EP3547450B1 - Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird - Google Patents

Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird Download PDF

Info

Publication number
EP3547450B1
EP3547450B1 EP19165394.8A EP19165394A EP3547450B1 EP 3547450 B1 EP3547450 B1 EP 3547450B1 EP 19165394 A EP19165394 A EP 19165394A EP 3547450 B1 EP3547450 B1 EP 3547450B1
Authority
EP
European Patent Office
Prior art keywords
metasurface
excitation
polarization
radiating element
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19165394.8A
Other languages
English (en)
French (fr)
Other versions
EP3547450A1 (de
Inventor
Hervé Legay
Antoine CALLEAU
Maria GARCIA VIGUERAS
Mauro Ettorre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees INSA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees INSA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA, Institut National des Sciences Appliquees INSA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3547450A1 publication Critical patent/EP3547450A1/de
Application granted granted Critical
Publication of EP3547450B1 publication Critical patent/EP3547450B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the invention relates to a radiating element with circular polarization, in particular for a planar antenna, and intended to be used in particular in space communications, on board satellites or in user terminals.
  • the invention also relates to an array antenna comprising at least one such radiating element.
  • the so-called "compact" radiating elements make it possible in particular to offer a good compromise between several specifications: good surface efficiency over the entire operating band, sufficient bandwidth for adaptation and in radiation, a small size and a low mass.
  • Congestion is particularly critical in the low frequency bands L (1 to 2 GHz), S (2 to 4 GHz), C (from 3.4 to 4.2 GHz in reception and 5.725 and 7.075 GHz in transmission) penalized by significant wavelengths.
  • the search for compact and wideband elements is particularly active for multispot antennas, associating a reflector and a focal array made up of a large number of sources.
  • Fabry Perot's cavity resonant antennas are linearly polarized. Obtaining circular polarization on such antennas must be achieved without degrading the compactness of the radiating element by adding a device making it possible to obtain radiation in circular polarization.
  • Radiating elements having continuous linear radiating openings make it possible to radiate several fronts.
  • plane waves over a large angular sector. They are formed by a waveguide with parallel plates terminated by a longitudinal horn, which makes the transition between the waveguide with parallel plates and free space.
  • a focusing / collimator device is inserted on the radiofrequency wave propagation path, between the two parallel metal plates, making it possible to convert cylindrical wave fronts from the sources into plane wave fronts.
  • These continuous radiating linear apertures operate over a very wide band (for example at 20 and 30 GHz), due to the absence of resonant propagation modes. They are also capable of radiating over a very large angular sector.
  • the polarization of the radiated wave is that of the wave which propagates in the waveguide with parallel plates, namely linear.
  • a first known solution consists in covering the radiating element with a polarizing radome consisting of several frequency selective surfaces (FSS), the characteristics of which are optimized so as to generate a phase difference of 90 ° between the two orthogonal polarizations, without interfere with the operation of the antenna.
  • Polarizing radomes cascading quarter-wave layers exhibit good bandwidth and oblique incidence performance, however with a thickness (thickness of the order of one wavelength in a vacuum) detrimental to the compactness of the antenna.
  • Fine polarizers have been also developed, but their performances in bandwidth and in oblique incidence are limited.
  • a solution consisting in combining a polarizer and a Fabry Perot cavity can be found in the document “Self polarizing Fabry-Perot antennas based on polarization twisting element” (SA Notice, R. Sauleau, G. Valerio, LL Coq, and H. Legay, IEEE Trans. Antennas Propag., Vol. 61, no. 3, pp. 1032-1040, Mar. 2 ).
  • the solution is illustrated by the figure 1 .
  • the frequency-selective surface Fabry Perot cavity radiates similarly in two subspaces (upper and lower). It consists of two periodic partially reflecting surfaces (FSS1, FSS2) according to a linear polarization Ex, and is excited according to this polarization.
