EP3552787A1 - Wärmedämmstoff und verfahren zu dessen herstellung - Google Patents

Wärmedämmstoff und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP3552787A1
EP3552787A1 EP18166567.0A EP18166567A EP3552787A1 EP 3552787 A1 EP3552787 A1 EP 3552787A1 EP 18166567 A EP18166567 A EP 18166567A EP 3552787 A1 EP3552787 A1 EP 3552787A1
Authority
EP
European Patent Office
Prior art keywords
thermal insulation
insulation material
wood chips
cellulose fibers
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18166567.0A
Other languages
English (en)
French (fr)
Other versions
EP3552787C0 (de
EP3552787B1 (de
Inventor
Lucia Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gross Lucia
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP18166567.0A priority Critical patent/EP3552787B1/de
Priority to CA3037774A priority patent/CA3037774A1/en
Priority to RU2019109526A priority patent/RU2019109526A/ru
Priority to US16/373,898 priority patent/US20190309891A1/en
Priority to CN201910279997.1A priority patent/CN110355848A/zh
Publication of EP3552787A1 publication Critical patent/EP3552787A1/de
Application granted granted Critical
Publication of EP3552787C0 publication Critical patent/EP3552787C0/de
Publication of EP3552787B1 publication Critical patent/EP3552787B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • B27N3/12Moulding of mats from fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L11/00Manufacture of wood shavings, chips, powder, or the like; Tools therefor
    • B27L11/06Manufacture of wood shavings, chips, powder, or the like; Tools therefor of wood powder or sawdust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • B27N3/14Distributing or orienting the particles or fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7604Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L11/00Manufacture of wood shavings, chips, powder, or the like; Tools therefor
    • B27L11/02Manufacture of wood shavings, chips, powder, or the like; Tools therefor of wood shavings or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L11/00Manufacture of wood shavings, chips, powder, or the like; Tools therefor
    • B27L11/02Manufacture of wood shavings, chips, powder, or the like; Tools therefor of wood shavings or the like
    • B27L11/04Manufacture of wood shavings, chips, powder, or the like; Tools therefor of wood shavings or the like of wood wool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Definitions

