optional vorhandenen weiteren Anschnitte in das Speisersystem geleitet werden, die entlang des weggerichteten und des zurückgerichteten Astes des Gießlaufs zwischen den - in Strömungsrichtung der Schmelze gesehen - am Ende und am Anfang des weggerichteten und des zurückgerichteten Astes vorgesehenen Anschnitten vorhanden sind.
  • Im Ergebnis wird somit durch die bei einer erfindungsgemäßen Gießform vorgesehene Gestaltung des Gießlaufs und dessen besondere Anbindung an das Speisersystem eine über das gesamte Volumen des Speisersystems homogene Temperaturverteilung erzielt. Damit einhergehend weist auch die über das Speisersystem in den Gießformhohlraum gelangende Schmelze eine gleichmäßige Temperaturverteilung auf, wodurch auch bei einer filigranen Formgebung der am Gussteil abzubildenden Gestaltungselemente, wie dünne Wandungen und feine Stege oder Rippen, nicht nur eine optimale Formfüllung erreicht, sondern eine ebenso gleichmäßige Erstarrung der Schmelze erzielt wird. Mit der Erfindung gelingt es folglich, auch aus Metallschmelzen, die für ihr schlechtes Formfüllungsund Speisungsvermögen bekannt sind, jedoch hohe mechanische oder thermische Eigenschaften entwickeln können, gießtechnisch schwierig zu beherrschende Bauteile, wie Zylinderkurbelgehäuse für Verbrennungsmotoren, zu gießen.
  • Wie erwähnt, kann die im Speisersystem sich einstellende Mischtemperatur durch Abstimmung der in die einzelnen Bereiche des Speisersystems über die dort vorgesehenen Anschnitte eintretenden Schmelzenvolumenströme eingestellt werden. Zu diesem Zweck können die Position am jeweiligen Ast des Gießlaufs, die Anzahl oder die Geometrie, insbesondere der Durchmesser, der Anschnitte so angepasst werden, dass sich aus den Anteilen der in das Speisersystem gelangenden, unterschiedlich temperierten Schmelzenströme an dem im Speisersystem enthaltenen Gesamtschmelzenvolumen die angestrebte Mischtemperatur im Speisersystem ergibt.
  • Durch die Anordnung der den dem weggerichteten und dem zurückgerichteten Ast jeweils zugeordneten Anschnitte kann dabei die Durchmischung der über die Anschnitte in das Speisersystem und damit einhergehend die Vergleichmäßigung der Temperatur der im Speisersystem enthaltenen Schmelze direkt beeinflusst werden.
  • Dabei erweist sich die erfindungsgemäße Gestaltung einer Gießform bei allen Gießaufgaben als vorteilhaft, bei denen eine besonders homogene Temperaturverteilung in der jeweils zu vergießenden Schmelze und eine gleichmäßige Zuführung der Schmelze in den das Gussteil abbildenden Gießformhohlraum für den Gießerfolg von Bedeutung sind. So kann die Erfindung für Gussteile mit einer langgestreckten, blockartigen Grundform, wie beispielsweise Motorblöcke, genauso eingesetzt werden wie für Gussteile, die eine zylindrische, durch einen ellipsoiden oder kreisförmigen Querschnitt geprägte Grundform besitzen.
  • Im Hinblick auf eine optimierte Homogenität der Temperaturverteilung hat es sich als vorteilhaft erwiesen, wenn zu jedem Anschnitt, über den der weggerichtete Ast des Gießlaufs mit dem Speisersystem verbunden ist, gegenüberliegend einer der Anschnitte angeordnet ist, über die der zurückgerichtete Ast mit dem Speisersystem verbunden ist. Dies ist insbesondere bei einem Speisersystem günstig, dessen Länge nennenswert größer ist als seine Breite, also beispielsweise einem Speisersystem, das in Draufsicht eine rechteckige Grundgestalt aufweist.
  • Ebenso zur Vergleichmäßigung der Temperaturverteilung der im Gießbetrieb im Speisersystem enthaltenen Schmelze trägt es bei, wenn die Zahl der dem weggerichteten Ast zugeordneten Anschnitte gleich der Zahl der dem zurückgerichteten Ast zugeordneten Anschnitte ist.
  • Letzteres gilt insbesondere dann, wenn die Größe der dem weggerichteten Ast zugeordneten Anschnitte gleich der Größe der dem zurückgerichteten Ast zugeordneten Anschnitte ist, wenn die Anschnitte also so dimensioniert sind, dass über die einander zugeordneten Anschnitte der Äste des Gießlaufs jeweils gleich große Volumenströme in das Speisersystem gelangen.
  • Abhängig von der Art und Weise der Anbindung des Speisersystems an den Gießformhohlraum oder des zum Nachspeisen des Gießformhohlraums während der Erstarrung der Schmelze im Speisersystem benötigten Schmelzenvolumens kann es zweckmäßig sein, im Speisersystem eine einzige ausreichend große Speiserkammer vorzusehen, die in erfindungsgemäßer Weise über Anschnitte mit dem weggerichteten und dem zurückgerichteten Ast des Gießlaufs verbunden ist. Die Speiserkammer dient dann als Mischbereich für die über den weg- und den zurückgerichteten Ast in sie gelangende Schmelze und trägt so zur Homogenisierung der in den Gießformhohlraum gelangenden Schmelze bei. Darüber hinaus kann eine solche Speiserkammer eine Speisungsfunktion im Sinne eines Nachspeisens von Schmelze in den Formholraum der Gießform übernehmen.