  • Periodic surfaces are transparent to the Ey wave.
  • a polarization reversal ground plane reflects the emitted wave in the lower plane, transforms its linear polarization (for example from Ex to Ey), and returns the wave in the upper direction.
  • This ground plane PM is produced by means of COR corrugations of depth ⁇ / 4, inclined at 45 ° with respect to the grids constituting the periodic partially reflecting surfaces (FSS1, FSS2).
  • a distance of ⁇ / 8 (where ⁇ is the wavelength in the radiating element) between the polarization inverted PM ground plane and the Fabry Perot cavity with periodic partially reflecting surfaces achieves a phase delay of 90 ° on the component Ey, necessary to obtain the circular polarization.
  • the cavity being transparent to the component Ey, the field is radiated in the upper sub-space.
  • the frequency behavior of this solution is however relatively low band. Indeed, as illustrated by figure 4 of the cited document, the rate of ellipticity of the wave at the output of the polarizer is at 1 dB over a frequency band corresponding to approximately 2.5% of the central frequency.
  • This weak band behavior is linked on the one hand to the corrugations of the ground plane PM, the height ( ⁇ / 4) of which is a function of the wavelength. It is also linked to the spacing ( ⁇ / 8) between the lower partially reflecting periodic surface FSS1 and the ground plane PM, which is a function of the wavelength.
  • the invention therefore aims to obtain a radiating element with circular polarization from a linear excitation, both compact in height and very wide band.
  • the cells with metasurfaces of the same row are coupled by an interconnection line with a metasurface elongated along the alignment axis.
  • the rows are connected to one another by means of the metasurface cells, forming with the metasurface interconnection lines a grid pattern with a rectangular mesh.
  • the metasurface cells of the same row are isolated from each other.
  • the metasurface cells of the same row are all spaced periodically.
  • all the metasurface cells of the metasurface have the same dimensions.
  • the frequency selective surface comprises an array of parallel metal wires, spaced periodically, and aligned with the excitation polarization.
  • the frequency selective surface comprises a two-dimensional array of metallic dipoles arranged periodically.
  • the excitation opening comprises at least one waveguide opening opening into the resonant cavity.
  • the excitation opening comprises a double power supply formed by two waveguides opening symmetrically into the resonant cavity, and connected to an impedance matching network.
  • the excitation opening is a horn with a radiating linear opening.
  • the radiating element comprises a plurality of excitation openings, the excitation openings being formed by an array of linear radiating openings.
  • the radiating element comprises at least one second cavity cascaded over the frequency selective surface.
  • the metasurface cells are rectangular in shape.
  • the invention also relates to an array antenna comprising at least one aforementioned radiating element.
  • the figure 2 illustrates a schematic representation, in the yz plane, of the radiating element according to the invention, from the theory of rays.
  • the radiating element comprises an excitation opening OE, which opens onto a metasurface S1.
  • the S1 metasurface comprises an array of conductive planar elements forming metasurface cells (not shown on the figure 1 ), exhibiting a certain pattern repeated periodically in a two-dimensional fashion. Metasurface cells have dimensions less than the operating wavelength of the radiating element (so-called “sub-lambda” dimensions).
  • a wave linearly polarized according to a first excitation polarization is produced at the excitation opening OE.
  • the excitation opening OE is represented by a rectangular waveguide penetrating into the S1 metasurface without protruding from the S1 metasurface, or by slightly protruding from the latter.
  • the linearly polarized wave propagates in the cavity, delimited by the metasurface S1 and by a frequency selective surface S2, comprising an arrangement of metallic wires or of periodically distributed dipoles.
  • the metasurface S1 and the frequency selective surface S2 are spaced from each other by a distance D1.
  • the frequency selective surface S2 is partially reflecting for the excitation polarization Ex (also called polarization TE, for “Transverse Electric”) and transparent for a second polarization Ey orthogonal to the excitation polarization Ex, called orthogonal polarization (also called orthogonal polarization. polarization TM, for "Transverse Magnetic”), and the direction of wave propagation.