  • the invention relates to a thermal insulation material of the type specified in the preamble of claim 1 and a method for its production.
  • the invention further relates to a plate having advantageous properties.
  • thermal insulation material which is composed of wood chips and cellulose fibers.
  • the thermal insulation material consists of loosely mixed wood chips and cellulose fibers.
  • the wood chips form a matrix, with the cellulosic fibers embedded in the voids between the wood chips.
  • the invention has for its object to provide a thermal insulation of the generic type, which is produced from readily available, inexpensive starting materials and has good insulation properties.
  • Another object of the invention is to provide a method for producing a thermal insulation material.
  • Another object of the invention is to provide a plate with advantageous properties.
  • thermal insulation material having the features of claim 1.
  • the object is achieved by a method having the features of claim 14.
  • the object is achieved by a plate having the features of claim 16.
  • the thermal insulation material is composed of at least two insulating components. Additives to the insulating components such as flame retardants, fungicides, binders or the like do not form any insulating components within the meaning of the present specification.
  • One insulating component comprises wood chips and another insulating component comprises cellulosic fibers from decor paper or tissue paper. It has been shown that cellulose fibers made of decorative paper or tissue paper have a particularly low thermal conductivity. Decorative paper and tissue paper are characterized by a high proportion of short fibers. It has been shown that these short cellulose fibers mix well with the wood shavings and can be stored well in the cavities formed between the wood shavings.
  • tissue paper includes tissue paper, tissue-like paper and paper produced by the airlaid method.
  • the cellulose fibers of the second component have a maximum fiber length of 12 mm.
  • the wood chips of the first component are made of hardwood. It has been shown that contrary to the previous assumption hardwood has good insulation properties at sufficiently low settlement density.
  • the settlement density is the density of the chips after a predetermined setting, in particular after application of a predetermined test load over a predetermined period. Hardwoods are undemanding and therefore widely used. Due to the good availability of hardwood transport routes can be kept low in the production of insulation, so that the insulation is ecologically produced.
  • the hardwood of the first component wood of willow plants especially wood of poplar (populus), aspen (populus tremula) or birch (betula).
  • Poplar, aspen and birch have a higher mold resistance and at the same time a lower thermal conductivity than shavings from softwoods.
  • Poplar, aspen or birch shavings also have higher mold resistance and lower thermal conductivity than shavings from other hardwood species.
  • the insect infestation is significantly lower in hardwood of aspen or poplar than softwood and also as in other hardwood species.
  • the slightly increased settlement density of poplar and aspen is partially compensated by the lower thermal conductivity, resulting in advantageous properties of the thermal insulation material.
  • the heat insulation material has as a further component chips made of softwood. As a result, a characteristic odor of the insulating material can be achieved.
  • the fiber longitudinal direction of the wood of the wood chips runs predominantly in the longitudinal direction of the wood chips.
  • the settlement-safe density can be, for example, one-third lower than for inflated insulating materials made of cellulose fibers from waste paper and a 20% lower density than the density of cellulose fiber insulation from recycled paper in the closed cavity.
  • Wood chips in which the grain of the wood predominantly extends in the longitudinal direction of the wood chips can be produced by moving the cutting tool, for example a cutting edge of a milling tool, in a plane parallel to the longitudinal central axis of a log. If the milling tool is moved transversely to the fiber longitudinal direction of the wood, so each chip cuts a variety of annual rings of the wood. This results in a greater density and thus greater demand for raw materials of the thermal insulation material. It has also been shown that the chips are less elastic and break more easily than chips that cut no or only a few annual rings. As wood chips, woodworking waste or wood fibers present in chip form may alternatively be provided, however, in which the fiber longitudinal direction is not predominantly in the wood longitudinal direction.
  • the wood chips are produced by cutting a log by Kegelstirnplanfräser.
  • the region of the cone of the bevel end mill cutter which is in contact with the log is advantageously oriented approximately parallel to the longitudinal center axis of the log.
  • chips can be produced whose fiber longitudinal direction runs predominantly in the longitudinal direction of the wood and which are therefore particularly elastic.
  • each insulating component of the thermal insulation material is advantageously from 10% to 90%.
  • the thermal insulation material can contain exactly two components. However, a larger number of components may be advantageous.
  • the component considered is an insulating material that can be produced from a starting material in a uniform production process. For example, wood chips and cellulose fibers from the same starting material form two components. Likewise cellulose fibers from different starting materials, for example cellulose fibers from wood, cellulose fibers from natural fibers, Cellulose fibers from tissue paper and cellulose fibers from decor paper, different components.
  • the mass fraction of each insulating component of the thermal insulation material of 10% to 80%, in particular from 20% to 80%.
  • the mass fraction of all insulating components of the thermal insulation material is similar within the manufacturing tolerances.
  • the mass fraction of the individual components of the thermal insulation material changes in particular by drying operations.
  • the mass fractions of the individual components of the thermal insulation material advantageously deviate from one another by less than 30%, in particular by less than 20%.
  • the mass fraction of cellulose fibers of tissue paper or decor paper is more than 10%, in particular 30% to 70%, preferably about 50%.
  • the thermal insulation material has at least a third insulating component.
  • the third insulating component is preferably feathers, chips made of a softwood or natural fibers.
  • the natural fibers can also be present as cellulose fibers and be, for example, paper, wood, jute, hemp, flax or miscanthus.
  • the cellulose fibers of the third insulating component may also be of paper grades other than decor paper and sanitary paper, in particular of waste paper, for example, from newspaper waste paper. Waste paper, for example, from newspapers, is well available and cheap and well suited and established as a thermal insulation material. Waste paper from other types of paper can also be advantageous.
  • the cellulose fibers of the second component consist of a different starting material than the cellulose fibers of the third component.
  • the second and third components differ in the starting material and may also differ in the shape of the cellulosic fibers, for example, their average length. It may also be provided that the third component comprises wood chips, the wood chips of the third component either of a different wood than the wood chips of the first component or another shape, for example, have a different length or average chip thickness.
  • At least one component in particular the cellulose fibers of the first component, in particular all cellulose fibers of the thermal insulation material, treated with flame retardants.
  • a treatment of other components, such as wood chips or feathers, with flame retardants may be advantageous.
  • all components of the thermal insulation material are treated with flame retardants.
  • Treatment with fungicides or other additives that increase the resistance of one or more components of the thermal insulation material may also be provided.
  • Flame retardants and other resistance-increasing agents are not understood as a component of the thermal insulation material in the sense of the present application, since they have no relevant insulating properties. Suitable flame retardants are all available flame retardants or flame retardants.
  • the components are loosely mixed with each other.
  • the thermal insulation material is therefore loose thermal insulation material which, for example, can be used as a filling, blown into cavities or otherwise processed.
  • processing by spraying for example with the aid of glue or water, may also be advantageous.
  • the thermal insulation material is an insulating mat, and the components are connected to each other via a binder.
  • the binder may, for example, be an adhesive or be formed by hot-melt adhesive fibers, in particular bicomponent fibers.
  • the components of the insulating mat advantageously form no compact, solid plate, but the insulating mat has a plurality of cavities which are formed between the components and which are not filled by the binder.
  • the insulating mat is advantageously a flexible insulating mat.
  • the density of the insulating mat is in particular 15 kg / m 3 to 120 kg / m 3 , preferably 30 kg / m 3 to 60 kg / m 3 .
  • the thermal insulation material is an insulation board.
  • the components of the insulation board are advantageously connected via a binder.
  • the insulation board is dimensionally stable and compact. It has been found that can be produced by using cellulose fibers from tissue paper or decorative paper insulation boards with low density. It has also been found that by using wood shavings made in a bevel plan milling process, very low density insulation boards can be made, regardless of the use of cellulose fibers from sanitary paper or decorative paper.
  • the use of wood shavings made in a bevel plan milling method for an insulating board is an independent, inventive idea of its own. A particularly low density can be achieved by using shavings in which the fiber longitudinal direction of the wood is predominantly in the longitudinal direction of the wood shavings.
  • the density of the insulation board made of wood chips, in which the fiber longitudinal direction of the wood runs predominantly in the longitudinal direction of the wood chips, is advantageously not more than 500 kg / m 3 , in particular not more than 400 kg / m 3 .
  • the wood chips are advantageously produced in a Kegelstirnplanfräsclar.
  • a method for producing a heat insulation material with wood chips and cellulose fibers that the wood chips are produced by cutting wood in a wet state and that the wood chips are mixed after chipping with a residual moisture of at least 15%, in particular at least 20% with the cellulose fibers ,
  • all components of the thermal insulation material in the wet state of the wood chips of the first component and in particular also the wood chips of other components with a residual moisture content of the wood chips of at least 15%, in particular at least 20% mixed are provided.
  • the required amount of flame retardants By mixing the components in the wet state, the required amount of flame retardants, which is still to be added to the thermal insulation, can be significantly reduced. It has been found that the same fire classification can be achieved with the amount of flame retardant halved compared to the mixture of dry components.
  • Cellulose fibers made of paper in particular of tissue paper or decorative paper, have a very large surface area.
  • cellulose paper fibers accelerate the drying of the wood chips due to their hygroscopic property and because of their large surface area. The moisture of the chips is transported away by the cellulose fibers and is no longer available for microorganisms such as molds.
  • the wood chips are advantageously produced by cutting of moist, in particular wood fresh from the woods. It has been shown that when cutting of moist, especially wood fresh wood lower settlement densities of the chips can be achieved and chips can be produced with an advantageous, smooth surface. At the same time The energy needed to cut damp wood is less than the energy needed to cut dry wood.
  • the chips cut from damp wood are, according to the invention, mixed with the at least one further component without further drying step. Moistening of the wood chips, for example for activation of a binder by means of steam or water, can be provided. However, preferably no moistening of the wood chips takes place.
  • the moisture content of the cellulose fibers with any added additives such as flame retardants, fungicides, binders or the like.
  • the cellulose fibers may be moist but not wet. There is no slurrying of the cellulose fibers. This preserves the large volume of cellulose fibers and the comparatively low density of the thermal insulation material.
  • any added additives such as flame retardants, fungicides or the like.
  • which may be diluted with water or dissolved in water added no additional water.
  • the moisture of the insulation material only touches on the moisture of the forest-fresh wood.
  • the wood chips are produced by machining a log by means of a bevel end mill, the setting angle of the bevel end mill 2 ° to 45 °, in particular 10 ° to 30 ° and more preferably about 20 °.
  • the axis of rotation of the bevel end miller is inclined in the direction of the longitudinal central axis of the log to the working surface by an inclination angle, the sum of inclination angle and setting angle 90 °.
  • a bevel face milling cutter is a milling tool in which the cutting edges are arranged on a conical surface which is rotationally symmetrical to the axis of rotation.
  • the tapered surface is aligned parallel to the workpiece surface, so that the axis of rotation of the bevel cutter is inclined to the workpiece surface.
  • the standing in contact with the log portion of the cone of Kegelstirnplanfräsers is oriented parallel to the longitudinal central axis of the log.