  • Wenn die Durchmischung und damit einhergehend die Vergleichmäßigung der Temperaturverteilung der im Speisersystem enthaltenen Schmelze weiter optimiert werden soll, kann es zweckmäßig sein, im Speisersystem zwei oder mehr Speiserkammern vorzusehen, von denen jede über jeweils mindestens einen Anschnitt sowohl mit dem weggerichteten Ast als auch mit dem zurückgerichteten Ast des Gießlaufs verbunden ist. Bei zwei oder mehr Speiserkammern enthalten die einzelnen Kammern jeweils nur ein Teilvolumen des für die Nachspeisung des Gießformhohlraums benötigten Gesamtschmelzenvolumens. Durch das dementsprechend geringere Volumen der einzelnen Speiserkammern kommt es in ihnen zu einer besonders intensiven Durchmischung der in sie über die Äste des Gießlaufs eintretenden unterschiedlich temperierten Schmelzenströme. Auf diese Weise kann mit vergleichbar geringem Aufwand sichergestellt werden, dass die in der jeweiligen Schmelzenkammer vorhandene Schmelzenvolumina insgesamt die angestrebte Mischtemperatur aufweist, und die Entstehung von lokalen Temperaturunterschieden vermieden wird. Als besonders günstig erweist es sich in dieser Hinsicht, wenn die von den Speiserkammern umfassten Volumina gleich sind.
  • Um bei einem Speisersystem mit zwei oder mehr Speiserkammern zu gewährleisten, dass die in den einzelnen Kammern enthaltenen Speiservolumina eine gemeinsame Mischtemperatur annehmen, können die Speiserkammern untereinander über zusätzlich vorgesehene, die Speiserkammern direkt verbindende Anschnitte verbunden sein. Über diese zusätzlichen Anschnitte kommt es zum Austausch der in den Speiserkammern enthaltenen Schmelzenvolumina und damit einhergehend zu einem Ausgleich der möglicherweise unterschiedlichen Temperaturen der in den Kammern enthaltenen Schmelzenportionen.
  • Eine insbesondere zum Gießen von Zylinderkurbelgehäusen für Verbrennungsmotoren mit in einer Reihe angeordneten Zylinderöffnungen geeignete Variante der Erfindung ist dadurch gekennzeichnet, dass das Speisersystem mindestens eine, insbesondere mindestens zwei nebeneinander angeordnete Speiserkammern umfasst, und entweder der weggerichtete Ast im Zwischenraum zwischen den Speiserkammern angeordnet ist und entlang der bezogen auf den Zwischenraum außenliegenden Seite jeder der Speiserkammern jeweils ein von dem weggerichteten Ast abzweigender zurückgerichteter Ast verläuft oder der weggerichtete Ast in zwei weggerichtete Äste geteilt ist, von denen jeweils einer entlang der bezogen auf den Zwischenraum zwischen den Speiserkammern außenliegenden Seite der Speiserkammern verläuft, wogegen mindestens ein mit den weggerichteten Ästen verbundener zurückgerichteter Ast im Zwischenraum zwischen den Speiserkammern verläuft. Unterstützt werden kann dabei die gleichmäßige Aufteilung der Schmelze auf die Speiserkammern dadurch, dass der Gießlauf im unmittelbaren Anschluss an den Einguss in zwei wegführende Äste verzweigt ist, an die jeweils ein zurückführender Ast angeschlossen ist.
  • Als besonders vorteilhaft hinsichtlich der Verteilung der Schmelze auf die Äste des Gießlaufs einer erfindungsgemäßen Gießform erweist es sich, wenn die Äste des Gießlaufs gemeinsam in einer Ebene angeordnet sind. Diese Ebene ist im Gießbetrieb optimalerweise horizontal ausgerichtet, so dass ein Gefälle und damit einhergehend unterschiedliche Strömungsgeschwindigkeiten in den Ästen des Gießlaufs vermieden werden.
  • Im Falle einer derartigen gemeinsamen Ebene für die Äste des Gießlaufs hat es sich als vorteilhaft erwiesen, wenn die Anschnitte des zu- und rücklaufenden Astes jeweils ein eigenes Niveau haben, damit die Schmelze beim Zusammenlaufen geschichtet wird und nicht aufeinander prallt.
  • Eine weitere für die Praxis besonders wichtige Ausgestaltung der Erfindung besteht darin, dass die vom Speisersystem oder vom Gießlauf zum Gießformhohlraum führende Anbindung ausschließlich außerhalb des vom Gießformhohlraum eingenommenen Volumens der Gießform geführt ist. Indem bei einer erfindungsgemäßen Gießform die Schmelze ausschließlich über Anbindungen, die außen im Bereich der den Gießformhohlraum umgrenzenden Wandungen der Gießform gebildet sind, in den Gießformhohlraum geleitet wird, werden die Gleichmäßigkeit der Temperaturverteilung der in den Gießformhohlraum im Gießbetrieb einströmenden Schmelze und die Gleichmäßigkeit der Formfüllung optimiert.
  • Durch die ausschließlich außerhalb des Gießformhohlraums erfolgende Anbindung werden im Gießbetrieb Temperaturunterschiede in der in den Gießformhohlraum eingebrachten Schmelze vermieden. Diese können dann eintreten, wenn Schmelze auch über von der in den Gießformhohlraum strömenden Schmelze erwärmte innenliegende Kerne in den Formhohlraum geleitet werden, die Ausnehmungen, Höhlungen, Kanäle und desgleichen im Gussteil abbilden. Aufgrund der Erwärmung der innenliegenden Kerne würde die durch sie strömende Schmelze weniger abkühlen als die über die außenliegenden Anbindungen zugeführte Schmelze. Da die Schmelze nur über außen liegende Anbindungen dem Gießformhohlraum zugeführt wird, ist somit sichergestellt, dass die Schmelze auf ihrem Weg vom Speisersystem oder vom Gießlauf in den Gießformhohlraum gleichmäßig abkühlt und so mit einer einheitlichen Temperatur in den Formhohlraum eintritt.
  • Als in dieser Hinsicht besonders vorteilhaft hat es sich erwiesen, wenn im Fall, dass das Speisersystem über mehrere Anbindungen an den Gießformhohlraum angebunden ist, die dem Speisersystem zugeordneten Einströmöffnungen der Anbindungen gemeinsam in einer Ebene angeordnet sind. Auf diese Weise wird die Schmelze jeweils auf gleicher Höhe, an der eine einheitliche Temperatur der in den gegebenenfalls mehreren Kammern enthaltenen Schmelze vorliegt, aus dem Speisersystem abgeführt. Auch dies trägt dazu bei, dass die in den Gießformhohlraum gelangende Schmelze eine im technischen Sinne einheitliche Temperatur aufweist.