  • the frequency selective surface S2 is therefore characterized respectively by reflection and transmission coefficients r 2 x and t 2 x .
  • the wave produced by the excitation opening is partly radiated (Etx), and partly reflected. This reflected part is called the incident wave Eix.
  • the S1 metasurface is fully reflective. It acts in a ground plane, facing the frequency selective surface S2.
  • the metasurface S1 is characterized respectively by the reflection coefficients r 1 xx and r 1 yx , which translate the components of the reflected wave according to the polarizations Ex and Ey for the incident wave Eix.
  • a resonance is established between the two surfaces for the wave in Ex excitation polarization, typical of Fabry Perot resonators.
  • the incident wave Eix which propagates in the cavity, undergoes a series of reflections on the frequency selective surface S2 and on the metasurface S1. At each reflection on the frequency selective surface S2, part of the incident wave Eix is radiated. At each reflection on the metasurface S1, part of the incident wave Eix undergoes a polarization rotation, also called depolarization, producing the polarized wave Er1y according to the orthogonal polarization Ey.
  • the amplitude of the polarized wave Er1y according to the orthogonal polarization Ey is determined by the reflection coefficient r 1 yx .
  • Another one part of the incident wave Eix retains its polarization, producing the polarized wave Er1x according to the excitation polarization Ex.
  • the amplitude of the polarized wave Er1x according to the excitation polarization Ex is determined by the reflection coefficient r 1 xx .
  • the synthesis of a radiation in circular polarization is obtained when the wave radiated E'tx by the selective surface in frequency S2, and coming from the reflected wave Er1x polarized according to the excitation polarization Ex, corresponds in amplitude to l wave polarized Er1y according to the orthogonal polarization Ey, with a phase shift of ⁇ 90 °.
  • the amplitude of the wave radiated E'tx by the frequency selective surface S2 is determined by the transmission coefficient t 2 x .
  • the frequency selective surface S2 being transparent to the orthogonal polarization Ey, the polarized wave Er1y according to the orthogonal polarization Ey is radiated without being attenuated.
  • the wave polarized Er1y according to the orthogonal polarization Ey is denoted E'ty.
  • a first radiation in circular polarization is therefore composed of E'tx and E'ty waves.
  • the reflected wave Er1x undergoes a new reflection on the frequency selective surface S2, with a reflection coefficient r 2 x , and, according to the same principle, a second radiation in circular polarization is composed of the waves E "tx and E" ty , then a third radiation in circular polarization, composed of the waves E '"tx and E'" ty.
  • a circularly polarized beam is thus obtained, which is attenuated more and more as one moves away from the excitation opening OE.
  • T x t 2 x + t 2 x r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇ + t 2 x r 1 xx 2 r 2 x 2 e - jk 0 4 D 1 cos ⁇ + ⁇
  • T x t 2 x 1 - r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇
  • ⁇ r 1 xx represents the in-phase component of the reflection coefficient r 1 xx
  • ⁇ r 2 x represents the in-phase component of the reflection coefficient r 2 x
  • N any integer.
  • N ' is any integer.
  • Equation (16) does not depend on the first order of the frequency (the wave number k 0 is not found in the equation), but relates only the components of the reflection and transmission matrices of the selective surface in frequency S2 and metasurface S1.
  • the band pass-through is no longer limited by the mechanism for generating the circular polarization, but by the operating mechanism of the Fabry Pérot cavity. The bandwidth widening techniques for the latter can then be used, without effects on the circular polarization.
  • the cascading of a second cavity, above the frequency selective surface S2 makes it possible to widen the pass band, without this degrading the quality of the circular polarization.
  • phase component of the transmission coefficient t 2 x of the frequency selective surface S2 determines the directivity of the radiating element; it is therefore predetermined and known, as a function of the desired directivity.
  • equation (16) in order to produce pure circular polarization, the in-phase components of the reflection coefficients r 1 yx and r 1 xx should be appropriately selected.