  • the axis of rotation of the bevel end mill with the longitudinal central axis advantageously includes an angle of 90 °.
  • the plate has wood chips, which are interconnected via a binder.
  • the wood chips are made by cutting a log using a bevel planer. It has been found that by using wood shavings produced by means of bevel face milling cutters, it is possible to produce sheets which, compared to sheets produced with conventional wood shavings, for example compared to OSB sheets, have a significantly reduced density with comparable mechanical properties.
  • the density of the plate is advantageously not more than 500 kg / m 3 , in particular not more than 400 kg / m 3 .
  • Fig. 1 shows thermal insulation material 1, which is in loose form and, for example, to process as bulk material or to blow into cavities of buildings.
  • the thermal insulation material 1 may also be an insulating mat, as to Fig. 4 is described.
  • the thermal insulation material 1 comprises wood chips 2 and cellulose fibers 3, which are loosely mixed with each other.
  • the wood chips 2 form cavities in which the cellulose fibers 3 are arranged.
  • the wood chips 2 thus form a support framework for the cellulose fibers 3.
  • the wood chips 2 have a lower density than the cellulose fibers 3.
  • the wood chips 2 form a first component of the thermal insulation material 1, and the cellulose fibers 3 form a second component of the thermal insulation material 1.
  • the wood chips 2 of the first component are in the embodiment of hardwood.
  • the hardwood is preferably wood of willow plants, in particular poplar (populus), aspen (populus tremula) or birch (betula).
  • the wood chips 2 may also be made of softwood.
  • the cellulose fibers 3 of the second component are made of decorative paper or tissue paper.
  • the cellulose fibers 3 of the second component are advantageously comparatively short.
  • cellulose fibers made of tissue paper also have a low proportion of fillers, in particular dust.
  • the cellulose fibers 3 advantageously have a maximum fiber length of 12 mm.
  • the wood chips 2 are formed so that the fiber longitudinal direction of the wood runs predominantly in the longitudinal direction of the wood chips 2.
  • the wood chips thereby cut only a few, especially no annual rings of a log.
  • the wood chips have a high elasticity and flexibility and at the same time a low tendency to breakage.
  • Fig. 2 schematically shows a log 4 with a longitudinal central axis 5.
  • the log 4 has a working surface 10.
  • a Kegelstirnplanfräser 6 is provided which engages the working surface 10 and the wood trunk 4 machined.
  • the Kegelstirnplanfräser 6 is rotatably mounted about a rotation axis 7.
  • the Kegelstirnplanfräser 6 has a conical surface 8 which is rotationally symmetrical about the axis of rotation 7.
  • the axis of rotation 7 of the bevel end mill 6 is in the in Fig.
  • the angle ⁇ is advantageously 45 ° to 88 °, in particular 60 ° to 80 ° and particularly preferably about 70 °.
  • the Kegelstirnplanfräser 6 has a setting angle ⁇ , which corresponds to the inclination of a base surface 9 of the cone to the conical surface 8.
  • the base 9 is aligned perpendicular to the axis of rotation 7 of the Kegelstirnplanfräsers 6.
  • the setting angle ⁇ is advantageously 2 ° to 45 °, in particular 10 ° to 30 °. A setting angle ⁇ of about 20 ° has proved particularly advantageous.
  • the inclination angle ⁇ and the setting angle ⁇ together make 90 °.
  • the cone angle ⁇ which is measured between opposite regions of the conical surface 8, is advantageously 90 ° to 176 °, in particular 120 ° to 160 ° and particularly preferably about 140 °.
  • the width b of the log 4 in the area in which the wood chips 7 are produced is advantageously at least 5 mm.
  • Fig. 3 shows the arrangement Fig. 2
  • the rotation axis 7 includes with the longitudinal central axis 5 an angle ⁇ , from 45 ° to 135 °, in particular 75 ° to 105 ° and in a plan view in a block direction parallel to the working surface 10 and perpendicular to the longitudinal center axis 5 of the log preferably about 90 °.
  • the wood chips 2 advantageously have an average chip thickness of about 0.1 mm to 5 mm.
  • wood chips 2 advantageously have a mean chip thickness, which is calculated from the tooth feed multiplied by sin ⁇ , wherein the tooth feed is the feed rate divided by the number of edges and the speed of the bevel end mill 6.
  • a cutting edge can be composed of a variety of indexable inserts.
  • a cutting edge, which continues over the center of the cone to the opposite side of the cone, is considered as a cutting edge.
  • the cellulose fibers 3 are made in the embodiment of tissue paper or decorative paper.
  • the cellulose fibers 3 are treated with flame retardants. Additionally or alternatively, a treatment with other resistance-increasing agents, in particular with fungicides, may be provided.
  • the wood chips 2 are advantageously produced by cutting of moist, in particular wood fresh from the woods, and in particular by means of a bevel face milling cutter 6. This results in a very smooth surface and high elasticity of the wood chips 2.
  • the wood chips 2 are mixed after machining in a wet state with the second component, ie the cellulose fibers 3, as well as with possible other components of the thermal insulation material 1.
  • the wood chips 2 have while mixing a residual moisture of at least 20%. It has been found that by blending the cellulose fibers 3 with moist wood chips 2 a simpler migration of the flame retardant from the cellulose fibers 3 to the wood chips 2 is given.
  • the thermal insulation material 1 For dry components, this migration is slower, so that increased amounts of flame retardants must be added in order to achieve the desired fire resistance of the thermal insulation material 1 shortly after mixing.
  • the required amount of flame retardant can be reduced without increasing the time until the use of the thermal insulation material 1.
  • the total moisture content of the insulating material when mixing the components is at most 15%. The components are therefore not wet.
  • the shavings are made of fresh wood without further Drying or moistening step mixed with the dry cellulose fibers with the addition of water-diluted flame retardant.
  • the thermal insulation material 1 next to the wood chips 2 and the cellulose fibers 3 has a third insulating component.
  • the mass fraction of the wood chips 2, the cellulose fibers 3 and the third insulating component is in each case 10% to 80%.
  • the mass fractions of the three components differ by less than 30%, in particular by less than 20% from one another.
  • the third component can be advantageously formed by cellulose fibers, wherein the cellulose fibers of the third component are made of a different raw material than the cellulose fibers of the second component.
  • the second component may be formed by cellulosic fibers of a different type of paper.
  • Particularly advantageous are the cellulose fibers of the second component of tissue paper and the cellulose fibers of the third component of decorative paper.
  • cellulose fibers of decorative paper and cellulose fibers from tissue paper result in particularly advantageous properties, when the thermal insulation material from about 40% to 60%, in particular about 50% wood chips and a mass fraction of about 40% to 60% cellulose fibers Contains hygiene paper and decorative paper.
  • the mass fraction of cellulose fibers of tissue paper and the mass fraction of cellulose fibers of tissue paper each about 20% to 30%, in particular about 25%.
  • other proportions of cellulose fibers of tissue paper and cellulose fibers of decorative paper may be advantageous.
  • the cellulose fibers of the third component are formed for example from waste paper.
  • the third component can alternatively consist, for example, of cellulose fibers of natural fibers such as wood, jute, hemp, flax or miscanthus.
  • An advantageous composition of a thermal insulation material has a mass fraction of about 30% to 70%, preferably about 30% to 60% chips.
  • the thermal insulation material also has cellulose fibers from wood and cellulose fibers from paper, at least partially from decorative and / or tissue paper, in any proportion by mass.
  • a component of the thermal insulation material may be formed by springs.
  • the third component is formed by the natural fibers themselves, ie not by cellulose fibers from the natural fibers. This reduces the density of the thermal insulation material 1 relative to the density of cellulose fibers.
  • the third component may also be formed by chips of a different type of wood than the wood chips of the second component.
  • the wood chips of the second component may be of a willow plant and the wood chips of the third component of a softwood.
  • the chips from a willow plant have a particularly low settling-proof density.
  • the chips from a softwood possess the characteristic wood smell.
  • An advantageous composition provides a mass fraction of about 40% to 45% chips from hardwood, especially from willow plants, preferably from poplar, a mass fraction of less than 10%, in particular from 5% to 10% chips from softwood and cellulose fibers from hygiene or decorative paper as well as other components in any composition.
  • a thermal insulation material with a characteristic wood odor can be produced. It can also be provided that all shavings of the thermal insulation material are made of softwood.
  • the thermal insulation material comprises, in addition to the first, the second and the third component, at least one further fourth component.
  • Other components may be advantageous.
  • the thermal conductivity of the loose thermal insulation material 1 is advantageously less than 0.040 W / (m * K), in particular 0.036 to 0.040 W / (m * K).
  • the thermal insulation material 1 is in bound form, as in Fig. 4 is shown schematically.
  • the components of the thermal insulation material 1 are advantageously connected to one another via a binder, in particular via adhesive or hot-melt adhesive fibers such as bicomponent fibers.
  • the binder advantageously produces a flexible connection between the components of the thermal insulation material 1.
  • the in Fig. 4 shown thermal insulation 1 is in particular an insulating mat.
  • the insulating mat advantageously has a comparatively low density.
  • the density of the insulating mat is in particular 15 kg / m 3 to 120 kg / m 3 , preferably 30 kg / m 3 to 60 kg / m 3 .
  • the components and the composition of the components of the insulating mat correspond to the compositions described in loose thermal insulation materials 1, wherein the insulating mat additionally contains the binder.
  • the insulating mat is advantageously flexible and has a plurality of cavities between the components. The cavities are not filled by the binder.
  • the thermal conductivity of the heat insulation material 1 designed as an insulating mat is advantageously less than 0.040 W / (m * K), in particular 0.036 W / (m * K) to 0.040 W / (m * K).
  • the in Fig. 4 shown thermal insulation 1 formed as insulation board.
  • the insulation board has a comparatively low density.
  • the density of the insulating board is advantageously not more than 500 kg / m 3 , in particular not more than 400 kg / m 3 .
  • the insulation board is advantageously dimensionally stable and compact and has very few or only negligible small air-filled cavities.
  • the mass fraction of each insulating component of the thermal insulation material is 10% to 90%.
  • the mass fraction of each insulating component is advantageously 10%. up to 80% and for a heat insulation of four components advantageously 10% to 70%.
  • the mass fraction of each insulating component is preferably at least 10%, in particular at least 20%.
  • mass fractions are considered which differ from one another by at most 30%, in particular at most 20%.
  • the mass fraction of each component is advantageously 35% to 65%, in particular 40% to 60%.
  • the mass fraction of each component is advantageously 20% to 50%, in particular 25% to 45%.
  • the mass fraction of any component is more than 90%.
  • the mass fraction of the cellulose fibers 3 made of tissue paper or decor paper is advantageously more than 10%, in particular 30% to 70%, preferably about 50%.
  • the thermal insulation material has a mass fraction of 40% to 60%, in particular of about 50% chips, independently of the other components of the thermal insulation material.
  • Fig. 5 shows a variant of a plate 11, the wood chips 2 has.
  • the wood chips 2 are connected to each other via a binder.
  • the binder can be formed, for example, by adhesive, in particular resins, or hot-melt adhesive fibers, such as bicomponent fibers.
  • the binders used can be customary binders used for OSB boards. The binder advantageously produces a firm connection between the components of the thermal insulation material 1.
  • the plate 11 has in an advantageous embodiment, no cellulose fibers 3.
  • the plate 11 contains cellulose fibers 3, in particular cellulose fibers 3 made of tissue paper or decor paper.
  • the plate 11 may be formed as a thermal insulation board.
  • the wood chips 2 are by means of bevel face milling cutter 6 ( Fig. 2 and 3 ) produced. As a result, the wood chips 2 are very elastic and flexible.
  • the fiber longitudinal direction of the wood runs predominantly in the longitudinal direction of the wood chips 2.
  • the density of the plate 11 is advantageously not more than 500 kg / m 3 , in particular not more than 400 kg / m 3 .
  • the thermal conductivity of the plate 11 is advantageously lower than the thermal conductivity of OSB boards.
  • the plate 11 is advantageously dimensionally stable and compact and has very few or only negligible small air-filled cavities.
  • the wood chips 2 of the plate 11 are made in particular of hardwood, preferably of wood from willow plants, in particular wood of poplar (populus), aspen (populus tremula) or birch (betula). However, the wood chips 2 of the plate 11 may also be made partly or exclusively of wood from conifers. Advantageously, the wood chips 2 of the plate 11 are made by machining of damp, fresh wood. The wood chips 2 of the plate 11 are advantageously prepared, as described above for the wood chips 2 of the thermal insulation material 1. The wood chips 2 are particularly made in a bevel plan milling method as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