  • Die erfindungsgemäße Gießform eignet sich für Schwerkraftgießverfahren oder Niederdruckgießverfahren. Insbesondere lassen sich mit erfindungsgemäßen Gießformen Gussteile in Kippguss- oder Rotationsgussverfahren erzeugen, bei denen die Gießform nach oder während der Befüllung aus einer Befüllstellung in eine Erstarrungsstellung bewegt wird. Eine zusammenfassende Erläuterung dieser Verfahren findet sich in der EP 2 352 608 B1 und dem dort zitierten Stand der Technik.
  • Um die filigranen Gestaltungsmerkmale von mittels erfindungsgemäßer Gießformen zu gießenden Gussteilen abbilden zu können, kann die erfindungsgemäße Gießform als Kernpaket aus einer Vielzahl von Kernen zusammengesetzt sein, von denen bestimmte Kerne die Außenform und andere Kerne in dem herzustellenden Gussteil abzubildende Ausnehmungen, Hohlräume, Kanäle und desgleichen abbilden. Dabei können die Kerne des Kernpakets insgesamt als verlorene Kerne, die bei der Entformung des Gussteils zerstört werden, gestaltet sein oder einige der Kerne als Dauerformteile ausgebildet sein, die wiederholt verwendet werden können.
  • So kann es insbesondere im für die Praxis besonders vorteilhaften Fall, dass die Verbindung des Speisersystems zu dem Gießformhohlraum ausschließlich über Anbindungen realisiert ist, die außerhalb vom Gießformhohlraum liegen, beispielsweise zweckmäßig sein, bei einer erfindungsgemäßen Gießform eine als Dauerformteil ausgelegte Außenschale vorzusehen, an der mindestens die die Anbindungen zumindest abschnittsweise umgrenzenden Gießkerne gehalten sind. Dies erweist sich insbesondere dann als vorteilhaft, wenn die die Anbindungen zumindest abschnittsweise umgrenzenden Gießkerne als verlorene Gießkerne ausgebildet sind.
  • Mit der Erfindung gelingt somit die Darstellung eines Zylinderkurbelgehäuses im Kernpaketverfahren mit einem Speisungssystem, bei dem die Schmelze in zwei Gießlaufäste aufgeteilt wird, so dass das daran angeschlossene, optimalerweise töpfchenartige Speiserkammern umfassende Speisersystem zur Homogenisierung der Temperaturverteilung im Speisersystem und nachfolgend im durch die Gießform abgebildeten Bauteil dient. Im Gießbetrieb wird das Speisersystem durch seine zwei- oder mehrfachen Anschnitte an die Äste des Gießlaufs durch Schmelze unterschiedlicher Temperatur gefüllt. Durch Anpassung der Geometrien und der Position der Anschnitte wird eine Mischung der Schmelze im Speisersystem derart erreicht, dass sich im Speisersystem insgesamt eine homogene Temperaturverteilung ergibt. Die entsprechend homogen temperierte Schmelze wird dem das Gussteil abbildenden Gießformhohlraum zugeführt.
  • Der durch die erfindungsgemäße Gestaltung ermöglichte Gießverlauf erlaubt es insbesondere in Kombination mit der optional ausschließlich von außen erfolgenden Speisung des Gießformhohlraums und der damit einhergehenden Vermeidung "innerer" Speisungspfaden, schwer gießbare Leichtmetallschmelzen, wie Legierungen auf Al-Cu Basis, trotz ihres generell schlechten Füll- und Speisungsvermögen frei von makroskopischen Defekten zu vergießen. Die nach dem Entformen des Gussteils an ihm vorhandenen Speiser und außen liegenden Anbindungen können auf einfache Weise gewichtsneutral durch gängige Bearbeitungsverfahren, wie z.B. Bohren, entfernt werden. Masseanhäufungen am Gussteil, die beim Stand der Technik zur Vermeidung eines lokal vorzeitigen Erstarrens der Schmelze vorgesehen sind, jedoch keinen anderen technischen Zweck erfüllen, können bei einer erfindungsgemäßen Gießform ebenso vermieden werden wie zwecks Vermeidung von Einfriererscheinungen aufwändige Kanalführungen bei der Anbindung des Speisersystems an den Gießformhohlraum.
  • Selbstverständlich können auch bei einer erfindungsgemäßen Gießform im Bereich des Gießformhohlraums Kühlkokillen angeordnet sein, um dort in an sich bekannter Weise eine lokal beschleunigte Erstarrung zwecks Ausbildung eines lokal besonders ausgeprägten Gefüges zu bewerkstelligen. Insbesondere dann, wenn die Füllung und Nachspeisung des Gießformhohlraums mit Schmelze ausschließlich über außen liegende Anbindungen erfolgt, behindern auch diese Kühlkokillen im Gießbetrieb nicht den durch die erfindungsgemäße Gestaltung gewährleisteten gleichmäßigen Füllvorgang.
  • Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Deren Figuren zeigen jeweils schematisch und nicht maßstäblich:
  • Fig.1
    eine Gießform zum Gießen eines Zylinderkurbelgehäuses für einen Verbrennungsmotor in einem Querschnitt;
    Fig. 2
    ein in der Gießform 1 gegossenes Zylinderkurbelgehäuse nach dem Entformen im ungeputztem Zustand in einer Ansicht von oben;
    Fig. 3
    das Zylinderkurbelgehäuse gemäß Fig. 2 in einer frontalen Sicht auf seine eine Stirnseite;
    Fig. 4
    das Zylinderkurbelgehäuse gemäß Fig. 2 und 3 in einer seitlichen Ansicht.
    Fig. 5
    eine weitere Gießform zum Gießen eines Zylinderkurbelgehäuses für einen Verbrennungsmotor in einem Querschnitt;
    Fig. 6 - 9
    die Gießform gemäß Fig, 5 beim Befüllen mit Schmelze;
    Fig. 10
    die Gießform gemäß Fig. 5 in der nach dem Füllen zum Erstarren gedrehten Stellung.
  • Die in Fig. 1 dargestellte Gießform 1 dient zum Gießen des in den Figuren 2 - 4 dargestellten Zylinderkurbelgehäuses Z, oft auch Zylinderblöcke genannt, für einen Verbrennungsmotor aus einer AICu-Legierung.
  • Fig. 1 zeigt dabei schematisch einen Schnitt quer zur Längserstreckung des Zylinderkurbelgehäuses Z.