  • the metasurface S1 does not receive in incidence any wave in orthogonal polarization Ey, insofar as the frequency selective surface S2 is transparent to the orthogonal polarization.
  • the reflection coefficients r 1 xy and r 1 yy which respectively translate the reflection coefficient in excitation polarization Ex and in orthogonal polarization Ey for an incident wave in orthogonal polarization Ey, are therefore irrelevant for the dimensioning of the metasurface S1. Only the reflection coefficients r 1 xx and r 1 yx must be taken into account for the dimensioning of the metasurface S1, and determined by relation (16).
  • An Ox'y'z coordinate system is defined as being the result of the rotation of an angle ⁇ around the Oz axis of the Oxyz coordinate system (the Ox axis is defined by the excitation polarization Ex, and the Oy axis by the orthogonal polarization Ey).
  • diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 respectively represent the phase components of the waves reflected respectively in excitation polarization and in orthogonal polarization, in the frame Ox'y'z.
  • the amplitude components of the waves reflected in excitation polarization and in orthogonal polarization are equal to 1, reflecting the lossless character of the S1 metasurface.
  • each incident wave in linear polarization is reflected with an excitation polarization component Ex and an orthogonal polarization component Ey.
  • an S1 metasurface made up of an arrangement of planar conductive elements rectangular (also called “patches” according to Anglo-Saxon terminology)
  • the phase responses according to the Ex or Ey polarization are controlled in the first order by the dimensions of the conducting planar element.
  • the S1 metasurface may include an array of MS metasurface cells, as shown in figure 3 .
  • the dimensions of MS metasurface cells can be obtained relatively independently as a function of the in-phase components of the diagonal reflection coefficients.
  • the dimensions of each cell with a metasurface MS are adjusted as a function of the in-phase components of the diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 previously determined.
  • the metasurface cells can advantageously be rectangular.
  • the S1 metasurface can therefore be made up of several rows RA of cells with an MS metasurface.
  • the MS metasurface cells of the same row RA are isolated from one another, and placed on a substrate SUB1. These elements are arranged between the ground plane crossed by the excitation opening, and the frequency selective surface S2. Each cell with an MS metasurface therefore forms a dipole, having a mainly capacitive behavior for the excitation polarization Ex and for the orthogonal polarization Ey. All CE centers of MS metasurface cells are aligned along an AX alignment axis. The alignment axis AX is therefore oriented by the angle ⁇ with respect to the excitation polarization Ex.
  • MS metasurface cells can all have the same length (ly dimension on the figure 3 ), and there can be the same spacing between two MS metasurface cells (px dimension on the figure 3 ).
  • the S1 metasurface can include LG metasurface interconnection lines.
  • LG metasurface interconnection lines interconnect all MS metasurface cells of the same row RA. They advantageously allow to evacuate the electrostatic charges present in the MS metasurface cells, and thus improve the overall behavior of the radiating element.
  • MS metasurface cells have remarkably stable properties in incidence, since particularly small patterns can be used, in order to obtain broadband or even dual-band characteristics.
  • the cells with a metasurface MS in the same row RA are coupled at their center CE, orthogonally, to an interconnection line with a metasurface LG.
  • the interconnection line with metasurface LG is oriented by the angle ⁇ with respect to the excitation polarization Ex.
  • the assembly formed by the interconnection line LG and by the cells with metasurface MS constitutes therefore a grid with stubs (or with adaptation elements).
  • the stub gate has a mainly inductive behavior for the Ex excitation polarization, and capacitive for the orthogonal Ey polarization.
  • the frequency selective surface S2 partially reflecting, consists of an array of metallic wires FI spaced periodically, and oriented according to the excitation polarization Ex.
  • the frequency selective surface S2 can consist of dipoles, of slot types or "patches” (or “plaques” in French).
  • the slits can be made in a metal plate, and the patches placed on an electrically transparent substrate.