Ein Wärmedämmstoff (1) ist aus zumindest zwei dämmenden Komponenten zusammengesetzt, die lose miteinander vermischt sind. Die erste Komponente umfasst Holzspäne (2), und die zweite Komponente umfasst Zellulosefasern (3). Die Zellulosefasern (3) sind in zwischen den Holzspänen (2) gebildeten Hohlräumen angeordnet. Die Zellulosefasern (3) der zweiten Komponente sind aus Dekorpapier oder Hygienepapier hergestellt. Zur Herstellung des Wärmedämmstoffs (1) ist vorgesehen, dass die Holzspäne (2) nach der Zerspanung in feuchtem Zustand mit einer Restfeuchte von mindestens 15% mit den Zellulosefasern (3) gemischt werden.

Description

  • Die Erfindung betrifft einen Wärmedämmstoff der im Oberbegriff des Anspruchs 1 angegebenen Gattung sowie ein Verfahren zu dessen Herstellung. Die Erfindung betrifft ferner eine Platte mit vorteilhaften Eigenschaften.
  • Aus der DE 10 2007 047 542 A1 ist ein gattungsgemäßer Wärmedämmstoff bekannt, der aus Holzspänen und Zellulosefasern zusammengesetzt ist. Der Wärmedämmstoff besteht aus lose miteinander vermischten Holzspänen und Zellulosefasern. Die Holzspäne bilden eine Matrix, wobei in die Hohlräume zwischen den Holzspänen die Zellulosefasern eingelagert sind.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wärmedämmstoff der gattungsgemäßen Art zu schaffen, der aus gut verfügbaren, günstigen Ausgangsmaterialien herstellbar ist und gute Dämmeigenschaften aufweist.
  • Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren zur Herstellung eines Wärmedämmstoffs anzugeben.
  • Eine weitere Aufgabe der Erfindung liegt darin, eine Platte mit vorteilhaften Eigenschaften anzugeben.
  • Diese Aufgabe wird bezüglich des Wärmedämmstoffs durch einen Wärmedämmstoff mit den Merkmalen des Anspruchs 1 gelöst. Bezüglich des Verfahrens wird die Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 14 gelöst. Bezüglich der Platte wird die Aufgabe durch eine Platte mit den Merkmalen des Anspruchs 16 gelöst.
  • Es ist vorgesehen, dass der Wärmedämmstoff aus zumindest zwei dämmenden Komponenten zusammengesetzt ist. Zusätze zu den dämmenden Komponenten wie beispielsweise Flammschutzmittel, Fungizide, Bindemittel oder dergleichen bilden selbst keine dämmenden Komponenten im Sinne der vorliegenden Schrift. Eine dämmende Komponente umfasst Holzspäne und eine weitere dämmende Komponente umfasst Zellulosefasern aus Dekorpapier oder aus Hygienepapier. Es hat sich gezeigt, dass Zellulosefasern aus Dekorpapier oder Hygienepapier eine besonders niedrige Wärmeleitfähigkeit aufweisen. Dekorpapier und Hygienepapier zeichnen sich durch einen hohen Anteil kurzer Fasern aus. Es hat sich gezeigt, dass diese kurzen Zellulosefasern sich mit den Holzspänen besonders gut mischen lassen und gut in den zwischen den Holzspänen gebildeten Hohlräumen eingelagert werden können. Die Kombination von Holzspänen mit Zellulosefasern aus Dekorpapier oder Hygienepapier ergibt einen Dämmstoff mit sehr guten Dämmeigenschaften und mit einer vergleichsweise geringen Setzungsdichte. Dekorpapier und Hygienepapier sind außerdem gut und günstig verfügbar. Hygienepapier besitzt außerdem einen geringen Anteil an Füllstoffen, insbesondere Staub.
  • Dekorpapier im Sinne der vorliegenden Anmeldung ist Spezialpapier, insbesondere zur Oberflächenveredelung von Holzwerkstoffen, wobei vorliegend nur Dekorpapier ohne Kunstharzimprägnierung zum Einsatz kommen soll. Hygienepapier im Sinne der vorliegenden Anmeldung umfasst Tissuepapier, tissueähnliches Papier sowie im Airlaid-Verfahren hergestelltes Papier.
  • Vorteilhaft weisen die Zellulosefasern der zweiten Komponente eine maximale Faserlänge von 12 mm auf.
  • Es ist bevorzugt vorgesehen, dass die Holzspäne der ersten Komponente aus Laubholz sind. Es hat sich gezeigt, dass entgegen der bisherigen Annahme Laubholz gute Dämmeigenschaften bei ausreichend niedriger Setzungsdichte besitzt. Die Setzungsdichte ist dabei die Dichte der Späne nach einer vorgegebenen Setzung, insbesondere nach Aufbringung einer vorgegebenen Prüflast über einen vorgegebenen Zeitraum. Laubhölzer sind anspruchslos und daher weit verbreitet. Aufgrund der guten Verfügbarkeit von Laubholz können Transportwege bei der Herstellung des Dämmstoffes gering gehalten werden, so dass der Dämmstoff ökologisch herstellbar ist.
  • In besonders vorteilhafter Gestaltung ist das Laubholz der ersten Komponente Holz von Weidengewächsen, insbesondere Holz von Pappel (populus), Espe (populus tremula) oder Birke (betula). Pappel, Espe und Birke weisen eine höhere Schimmelresistenz und gleichzeitig eine niedrigere Wärmeleitfähigkeit auf als Späne aus Nadelhölzern. Späne aus Pappel, Espe oder Birke weisen auch eine höhere Schimmelresistenz und niedrigere Wärmeleitfähigkeit auf als Späne aus anderen Laubholzarten. Auch der Insektenbefall ist bei Laubholz von Espe oder Pappel deutlich geringer als bei Nadelhölzern und auch als bei anderen Laubholzarten. Die etwas erhöhte Setzungsdichte von Pappel und Espe wird durch die geringere Wärmeleitfähigkeit teilweise ausgeglichen, so dass sich vorteilhafte Eigenschaften des Wärmedämmstoffs ergeben. In besonders bevorzugter Gestaltung kann vorgesehen sein, dass der Wärmedämmstoff als weitere Komponente Späne aus Nadelholz aufweist. Dadurch kann ein charakteristischer Geruch des Dämmstoffs erzielt werden.
  • Um besonders elastische, bruchsichere Späne zu erzielen, ist vorteilhaft vorgesehen, dass die Faserlängsrichtung des Holzes der Holzspäne überwiegend in Längsrichtung der Holzspäne verläuft. Dadurch wird eine besonders niedrige setzungssichere Dichte des Dämmstoffs erreicht. Die setzungssichere Dichte kann beispielsweise um ein Drittel niedriger liegen als bei aufgeblasenen Dämmstoffen aus Zellulosefasern aus Altpapier und eine um 20% niedrigere Dichte als die Dichte von Dämmstoffen aus Zellulosefasern aus Altpapier im geschlossenen Hohlraum.
  • Holzspäne, bei denen die Faserrichtung des Holzes überwiegend in Längsrichtung der Holzspäne verläuft, können hergestellt werden, indem das Schneidwerkzeug, beispielsweise eine Schneide eines Fräswerkzeugs, in einer Ebene parallel zur Längsmittelachse eines Holzstamms bewegt wird. Wird das Fräswerkzeug quer zur Faserlängsrichtung des Holzes bewegt, so schneidet jeder Span eine Vielzahl von Jahresringen des Holzes. Dies resultiert in einer größeren Dichte und somit größerem Rohstoffbedarf des Wärmedämmstoffs. Es hat sich auch gezeigt, dass die Späne dadurch weniger elastisch sind und leichter brechen als Späne, die keine oder nur wenige Jahresringe schneiden. Als Holzspäne können in alternativer Ausführung jedoch auch in Späneform vorliegende Holzbearbeitungsabfälle oder Holzfasern vorgesehen sein, bei denen die Faserlängsrichtung nicht überwiegend in Holzlängsrichtung verläuft.
  • Vorteilhaft sind die Holzspäne durch Zerspanen eines Holzstamms mittels Kegelstirnplanfräser hergestellt. Der mit dem Holzstamm in Kontakt stehende Bereich des Kegels des Kegelstirnplanfräsers ist dabei vorteilhaft etwa parallel zur Längsmittelachse des Holzstamms orientiert. Dadurch können Späne hergestellt werden, deren Faserlängsrichtung überwiegend in Holzlängsrichtung verläuft und die dadurch besonders elastisch sind.
  • Der Massenanteil jeder dämmenden Komponente des Wärmedämmstoffs beträgt vorteilhaft von 10% bis 90%. Dabei kann der Wärmedämmstoff genau zwei Komponenten enthalten. Auch eine größere Zahl von Komponenten kann jedoch vorteilhaft sein. Als Komponente wird vorliegend ein dämmender Stoff angesehen, der aus einem Ausgangsmaterial in einem einheitlichen Fertigungsverfahren herstellbar ist. Beispielsweise bilden Holzspäne und Zellulosefasern aus dem gleichen Ausgangsmaterial zwei Komponenten. Ebenso bilden Zellulosefasern aus unterschiedlichen Ausgangsmaterialien, beispielsweise Zellulosefasern aus Holz, Zellulosefasern aus Naturfasern, Zellulosefasern aus Hygienepapier und Zellulosefasern aus Dekorpapier, unterschiedliche Komponenten.
  • In besonders vorteilhafter Gestaltung beträgt der Massenanteil jeder dämmenden Komponente des Wärmedämmstoffs von 10% bis 80%, insbesondere von 20% bis 80%. In besonders vorteilhafter Gestaltung ist der Massenanteil aller dämmenden Komponenten des Wärmedämmstoffs im Rahmen der Herstelltoleranzen ähnlich. Der Massenanteil der einzelnen Komponenten des Wärmedämmstoffs ändert sich dabei insbesondere durch Trocknungsvorgänge. Die Massenanteile der einzelnen Komponenten des Wärmedämmstoffs weichen vorteilhaft um weniger als 30%, insbesondere um weniger als 20% voneinander ab.
  • Um eine geringe Wärmeleitfähigkeit zu erreichen, ist insbesondere vorgesehen, dass der Massenanteil der Zellulosefasern aus Hygienepapier oder Dekorpapier mehr als 10%, insbesondere 30% bis 70%, vorzugsweise etwa 50% beträgt.
  • Vorteilhaft besitzt der Wärmedämmstoff zumindest eine dritte dämmende Komponente. Die dritte dämmende Komponente sind bevorzugt Federn, Späne aus einem Nadelholz oder Naturfasern. Die Naturfasern können dabei ebenfalls als Zellulosefasern vorliegen und beispielsweise aus Papier, Holz, Jute, Hanf, Flachs oder Miscanthus sein. Die Zellulosefasern der dritten dämmenden Komponente können auch aus anderen Papiersorten als Dekorpapier und Hygienepapier, insbesondere aus Altpapier, beispielsweise aus Tageszeitungs-Altpapier, sein. Altpapier, beispielsweise aus Tageszeitungen, ist gut verfügbar und günstig und als Wärmedämmstoff gut geeignet und etabliert. Auch Altpapier aus anderen Papiersorten kann vorteilhaft sein. Die Zellulosefasern der zweiten Komponente bestehen aus einem anderen Ausgangsmaterial als die Zellulosefasern der dritten Komponente. Die zweite und dritte Komponente unterscheiden sich durch das Ausgangsmaterial und können sich auch in der Gestalt der Zellulosefasern, beispielsweise deren mittlerer Länge, unterscheiden. Es kann auch vorgesehen sein, dass die dritte Komponente Holzspäne umfasst, wobei die Holzspäne der dritten Komponente entweder aus einem anderen Holz sind als die Holzspäne der ersten Komponente oder eine andere Form, beispielsweise eine andere Länge oder mittlere Spandicke aufweisen.
  • Vorteilhaft ist mindestens eine Komponente, insbesondere die Zellulosefasern der ersten Komponente, insbesondere alle Zellulosefasern des Wärmedämmstoffs, mit Flammschutzmittel behandelt. Auch eine Behandlung anderer Komponenten, beispielsweise von Holzspänen oder Federn, mit Flammschutzmittel kann vorteilhaft sein. In bevorzugter Gestaltung sind alle Komponenten des Wärmedämmstoffs mit Flammschutzmittel behandelt. Auch eine Behandlung mit Fungiziden oder anderen Zusatzstoffen, die die Resistenz einer Komponente oder mehrerer Komponenten des Wärmedämmstoffs erhöhen, kann vorgesehen sein. Flammschutzmittel und andere resistenzerhöhende Mittel werden nicht als Komponente des Wärmedämmstoffs im Sinne der vorliegenden Anmeldung verstanden, da sie keine relevanten dämmenden Eigenschaften besitzen. Als Flammschutzmittel kommen alle verfügbaren Flammschutzmittel oder flammhemmenden Mittel in Betracht.
  • In vorteilhafter Gestaltung sind die Komponenten lose miteinander vermischt. Bei dem Wärmedämmstoff handelt es sich demnach um losen Wärmedämmstoff, der beispielsweise als Schüttung eingesetzt, in Hohlräume eingeblasen oder auf andere Weise verarbeitet werden kann. Beispielsweise kann auch eine Verarbeitung durch Aufsprühen, beispielsweise mit Hilfe von Klebstoff oder Wasser, vorteilhaft sein.
  • In alternativer vorteilhafter Gestaltung ist der Wärmedämmstoff eine Dämmmatte, und die Komponenten sind über ein Bindemittel miteinander verbunden. Das Bindemittel kann beispielsweise ein Klebstoff sein oder durch Schmelzklebfasern, insbesondere Bikomponentenfasern, gebildet sein. Die Komponenten der Dämmmatte bilden dabei vorteilhaft keine kompakte, feste Platte, sondern die Dämmmatte besitzt eine Vielzahl von Hohlräumen, die zwischen den Komponenten gebildet sind und die von dem Bindemittel nicht ausgefüllt sind. Die Dämmmatte ist vorteilhaft eine flexible Dämmmatte. Die Dichte der Dämmmatte beträgt insbesondere 15 kg/m3 bis 120 kg/m3, vorzugsweise 30 kg/m3 bis 60 kg/m3.