  • Die als Kernpaket ausgebildete Gießform 1 umfasst zwei als Dauerformteile ausgebildete Außenschalen 2,3, zwischen denen eine größere Zahl von als in üblicher Weise aus Formsand geformten verlorenen Gießkernen 4 angeordnet sind. Die Außenschalen 2,3 und die Gießkerne 4 umgrenzen einen Gießformhohlraum 5, der das zu gießende Zylinderkurbelgehäuse Z mit seinen hier vier in Reihe angeordneten Zylinderöffnungen ZÖ und den üblicherweise bei solchen Zylinderkurbelgehäusen für Verbrennungsmotoren vorgesehenen Gestaltungsmerkmalen abbildet.
  • Darüber hinaus umgrenzen die Gießkerne 4 einen in Fig. 1 nicht sichtbaren, senkrecht von der in Fig. 1 oben angeordneten Seite 6 der Gießform 1 nach unten führenden Einguss, einen an den Einguss angeschlossenen Gießlauf 7, ein mit dem Gießlauf 7 und dem Gießformhohlraum 5 verbundenes Speisersystem 8 sowie zum Anbinden des Gießformhohlraums 5 an den Gießlauf 7 oder das Speisersystem 8 vorgesehene Anbindungen 9a,9b.
  • Die Gießform 1 ist in Fig. 1 in der für das Befüllen mit Schmelze gezeigten Stellung dargestellt, bei der die Öffnung des Eingusses nach oben zeigt und das Speisersystem 8 an der Unterseite der Gießform 1 angeordnet ist.
  • Nach dem Einfüllen der Schmelze wird die Gießform 1 in an sich bekannter Weise verschlossen und in ebenso bekannter Weise um eine parallel zur Längserstreckung der Gießform 1 ausgerichtete Schwenkachse um beispielsweise 180° gedreht, bis das Speisersystem 8 oben angeordnet ist. Auf diese Weise wird eine in Richtung des Speisersystems 8 ablaufende gleichmäßige Erstarrung der in die Gießform 1 gefüllten Schmelze begünstigt.
  • Beim Erstarren bildet sich nicht nur das zu erzeugende Zylinderkurbelgehäuse Z als fester Gusskörper ab, sondern es sind nach dem Entformen in Folge der im Einguss 10, im Gießlauf 7, im Speisersystem 8 und in den Anbindungen 9a,9b erstarrenden Schmelze auch diese ursprünglich hohlen Formelemente der Gießform 1 mit dem Zylinderkurbelgehäuse Z zusammenhängend abgebildet.
  • Beim auf das Entformen folgenden Putzen werden die betreffenden Formelemente vom Zylinderkurbelgehäuse Z in an sich bekannter Weise abgetrennt und dem Recycling zugeführt.
  • Die Besonderheiten einer erfindungsgemäßen Gießform 1 lassen sich somit am einfachsten an dem entformten und noch nicht geputzten Zylinderkurbelgehäuse Z erläutern, wie er in den Figuren 2 - 4 dargestellt ist.
  • Das Speisersystem 8 umfasst demnach zwei nebeneinander angeordnete sich in Längsrichtung L des Zylinderkurbelgehäuses Z erstreckende Reihen mit jeweils fünf töpfchenartigen Speiserkammern 11,12. Zueinander benachbart angeordnete Speiserkammern 11,12 jeder Reihe sind dabei durch Anschnitte 13,14 miteinander verbunden. Die Reihen von Speiserkammern 11,12 begrenzen zwischen sich einen Zwischenraum 15.
  • Die Speiserkammern 11,12 sind oberhalb der für eine Montage eines hier nicht gezeigten Zylinderkopfes vorgesehenen Deckfläche ZD des Zylinderkurbelgehäuses Z angeordnet und weisen identische Formen und Volumina auf. Die Böden der Speiserkammern 11,12 sind dabei gemeinsam in einer Horizontalebene H1 angeordnet, die parallel zur Deckfläche ZD des Zylinderkurbelgehäuses Z ausgerichtet ist.
  • Der Gießlauf 7 ist ebenfalls in einer parallel zur Deckfläche ZD ausgerichteten Horizontalebene H2 angeordnet, in der auch die Oberseite der Speiserkammern 11,12 endet.
  • Der Gießlauf 7 ist dabei ausgehend vom Kopf 17 des beim entformten Zylinderkurbelgehäuses Z als leicht konisch in Richtung des Gießlaufs 7 zulaufende Eingussstange abgebildeten Einguss 10 in zwei Äste 18,19 aufgeteilt, die in Strömungsrichtung S der im Gießbetrieb in die Gießform 1 eingefüllten Schmelze gesehen vom Einguss 10 weggerichtet sind.
  • Die bezogen auf die Längsachse L des Zylinderkurbelgehäuses Z in Draufsicht gesehen (Fig. 2) spiegelsymmetrisch geformten, vom Einguss 10 weggerichteten Äste 18,19 gehen hierzu zunächst jeweils quer zur Längsachse L vom Eingusskopf 17 ab, um dann in einer Kurve und über jeweils einen Filter F in einen Abschnitt überzugehen, der sich mit geringem Abstand längs der vom Zwischenraum 15 abgewandten, außen liegende Seite der jeweiligen Reihe von Speiserkammern 11,12 erstreckt.
  • Am in Strömungsrichtung S gesehenen Ende der jeweiligen Reihe von Speiserkammern 11,12 gehen die weggerichteten Äste 18,19 in einer weiteren Kurve in einen gegen den jeweils anderen weggerichteten Ast 19,18 ausgerichteten Abschnitt über, der sich über die Breite der jeweiligen Reihe von Speiserkammern 11,12 erstreckt.
  • Am in Strömungsrichtung S gesehenen Ende dieses Abschnitts münden die -weggerichteten Äste 18,19 des Gießlaufs 7 gemeinsam in einem zurück in Richtung des Eingusskopfes 17 gerichteten Ast 20 des Gießlaufs. Dieser zurückgerichtete Ast 20 des Gießlaufs 7 hat eine Querschnittsfläche, die mindestens etwa der Summe der Querschnittsflächen der weggerichteten Äste 18,19 entspricht. Auf diese Weise kann der zurückgerichtete Ast 20 die über die weggerichteten Äste 18,19 in ihn einströmende Schmelzenvolumina sicher aufnehmen.
  • Der zurückgerichtete Ast 20 ist im Zwischenraum 15 mittig zwischen den Reihen von Speiserkammern 11,12 angeordnet und verläuft dabei in Strömungsrichtung S betrachtet entgegengesetzt zu den vom Einguss 10 weggerichteten Ästen 18,19 auf den Einguss 10 zu. Jedoch endet der zurückgerichtete Ast 20 vor dem Eingusskopf 17, so dass im Gießbetrieb ausschließlich über die weggerichteten Äste 18,19 Schmelze in den zurückgerichteten Ast 20 gelangt.
  • Jede der in gleichmäßigen Abständen längs der Längsachse L angeordneten Speiserkammern 11 ist über jeweils einen Anschnitt 21 mit dem weggerichteten Ast 18 und jeder der ebenfalls in gleichmäßigen Abständen in Längsrichtung L angeordneten Speiserkammern 12 ist über jeweils einen Anschnitt 22 mit dem weggerichteten Ast 19 verbunden. Genauso ist jede der Speiserkammern 11 über jeweils einen Anschnitt 23 und jede der Speiserkammern 12 über jeweils einen Anschnitt 24 mit dem zurückgerichteten Ast 20 verbunden. Die Anschnitte 21 - 24 sind dabei ebenfalls in gleichen Abständen längs der Längsachse L verteilt angeordnet, wobei die jeder Speiserkammer 11,12 jeweils zugeordneten Anschnitte 21,22; 23,24 gegenüberliegend zueinander und mittig bezogen auf die jeweilige Wand der Speiserkammern 11,12 positioniert sind.
  • Der Gießformhohlraum 5 ist über Anbindungen 9a,9b direkt mit dem Gießlauf 7 (Anbindung 9a) oder die Speiserkammern 11,12 (Anbindungen 9b) verbunden. Die Anbindungen 9a,9b sind dabei ausschließlich jeweils außerhalb des Formhohlraums 5 ausgebildet, so dass keine Schmelze über in dem Formhohlraum 5 platzierte Gießkerne 4 in den Formhohlraum 5 gelangt. Gemäß des Prinzips der kommunizierenden Röhren hat die Schmelze ein Niveau, folgerichtig gelangt ein Teil der Schmelze auch über die Speiserkammern 11, 12 in den Formhohlraum 5. Die Erstarrung im Bauteil läuft über die dünnen Wände dann sehr rasch ab und die Speisung erfolgt nur über das lokal große Volumen in direkter Nähe zum Speisungsbedarf. Die Mündung der mit den Speiserkammern 11,12 verbundenen Anbindungen 9b sind dabei auf einer gemeinsamen Horizontalebene H3 angeordnet, so dass jeweils gleich temperierte Schmelze aus den Speiserkammern 11,12 in die an sie angeschlossenen Anbindungen 9b gelangt. Die Zuführung der Schmelze zum Formhohlraum 5 kann sich dagegen über einen Höhenbereich erstrecken oder auf mehrere Ebenen verteilen.
  • Hinsichtlich der Füllung oder des Erstarrungsverhaltens besonders kritischer Bereiche des Gießformhohlraums 5 kann durch eine eigene Anbindung 9b gezielt Schmelze zugeführt werden, um die jeweilige Problemstelle direkt zu speisen.
  • Die in Fig. 5 dargestellte, vollständig als Kernpaket aus verlorenen Kernen aufgebaute Gießform 31 ist ebenfalls zum Gießen eines Zylinderblocks für einen Verbrennungsmotor vorgesehen. Die Gießform 31 umfasst einen Deckelkern 32, einen den Deckelkern 32 tragenden Außenkern 33, einen den Außenkern 33 tragenden weiteren Außenkern 34, zwei den äußeren Abschluss der Gießform 31 im Bereich des Formhohlraums der Gießform 31 bildende äußere Schalenkerne 35,36, auf denen die Außenkerne 33,34 und der Deckelkern 32 abgestützt sind, einen die Kontur des Inneren des Gussteils abbildenden konturgebenden Kern 37, der den unteren Abschluss der Gießform bildet und auf dem die Schalenkerne 35,36 abgestützt sind, sowie innerhalb des von den Schalenkernen 35,36 seitlich begrenzten Raums angeordnete Kerne 38,39, die die äußere Kontur des Gussteils bestimmen.
  • In den Deckelkern 32 sind vom hier nicht sichtbaren Einguss weggerichtete, außen verlaufende Äste 40,41 sowie ein zentral angeordneter zurückgerichteter Ast 42 des Gießlaufs eingeformt. Im Zwischenraum zwischen dem jeweils außen angeordneten, weggerichteten Ast 40,41 und dem zurückgerichteten Ast 42 ist dabei jeweils ein Speisertopf 43,44 in den Deckelkern 32 und die Außenkerne 33,34 eingeformt. Die Speisertöpfe 43,44 sitzen demgemäß direkt auf der Deckfläche des Gussteils (z.B. Dichtfläche zur Ölwanne oder zum Zylinderkopf). Die Speisertöpfe 43,44 speisen somit alle Bereiche, die in direkter lokaler Nähe zu ihnen angeordnet sind, wie beispielsweise die Zylinderkopf-Schraubenpfeifen. Die weggerichteten Äste 40,41 sind über Anbindungen, die nahe zum Außenkern 33 angeordnet sind, mit dem jeweils zugeordneten Speisertopf 43,44 verbunden, wogegen der zurückgerichtete Ast 42 über Anbindungen mit den Speisertöpfen 43,44 verbunden ist, die in Richtung der Oberseite des Deckelkerns 32 versetzt sind.
  • Die Schalenkerne 35,36 und die jeweils zugeordneten, die äußere Kontur des Gussteils bestimmenden Kerne 38,39 begrenzen zusätzlich jeweils externe Speisevolumina 45,46, die über jeweils einen Zulauf 47,48 an einen der Speisertöpfe 43,44 angebunden sind. Die externen Speiservolumina 45,46 werden über den zugeordneten Zulauf 47,48 gefüllt, der immer mit einem der Speisertöpfe 43,44 verbunden ist. Die externen Speiservolumina 45,46 speisen dabei alles in ihrer direkten Nähe, z.B. Massenanhäufungen durch Funktionsintegration.
  • Während sich die Speisertöpfe 43,44 bei der zum Gießen von Zylinderkurbelgehäusen ZK bestimmten Gießform 31 immer auf der gleichen Ebene befinden, befinden sich die externen Speiservolumina 45,46 auf unterschiedlichen Höhen.
  • Zum Befüllen mit Schmelze wird die Gießform 31 beispielsweise um eine quer zur Längserstreckung des zu gießenden Zylinderkurbelgehäuses ZK um 180° gedreht, so dass der Deckelkern 32 mit den weggerichteten Ästen 40,41 und dem zurückgerichteten Ast 42 an der Unterseite liegt. Über den Einguss wird heiße Schmelze M in die weggerichteten Äste 40,41 geleitet. Von den weggerichteten Ästen 40,41 gelangt die auf dem Weg durch die weggerichteten Äste 40,41 abgekühlte Schmelze M in den zurückgerichteten Ast 42 und in die Speisertöpfe 43,44 (Fig. 6).
  • Mit zunehmender Füllung der weggerichteten Äste 40,41 gelangt auch heiße Schmelze M über die entsprechenden Verbindungen von den weggerichteten Ästen 40,41 in die Speisertöpfe 43,44, so dass sich in den Speisertöpfen 43,44 heiße Schmelze M und abgekühlte Schmelze M mischt und in den Speisertöpfen 43,44 Schmelze M vorhanden ist, die eine homogen verteilte Mischtemperatur besitzt (Fig. 7).
  • Die entsprechend temperierte Schmelze M steigt über die Zuläufe 47,48 einerseits in die externen Speiservolumina 45,46 und andererseits über die Anschnitte, über die die Speisertöpfe 43,44 direkt mit dem das Gussteil abbildenden Gießformhohlraum verbunden sind, in den Gießformhohlraum (Fig. 8).
  • Nach der vollständigen Füllung (Fig. 9) wird die Gießform 31 in an sich bekannter Weise verschlossen und quer zu ihrer Längserstreckung um 180° in die Erstarrungsstellung gedreht (Fig. 10).
  • Bei den hier beschriebenen Ausführungsbeispielen einer erfindungsgemäßen Gießform wird die Schmelze somit über mindestens einen Einguss in die Gießform gefüllt. Die Schmelze wird dann auf zwei voneinander getrennte, vom Einguss weggerichtete Äste aufgeteilt, die bei entsprechender Grundform des Speisersystems bevorzugt so ausgerichtet sind, dass sie zumindest abschnittsweise parallel verlaufen. Die auf weggerichtete Äste des Gießlaufs aufgeteilte Schmelze wird über eine Umlenkung zu den töpfchenartigen Speiserkammern zurückgeführt. Dabei kann im Bereich der Umlenkung ein Kurvenzug vorgesehen sein, der aus der Hauptebene, in der der Gießlauf hauptsächlich liegt, herausführt, um die Fließgeschwindigkeit der durch den jeweiligen weggerichteten Ast strömenden Schmelze abzubremsen. Der sich an den betreffenden Kurvenzug anschließende Abschnitt des jeweiligen Astes liegt dann wieder in der Hauptebene des Gießlaufs. Im Anschluss an die weggerichteten Äste wird die Schmelze in mindestens einen zentralen zurückgerichteten Gießlaufast weitergeführt. Selbstverständlich ist es auch möglich, an jeden weggerichteten Ast des Gießlaufs einen eigenen zurückgerichteten, ebenfalls im Zwischenraum zwischen den Reihen von Speiserkammern verlaufenden Ast anzuschließen.
  • Die frühe Trennung des Gießlaufsystems und Zuführung der Schmelze zu mehreren durch die Speiserkammern bereitgestellten Speiservolumen ergibt optimierte Füllbedingungen. So wird durch die erfindungsgemäße Ausgestaltung ein rascher, gleichmäßiger Zufluss der Metallschmelze und damit einhergehend eine homogene Temperaturverteilung im Speisersystem und im Bauteil garantiert. Hierzu werden die Gießläufe über Anschnitte mit an die Speiserkammern verbunden. Die Anbindung der Speiserkammern wird dabei so gewählt, dass es in den Kammern zur optimalen Durchmischung der eindringenden Schmelze kommt. Hierzu kann es beispielsweise auch sinnvoll sein, nicht alle Speiserkammern wie beim hier erläuterten Ausführungsbeispiel direkt an den Gießlauf anzubinden, sondern einzelne Speiserkammern nur mit der unmittelbar benachbarten Speiserkammer zu verbinden, die dann an den Gießlauf angeschlossen ist. Zur Unterstützung der Durchmischung und des Temperaturausgleichs sind die Speiserkammern untereinander über Anschnitte verbunden. Durch Variation der Anschnittquerschnitte und der Speiserkammervolumina können der Schmelzenfluß und die erzielte Temperaturverteilung an die jeweilige Gießaufgabe angepasst werden. Dadurch, dass das Speisersystem während der Erstarrung oberhalb des Formhohlraums angeordnet ist, wird eine Erstarrung in Richtung des Speisersystems erzielt. D.h., das Bauteil kühlt ab und erstarrt ausgehend vom zum Speisersystem entferntesten Ort, während die im Speisersystem enthaltene und zuletzt in die Form gefüllte Schmelze noch länger heiß bleibt. Wird die Gießform im Schwerkraftguss ohne Rotation, d.h. mit oben liegendem Speisersystem gefüllt, so wird zunächst der das Gussteil abbildende Formhohlraum und zum Schluss erst das Speisersystem gefüllt.
  • Das einfache Entfernen des Speisersystems, des Gießlaufs, des Eingusses und der Anbindungen kann dadurch unterstützt werden, dass die Anbindungen kleinflächig an die Bauteilkontur angeschlossen sind. Dabei gehen die Anschlusspunkte bevorzugt auf existierende Butzen und sitzen auf Fläche, die Teil der standardmäßigen Nachbearbeitung sind. Das Speisersystem lässt sich bei der Vor- und Nachbearbeitung des jeweils erhaltenen Bauteils (Zylinderkurbelgehäuse Z) auf einfache Weise, z.B. durch Bohrungen, entfernen.
  • BEZUGSZEICHEN
  • 1
    Gießform
    2,3
    Außenschalen
    4
    Gießkerne
    5
    Gießformhohlraum
    6
    Seite der Gießform 1
    7
    Gießlauf
    8
    Speisersystem
    9a,9b
    Anbindungen
    10
    Einguss
    11,12
    Speiserkammern
    13,14
    Anschnitte
    15
    von Speiserkammern 11,12 begrenzter Zwischenraum
    17
    Eingusskopf
    18,19
    weggerichtete Äste des Gießlaufs 7
    20
    zurückgerichteter Ast des Gießlaufs 7
    21-24
    Anschnitte
    L
    Längsachse
    F
    Filter
    H1-H3
    Horizontalebenen, parallel zur Deckfläche ZD des Zylinderkurbelgehäuses Z ausgerichtet
    S
    Strömungsrichtung der Schmelze
    Z
    Zylinderkurbelgehäuse
    ZD
    Deckfläche des Zylinderkurbelgehäuses Z
    Zylinderöffnungen
    31
    Gießform
    32
    Deckelkern
    33,34
    Außenkerne
    35,36
    äußere Schalenkerne
    37
    die innere Kontur des Gussteils ZK bestimmender Kern
    38,39
    Kerne, die die äußere Kontur des Gussteils bestimmen.
    40,41
    weggerichtete, außen verlaufende Äste des Gießlaufs
    42
    zentral angeordneter zurückgerichteter Ast des Gießlaufs
    43,44
    Speisertöpfe
    45,46
    externe Speisevolumina
    47,48
    Zuläufe
    ZK
    Zylinderkurbelgehäuse (Gussteil)
    M
    Schmelze

Claims (15)

  1. Gießform zum Gießen von komplex geformten, großvolumigen Gussteilen (Z) aus einer Metallschmelze, wobei die Gießform (1) einen das Gussteil (Z) abbildenden Formhohlraum (5) und ein Zuführsystem zum Zuführen der zu dem Gussteil (Z) zu vergießenden Metallschmelze in den Formhohlraum (5) aufweist, wobei das Zuführsystem einen Einguss (10), einen an den Einguss angeschlossenen Gießlauf (7) und ein Speisersystem (8) umfasst, das an den Gießlauf (7) angeschlossen ist, und wobei der Gießformhohlraum (5) mit dem Speisersystem (8) oder dem Gießlauf (7) über Anbindungen (9a,9b) verbunden ist, dadurch gekennzeichnet, dass der Gießlauf (7) - in Strömungsrichtung (S) der im Gießbetrieb vom Einguss (10) in den Gießlauf (7) strömenden Metallschmelze gesehen - mit einem vom Einguss (10) weggerichteten Ast (18,19) entlang des Speisersystems (8) und mit einem zurückgerichteten Ast (20), der sich an den weggerichteten Ast (18,19) anschließt, in zum weggerichteten Ast (18,19) entgegengesetzter Richtung entlang des Speisersystems (8) geführt ist, und dass das Speisersystem (8) sowohl mit dem weggerichteten Ast (18,19) als auch mit dem zurückgerichteten Ast (20) über zwei oder mehr längs des jeweiligen Asts (18,19,20) verteilt angeordnete Anschnitte (21-24) verbunden ist.
  2. Gießform nach Anspruch 1, dadurch gekennzeichnet, dass die Zahl der dem weggerichteten Ast (18,19) zugeordneten Anschnitte (21,23) gleich der Zahl der dem zurückgerichteten Ast (20) zugeordneten Anschnitte (22,24) ist.
  3. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass zu jedem Anschnitt (21,23), über den der weggerichtete Ast (18,19) des Gießlaufs (7) mit dem Speisersystem (8) verbunden ist, gegenüberliegend einer der Anschnitte (22,24) angeordnet ist, über die der zurückgerichtete Ast (20) mit dem Speisersystem (8) verbunden ist.
  4. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Größe der dem weggerichteten Ast (18,19) zugeordneten Anschnitte (21,23) gleich der Größe der dem zurückgerichteten Ast (20) zugeordneten Anschnitte (22,24) ist.
  5. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Speisersystem (8) mindestens eine, zwei oder mehr Speiserkammern (11,12) umfasst, von denen jede über jeweils mindestens einen Anschnitt (21 - 24) sowohl mit dem weggerichteten Ast (18,19) als auch mit dem zurückgerichteten Ast (20) des Gießlaufs (7) verbunden ist.
  6. Gießform nach Anspruch 5,dadurch gekennzeichnet, dass die Speiserkammern (11,12) untereinander über einen Anschnitt (13,14) verbunden sind.
  7. Gießform nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet,
    - dass das Speisersystem (8) mindestens zwei nebeneinander angeordnete Speiserkammern (11,12) umfasst, und
    - dass
    - entweder der weggerichtete Ast (18,19) im Zwischenraum (15) zwischen den Speiserkammern (11,12) angeordnet ist und entlang der bezogen auf den Zwischenraum (15) außenliegenden Seite jeder der Speiserkammern (11,12) ein von dem weggerichteten Ast (18,19) abzweigender zurückgerichteter Ast (20) verläuft
    - oder der Gießlauf (7) in zwei weggerichtete Äste (18,19) geteilt ist, von denen jeweils einer entlang der bezogen auf den Zwischenraum (15) zwischen den Speiserkammern (11,12) außenliegenden Seite der Speiserkammern (11,12) verläuft, wogegen mindestens ein mit den weggerichteten Äste (18,19) verbundener zurückgerichteter Ast (20) im Zwischenraum (15) zwischen den Speiserkammern (11,12) verläuft.
  8. Gießform nach Anspruch 7, dadurch gekennzeichnet, dass der Gießlauf (7) im unmittelbaren Anschluss an den Einguss (10) in zwei weggerichtete Äste (18,19) verzweigt ist, an die mindestens ein zurückgerichteter Ast (20) angeschlossen ist.
  9. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Äste (18,19,20) des Gießlaufs (7) in einer Ebene (H2) angeordnet sind.
  10. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sie als Kernpaket aus einer Vielzahl von Kernen (2,3,4) zusammengesetzt ist, von denen bestimmte Kerne (2,3,4) die Außenform und andere Kerne (4) in dem herzustellenden Gussteil abzubildende Ausnehmungen, Hohlräume, Kanäle und desgleichen abbilden.
  11. Gießform nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die vom Speisersystem (8) oder vom Gießlauf (7) zum Gießformhohlraum (5) führende Anbindung (9a,9b) ausschließlich außerhalb des vom Gießformhohlraum (5) eingenommenen Volumens der Gießform (1) geführt ist.
  12. Gießform nach Anspruch 11, dadurch gekennzeichnet, dass bei mehreren Anbindungen (9a,9b) die dem Speisersystem (8) zugeordneten Einströmöffnungen der Anbindungen (9a,9b) gemeinsam in einer Ebene (H3) angeordnet sind.
  13. Gießform nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass mindestens die die Anbindungen (9a,9b) zumindest abschnittsweise umgrenzenden Gießkerne (4) in einer Außenschale (2,3) der Gießform (1) gehalten sind.
  14. Gießform nach Anspruch 13, dadurch gekennzeichnet, dass die Außenschale (2,3) als Dauergießformteil ausgebildet ist, welches nach dem Entformen des Gussteils (Z) erhalten bleibt, wogegen die Gießkerne (4) als verlorene, bei der Entformung zerstörte Gießformteile aus einem Formstoff auf Gießsandbasis bestehen.
  15. Verwendung einer gemäß einem der voranstehenden Ansprüche ausgebildeten Gießform (1) zum Gießen eines Zylinderkurbelgehäuses (Z) für einen Verbrennungsmotor aus einer Leichtmetallschmelze.
EP18709763.9A 2017-01-17 2018-01-17 Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform Active EP3570992B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18709763T PL3570992T3 (pl) 2017-01-17 2018-01-17 Forma odlewnicza do odlewania odlewów o złożonych kształtach i zastosowanie takiej formy odlewniczej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017100805.5A DE102017100805A1 (de) 2017-01-17 2017-01-17 Gießform zum Gießen von komplex geformten Gussteilen und Verwendung einer solchen Gießform
PCT/IB2018/000021 WO2018134672A1 (de) 2017-01-17 2018-01-17 Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform

Publications (2)

Publication Number Publication Date
EP3570992A1 EP3570992A1 (de) 2019-11-27
EP3570992B1 true EP3570992B1 (de) 2020-09-09

Family

ID=61599523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18709763.9A Active EP3570992B1 (de) 2017-01-17 2018-01-17 Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform

Country Status (11)

Country Link
US (1) US11014144B2 (de)
EP (1) EP3570992B1 (de)
JP (1) JP6858863B2 (de)
KR (1) KR102178737B1 (de)
CN (1) CN110191773B (de)
DE (1) DE102017100805A1 (de)
MX (1) MX2019008443A (de)
PL (1) PL3570992T3 (de)
RU (1) RU2717755C1 (de)
WO (1) WO2018134672A1 (de)
ZA (1) ZA201904169B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018128021A1 (de) * 2018-11-09 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Kokille sowie Verfahren zum Herstellen eines Kurbelgehäuses
DE102018128020B4 (de) * 2018-11-09 2024-05-23 Bayerische Motoren Werke Aktiengesellschaft Kokille sowie Verfahren zum Herstellen eines Kurbelgehäuses
FR3103400B1 (fr) 2019-11-21 2022-08-19 Safran Aircraft Engines Moule de fonderie, procede de fabrication du moule et procede de fonderie
KR102535983B1 (ko) * 2020-06-05 2023-05-25 삼영기계(주) 박육 주조품 설계 방법 및 이를 통해 제조된 박육 주조품
CN112846080B (zh) * 2021-01-05 2022-12-02 中国第一重型机械股份公司 一种大型船用舵叶铸件的整体式铸造控制方法
CN113373502B (zh) * 2021-04-28 2022-11-18 潍坊科技学院 一种控制单晶铸件中雀斑缺陷的工艺方法
CN114367634A (zh) * 2021-10-29 2022-04-19 中国航发西安动力控制科技有限公司 铝合金铸件分区分段倾转铸造装置及其铸造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350394A (en) 1976-10-20 1978-05-08 Kyowa Hakko Kogyo Co Ltd Preparation of n-acetyl-l-glutamine by culture method
JPS54152215U (de) * 1978-04-17 1979-10-23
DE3244824C2 (de) * 1982-12-03 1985-10-24 Chamotte- u. Tonwerk Kurt Hagenburger, 6719 Hettenleidelheim Eingießvorrichtung zum Vergießen einer Metallschmelze sowie Verfahren zum Vergießen derselben
JPS60199546A (ja) * 1984-03-21 1985-10-09 Kao Corp 鋳造方法
DE3924742A1 (de) 1989-07-26 1991-01-31 Alcan Gmbh Niederdruck-kokillen-giessverfahren zum giessen von metallgussteilen
DD296625A5 (de) * 1990-07-27 1991-12-12 Karl Lange Giessform
RO108157B1 (ro) * 1990-12-10 1994-02-28 Institutul Politehnic Rețea de turnare
RU2010673C1 (ru) * 1991-07-09 1994-04-15 Рыбинский Авиационный Технологический Институт Устройство для управления затвердеванием отливок
DE4244789C2 (de) 1992-11-17 1995-11-16 Audi Ag Gießform zur Herstellung von Gußstücken
JPH0739994A (ja) * 1993-07-29 1995-02-10 Toyota Motor Corp 鋳造装置
DE10019309C2 (de) * 2000-04-19 2002-04-18 Vaw Mandl & Berger Gmbh Linz Verfahren und Vorrichtung zum Rotationsgießen
JP4421743B2 (ja) * 2000-06-20 2010-02-24 旭テック環境ソリューション株式会社 地下構造物用蓋枠構成部材の鋳型装置
JP3872804B2 (ja) * 2004-07-23 2007-01-24 本田技研工業株式会社 鋳造用金型
JP4708868B2 (ja) * 2005-06-06 2011-06-22 川崎重工業株式会社 クランクケース一体型シリンダブロックの鋳造方法
JP2008021484A (ja) 2006-07-12 2008-01-31 D D K Ltd カードコネクタ
CN101733363A (zh) * 2008-11-12 2010-06-16 广西玉柴机器股份有限公司 一种气缸体浇铸装置及方法
RU2480309C2 (ru) * 2008-11-24 2013-04-27 Немак Диллинген Гмбх Способ литья отливки из расплавленного металла
CN102470434B (zh) * 2009-07-03 2015-09-30 Ksm铸造集团有限公司 倾斜铸造由轻金属构成的部件的装置、铸槽和方法,以及由此铸造而成的部件
JP5867714B2 (ja) * 2012-01-30 2016-02-24 マツダ株式会社 鋳造品の鋳造方法
DE102012103884A1 (de) 2012-05-03 2013-11-07 Fritz Winter Eisengiesserei Gmbh & Co. Kg Verfahren zum Gießen eines mit mindestens einer Durchgangsöffnung versehenen Gussteils
US10688555B2 (en) 2013-01-18 2020-06-23 Nemak Wernigerode Gmbh Method and casting mould for the manufacture of cast parts, in particular cylinder blocks and cylinder heads, with a functional feeder connection
DE102013105433B3 (de) * 2013-05-27 2014-05-22 Schuler Pressen Gmbh Gießvorrichtung mit einer Ringleitung und Gießverfahren
DE102014102724A1 (de) * 2013-12-03 2015-06-03 Nemak Linz Gmbh Verfahren zum gießtechnischen Erzeugen von Gussteilen aus einer Metallschmelze
CN105108065B (zh) * 2015-08-31 2017-09-26 共享铸钢有限公司 底注式浇注***及其铺设方法
CN205008543U (zh) * 2015-09-25 2016-02-03 上海圣德曼铸造有限公司 汽车制动钳支架的砂型结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2717755C1 (ru) 2020-03-25
JP6858863B2 (ja) 2021-04-14
JP2020505232A (ja) 2020-02-20
US20190337047A1 (en) 2019-11-07
KR20190105611A (ko) 2019-09-17
US11014144B2 (en) 2021-05-25
ZA201904169B (en) 2021-02-24
PL3570992T3 (pl) 2021-03-08
MX2019008443A (es) 2019-09-11
EP3570992A1 (de) 2019-11-27
DE102017100805A1 (de) 2018-07-19
BR112019013406A2 (pt) 2020-03-03
CN110191773B (zh) 2021-06-29
WO2018134672A1 (de) 2018-07-26
CN110191773A (zh) 2019-08-30
KR102178737B1 (ko) 2020-11-16

Similar Documents

Publication Publication Date Title
EP3570992B1 (de) Giessform zum giessen von komplex geformten gussteilen und verwendung einer solchen giessform
EP1742752B1 (de) Verfahren zum giessen von bauteilen aus leichtmetall nach dem kippgiessprinzip
DE69832538T2 (de) Magnesiumdruckguss
DE69211398T2 (de) Metallspritzgiessvorrichtung mit geheizter Zuleitung und geteilter Form
EP3077138B1 (de) Verfahren zum giesstechnischen erzeugen von gussteilen aus einer metallschmelze
DE10014591C1 (de) Verfahren zum steigenden Gießen in Sandformen mit gerichteter Erstarrung von Gußteilen
EP2945760B1 (de) Giessform zur herstellung von gussteilen, insbesondere zylinderblöcken und zylinderköpfen, mit funktionaler anbindung des speisers
DE102014101080B3 (de) Vorrichtung zur Herstellung eines Zylinderkurbelgehäuses im Niederdruck- oder Schwerkraftgießverfahren
DE112014004716T5 (de) Verfahren und Gießmaschine zum Gießen von Metallteilen
DE7532061U (de) Einrichtung fuer den mechanisierten niederdruckguss
EP0413885B1 (de) Niederdruck-Kokillen-Giessverfahren zum Giessen von Metallgussteilen
DE2640952B1 (de) Verfahren zum kokillengiessen von formgussteilen und kokillensatz zur durchfuehrung des verfahrens
EP2121219B1 (de) Verfahren zum Giessen eines Materials, Gussform zum Giessen eines Materials sowie Verwendung einer Giessform zum Giessen eines Gussteils
WO2015155170A1 (de) Druckgiessmaschine und druckgussverfahren zur herstellung mehrerer gussstücke
DE112010004915B4 (de) Druckguss-Giessvorrichtung und Druckguss-Giessverfahren.
WO2010121939A1 (de) Giessvorrichtung zum herstellen einer turbinenlaufschaufel einer gasturbine und turbinenlaufschaufel
EP2636467B1 (de) Vorrichtung zur Herstellung eines Zylinderkurbelgehäuses in V-Bauform
EP0231520A1 (de) Verfahren und Anordnung für das Anbinden eines neuen Giessstranges in einer Stranggiessanlage
EP1204516B1 (de) Verfahren zur herstellung eines hohlkörpers in schmelzkerntechnik
DE202021103177U1 (de) Druckgießmaschine
EP0656819A1 (de) Verfahren und vorrichtung zum giessen von bauteilen
DE69108306T2 (de) Verfahren, Giessform und Vorrichtung zum mehrstufigen Niederdruckgiessen von Metall.
DE112011102887B4 (de) Form, Verwendung und Entwurfsverfahren der Form
DE102017114944B3 (de) Anlage und Gießrinne zum Kippgießen von Bauteilen aus Leichtmetall
DE2317151A1 (de) Metallgiessverfahren und vorrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200320

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002416

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36340

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002416

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1310933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 7

Ref country code: SK

Payment date: 20240304

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240301

Year of fee payment: 7

Ref country code: PL

Payment date: 20240304

Year of fee payment: 7

Ref country code: IT

Payment date: 20240124

Year of fee payment: 7

Ref country code: FR

Payment date: 20240124

Year of fee payment: 7