  • the network of cells with a metasurface MS is placed on a substrate SUB1, itself placed on a ground plane PM.
  • the ground plane PM is crossed by the excitation opening OE.
  • the substrate SUB1 may for example be composed of two layers of Astroquartz TM, between which there is a layer of nidaquartz.
  • the rows RA are connected to one another via the cells with a metasurface MS. Together with the LG metasurface interconnection lines, they thus form a pattern rectangular mesh netting.
  • the metasurface S1 thus has an inductive behavior for the excitation polarization Ex and for the orthogonal polarization Ey.
  • the figure 8 illustrates the case where the excitation opening OE is a CRN horn with a radiating linear opening.
  • the radiating linear opening crossing the metasurface S1 and opening into the cavity, can constitute the radiative part of a quasi-optical beam former, characterized in particular by a large lateral opening.
  • This solution therefore makes it possible to maintain a wide spectral opening, while radiating the circular polarization.
  • the figure 9 illustrates the case where there is a plurality of excitation openings OE.
  • the excitation openings OE are formed by an array RES of linear radiating openings, resulting for example from a divider with parallel plates.
  • the use of a divider with parallel plates makes it possible in particular to better distribute the field on the excitation openings OE.
  • it is advisable to strongly limit the coupling between the ports for example to -15 dB.
  • the figures 10A , 10B and 10C illustrate an embodiment of the invention, in which the excitation opening OE is doubled. It comprises a double power supply formed by two waveguide openings (WG1, WG2) opening symmetrically into the resonant cavity, and connected to an impedance matching network RAD.
  • the RAD impedance matching network comprises at least one IR iris, in order to widen the matching band.
  • This embodiment makes it possible to cancel a possible parasitic TEM mode present in the radiating element.
  • This TEM mode which generates cross-polarized lobes, is independent of the OE excitation aperture type.
  • the figure 10C illustrates such an opening excitation, integrated in a radiating element according to the invention. In the figure 10C , each MS metasurface cell forms a dipole, with no interconnection line.
  • the splitting of the excitation opening can be achieved in the same way when the MS metasurface cells are connected by an interconnection line, or when they form a rectangular mesh grid.
  • the figures 11A and 11B illustrate the frequency behavior of the directivity and the rate of ellipticity ("axial ratio" in English terminology), for several antennas integrating the radiating elements in accordance with the invention, and comprising a double feed formed by two guide openings waves, in accordance with the embodiment described above.
  • the radiating elements are distinguished by different values of the width (a) and of the length (b) of the excitation opening, and for different values of the reflectivity coefficient r 2 x .
  • the values of the reflectivity coefficient r 2 x are noted “+", "++” or "+++” to indicate their relative value.
  • the bandwidth at -3 dB is of the order of 10% of the center frequency.
  • the bandwidth at ⁇ 3 dB is greater than 10% for the four antennas, and remains of the order of 10% at -1 dB, which is clearly superior to the performance of the radiating elements of the state of the art.
  • the circular polarization generation technique operates over a wide bandwidth, and does not limit the operation of the radiating element.
  • the broadband behavior can be further improved by cascading a second cavity on the frequency selective surface S2.
  • a second resonant cavity is placed on the cavity which is the subject of the invention.
  • the second resonant cavity has as its lower surface the frequency selective surface of the lower cavity, and as its upper surface a partially reflecting surface.
  • the cross section of the upper cavity may be larger than that of the first lower cavity, as described in the document FR2959611 , or, alternatively, have a cross section substantially identical to that of the lower cavity.
  • the so-called “two-cavity” embodiment makes it possible to lower the reflectivity of the frequency-selective surface of the lower cavity, which favors the broadband behavior of the radiating element, and without however having any influence. on the quality of circular polarization.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Feeding And Controlling Fuel (AREA)