  • In weiterer vorteilhafter alternativer Gestaltung ist der Wärmedämmstoff eine Dämmplatte. Die Komponenten der Dämmplatte sind vorteilhaft über ein Bindemittel verbunden. Die Dämmplatte ist formstabil und kompakt. Es hat sich gezeigt, dass sich durch Verwendung von Zellulosefasern aus Hygienepapier oder Dekorpapier Dämmplatten mit niedriger Dichte herstellen lassen. Es hat sich auch gezeigt, dass durch Verwendung von Holzspänen, die in einem Kegelstirnplanfräsverfahren hergestellt sind, auch unabhängig von der Verwendung von Zellulosefasern aus Hygienepapier oder Dekorpapier Dämmplatten mit sehr niedriger Dichte herstellen lassen. Die Verwendung von Holzspänen, die in einem Kegelstirnplanfräsverfahren hergestellt sind, für eine Dämmplatte stellt einen unabhängigen, eigenständigen erfinderischen Gedanken dar. Eine besonders niedrige Dichte kann durch Verwendung von Spänen, bei denen die Faserlängsrichtung des Holzes überwiegend in Längsrichtung der Holzspäne verläuft, erreicht werden. Die Dichte der Dämmplatte aus Holzspänen, bei denen die Faserlängsrichtung des Holzes überwiegend in Längsrichtung der Holzspäne verläuft, beträgt vorteilhaft nicht mehr als 500 kg/m3, insbesondere nicht mehr als 400 kg/m3. Die Holzspäne sind vorteilhaft in einem Kegelstirnplanfräsverfahren hergestellt. Dämmplatten gleicher Eigenschaften, die aus Holzspänen in herkömmlichen Verfahren hergestellt sind, bei denen also die Faserlängsrichtung des Holzes quer zur Längsrichtung der Holzspäne verläuft, besitzen dagegen üblicherweise eine Dichte in der Größenordnung von etwa 600 kg/m3.
  • Für ein Verfahren zur Herstellung eines Wärmedämmstoffs mit Holzspänen und Zellulosefasern ist vorgesehen, dass die Holzspäne durch Zerspanung von Holz in feuchtem Zustand hergestellt werden und dass die Holzspäne nach der Zerspanung mit einer Restfeuchte von mindestens 15%, insbesondere mindestens 20% mit den Zellulosefasern gemischt werden. Vorteilhaft werden alle Komponenten des Wärmedämmstoffs in feuchtem Zustand der Holzspäne der ersten Komponente und insbesondere auch der Holzspäne von weiteren Komponenten mit einer Restfeuchte der Holzspäne von mindestens 15%, insbesondere mindestens 20%, gemischt.
  • Bisher ging man davon aus, dass die Holzspäne vor der Vermischung mit weiteren Komponenten zu trocknen sind. Es hat sich nun jedoch gezeigt, dass auch eine Vermischung in feuchtem Zustand der Holzspäne möglich ist, so dass der Trocknungsschritt entfallen kann. Die Vermischung der Holzspäne in feuchtem Zustand mit Zellulosefasern ist insbesondere dann vorteilhaft, wenn eine Komponente bereits Flammschutzmittel oder andere Zuschlagstoffe enthält. Durch die Vermischung der Komponenten in feuchtem Zustand der Holzspäne wird eine Migration z. B. des Flammschutzmittels insbesondere von bereits vorbehandelten Zellulosefasern zu der oder den nicht vorbehandelten Komponenten erreicht. Zellulosefasern sind insbesondere dann bereits vorbehandelt, wenn sie aus Papier, beispielsweise aus Hygienepapier oder Dekorpapier hergestellt sind. Durch die Mischung der Komponenten in feuchtem Zustand kann die benötigte Flammschutzmittelmenge, die dem Wärmedämmstoff noch zuzugeben ist, deutlich verringert werden. Es hat sich gezeigt, dass die gleiche Brandklassifizierung mit der gegenüber der Mischung von trockenen Komponenten halbierten Flammschutzmittelmenge erzielt werden kann.
  • Zellulosefasern aus Papier, insbesondere aus Hygienepapier oder Dekorpapier, weisen eine sehr große Oberfläche auf. Insbesondere Zellulosefasern aus Papier beschleunigen die Trocknung der Holzspäne aufgrund ihrer hygroskopischen Eigenschaft und aufgrund ihrer großen Oberfläche. Die Feuchte der Späne wird durch die Zellulosefasern abtransportiert und steht für Mikroorganismen wie Schimmelpilze nicht mehr zur Verfügung.
  • Die Holzspäne sind vorteilhaft durch Zerspanung von feuchtem, insbesondere von waldfrischem Holz hergestellt. Es hat sich gezeigt, dass bei Zerspanung von feuchtem, insbesondere waldfrischem Holz geringere Setzungsdichten der Späne erzielt werden können und Späne mit vorteilhafter, glatter Oberfläche herstellbar sind. Gleichzeitig ist die Energie, die für die Zerspanung von feuchtem Holz benötigt wird, geringer als die für die Zerspanung von trockenem Holz benötigte Energie. Die aus feuchtem Holz zerspanten Späne werden erfindungsgemäß ohne weiteren Trocknungsschritt mit der mindestens einen weiteren Komponente vermischt. Ein Anfeuchten der Holzspäne, beispielsweise zur Aktivierung eines Bindemittels mittels Dampf oder Wasser, kann vorgesehen sein. Bevorzugt findet jedoch kein Anfeuchten der Holzspäne statt.
  • Vorteilhaft beträgt der Feuchtegehalt der Zellulosefasern mit evtl. zugesetzten Zusatzstoffen wie Flammschutzmitteln, Fungiziden, Bindemitteln oder dgl. beim Mischen der Komponenten höchstens 18%. Die Zellulosefasern können demnach zwar feucht, aber nicht nass sein. Es erfolgt kein Aufschlämmen der Zellulosefasern. Dadurch bleiben das große Volumen der Zellulosefasern und die vergleichsweise geringe Dichte des Wärmedämmstoffs erhalten.
  • Vorteilhaft wird außer evtl. zugegebenen Zusatzstoffen wie Flammschutzmitteln, Fungiziden oder dgl., die mit Wasser verdünnt oder in Wasser gelöst sein können, kein zusätzliches Wasser zugegeben. Abgesehen von evtl. zugegebenen flüssigen Zusatzstoffen rührt die Feuchte des Dämmstoffes nur von der Feuchte des waldfrischen Holzes.
  • In besonders vorteilhafter Gestaltung werden die Holzspäne durch Zerspanen eines Holzstamms mittels eines Kegelstirnplanfräsers hergestellt, wobei der Einstellwinkel des Kegelstirnplanfräsers 2° bis 45°, insbesondere 10° bis 30° und besonders bevorzugt etwa 20° beträgt. Die Drehachse des Kegelstirnplanfräsers ist in Blickrichtung der Längsmittelachse des Holzstamms zur Bearbeitungsfläche um einen Neigungswinkel geneigt, wobei die Summe von Neigungswinkel und Einstellwinkel 90° ergibt. Ein Kegelstirnplanfräser ist ein Fräswerkzeug, bei dem die Schneiden an einer kegeligen, zur Drehachse rotationssymmetrischen Fläche angeordnet sind. Die kegelige Fläche wird parallel zur Werkstückoberfläche ausgerichtet, so dass die Drehachse des Kegelstirnplanfräsers zur Werkstückoberfläche geneigt verläuft. Um Holzspäne herstellen zu können, bei denen die Faserrichtung des Holzes überwiegend in Längsrichtung der Holzspäne verläuft, ist vorgesehen, dass der mit dem Holzstamm in Kontakt stehende Bereich des Kegels des Kegelstirnplanfräsers parallel zur Längsmittelachse des Holzstamms orientiert ist. In einer Ansicht mit Blickrichtung parallel zur Bearbeitungsfläche und senkrecht zur Längsmittelachse des Baumstamms schließt die Drehachse des Kegelstirnplanfräsers mit der Längsmittelachse vorteilhaft einen Winkel von 90° ein.
  • Für eine Platte ist vorgesehen, dass die Platte Holzspäne aufweist, die über ein Bindemittel miteinander verbunden sind. Die Holzspäne sind durch Zerspanen eines Holzstamms mittels Kegelstirnplanfräser hergestellt. Es hat sich gezeigt, dass sich durch Verwendung von Holzspänen, die mittels Kegelstirnplanfräser hergestellt wurden, Platten herstellen lassen, die gegenüber Platten, die mit herkömmlichen Holzspänen hergestellt sind, beispielsweise gegenüber OSB-Platten, eine deutlich verringerte Dichte bei vergleichbaren mechanischen Eigenschaften aufweisen. Die Dichte der Platte beträgt vorteilhaft nicht mehr als 500 kg/m3, insbesondere nicht mehr als 400 kg/m3.
  • Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnung erläutert. Es zeigen:
  • Fig. 1
    eine Darstellung des erfindungsgemäßen Wärmedämmstoffs,
    Fig. 2
    eine schematische Darstellung eines Verfahrens zur Herstellung von vorteilhaften Holzspänen für den Wärmedämmstoff,
    Fig. 3
    eine schematische Draufsicht auf die Anordnung aus Fig. 2 in Richtung des Pfeils IV in Fig. 2,
    Fig. 4
    eine schematische Darstellung eines weiteren Ausführungsbeispiels des erfindungsgemäßen Wärmedämmstoffs,
    Fig. 5
    eine schematische Darstellung einer Platte.
  • Fig. 1 zeigt Wärmedämmstoff 1, der in loser Form vorliegt und beispielsweise als Schüttgut zu verarbeiten oder in Hohlräume von Gebäuden einzublasen ist. In alternativer Ausführung kann der Wärmedämmstoff 1 auch eine Dämmmatte sein, wie zu Fig. 4 beschrieben ist. Der Wärmedämmstoff 1 umfasst Holzspäne 2 und Zellulosefasern 3, die lose miteinander vermischt sind. Die Holzspäne 2 bilden Hohlräume, in denen die Zellulosefasern 3 angeordnet sind. Die Holzspäne 2 bilden damit ein Stützgerüst für die Zellulosefasern 3. Dadurch wird die Setzungsdichte des Wärmedämmstoffs 1 deutlich verringert. Die Holzspäne 2 besitzen eine geringere Dichte als die Zellulosefasern 3. Die Holzspäne 2 bilden eine erste Komponente des Wärmedämmstoffs 1, und die Zellulosefasern 3 bilden eine zweite Komponente des Wärmedämmstoffs 1.
  • Die Holzspäne 2 der ersten Komponente sind im Ausführungsbeispiel aus Laubholz. Das Laubholz ist bevorzugt Holz von Weidengewächsen, insbesondere von Pappel (populus), Espe (populus tremula) oder Birke (betula). In alternativer Gestaltung können die Holzspäne 2 auch aus Nadelholz sein. Die Zellulosefasern 3 der zweiten Komponente sind aus Dekorpapier oder Hygienepapier hergestellt. Die Zellulosefasern 3 der zweiten Komponente sind vorteilhaft vergleichsweise kurz. Insbesondere Zellulosefasern aus Hygienepapier weisen darüber hinaus einen geringen Anteil an Füllstoffen wie insbesondere Staub auf.
  • Die Zellulosefasern 3 besitzen vorteilhaft eine maximale Faserlänge von 12 mm.
  • Die Holzspäne 2 sind so ausgebildet, dass die Faserlängsrichtung des Holzes überwiegend in Längsrichtung der Holzspäne 2 verläuft. Die Holzspäne schneiden dadurch nur wenige, insbesondere keine Jahresringe eines Holzstammes. Dadurch besitzen die Holzspäne eine hohe Elastizität und Flexibilität und gleichzeitig eine geringe Bruchneigung.
  • Die Herstellung der Holzspäne 2 ist in Fig. 2 und 3 schematisch dargestellt. Fig. 2 zeigt schematisch einen Holzstamm 4 mit einer Längsmittelachse 5. Der Holzstamm 4 besitzt eine Bearbeitungsfläche 10. Zur Herstellung der Holzspäne 2 ist ein Kegelstirnplanfräser 6 vorgesehen, der an der Bearbeitungsfläche 10 eingreift und den Holzstamm 4 zerspant. Der Kegelstirnplanfräser 6 ist um eine Drehachse 7 drehbar gelagert ist. Der Kegelstirnplanfräser 6 besitzt eine Kegelfläche 8, die rotationssymmetrisch um die Drehachse 7 verläuft. Die Drehachse 7 des Kegelstirnplanfräsers 6 ist in der in Fig. 2 gezeigte Blickrichtung parallel zur Längsmittelachse 5 zur Bearbeitungsfläche 10 des Holzstamms 4 um einen Neigungswinkel α geneigt. Der Winkel α beträgt vorteilhaft 45° bis 88°, insbesondere 60° bis 80° und besonders bevorzugt etwa 70°. Der Kegelstirnplanfräser 6 besitzt einen Einstellwinkel κ, der der Neigung einer Grundfläche 9 des Kegels zur Kegelfläche 8 entspricht. Die Grundfläche 9 ist dabei senkrecht zur Drehachse 7 des Kegelstirnplanfräsers 6 ausgerichtet. Der Einstellwinkel κ beträgt vorteilhaft 2° bis 45°, insbesondere 10° bis 30°. Als besonders vorteilhaft hat sich ein Einstellwinkel κ von etwa 20° herausgestellt. Der Neigungswinkel α und der Einstellwinkel κ ergeben zusammen 90°. Der Kegelwinkel β, der zwischen gegenüberliegenden Bereichen der Kegelfläche 8 gemessen ist, beträgt vorteilhaft 90° bis 176°, insbesondere 120° bis 160° und besonders bevorzugt etwa 140°. Die Breite b des Holzstamms 4 in dem Bereich, in dem die Holzspäne 7 hergestellt werden, beträgt vorteilhaft mindestens 5 mm.
  • Fig. 3 zeigt die Anordnung aus Fig. 2 in einer Draufsicht in einer Blockrichtung parallel zur Bearbeitungsfläche 10 und senkrecht zur Längsmittelachse 5 des Holzstamms 4. In dieser Blickrichtung schließt die Drehachse 7 mit der Längsmittelachse 5 einen Winkel γ ein, der von 45° bis 135°, insbesondere 75° bis 105 ° und bevorzugt etwa 90° beträgt.
  • Die Holzspäne 2 besitzen vorteilhaft eine mittlere Spandicke von etwa 0,1 mm bis 5 mm. Mit dem Kegelstirnplanfräser 6 hergestellte Holzspäne 2 besitzen vorteilhaft eine mittlere Spanungsdicke, die sich aus dem Zahnvorschub multipliziert mit sinκ berechnet, wobei der Zahnvorschub die Vorschubgeschwindigkeit geteilt durch die Schneidenanzahl und die Drehzahl des Kegelstirnplanfräsers 6 ist. Eine Schneide kann sich dabei aus einer Vielzahl von Wendeschneidplatten zusammensetzen. Eine Schneide, die sich über die Mitte des Kegels zur gegenüberliegenden Seite des Kegels fortsetzt, wird dabei als eine Schneide betrachtet.
  • Die Zellulosefasern 3 sind im Ausführungsbeispiel aus Hygienepapier oder Dekorpapier hergestellt. In vorteilhafter Ausführung sind die Zellulosefasern 3 mit Flammschutzmittel behandelt. Zusätzlich oder alternativ kann eine Behandlung mit anderen resistenzerhöhenden Mitteln, insbesondere mit Fungiziden, vorgesehen sein.
  • Bei der Herstellung des Wärmedämmstoffs 1 werden die Holzspäne 2 vorteilhaft durch Zerspanung von feuchtem, insbesondere waldfrischem Holz und insbesondere mittels eines Kegelstirnplanfräsers 6 hergestellt. Dadurch ergibt sich eine sehr glatte Oberfläche und hohe Elastizität der Holzspäne 2. Die Holzspäne 2 werden nach der Zerspanung in feuchtem Zustand mit der zweiten Komponente, also den Zellulosefasern 3, sowie mit möglichen weiteren Komponenten des Wärmedämmstoffs 1 gemischt. Die Holzspäne 2 besitzen beim Vermischen dabei eine Restfeuchte von mindestens 20%. Es hat sich gezeigt, dass durch die Vermischung der Zellulosefasern 3 mit feuchten Holzspänen 2 eine einfachere Migration des Flammschutzmittels von den Zellulosefasern 3 zu den Holzspänen 2 gegeben ist. Bei trockenen Komponenten erfolgt diese Migration langsamer, so dass erhöhte Mengen an Flammschutzmittel zugefügt werden müssen, um bereits kurz nach der Mischung die gewünschte Brandschutzfestigkeit des Wärmedämmstoffs 1 zu erreichen. Durch die Mischung der Komponenten in feuchtem Zustand kann die benötigte Menge an Flammschutzmittel verringert werden, ohne dass sich die Dauer bis zum Einsatz des Wärmedämmstoffs 1 verlängert. Die Gesamtfeuchte des Dämmstoffs beim Mischen der Komponenten beträgt höchstens 15%. Die Komponenten sind demnach nicht nass. Insbesondere werden die Späne aus waldfrischem Holz ohne weiteren Trocknungs- oder Befeuchtungsschritt mit den trockenen Zellulosefasern unter Zugabe von mit Wasser verdünntem Flammschutzmittel gemischt.
  • Für eine alternative vorteilhafte Zusammensetzung des Wärmedämmstoffs 1 ist vorgesehen, dass der Wärmedämmstoff 1 neben den Holzspänen 2 und den Zellulosefasern 3 eine dritte dämmende Komponente besitzt. Vorteilhaft beträgt der Massenanteil der Holzspäne 2, der Zellulosefasern 3 und der dritten dämmenden Komponente jeweils 10% bis 80%. Insbesondere unterscheiden sich die Massenanteile der drei Komponenten um weniger als 30%, insbesondere um weniger als 20% voneinander.
  • Die dritte Komponente kann vorteilhaft durch Zellulosefasern gebildet sein, wobei die Zellulosefasern der dritten Komponente aus einem anderen Rohstoff hergestellt sind als die Zellulosefasern der zweiten Komponente. Beispielsweise kann die zweite Komponente durch Zellulosefasern aus einer anderen Papiersorte gebildet sein. Besonders vorteilhaft sind die Zellulosefasern der zweiten Komponente aus Hygienepapier und die Zellulosefasern der dritten Komponente aus Dekorpapier. Für einen Wärmedämmstoff aus Holzspänen, Zellulosefasern aus Dekorpapier und Zellulosefasern aus Hygienepapier ergeben sich besonders vorteilhafte Eigenschaften, wenn der Wärmedämmstoff einen Massenanteil von etwa 40% bis 60%, insbesondere von etwa 50% Holzspänen und einen Massenanteil von etwa 40% bis 60% Zellulosefasern aus Hygienepapier und Dekorpapier enthält. Bevorzugt beträgt der Massenanteil der Zellulosefasern aus Hygienepapier und der Massenanteil der Zellulosefasern aus Hygienepapier jeweils etwa 20% bis 30%, insbesondere etwa 25%. Auch andere Anteile von Zellulosefasern aus Hygienepapier und Zellulosefasern aus Dekorpapier können vorteilhaft sein.
  • Es kann jedoch auch vorgesehen sein, dass die Zellulosefasern der dritten Komponente beispielsweise aus Altpapier gebildet sind. Die dritte Komponente kann in alternativer Ausführung beispielsweise aus Zellulosefasern aus Naturfasern wie Holz, Jute, Hanf, Flachs oder Miscanthus bestehen. Eine vorteilhafte Zusammensetzung eines Wärmedämmstoffes besitzt einen Massenanteil von etwa 30% bis 70%, vorzugsweise etwa 30% bis 60% Späne. Der Wärmedämmstoff besitzt außerdem Zellulosefasern aus Holz und Zellulosefasern aus Papier, zumindest teilweise aus Dekor- und/oder Hygienepapier, in beliebigen Massenanteilen. In alternativer Ausführung kann eine Komponente des Wärmedämmstoffs durch Federn gebildet sein.
  • Es kann auch vorgesehen sein, dass die dritte Komponente durch die Naturfasern selbst, also nicht durch Zellulosefasern aus den Naturfasern, gebildet wird. Dadurch wird die Dichte des Wärmedämmstoffs 1 gegenüber der Dichte von Zellulosefasern verringert. Die dritte Komponente kann auch durch Späne aus einer anderen Holzsorte als die Holzspäne der zweiten Komponente gebildet sein. Beispielsweise können die Holzspäne der zweiten Komponente aus einem Weidengewächs sein und die Holzspäne der dritten Komponente aus einem Nadelholz. Die Späne aus einem Weidengewächs besitzen eine besonders niedrige setzungssichere Dichte. Die Späne aus einem Nadelholz besitzen den charakteristischen Holzgeruch. Durch Einsatz von Spänen aus unterschiedlichen Holzsorten kann ein Dämmstoff mit besonders vorteilhaften Eigenschaften bereitgestellt werden. Eine vorteilhafte Zusammensetzung sieht einen Massenanteil von etwa 40% bis 45% Spänen aus Laubholz, insbesondere aus Weidengewächsen, bevorzugt aus Pappel, ein Massenanteil von weniger als 10%, insbesondere von 5% bis 10% Spänen aus Nadelholz und Zellulosefasern aus Hygiene- oder Dekorpapier sowie weitere Komponenten in beliebiger Zusammensetzung vor. Bereits durch einen vergleichsweise geringen Anteil an Spänen aus Nadelholz kann ein Wärmedämmstoff mit charakteristischem Holzgeruch hergestellt werden. Es kann auch vorgesehen sein, dass alle Späne des Wärmedämmstoffs aus Nadelholz hergestellt sind.
  • In einer weiteren vorteilhaften Ausführung umfasst der Wärmedämmstoff neben der ersten, der zweiten und der dritten Komponente zumindest eine weitere vierte Komponente. Auch weitere Komponenten können vorteilhaft sein.
  • Die Wärmeleitfähigkeit des losen Wärmedämmstoffs 1 beträgt vorteilhaft weniger als 0,040 W/(m*K), insbesondere 0,036 bis 0,040 W/(m*K).
  • In einer weiteren alternativen Gestaltung liegt der Wärmedämmstoff 1 in gebundener Form vor, wie in Fig. 4 schematisch gezeigt ist. Die Komponenten des Wärmedämmstoffs 1 sind vorteilhaft über ein Bindemittel, insbesondere über Klebstoff oder Schmelzklebfasern wie beispielsweise Bikomponentenfasern miteinander verbunden. Das Bindemittel stellt vorteilhaft eine flexible Verbindung zwischen den Komponenten des Wärmedämmstoffs 1 her.
  • Der in Fig. 4 gezeigte Wärmedämmstoff 1 ist insbesondere eine Dämmmatte. Die Dämmmatte besitzt vorteilhaft eine vergleichsweise geringe Dichte. Die Dichte der Dämmmatte beträgt insbesondere 15 kg/m3 bis 120 kg/m3, vorzugsweise 30 kg/m3 bis 60 kg/m3. Die Komponenten und die Zusammensetzung der Komponenten der Dämmmatte entsprechen den zu losen Wärmedämmstoffen 1 beschriebenen Zusammensetzungen, wobei die Dämmmatte zusätzlich das Bindemittel enthält. Die Dämmmatte ist vorteilhaft flexibel und besitzt zwischen den Komponenten eine Vielzahl von Hohlräumen. Die Hohlräume werden von dem Bindemittel nicht ausgefüllt. Die Wärmeleitfähigkeit des als Dämmmatte ausgebildeten Wärmedämmstoffs 1 beträgt vorteilhaft weniger als 0,040 W/(m*K), insbesondere 0,036 W/(m*K) bis 0,040 W/(m*K).
  • In alternativer Ausführung ist der in Fig. 4 gezeigte Wärmedämmstoff 1 als Dämmplatte ausgebildet. Die Dämmplatte weist dabei eine vergleichsweise geringe Dichte auf. Die Dichte der Dämmplatte beträgt vorteilhaft nicht mehr als 500 kg/m3, insbesondere nicht mehr als 400 kg/m3. Die Dämmplatte ist vorteilhaft formstabil und kompakt und weist nur sehr wenige oder nur vernachlässigbar kleine luftgefüllten Hohlräume auf.
  • Bevorzugt beträgt der Massenanteil jeder dämmenden Komponente des Wärmedämmstoffs 10% bis 90%. Bei einem Wärmedämmstoff 1 aus mindestens drei dämmenden Komponenten beträgt der Massenanteil jeder dämmenden Komponente vorteilhaft 10% bis 80% und bei einem Wärmedämmstoff aus vier Komponenten vorteilhaft 10% bis 70%. Bevorzugt beträgt der Massenanteil jeder dämmenden Komponente mindestens 10%, insbesondere mindestens 20%. Als ähnliche Massenanteile werden Massenanteile angesehen, die sich um höchstens 30%, insbesondere höchstens 20% voneinander unterscheiden. Bei einem Wärmedämmstoff 1 aus zwei Komponenten beträgt der Massenanteil jeder Komponente vorteilhaft 35% bis 65%, insbesondere 40% bis 60%. Bei einem Wärmedämmstoff 1 aus drei Komponenten beträgt der Massenanteil jeder Komponente vorteilhaft 20% bis 50%, insbesondere 25% bis 45%. Vorteilhaft beträgt der Massenanteil keiner Komponente mehr als 90%.
  • Der Massenanteil der Zellulosefasern 3 aus Hygienepapier oder Dekorpapier beträgt vorteilhaft mehr als 10%, insbesondere 30% bis 70%, vorzugsweise etwa 50%. Besonders vorteilhaft besitzt der Wärmedämmstoff einen Masseanteil von 40% bis 60% insbesondere von etwa 50% Späne, unabhängig von den weiteren Komponenten des Wärmedämmstoffs.
  • Fig. 5 zeigt eine Ausführungsvariante einer Platte 11, die Holzspäne 2 aufweist. Die Holzspäne 2 sind über ein Bindemittel miteinander verbunden. Das Bindemittel kann beispielsweise durch Klebstoff, insbesondere Harze, oder Schmelzklebfasern wie beispielsweise Bikomponentenfasern gebildet sein. Als Bindemittel können übliche für OSB-Platten verwendete Bindemittel vorgesehen sein. Das Bindemittel stellt vorteilhaft eine feste Verbindung zwischen den Komponenten des Wärmedämmstoffs 1 her.
  • Die Platte 11 weist in vorteilhafter Ausführungsvariante keine Zellulosefasern 3 auf. In alternativer Variante ist vorgesehen, dass die Platte 11 Zellulosefasern 3, insbesondere Zellulosefasern 3 aus Hygienepapier oder Dekorpapier, enthält. Die Platte 11 kann als Wärmedämmplatte ausgebildet sein. Die Holzspäne 2 sind mittels Kegelstirnplanfräser 6 (Fig. 2 und 3) hergestellt. Dadurch sind die Holzspäne 2 sehr elastisch und flexibel. Die Faserlängsrichtung des Holzes verläuft überwiegend in Längsrichtung der Holzspäne 2. Die Dichte der Platte 11 beträgt vorteilhaft nicht mehr als 500 kg/m3, insbesondere nicht mehr als 400 kg/m3. Die Wärmeleitfähigkeit der Platte 11 ist vorteilhaft geringer als die Wärmeleitfähigkeit von OSB-Platten. Die Platte 11 ist vorteilhaft formstabil und kompakt und weist nur sehr wenige oder nur vernachlässigbar kleine luftgefüllten Hohlräume auf.
  • Die Holzspäne 2 der Platte 11 sind insbesondere aus Laubholz, vorzugsweise aus Holz von Weidengewächsen, insbesondere Holz von Pappel (populus), Espe (populus tremula) oder Birke (betula) hergestellt. Die Holzspäne 2 der Platte 11 können jedoch auch zum Teil oder ausschließlich aus Holz von Nadelhölzern hergestellt sein. Vorteilhaft sind die Holzspäne 2 der Platte 11 durch Zerspanen von feuchtem, waldfrischem Holz hergestellt. Die Holzspäne 2 der Platte 11 sind vorteilhaft hergestellt, wie oben zu den Holzspänen 2 des Wärmedämmstoffs 1 beschrieben. Die Holzspäne 2 sind insbesondere in einem Kegelstirnplanfräsverfahren hergestellt, wie oben beschrieben.