Claims (16)

  1. Strahlungselement mit Kreispolarisation, das Folgendes umfasst:
    - mindestens eine Anregungsapertur (OE) für eine linear polarisierte Welle gemäß einer ersten sogenannten Anregungspolarisation (Ex);
    - eine frequenzselektive Oberfläche (S2), die für die Anregungspolarisation (Ex) teilweise reflektierend und für eine zweite Polarisation (Ey), eine sogenannte orthogonale Polarisation, orthogonal zur Anregungspolarisation (Ex) und zur Ausbreitungsrichtung der Welle transparent und in einer durch die Anregungspolarisation (Ex) und die orthogonale Polarisation (Ey) definierten Ebene angeordnet ist,
    und das ferner eine total reflektierende Metaoberfläche (S1) umfasst, die der frequenzselektiven Oberfläche (S2) zugewandt ist und ein zweidimensionales und periodisches Netzwerk von leitenden planaren Elementen umfasst, die Metaoberflächenzellen (MS) bilden, wobei die Anregungsapertur (OE) auf der Metaoberfläche (S1) mündet,
    wobei die frequenzselektive Oberfläche (S2) und die Metaoberfläche (S1) einen Resonanzhohlraum für die Anregungspolarisation (Ex) bilden,
    wobei die Metaoberflächenzellen (MS) alle in Bezug auf die Anregungspolarisation (Ex) identisch orientiert und konfiguriert sind zum:
    o Reflektieren einer einfallenden Welle (Eix) gemäß der Anregungspolarisation (Ex) zum Bilden einer reflektierten Welle (Er1x), die gemäß der Anregungspolarisation (Ex) polarisiert ist, und
    o Depolarisieren und Reflektieren der einfallenden Welle (Eix) zum Bilden einer reflektierten Welle (Er1y), die gemäß der orthogonalen Polarisation (Ey) mit einer Phasendifferenz von im Wesentlichen gleich ± 90° in Bezug auf die reflektierte Welle (Er1x) polarisiert ist, die gemäß der Anregungspolarisation (Ex) polarisiert ist, und mit einer Amplitude im Wesentlichen gleich der Amplitude einer Welle (E'tx), die von der frequenzselektiven Oberfläche (S2) abgestrahlt wird und von der gemäß der Anregungspolarisation (Ex) polarisierten reflektierten Welle (Er1x) stammt.
  2. Strahlungselement nach Anspruch 1, wobei die Metaoberfläche (S1) eine Grundplatte (PM) umfasst, auf der ein Substrat (SUB1) und das Netzwerk von Metaoberflächenzellen (MS) in Reihen (RA) angeordnet sind, wobei die Zentren (CE) jeder Metaoberflächenzelle (MS) einer selben Reihe (RA) gemäß einer Ausrichtungsachse (AX) ausgerichtet sind, wobei die Ausrichtungsachse (AX) in einem Drehwinkel (Ψ) in Bezug auf die Anregungspolarisation (Ex) ausgerichtet ist, wobei der Drehwinkel (Ψ) so bestimmt wird, dass eine Matrix [S'] vom Diagonaltyp erhalten wird, wobei: S ' = t R S R ,
    Figure imgb0023
    wobei [S] die Verteilungsmatrix der Metaoberfläche (S1) und [R] eine Rotationsmatrix mit dem Winkel Ψ ist.
  3. Strahlungselement nach Anspruch 2, wobei die Metaoberflächenzellen (MS) einer selben Reihe (RA) durch eine Metaoberflächenverbindungslinie (LG) gekoppelt sind, die sich entlang der Ausrichtungsachse (AX) erstreckt.
  4. Strahlungselement nach Anspruch 3, wobei die Reihen (RA) über die Metaoberflächenzellen (MS) miteinander verbunden sind und mit den Metaoberflächenverbindungslinien (LG) ein rechteckiges Maschengittermuster bilden.
  5. Strahlungselement nach Anspruch 2, wobei die Metaoberflächenzellen (MS) einer selben Reihe (RA) voneinander isoliert sind.
  6. Strahlungselement nach einem der Ansprüche 2 bis 5, wobei die Metaoberflächenzellen (MS) einer selben Reihe (RA) alle periodisch beabstandet sind.
  7. Strahlungselement nach einem der Ansprüche 2 bis 6, wobei alle Metaoberflächenzellen (MS) der Metaoberfläche (S1) die gleichen Abmessungen haben.
  8. Strahlungselement nach einem der vorhergehenden Ansprüche, wobei die frequenzselektive Oberfläche (S2) ein Netzwerk von parallelen Metalldrähten (FI), die periodisch beabstandet und mit der Anregungspolarisation (Ex) ausgerichtet sind, umfasst.
  9. Strahlungselement nach einem der Ansprüche 1 bis 7, wobei die frequenzselektive Oberfläche (S2) ein zweidimensionales Netzwerk von periodisch angeordneten Metalldipolen umfasst.
  10. Strahlungselement nach einem der vorhergehenden Ansprüche, wobei die Anregungsapertur (OE) mindestens eine Wellenleiterapertur umfasst, die in den Resonanzhohlraum mündet.
  11. Strahlungselement nach Anspruch 10, wobei die Anregungsapertur (OE) eine doppelte Einspeisung umfasst, die durch zwei Wellenleiter (WG1, WG2) gebildet ist, die symmetrisch in den Resonanzhohlraum münden und mit einem Impedanzanpassungsnetzwerk (RAD) verbunden sind.
  12. Strahlungselement nach einem der Ansprüche 1 bis 9, wobei die Anregungsapertur (OE) ein Horn (CRN) einer linearen Strahlungsapertur ist.
  13. Strahlungselement nach einem der Ansprüche 1 bis 9, das eine Vielzahl von Anregungsaperturen umfasst, wobei die Anregungsaperturen durch ein Netzwerk (RES) von linearen Strahlungsaperturen gebildet werden.
  14. Strahlungselement nach einem der vorhergehenden Ansprüche, das mindestens einen auf die frequenzselektive Oberfläche (S2) kaskadierten zweiten Hohlraum umfasst.
  15. Strahlungselement nach einem der vorhergehenden Ansprüche, wobei die Metaoberflächenzellen (MS) eine rechteckige Form haben.
  16. Gruppenantenne, die mindestens ein Strahlungselement nach einem der vorhergehenden Ansprüche umfasst.
EP19165394.8A 2018-03-29 2019-03-27 Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird Active EP3547450B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1800260A FR3079678B1 (fr) 2018-03-29 2018-03-29 Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot

Publications (2)

Publication Number Publication Date
EP3547450A1 EP3547450A1 (de) 2019-10-02
EP3547450B1 true EP3547450B1 (de) 2021-10-27

Family

ID=62873390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19165394.8A Active EP3547450B1 (de) 2018-03-29 2019-03-27 Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird

Country Status (6)

Country Link
US (1) US11217896B2 (de)
EP (1) EP3547450B1 (de)
CA (1) CA3038392A1 (de)
ES (1) ES2902431T3 (de)
FR (1) FR3079678B1 (de)
WO (1) WO2020109676A2 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102302466B1 (ko) 2014-11-11 2021-09-16 주식회사 케이엠더블유 도파관 슬롯 어레이 안테나
US11460620B1 (en) * 2018-07-05 2022-10-04 Triad National Security, Llc Reflective metasurfaces for broadband terahertz linear-to-circular polarization conversion and circular dichroism spectroscopy
CN112688052B (zh) * 2019-10-18 2022-04-26 华为技术有限公司 共孔径天线及通信设备
CN110797649B (zh) * 2019-11-11 2021-08-24 中国电子科技集团公司第十四研究所 一种具有滤波和定标功能的宽带双极化微带天线子阵
CN110808461B (zh) * 2019-11-22 2021-11-05 东南大学 基于法布里-珀罗谐振腔式结构的低剖面全息成像天线
CN111129782B (zh) * 2019-12-31 2021-04-02 哈尔滨工业大学 基于超表面的双圆极化三通道逆向反射器
CN111737777B (zh) * 2020-06-04 2024-03-01 陕西亿杰宛鸣科技有限公司 基于非均匀透射宽带pb超表面的设计方法
CN111900538A (zh) * 2020-08-17 2020-11-06 上海交通大学 一种Ka波段卫星通信天线罩
CN112117545B (zh) * 2020-09-02 2021-08-06 南京航空航天大学 一种基于水的极化可重构多功能频率选择吸波体
CN112525095A (zh) * 2020-11-25 2021-03-19 重庆大学 利用极化—相位—形变关系实现超表面双轴应变传感的方法
EP4016735A1 (de) * 2020-12-17 2022-06-22 INTEL Corporation Mehrbandige patch-antenne
CN112886272B (zh) * 2021-01-14 2022-03-04 西安电子科技大学 双频双极化Fabry-Perot谐振腔天线
US11322831B1 (en) * 2021-06-30 2022-05-03 King Abdulaziz University Radio cross-section reduction of conformal antennas mounted on vehicles
CN114430117B (zh) * 2022-01-29 2023-08-01 中国人民解放军空军工程大学 一种低雷达散射横截面谐振腔天线及其制备方法
CN114843761B (zh) * 2022-04-13 2023-03-24 南昌大学 一种基于圆极化机载微波辐射计天线
CN114552199B (zh) * 2022-04-25 2022-08-16 南京华成微波技术有限公司 具有RCS缩减的Fabry-Perot谐振腔天线
CN114824814A (zh) * 2022-04-28 2022-07-29 东南大学 一种基于辐射超表面的空间波极化调控方法及其装置
CN114709626B (zh) * 2022-06-07 2022-11-08 电子科技大学 一种基于超表面的法布里-珀罗谐振腔涡旋电磁波天线
CN115064877A (zh) * 2022-06-10 2022-09-16 西安电子科技大学 一种应用于双极化紧凑基站天线阵的解耦合超表面
CN114824834B (zh) * 2022-06-29 2022-10-14 电子科技大学 全集成的大频比双频双馈折叠反射阵天线
US11575429B1 (en) 2022-07-08 2023-02-07 Greenerwave Multi-beam and multi-polarization electromagnetic wavefront shaping
CN115810892B (zh) * 2022-11-28 2023-08-25 北京星英联微波科技有限责任公司 毫米波全金属高增益折叠反射阵天线
CN117791149A (zh) * 2024-01-18 2024-03-29 中国人民解放军战略支援部队航天工程大学 一种采用空间相位延迟技术的多极化反射单元及阵列天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001193A (en) * 1956-03-16 1961-09-19 Pierre G Marie Circularly polarized antenna system
US8743003B2 (en) * 2008-03-18 2014-06-03 Universite Paris Sub (Paris II) Steerable electronic microwave antenna
FR2959611B1 (fr) * 2010-04-30 2012-06-08 Thales Sa Element rayonnant compact a cavites resonantes.
US9385436B2 (en) * 2013-07-18 2016-07-05 Thinkom Solutions, Inc. Dual-band dichroic polarizer and system including same