Claims (16)

  1. Wärmedämmstoff, wobei der Wärmedämmstoff (1) aus zumindest zwei dämmenden Komponenten zusammengesetzt ist, wobei die erste Komponente Holzspäne (2) und die zweite Komponente Zellulosefasern (3) umfasst, wobei die Zellulosefasern (3) in zwischen den Holzspänen (2) gebildeten Hohlräumen angeordnet sind,
    dadurch gekennzeichnet, dass die Zellulosefasern (3) der zweiten Komponente aus Dekorpapier oder aus Hygienepapier hergestellt sind.
  2. Wärmedämmstoff nach Anspruch 1,
    dadurch gekennzeichnet, dass die Zellulosefasern (3) der zweiten Komponente (3) eine maximale Faserlänge von 12 mm aufweisen.
  3. Wärmedämmstoff nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Holzspäne (2) der ersten Komponente aus Holz von Weidengewächsen, insbesondere von Pappel, Espe oder Birke sind.
  4. Wärmedämmstoff nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Faserlängsrichtung des Holzes überwiegend in Längsrichtung der Holzspäne (2) verläuft.
  5. Wärmedämmstoff nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Holzspäne (2) durch Zerspanen eines Holzstamms (4) mittels Kegelstirnplanfräser (6) hergestellt sind.
  6. Wärmedämmstoff nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass der Massenanteil jeder dämmenden Komponente des Wärmedämmstoffes von 10% bis 90% beträgt.
  7. Wärmedämmstoff nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass der Massenanteil der Zellulosefasern (3) aus Hygienepapier oder Dekorpapier mehr als 10%, insbesondere 30% bis 70%, vorzugsweise etwa 50% beträgt.
  8. Wärmedämmstoff nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass der Wärmedämmstoff zumindest eine dritte dämmende Komponente besitzt.
  9. Wärmedämmstoff nach Anspruch 8,
    dadurch gekennzeichnet, dass die dritte Komponente Späne aus einem Nadelholz oder Zellulosefasern aus einer weiteren Papiersorte oder aus Naturfasern sind.
  10. Wärmedämmstoff nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass mindestens eine Komponente des Wärmedämmstoffs (1), insbesondere alle Komponenten des Wärmedämmstoffs, mit Flammschutzmittel behandelt sind.
  11. Wärmedämmstoff nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass der Wärmedämmstoff (1) ein loser Wärmedämmstoff ist, dessen Komponenten lose miteinander vermischt sind.
  12. Wärmedämmstoff nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass der Wärmedämmstoff (1) eine Dämmmatte ist, und dass die Komponenten über ein Bindemittel miteinander verbunden sind, wobei die Dämmmatte insbesondere eine Dichte von 15 kg/m3 bis 120 kg/m3 aufweist.
  13. Wärmedämmstoff nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass der Wärmedämmstoff (1) eine Dämmplatte ist, und dass die Komponenten über ein Bindemittel miteinander verbunden sind, wobei die Dämmplatte insbesondere eine Dichte von nicht mehr als 500 kg/m3 aufweist.
  14. Verfahren zur Herstellung eines Wärmedämmstoffs mit Holzspänen (2) und Zellulosefasern (3), insbesondere eines Wärmedämmstoffs (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass die Holzspäne (2) durch Zerspanung von Holz in feuchtem Zustand hergestellt werden und dass die Holzspäne (2) nach der Zerspanung mit einer Restfeuchte von mindestens 15% mit den Zellulosefasern (3) gemischt werden.
  15. Verfahren nach Anspruch 14,
    dadurch gekennzeichnet, dass die Holzspäne (2) durch Zerspanen eines Holzstamms (4) mittels Kegelstirnplanfräser (6) hergestellt sind, wobei der Einstellwinkel (κ) des Kegelstirnplanfräsers (6) 2° bis 45° beträgt und wobei die Drehachse (7) in Blickrichtung der Längsmittelachse (5) des Holzstamms (4) zur Bearbeitungsfläche (10) um einen Neigungswinkel (α) geneigt ist, der mit dem Einstellwinkel (κ) 90° ergibt.
  16. Platte, wobei die Platte Holzspäne (2) aufweist, die über ein Bindemittel miteinander verbunden sind,
    dadurch gekennzeichnet, dass die Holzspäne (2) durch Zerspanen eines Holzstamms (4) mittels Kegelstirnplanfräser (6) hergestellt sind.
EP18166567.0A 2018-04-10 2018-04-10 Verfahren zur herstellung eines wärmedämmstoffs Active EP3552787B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18166567.0A EP3552787B1 (de) 2018-04-10 2018-04-10 Verfahren zur herstellung eines wärmedämmstoffs
CA3037774A CA3037774A1 (en) 2018-04-10 2019-03-25 Thermal insulation material and method for its production
RU2019109526A RU2019109526A (ru) 2018-04-10 2019-04-01 Теплоизоляционный материал и способ его изготовления
US16/373,898 US20190309891A1 (en) 2018-04-10 2019-04-03 Thermal Insulation Material and Method for Its Production
CN201910279997.1A CN110355848A (zh) 2018-04-10 2019-04-09 热隔绝物料和用于其制造的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18166567.0A EP3552787B1 (de) 2018-04-10 2018-04-10 Verfahren zur herstellung eines wärmedämmstoffs