Also Published As

Publication number Publication date
ES2902431T3 (es) 2022-03-28
FR3079678A1 (fr) 2019-10-04
CA3038392A1 (en) 2019-09-29
US20190305436A1 (en) 2019-10-03
FR3079678B1 (fr) 2020-04-17
EP3547450A1 (de) 2019-10-02
US11217896B2 (en) 2022-01-04
WO2020109676A2 (fr) 2020-06-04

Similar Documents

Publication Publication Date Title
EP3547450B1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
CA2793126C (fr) Antenne reseau reflecteur a compensation de polarisation croisee et procede de realisation d'une telle antenne
EP0899814B1 (de) Strahlende Struktur
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP3179551B1 (de) Kompakteinheit zur doppelpolarisierten ansteuerung für ein strahlungselement einer antenne, und kompaktes netz, das mindestens vier kompakte ansteuerungseinheiten umfasst
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP1387437A1 (de) Gruppenantenne für eine Reflektoranordnung
EP1416586A1 (de) Antenne mit einer Filtermaterialanordnung
FR3105884A1 (fr) Cornet pour antenne satellite bi-bande Ka à polarisation circulaire
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP0430745A1 (de) Zirkular polarisierte Antenne, insbesondere für Gruppenantenne
EP0048190B1 (de) Dispersionsfreie Gruppenantenne und ihre Anwendung in einer elektronisch schwenkbaren Antenne
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
EP0015804A2 (de) Polarisationsvorrichtung und Mikrowellenantenne mit einer solchen Vorrichtung
EP3506429B1 (de) Quasioptischer strahlformer, entsprechende elementarantenne und plattform, entsprechendes antennensystem und kommunikationsverfahren
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
FR3102311A1 (fr) Antenne-reseau
FR3142300A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques RF selon leur angle d'incidence et procédé de fabrication
EP4391232A1 (de) Weitwinkel-impedanzanpassungsvorrichtung für eine gruppenantenne mit strahlungselementen und verfahren zum entwurf einer solchen vorrichtung
FR3134659A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques RF selon leur bande de fréquence et procédé de fabrication
FR2830987A1 (fr) Perfectionnement aux antennes-sources alimentees par guide d'ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019008596

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1442678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1442678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902431

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019008596

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231019 AND 20231025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: THALES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INS, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 6

Ref country code: GB

Payment date: 20240215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240223

Year of fee payment: 6