Publications (3)

Publication Number Publication Date
EP3552787A1 true EP3552787A1 (de) 2019-10-16
EP3552787C0 EP3552787C0 (de) 2023-07-26
EP3552787B1 EP3552787B1 (de) 2023-07-26

Family

ID=61965781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18166567.0A Active EP3552787B1 (de) 2018-04-10 2018-04-10 Verfahren zur herstellung eines wärmedämmstoffs

Country Status (5)

Country Link
US (1) US20190309891A1 (de)
EP (1) EP3552787B1 (de)
CN (1) CN110355848A (de)
CA (1) CA3037774A1 (de)
RU (1) RU2019109526A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2030120B1 (en) * 2021-12-13 2023-06-27 Bouwgroep Dijkstra Draisma B V Vegetable material as insulation, filling or packaging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516186A1 (de) * 1995-05-05 1996-11-07 Willoc Holding B V Dämmaterial aus Naturprodukten und Herstellungsverfahren dafür
EP0627978B1 (de) * 1992-12-30 1997-08-20 Elisa Di De Santi Piero Verfahren zur herstellung von gegenständen, insbesondere platten, aus isoliermaterial, und nach diesem verfahren hergestellter gegenstand
US20020121327A1 (en) * 2000-12-29 2002-09-05 Mente Donald C. Binder resin and synergist composition including a parting agent and process of making lignocellulosic articles
EP2045408A2 (de) * 2007-10-02 2009-04-08 Isofloc Wärmedämmtechnik GmbH Wärmedämmstoff mit Zellulosefasern und Verfahren zu dessen Herstellung
US20130300015A1 (en) * 2011-01-13 2013-11-14 Blh Technologies Inc. Method for forming a fire resistant cellulose product, and associated apparatus
EP2813629A1 (de) * 2013-06-12 2014-12-17 isofloc AG Anordnung von Ballen und Verfahren zur Herstellung einer Mischung unterschiedlicher Isolationsmaterialien

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627978B1 (de) * 1992-12-30 1997-08-20 Elisa Di De Santi Piero Verfahren zur herstellung von gegenständen, insbesondere platten, aus isoliermaterial, und nach diesem verfahren hergestellter gegenstand
DE19516186A1 (de) * 1995-05-05 1996-11-07 Willoc Holding B V Dämmaterial aus Naturprodukten und Herstellungsverfahren dafür
US20020121327A1 (en) * 2000-12-29 2002-09-05 Mente Donald C. Binder resin and synergist composition including a parting agent and process of making lignocellulosic articles
EP2045408A2 (de) * 2007-10-02 2009-04-08 Isofloc Wärmedämmtechnik GmbH Wärmedämmstoff mit Zellulosefasern und Verfahren zu dessen Herstellung
DE102007047542A1 (de) 2007-10-02 2009-04-09 isofloc Wärmedämmtechnik GmbH Wärmedämmstoff mit Zellulosefasern und Verfahren zu dessen Herstellung
US20130300015A1 (en) * 2011-01-13 2013-11-14 Blh Technologies Inc. Method for forming a fire resistant cellulose product, and associated apparatus
EP2813629A1 (de) * 2013-06-12 2014-12-17 isofloc AG Anordnung von Ballen und Verfahren zur Herstellung einer Mischung unterschiedlicher Isolationsmaterialien

Also Published As

Publication number Publication date
US20190309891A1 (en) 2019-10-10
CA3037774A1 (en) 2019-10-10
EP3552787C0 (de) 2023-07-26
EP3552787B1 (de) 2023-07-26
CN110355848A (zh) 2019-10-22
RU2019109526A (ru) 2020-10-01

Similar Documents

Publication Publication Date Title
DE3936312C2 (de)
DE60032125T2 (de) Verbundbauelemente und herstellungsverfahren
EP2746045B1 (de) Sperrholzplatte
DE60003919T2 (de) Verbundplatten aus hanffasern
DE1299115B (de) Stranggepresste Holzspanplatte
DE1053388B (de) Feuerbestaendiges Mineralfaser-Erzeugnis
DE102019121471A1 (de) Werkstoffplatte und Verfahren zur Herstellung einer Werkstofplatte
EP3552787B1 (de) Verfahren zur herstellung eines wärmedämmstoffs
EP2045408B1 (de) Wärmedämmstoff mit Zellulosefasern und Verfahren zu dessen Herstellung
DE69926525T2 (de) Holzspan und verfahren zur herstellung von zellstoff
DE975846C (de) Holzspanbauteil und Vorrichtung zur Erzeugung seiner Spaene
DE10230323B4 (de) Holzbausystem zur Erstellung massiver Wand-, Boden-, Decken- und/oder Strukturteile eines Hochbauwerkes
CH642907A5 (de) Verfahren zur herstellung einer holzspanplatte sowie die hergestellte holzspanplatte.
EP3837098B1 (de) Werkstoff
DE3021455A1 (de) Herstellungsverfahren fuer plattenfoermige werkstoffe
AT525323B1 (de) Holzverbundprodukt
DE2447590A1 (de) Verfahren zur herstellung von aus holzausgangsmaterial und bindemittel bestehenden platten, wie spanplatten, faserplatten o. dgl.
DE1214382B (de) Sperrholzplatte
DE102021111193B4 (de) Verfahren zur Verarbeitung der Stämme von Ölpalmen zur Herstellung von Holzprodukten
DE3115077A1 (de) Platte und aufbereitungsverfahren zu deren herstellung
DE2811833A1 (de) Platte und verfahren zu deren herstellung
DE102017111098B4 (de) Verfahren zur Herstellung einer Spanplatte und eine Spanplatte
DE967328C (de) Verfahren zur Herstellung von Kunstholzplatten
AT520696A2 (de) Gitter-Schalungsträger
DE7704563U1 (de) Mehrschichtige holzwerkstoffplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200319

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GROSS, LUCIA

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROSS, LUCIA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012770

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230817

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230824

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012770

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

U20 Renewal fee paid [unitary effect]

Year of fee payment: 7

Effective date: 20240424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT