EP3450631A1 - Tiefenrüttler mit verstellbarer unwucht - Google Patents

Tiefenrüttler mit verstellbarer unwucht Download PDF

Info

Publication number
EP3450631A1
EP3450631A1 EP17189317.5A EP17189317A EP3450631A1 EP 3450631 A1 EP3450631 A1 EP 3450631A1 EP 17189317 A EP17189317 A EP 17189317A EP 3450631 A1 EP3450631 A1 EP 3450631A1
Authority
EP
European Patent Office
Prior art keywords
mass body
rotation
primary
primary mass
deep vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17189317.5A
Other languages
English (en)
French (fr)
Other versions
EP3450631B1 (de
Inventor
Peter Bohnert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keller Holding GmbH
Original Assignee
Keller Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keller Holding GmbH filed Critical Keller Holding GmbH
Priority to ES17189317T priority Critical patent/ES2774010T3/es
Priority to PL17189317T priority patent/PL3450631T3/pl
Priority to EP17189317.5A priority patent/EP3450631B1/de
Priority to SG10201807258TA priority patent/SG10201807258TA/en
Priority to US16/117,498 priority patent/US10508401B2/en
Publication of EP3450631A1 publication Critical patent/EP3450631A1/de
Application granted granted Critical
Publication of EP3450631B1 publication Critical patent/EP3450631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/068Vibrating apparatus operating with systems involving reciprocating masses
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/054Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil involving penetration of the soil, e.g. vibroflotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/162Making use of masses with adjustable amount of eccentricity
    • B06B1/164Making use of masses with adjustable amount of eccentricity the amount of eccentricity being automatically variable as a function of the running condition, e.g. speed, direction

Definitions

  • the invention relates to a deep vibrator for compacting a soil by means of a rotating unbalance.
  • the rotating unbalance creates vibrations that compress the soil vibrator and possible additional material.
  • Deep vibrators are generally used in three subsoil improvement methods that differ in terms of operation and load transfer.
  • the Rüttel réellebacter coarse-grained soils are compressed in itself.
  • load-bearing columns made of gravel or crushed stone are placed in mixed and fine grained, non-compactible soils.
  • pile-like foundation elements are produced over which relatively high loads can be removed, if a permanent load-bearing composite with Stopfklalen is not guaranteed.
  • the vibrator contains a motor driven unbalance, which puts the vibrator in horizontal vibrations.
  • the deep vibrator is adapted to the intended working depth with attachment tubes and thereby guided by cranes, excavators or specially developed carrier devices (carrying crawlers).
  • From the DE 10 2014 019 139 A1 is a deep vibrator for compacting a soil with a first imbalance weight and a fastener for interchangeable receiving a second imbalance weight known.
  • the first imbalance weight and the second imbalance weight can be driven in rotation about the longitudinal axis of the deep vibrator.
  • the fastening element is arranged such that the imbalance of the deep vibrator can be reduced by the recorded second imbalance weight.
  • a deep vibrator for compacting soils with an elongated housing having a longitudinal axis and a coaxially mounted in the housing motor-driven axis of rotation and a revolving with the axis of rotation unbalanced mass known.
  • Means are provided for varying the radial distance of the center of gravity of the imbalance mass from the longitudinal axis and a variable-speed drive for the axis of rotation. By changing the size of the imbalance mass, the effective impact force during lowering and / or pulling is changed.
  • Deep vibrators with adjustable eccentric need a mechanical device for adjusting the imbalance masses.
  • the adjustment mechanism is subjected to high loads due to the strong vibrations, which can lead to failure of individual mechanical parts.
  • the present invention is therefore based on the object to propose a vibrator with adjustable unbalanced mass, which is simple and robust and thus has a long life. It should also be proposed a corresponding method for compacting ground, that allows a change in the imbalance mass during operation.
  • a rotary drive which is rotationally driven in two directions, a drive shaft which is drivingly connected to the rotary drive, a primary mass body, which is rotatably connected to the drive shaft and together with this order rotating the rotational axis, a secondary mass body limitedly rotatable relative to the primary mass body and assuming a first rotational position relative to the primary mass body upon rotation of the drive shaft in the first rotational direction, in which a center of gravity of the secondary mass body approximates a center of gravity of the primary mass body; and when rotating the drive shaft in the second direction of rotation occupies a second rotational position relative to the primary mass body, in which the center of gravity of the secondary mass body is spaced from the center of gravity of the primary mass body, wherein the center of mass of the secondary mass body pers and the center of mass of the primary mass body have different radial distances from the axis of rotation.
  • the imbalance is variable by simply reversing the rotational direction of the rotary drive between two sizes, which can be due to the design of the first and secondary mass body such that their focal points on different radii can achieve particularly high imbalances or given a large variability in terms of adjustable imbalances is.
  • This causes the amplitude of the deep vibrator is adjustable by the adjustment in particularly large areas.
  • the amplitude in the first rotational position compared to the second rotational position can be more than doubled. To adjust the imbalance, only the direction of rotation of the rotary drive must be changed, for which it must be stopped briefly.
  • the rotatable secondary mass body has a greater radial distance from the axis of rotation, as the rotationally fixed primary mass body.
  • the reversal is possible, that is, the rotatably connected to the shaft primary mass body has a greater radial distance from the axis of rotation, as the rotatable secondary mass body.
  • the rotary drive can have any configuration which is suitable for generating a rotational movement in two directions of rotation.
  • the rotary drive can be designed in the form of an electric motor or a hydraulic drive.
  • An electric motor may have a stator which is non-rotatably connected to a housing of the deep vibrator or is supported with respect to this in the sense of rotation, and a rotor which is connected to a motor shaft in order to drive them.
  • the drive shaft which carries the primary and secondary mass bodies, is drive-connected to the rotary drive.
  • drive-connected is intended to encompass an indirect connection of said drive parts, ie the possibility that one or more further components or components may be interposed between the rotary drive and the drive shaft in the power path, for example a clutch or a gearbox.
  • primary mass body in particular present at least one mass body which is rotatably connected to the drive shaft.
  • a “mass body”, in particular, refers to a mass body which is adjustable relative to the primary mass body, so that the center of gravity of the total mass changes.
  • One or more primary and secondary mass bodies may be provided. Accordingly, it should be understood that within the context of the present disclosure, any reference to a primary or secondary mass body may apply to any other corresponding primary or secondary mass body.
  • the masses of the primary and secondary mass bodies can be selected as needed and the desired amplitude of the deep vibrator.
  • a big variability can be achieved in particular if the primary and secondary mass body have different sized masses.
  • the primary mass body may have a greater or lesser mass compared with the secondary mass body. It is favorable for a large oscillation amplitude if the mass body whose center of gravity has the greater distance from the axis of rotation also has the larger mass. This may be the primary or secondary mass body. It is also conceivable that the masses of the primary and secondary mass body are the same size.
  • the center of mass resulting from the primary mass body and the secondary mass body in the first rotational position has a greater distance from the axis of rotation than the center of mass resulting from the primary mass body and the secondary mass body in the second rotational position.
  • the center of gravity of the primary and secondary mass bodies are in the first rotational position on a common side and in the second rotational position on opposite sides with respect to the axis of rotation of the drive shaft.
  • a first stop is provided, against which the secondary mass body is supported upon rotation of the rotary drive in the first rotational direction, and a second stop against which the secondary mass body is supported in rotation of the rotary drive in the second rotational direction.
  • first and second stop are formed on a common stop element, for example, as two effective in opposite circumferential directions stop surfaces of the stop element.
  • exactly one stop element per secondary mass body is provided which forms the first rotational stop and the second rotational stop.
  • the stop element may be provided on the primary mass body, in particular be firmly connected thereto.
  • the connection of the stop element on the primary mass body for example be realized by a screw, with other compounds such as a welded joint are also conceivable.
  • the abutment member may be configured, for example, in the form of an abutment bar fixedly connected to the primary mass body and extending parallel to the rotation axis along an outer peripheral surface of the primary mass body.
  • the first mass body comprises a cylinder segment, which preferably extends through approximately 180 ° about the axis of rotation.
  • the mass body can be made in one piece with the drive shaft.
  • the mass body can also initially be manufactured separately and then connected to the drive shaft rotationally fixed and axially fixed, for example by means of a shaft toothing or shaft-hub connection with suitable axial securing means.
  • the secondary mass body may comprise a ring segment which is rotatably mounted about the drive shaft.
  • the ring segment may, for example, extend by more than 160 ° and / or less than 180 ° about the axis of rotation.
  • the secondary mass body can be arranged with axial overlap to the primary mass body.
  • the mass bodies are preferably designed so that a smallest inner radius of a ring segment of the secondary mass body is greater than a largest outer radius of the primary mass body.
  • the secondary mass body lies radially outside the primary mass body.
  • the secondary mass body comprises in this embodiment, an upper lid part which is fixedly connected to an upper end of the ring segment, and a lower lid part, which is fixedly connected to a lower end of the ring segment, wherein the two lid parts radially inwardly at least indirectly are rotatably mounted on the drive shaft.
  • the primary mass body is spatially accommodated in the first rotational position in the secondary mass body.
  • the secondary mass body can also be arranged with axial offset to the primary mass body, that is to say above and / or below a respective axial end of the primary mass body.
  • This embodiment is particularly suitable for applications in which only a small additional imbalance or amplitude increase is needed.
  • the secondary mass body is at least partially disposed radially outside of the primary mass body or that the center of mass of the secondary mass body has a greater radial distance from the axis of rotation than the center of mass of the primary mass body.
  • the stop element is designed according to the configuration of the secondary mass body.
  • the stop element may be radially projecting with respect to an outer peripheral surface of the primary mass body to act as a driver for the secondary mass body upon rotation of the drive shaft.
  • the stop element may extend in the axial direction over at least one third of the height of the primary mass body.
  • the stop element can protrude axially, in particular with respect to an axial end side of the primary mass body.
  • At least one of the primary and the secondary mass body may include Schmermetall. Furthermore, a plurality of primary and / or secondary mass bodies can also be provided.
  • An imbalance assembly which is to be stored as a unit in a housing of the deep vibrator, may each comprise at least one shaft part, a primary and a secondary mass body.
  • the shaft part is rotatably supported in the housing of the deep vibrator by means of an upper bearing, which is arranged above the primary mass body, and by means of a lower bearing, which is arranged below the primary mass body.
  • a plurality of imbalance assemblies may be provided which are arranged one below the other.
  • the individual imbalance assemblies are preferably driven by a single rotary drive.
  • the motor shaft of the rotary drive can be rotatably connected to the drive shaft of a first assembly and the first drive shaft further rotatably connected to the drive shaft of an underlying second assembly.
  • Any number of further imbalance modules are possible.
  • the non-rotatable connection of the individual shaft parts with each other can be realized for example by means of a flange connection, shaft toothing or other shaft-hub connection.
  • Each individual assembly preferably has separate bearings for supporting the respective shaft part, so that the total bearing load is low. In this way, it is ensured that the deep vibrator withstands permanent large forces and vibrations even when designed with several imbalance assemblies.
  • a method of compacting soil by means of such a deep vibrator may include the steps of shaking the depth vibrator into the ground to a desired depth by rotating the rotary drive in a first or second rotational direction and compacting the soil by rotating the rotary drive in the second rotational direction.
  • By turning the rotary drive in the second direction of rotation large vibration amplitudes and thus a high compression are generated.
  • the shaking to the desired depth can be done with small or large amplitude.
  • FIGS. 1 to 7 their common features are described below together.
  • a section of a deep vibrator 2 is shown.
  • a deep vibrator serves to compact soil by means of an imbalance.
  • Imbalance is understood to mean a rotating body whose mass is not distributed rotationally symmetrically.
  • the mass inertia axis of the mass body is offset from the axis of rotation, so that the imbalance generated during rotation oscillations, with which the soil and possible addition material is compacted.
  • the deep vibrator 2 accordingly comprises a rotary drive 3, a drive shaft 4 which can be driven in rotation therewith, a first mass body 5 which is non-rotatably connected to the drive shaft 4, and a second mass body 6 which is adjustable in rotation relative to the first mass body 5.
  • the components mentioned are accommodated in a housing 7 of the deep vibrator 2, or mounted rotatably in this. It is envisaged that the first and second mass body 5, 6 with respect to their shape and / or mass and / or their respective center of gravity distance to the drive shaft 4 from each other.
  • the rotary drive 3 is designed in the form of an electric motor which comprises a stator 8 supported in rotation with respect to the housing 7 and a rotor 9 which is rotatable relative thereto. It is understood, however, that other engines are used, such as a hydraulic drive.
  • the rotor 9 of the electric motor 3 is connected to a motor shaft 10 for driving it in rotation.
  • the motor shaft 10 is in the housing 7 by means of a first bearing 12, which is arranged above the rotary drive 3, and a second bearing 13, which is arranged below the rotary drive 3 rotatably mounted about a rotation axis A.
  • the rotary drive 3 is designed so that it can drive the motor shaft 10 in two directions, ie clockwise and counterclockwise.
  • the motor shaft 10 is rotatably connected by means of suitable connecting means 14 with the underlying drive shaft 4 for transmitting a torque.
  • the connecting means 14 are in the present case designed in the form of a flange connection, it being understood that other shaft couplings for non-rotatable connection are also possible.
  • the drive shaft 4 is rotatably supported by means of suitable bearing means 15, 16 in the housing 7, for example by means of rolling bearings or plain bearings.
  • the first mass body 6, which may also be referred to as primary mass body, is rotatably connected to the drive shaft 4.
  • the rotationally fixed connection can be realized by known means, for example by means of a form-fitting shaft-hub connection and / or cohesively by means of welded connection. It is also possible that the drive shaft 4 is made in one piece with the first mass body 6.
  • the second mass body 6, which may also be referred to as a secondary mass body, is limitedly rotatable relative to the first mass body 5. It is provided that the secondary mass body 6 when rotating the drive shaft 4 in the first direction of rotation R1 assumes a first rotational position P1 and when turning the drive shaft 4 in the opposite second rotational direction R2, a second rotational position P2 relative to the first mass body 5.
  • first rotational position P1 which in the FIGS. 1 to 5 can be seen in the left half of the picture, the secondary mass body 6 is approximated to the primary mass body 5, or, the two mass body 5, 6 are located with respect to the axis of rotation A on the same half page.
  • the second rotational position P2 of the pivotable mass body 6, which in the FIGS.
  • each dashed line in the right half is shown (reference numeral 6 '), the secondary mass body 6 is spaced from the primary mass body 5, or the two mass body 5, 6 are located with respect to the axis of rotation A on opposite half sides. Due to this configuration, in that the resulting center of gravity Sres1 formed by the first and second mass bodies 5, 6 in the first position P1 of the mass body 6 has a greater radial distance from the axis of rotation A than the resulting center of mass Sres2 resulting from the first and second mass bodies 5, 6 when the secondary mass body (6 ') is in the second position P2. It follows that the size of the imbalance can be changed by simply reversing the direction of rotation (R1, R2) of the rotary drive 3 between two sizes. To adjust the imbalance, only the direction of rotation R1, R2 of the rotary drive 3 has to be changed, for which purpose it must be stopped briefly.
  • a special feature of the present invention is that the center of gravity S6 of the pivotable mass body 6 has a greater radial distance from the axis of rotation A than the center of mass S5 of the rotatably connected to the shaft 4 mass body 5, or that the pivotable mass body 6 relative to the rotationally fixed mass body 5 at least partially protruding radially.
  • this configuration particularly high imbalances can be achieved in the first rotational position P1, or the amplitude of the deep vibrator 2 can be adjusted in particularly large areas.
  • the amplitude in the first rotational position P1 compared to the second rotational position P2 can be more than doubled.
  • the primary mass body 5 comprises a cylinder segment which extends through 180 ° about the axis of rotation A.
  • the secondary mass body 6 is arranged in this embodiment with axial overlap to the primary mass body 5 and has a ring segment 17 with an upper lid portion 18 and a lower lid portion 19.
  • Upper cover part 18, ring segment 17 and lower cover part 19 form a half-shell, which is dimensioned so that the first mass body 5 can be accommodated therein when the second mass body 6 is in the first rotational position P1.
  • a smallest inner radius of the ring segment 17 of the secondary mass body 6 is greater than a largest outer radius of the primary mass body 6.
  • the half-shell-shaped mass body 5 is mounted on the drive shaft 4 via two bearings 20, 21.
  • the upper cover part 18 is arranged via a first bearing 20, which is arranged axially above the first mass body 5, and the lower cover part 19 via a second bearing 21 , which is arranged axially below the first mass body 5, rotatably mounted on the shaft 4. It is especially in FIG. 2 recognizable that the ring segment 17 extends over an angular range of slightly less than 180 ° about the axis of rotation A.
  • the relative rotational positions P1, P2 are each defined by a stop element 22 against which the secondary mass body 6 abuts upon rotation of the rotary drive 3 and is thus arranged in a defined rotational position relative to the primary mass body 5.
  • a stop element 22 is provided which forms both a stop in the first direction of rotation R1 and a stop in the second direction of rotation R2.
  • the stop element 22 is presently designed in the form of a bar or a bar, which is fixedly connected to the primary mass body 5, for example non-positively by means of screw or materially by means of welding.
  • the stopper member 22 protrudes radially beyond an outer circumferential surface of the primary mass body 5 and extends in the axial direction, such as in particular FIG.
  • a first side surface 23 of the strip 22 forms a first stop in the first direction of rotation R1 of the pivotable mass body 6, while an opposite second side surface 24 of the bar 22 forms a second stop in the opposite direction R1 of the mass body 6.
  • additional masses 25, 26 are provided, which are fixedly connected to the drive shaft 4.
  • the rotationally fixed connection with the shaft 4 can be produced for example by means of a positive shaft-hub connection.
  • at least one of the mass bodies 5, 6, 25, 26 includes Schmermetall.
  • the mass bodies may be made of a metallic material such as steel.
  • FIGS. 3 and 4 show a deep vibrator 2 in a slightly modified second embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 ,
  • two pivotable secondary mass body 6 1 , 6 2 are provided, which are rotatably mounted on the drive shaft 4 respectively.
  • a first pivotable mass body 6 1 is disposed above the primary mass body 5 and mounted by means of a connecting web 27 and the upper bearing 20 on the shaft 4.
  • a second pivotable mass body 6 2 is arranged below the primary mass body 5 and pivotally connected to the shaft 4 by means of a connecting web 28 and a lower bearing 21.
  • the two secondary mass body 6 1 , 6 2 are designed in the form of ring segments which extend over approximately 180 ° about the axis of rotation A. It is especially in FIG.
  • two stops 22 1 , 22 2 are provided corresponding to the number of pivotable masses 6 1 , 6 2 , which are each connected to the primary mass body 5.
  • the stops 22 1 , 22 2 are in each case axially beyond an end-side end face and radially beyond an outer peripheral surface 29 of the primary mass body 5. They are designed in the form of shorter beams, by the way as in the embodiment described above may be connected to the mass body 5.
  • the present embodiment builds radially slightly smaller, since a radial overlap between the pivotable mass body 6 1 , 6 2 and the rotationally fixed mass body 5 is given. Incidentally, construction and operation of the above embodiment correspond to the description thereof in order to avoid repetition.
  • FIG. 5 shows a deep vibrator 2 in another embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 or in the FIGS. 3 and 4 ,
  • the deep vibrator 2 comprises a plurality of imbalance assemblies 11 1 , 11 2 , which are each received as a unit in the housing 7.
  • Each unbalance assembly 11 1 , 11 2 each comprises a shaft part 4 1 , 4 2 , each by means of two bearings 12 1 , 13 1 ; 12 2 , 13 2 rotatably supported in the housing 7 and is rotatably driven by the rotary drive 3, and a primary and a secondary mass body 5, 6.
  • a first bearing 12 1 , 12 2 above and a second bearing 13 1 , 13 2 below the associated mass body 5, 6 arranged to ensure a secure radial bearing over the entire length of the shaft.
  • the individual shaft parts 4 1 , 4 2 are connected to each other via suitable shaft connections 14 1 , 14 2 , such as flange connections, wherein other connecting means are also conceivable.
  • suitable shaft connections 14 1 , 14 2 such as flange connections, wherein other connecting means are also conceivable.
  • two imbalance assemblies 11 1 , 11 2 are provided, which are driven by a single rotary drive. It will be appreciated that three or more imbalance assemblies may also be used to produce even greater vibration amplitudes. These are drive-connected with each other via further shaft connections (14).
  • FIGS. 6 and 7 show a deep vibrator 2 in another embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 ,
  • FIGS. 6 and 7 the primary mass body 5, which is non-rotatably connected to the drive shaft 4, that with a greater distance of the center of mass S5, while the pivotable about the drive shaft 4 mass body 6, the one whose center of gravity S6 is located on a smaller radius.
  • the non-rotatable mass body 5 comprises a ring segment 17, an upper lid 18 and a lower lid 19, which are fixedly connected to each other.
  • An axial support can be made via a thrust bearing.
  • the pivotable mass body 6 can be rotatably mounted on the drive shaft 4, for example by means of a sliding bearing 20 and a slide bushing.
  • the relative rotational positions P1, P2 of the pivotable mass body 6 are defined by a stop element 22, against which the mass body 6 strike upon rotation of the rotary drive 3 and is thus arranged in a defined rotational position relative to the rotationally fixed mass body 5.
  • the rotation stopper 22 is configured as a ledge or beam which is connected to the primary mass body 5 and protrudes radially inward from an inner circumferential surface. Otherwise, the embodiment corresponds to FIG. 6 in terms of structure and functioning of those according to FIGS. 1 and 2 , to the description of which reference is made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Die Erfindung betrifft einen Tiefenrüttler zum Verdichten von Erdreich, umfassend: einen Drehantrieb (3); eine Antriebswelle (4), die von dem Drehantrieb (3) in eine erste Drehrichtung (R1) und in eine entgegengesetzte zweite Drehrichtung (R2) um eine Drehachse (A) drehend antreibbar ist; einen primären Massekörper (5), der mit der Antriebswelle (4) drehfest verbunden ist und gemeinsam mit dieser um die Drehachse (A) umläuft; einen sekundären Massekörper (6), der durch Drehen der Antriebswelle (4) in der ersten Drehrichtung (R1) in eine erste Drehposition (P1) und durch Drehen der Antriebswelle (4) in der zweiten Drehrichtung (R2) in eine zweite Drehposition (P2) relativ zum primären Massekörper (5) verstellbar ist, wobei der sekundäre Massekörper (6) in der ersten und zweiten Drehposition (P1) gemeinsam mit dem primären Massekörper (5) um die Drehachse (A) drehbar ist; wobei der Masseschwerpunkt (S6) des sekundären Massekörpers (6) und der Massekörper (S5) des primären Massekörpers (5) unterschiedliche radiale Abstände zur Drehachse (A) aufweisen.

Description

  • Die Erfindung betrifft einen Tiefenrüttler zum Verdichten eines Bodens mittels einer rotierenden Unwucht. Die rotierende Unwucht erzeugt Schwingungen, mit denen der Tiefenrüttler das Erdreich und mögliches Zugabematerial verdichtet wird.
  • Tiefenrüttler werden generell in drei Verfahren zur Baugrundverbesserung eingesetzt, die sich hinsichtlich der Funktionsweise und der Lastabtragung voneinander unterscheiden. Mit dem Rütteldruckverfahren werden grobkörnige Böden in sich selbst verdichtet. Beim Rüttelstopfverfahren werden in gemischt- und feinkörnigen, nicht verdichtungsfähigen Böden lastabtragende Säulen aus Kies oder Schotter eingebracht. Mit dem dritten Verfahren werden pfahlartige Gründungselemente hergestellt, über die verhältnismäßig hohe Lasten abgetragen werden können, wenn ein dauernder tragfähiger Verbund mit Stopfsäulen nicht gewährleistet ist. Die unterschiedlichen Tiefenrüttelverfahren werden auch in dem Prospekt "Die Tiefenrüttelverfahren" (Prospekt 10-02D) der Anmelderin beschrieben.
  • Allen Verfahren ist gemein, dass der Rüttler bis zur vorgesehenen Verbesserungstiefe in den Baugrund versenkt wird, und dann je nach Verfahrensart von unten nach oben Boden verdichtet, eine Stopfsäule aufgebaut oder ein pfahlartiges Gründungselement hergestellt wird.
  • Als wesentliches Element enthält der Rüttler eine motorisch antreibbare Unwucht, die den Rüttler in horizontale Schwingungen versetzt. Der Tiefenrüttler wird mit Aufsatzrohren an die vorgesehene Arbeitstiefe angepasst und dabei von Kränen, Baggern oder speziell entwickelten Trägergeräten (Tragraupen) geführt.
  • Aus der DE 10 2014 019 139 A1 ist ein Tiefenrüttler zum Verdichten eines Bodens mit einem ersten Unwuchtgewicht und einem Befestigungselement zur auswechselbaren Aufnahme eines zweiten Unwuchtgewichts bekannt. Das erste Unwuchtgewicht und das zweite Unwuchtgewicht sind um die Längsachse des Tiefenrüttlers drehend antreibbar. Das Befestigungselement ist derart angeordnet, dass durch das aufgenommene zweite Unwuchtgewicht die Unwucht des Tiefenrüttlers reduziert werden kann.
  • Aus der DE 199 30 884 A1 ist ein Tiefenrüttler zum Verdichten von Böden mit einem länglichen Gehäuse mit einer Längsachse und einer koaxial im Gehäuse gelagerten motorisch antreibbaren Drehachse sowie einer mit der Drehachse umlaufenden Unwuchtmasse bekannt. Es sind Mittel zum Verändern des radialen Abstandes des Schwerpunktes der Unwuchtmasse von der Längsachse und ein drehzahlveränderlicher Antrieb für die Drehachse vorgesehen. Durch Veränderung der Größe der Unwuchtmasse wird die effektive Schlagkraft während des Absenkens und/oder des Ziehens verändert.
  • Bei Tiefenrüttlern, bei denen der Exzenter unverstellbar ist, muss bereits bei der Montage festgelegt werden, welche Fliehkräfte und Amplitude der Rüttler haben soll. Während des Betriebs kann nur sehr begrenzt, durch Ändern der Drehzahl, auf veränderliche Bodeneigenschaften reagiert werden.
  • Tiefenrüttler mit verstellbarem Exzenter benötigen eine mechanische Vorrichtung zum Verstellen der Unwuchtmassen. Die Verstellmechanik ist jedoch aufgrund der starken Vibrationen hohen Belastungen ausgesetzt, die zu einem Versagen von einzelnen mechanischen Teilen führen können.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Tiefenrüttler mit verstellbarer Unwuchtmasse vorzuschlagen, der einfach und robust aufgebaut ist und damit eine lange Lebensdauer aufweist. Es soll ferner ein entsprechendes Verfahren zum Verdichten von Baugrund vorgeschlagen werden, dass während des Betriebs eine Veränderung der Unwuchtmasse ermöglicht.
  • Zur Lösung wird ein Tiefenrüttler zum Verdichten von Erdreich vorgeschlagen, umfassend: einen Drehantrieb, der in zwei Drehrichtungen drehend antreibbar ist, eine Antriebswelle, die mit dem Drehantrieb antriebsverbunden ist, einen primären Massekörper, der mit der Antriebswelle drehfest verbunden ist und gemeinsam mit dieser um die Drehachse umläuft, einen sekundären Massekörper, der relativ zum primären Massenkörper begrenzt drehbar ist und beim Drehen der Antriebswelle in der ersten Drehrichtung eine erste Drehposition relativ zum primären Massekörper einnimmt, in der ein Schwerpunkt des sekundären Massekörper an einen Schwerpunkt des primären Massekörpers angenähert ist, und beim Drehen der Antriebswelle in der zweiten Drehrichtung eine zweite Drehposition relativ zum primären Massekörper einnimmt, in welcher der Schwerpunkt des sekundären Massekörper vom Schwerpunkt des primären Massekörpers beabstandet ist, wobei der Masseschwerpunkt des sekundären Massekörpers und der Masseschwerpunkt des primären Massekörpers unterschiedliche radiale Abstände zur Drehachse aufweisen.
  • Ein Vorteil ist, dass die Unwucht durch einfache Drehrichtungsumkehr des Drehantriebs zwischen zwei Größen veränderbar ist, wobei aufgrund der Ausgestaltung des ersten und sekundären Massenkörpers derart, dass deren Schwerpunkte auf unterschiedlichen Radien liegen besonders hohe Unwuchten erreichen lassen beziehungsweise eine große Variabilität hinsichtlich der einstellbaren Unwuchten gegeben ist. Dies bewirkt, dass die Amplitude des Tiefenrüttlers durch die Verstellung in besonders großen Bereichen verstellbar ist. Je nach Masse und Form des sekundären Massenkörpers kann die Amplitude in der ersten Drehposition gegenüber der zweiten Drehposition mehr als verdoppelt werden. Zur Verstellung der Unwucht muss lediglich die Drehrichtung des Drehantriebs geändert werden, wozu dieser kurz gestoppt werden muss.
  • Hinsichtlich der Ausgestaltung der Massekörper und, dementsprechend, der Lage der jeweiligen Masseschwerpunkte des mit der Antriebswelle drehfest verbundenen primären Massekörpers einerseits und des relativ zur Antriebswelle drehbaren sekundären Massekörpers andererseits sind verschiedene Möglichkeiten denkbar. Nach einer ersten Möglichkeit weist der drehbare sekundäre Massekörper einen größeren radialen Abstand zur Drehachse auf, als der drehfeste primäre Massekörper. Alternativ ist auch die Umkehrung möglich, das heißt der mit der Welle drehfest verbundene primäre Massekörper weist eine größeren radialen Abstand zur Drehachse auf, als der hierzu drehbare sekundäre Massekörper.
  • Der Drehantrieb kann jede beliebige Ausgestaltung haben, die geeignet ist eine Drehbewegung in zwei Drehrichtungen zu erzeugen. Beispielsweise kann der Drehantrieb in Form eines Elektromotors oder eines Hydraulikantriebs gestaltet sein. Ein Elektromotor kann einen Stator aufweisen, der drehfest mit einem Gehäuse des Tiefenrüttlers verbunden beziehungsweise gegenüber diesem im Drehsinn abgestützt ist, sowie einen Rotor, der mit einer Motorwelle verbunden ist, um diese anzutreiben.
  • Die Antriebswelle, der den primären und sekundären Massenkörper trägt, ist mit dem Drehantrieb antriebsverbunden. Mit der Formulierung "antriebsverbunden" soll im Rahmen der vorliegenden Offenbarung eine mittelbare Verbindung der genannten Antriebsteile mit umfasst sein, das heißt die Möglichkeit, dass zwischen dem Drehantrieb und der Antriebswelle ein oder mehrere weitere Bauteile oder Komponenten im Leistungspfad zwischengeschaltet sein können, beispielsweise eine Kupplung oder ein Getriebe.
  • Mit der Bezeichnung "primärer Massenkörper" ist vorliegend insbesondere zumindest ein Massekörper gemeint, der mit der Antriebswelle drehfest verbunden ist. Als "sekundärer Massenkörper" wird vorliegend insbesondere ein Massenkörper bezeichnet, der relativ zu dem primären Massenkörper verstellbar ist, so dass sich der Schwerpunkt der Gesamtmasse verändert. Es können ein oder mehrere primäre und sekundäre Massenkörper vorgesehen sein. Entsprechend versteht es sich, dass im Rahmen der vorliegenden Offenbarung jede Bezugnahme auf einen primären oder sekundären Massenkörper auch für jeden weiteren entsprechenden primären oder sekundären Massenkörper gelten kann.
  • Die Massen des primären und des sekundären Massekörpers können nach Bedarf und gewünschter Amplitude des Tiefenrüttlers gewählt werden. Eine große Variabilität kann insbesondere erreicht werden, wenn der primäre und sekundäre Massekörper unterschiedlich große Massen aufweisen. Dabei kann der primäre Massekörper verglichen mit dem sekundären Massekörper eine größere oder kleinere Masse aufweisen. Günstig für eine große Schwingungsamplitude ist es, wenn der Massekörper, dessen Schwerpunkt den größeren Abstand von der Drehachse aufweist, auch die größere Masse hat. Dies kann der primäre oder sekundäre Massekörper sein. Es ist auch denkbar, dass die Massen des primären und sekundären Massekörpers gleich groß sind.
  • Es ist insbesondere vorgesehen, dass der aus dem primären Massekörper und dem sekundären Massekörper in der ersten Drehposition resultierende Masseschwerpunkt einen größeren Abstand von der Drehachse aufweist, als der aus dem primären Massenkörper und dem sekundären Massenkörper in der zweiten Drehposition resultierende Masseschwerpunkt. Vorzugsweise liegen die Masseschwerpunkte des primären und sekundären Massekörpers in der ersten Drehposition auf einer gemeinsamen Seite und in der zweiten Drehposition auf gegenüberliegenden Seiten in Bezug auf die Drehachse der Antriebswelle.
  • Nach einer bevorzugten Ausführungsform ist ein erster Anschlag vorgesehen, gegen den der sekundäre Massekörper bei Drehung des Drehantriebs in der ersten Drehrichtung abgestützt ist, und ein zweiter Anschlag, gegen den der sekundäre Massekörper bei Drehung des Drehantriebs in der zweiten Drehrichtung abgestützt ist. Ein besonders einfacher Aufbau wird dadurch erreicht, dass der erste und zweite Anschlag an einem gemeinsamen Anschlagelement gebildet sind, beispielsweise als zwei in entgegengesetzte Umfangsrichtungen wirksame Anschlagflächen des Anschlagelements. Vorzugsweise ist für eine Unwucht-Baugruppe, die einen primären Massenkörper und einen sekundären Massenkörper umfasst, genau ein Anschlagelement je sekundärem Massekörper vorgesehen, das den ersten Drehanschlag und den zweiten Drehanschlag bildet.
  • Nach einer möglichen Konkretisierung kann das Anschlagelement am primären Massekörper vorgesehen sein, insbesondere fest mit diesem verbunden sein. Dabei kann die Verbindung des Anschlagelements am primären Massenkörper beispielsweise durch eine Schraubverbindung realisiert werden, wobei andere Verbindungen wie eine Schweißverbindung ebenso denkbar sind. Das Anschlagelement kann beispielsweise in Form eines Anschlagbalkens gestaltet sein, der mit dem primären Massenkörper fest verbunden ist und sich parallel zur Drehachse entlang einer Außenumfangsfläche des primären Massenkörpers erstreckt.
  • Nach einer möglichen Ausführungsform umfasst der erste Massenkörper ein Zylindersegment, das sich vorzugsweise um etwa 180° um die Drehachse erstreckt. Der Massenkörper kann einteilig mit der Antriebswelle hergestellt sein. Alternativ kann der Massenkörper auch zunächst separat hergestellt und anschließend mit der Antriebswelle drehfest und axial fest verbunden werden, beispielsweise mittels einer Wellenverzahnung oder Welle-Nabe-Verbindung mit geeigneten Axialsicherungsmitteln.
  • Der sekundäre Massekörper kann ein Ringsegment umfassen, das um die Antriebswelle drehbar gelagert ist. Das Ringsegment kann sich beispielsweise um mehr als 160° und/oder weniger als 180° um die Drehachse erstrecken.
  • Nach einer ersten Möglichkeit kann der sekundäre Massenkörper mit axialer Überdeckung zum primären Massenkörper angeordnet sein. Dabei sind die Massenkörper vorzugsweise so gestaltet, dass ein kleinster Innenradius eines Ringsegments des sekundären Massenkörpers größer ist als ein größter Außenradius des primären Massenkörpers. Mit anderen Worten liegt der sekundäre Massenkörper in der ersten Drehposition radial außerhalb des primären Massenkörpers. Nach einer günstigen Weiterbildung umfasst der sekundäre Massenkörper bei dieser Ausführungsform ein oberes Deckelteil, das mit einem oberen Ende des Ringsegments fest verbunden ist, und ein unteres Deckelteil, das mit einem unteren Ende des Ringsegments fest verbunden ist, wobei die beiden Deckelteile radial innen zumindest mittelbar auf der Antriebswelle drehbar gelagert sind. Bei dieser Ausführungsform ist der primäre Massenkörper in der ersten Drehposition im sekundären Massenkörper räumlich aufgenommen. Dadurch, dass das Ringsegment des sekundären Massenkörpers radial außerhalb des primären Massenkörpers liegt, werden eine besonderes große Unwucht und entsprechend auch eine große Schwingungsamplitude erzeugt.
  • Nach einer zweiten Möglichkeit kann der sekundäre Massenkörper auch mit axialem Versatz zum primären Massekörper angeordnet sein, das heißt oberhalb und/oder unterhalb eines jeweiligen axialen Endes des primären Massenkörpers. Diese Ausführung eignet sich insbesondere für Anwendungen, in denen nur eine geringe Zusatzunwucht bzw. Amplitudensteigerung benötigt wird.
  • Für beide Möglichkeiten gilt, dass der sekundäre Massekörper zumindest teilweise radial außerhalb des primären Massekörpers angeordnet ist beziehungsweise, dass der Masseschwerpunkt des sekundären Massekörpers einen größeren radialen Abstand zur Drehachse aufweist als der Masseschwerpunkt des primären Massekörpers. Das Anschlagelement ist entsprechend der Ausgestaltung des sekundären Massenkörpers gestaltet. Insbesondere bei der ersten Möglichkeit kann das Anschlagelement gegenüber einer Außenumfangsfläche des primären Massenkörpers radial vorstehend gestaltet sein, um bei Drehung der Antriebswelle als Mitnehmer für den sekundären Massenkörper zu fungieren. Für eine besonders große Anschlagfläche kann sich das Anschlagelement in axiale Richtung über zumindest ein Drittel der Höhe des primären Massekörpers erstrecken. Bei der zweiten Möglichkeit kann das Anschlagelement insbesondere gegenüber einer axialen Endseite des primären Massekörpers axial vorstehen.
  • Um eine besonders große Unwuchtmasse zu erzeugen, kann zumindest einer von dem primären und dem sekundären Massekörper Schmermetall beinhalten. Weiter können auch mehrere primäre und/oder sekundäre Massenkörper vorgesehen sein.
  • Eine Unwucht-Baugruppe, welche als Einheit in einem Gehäuse des Tiefenrüttlers zu lagern ist, kann jeweils zumindest ein Wellenteil, einen primären und einen sekundären Massenkörper umfassen. Das Wellenteil wird mittels eines oberen Lagers, das oberhalb des primären Massenkörpers angeordnet ist, und mittels eines unteren Lagers, das unterhalb des primären Massenkörpers angeordnet ist, in dem Gehäuse des Tiefenrüttlers drehbar gelagert.
  • Nach einer Ausführungsform für besonders große Schwingungsamplituden können mehre Unwucht-Baugruppen vorgesehen sein, die untereinander angeordnet sind. Die einzelnen Unwucht-Baugruppen werden vorzugsweise von einem einzigen Drehantrieb angetrieben. Hierfür kann die Motorwelle des Drehantriebs mit der Antriebswelle einer ersten Baugruppe drehfest verbunden sein und die erste Antriebswelle ferner mit der Antriebswelle einer darunter liegenden zweiten Baugruppe drehfest verbunden sein. Es sind beliebig viele weitere Unwucht-Baugruppen möglich. Die drehfeste Verbindung der einzelnen Wellenteile miteinander kann beispielsweise mittels einer Flanschverbindung, Wellenverzahnung oder anderer Welle-Nabe-Verbindung realisiert werden. Jede einzelne Baugruppe hat vorzugsweise separate Lager zur Lagerung des jeweiligen Wellenteils, damit die Lagerbelastung insgesamt gering ist. Auf diese Weise ist gewährleistet dass der Tiefenrüttler auch bei Ausgestaltung mit mehreren Unwucht-Baugruppen dauerhaft großen Kräften und Vibrationen standhält.
  • Ein Verfahren zum Verdichten von Erdreich mittels eines solchen Tiefenrüttlers kann die Schritte: Einrütteln des Tiefenrüttlers in den Boden bis zu einer gewünschten Tiefe durch Drehen des Drehantriebs in einer ersten oder zweiten Drehrichtung und Verdichten des Bodens durch Drehen des Drehantriebs in der zweiten Drehrichtung umfassen. Durch das Drehen des Drehantriebs in der zweiten Drehrichtung werden große Schwingungsamplituden und damit eine hohe Verdichtung erzeugt. Das Einrütteln bis zur gewünschten Tiefe kann mit kleiner oder großer Amplitude erfolgen.
  • Bevorzugte Ausführungsformen werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:
  • Figur 1
    einen Tiefenrüttler in einer ersten Ausführungsform im Längsschnitt;
    Figur 2
    den Tiefenrüttler aus Figur 1 im Querschnitt gemäß Schnittlinie II-II aus Figur 1;
    Figur 3
    einen Tiefenrüttler in einer zweiten Ausführungsform im Längsschnitt;
    Figur 4
    den Tiefenrüttler aus Figur 3 im Querschnitt gemäß Schnittlinie IV-IV aus Figur 3;
    Figur 5
    einen Tiefenrüttler in einer dritten Ausführungsform im Längsschnitt;
    Figur 6
    einen Tiefenrüttler in einer weiteren Ausführungsform im Längsschnitt; und
    Figur 7
    den Tiefenrüttler aus Figur 6 im Querschnitt gemäß Schnittlinie II-II aus Figur 6.
  • Die Figuren 1 bis 7 werden hinsichtlich ihrer Gemeinsamkeiten nachstehend zunächst gemeinsam beschrieben.
  • Es ist ein Abschnitt eines Tiefenrüttlers 2 dargestellt. Ein Tiefenrüttler dient zum Verdichten von Boden mittels einer Unwucht. Als Unwucht wird ein rotierender Körper verstanden, dessen Masse nicht rotationssymmetrisch verteilt ist. Die Massenträgheitsachse des Massekörpers ist gegenüber der Rotationsachse versetzt, so dass die Unwucht beim Rotieren Schwingungen erzeugt, mit denen das Erdreich und mögliches Zugabematerial verdichtet wird.
  • Der Tiefenrüttler 2 umfasst entsprechend einen Drehantrieb 3, eine hiervon drehend antreibbare Antriebswelle 4, einen ersten Massekörper 5, der mit der Antriebswelle 4 drehfest verbunden ist, sowie einen zweiten Massekörper 6, der gegenüber dem ersten Massekörper 5 im Drehsinn verstellbar ist. Die genannten Bauteile sind in einem Gehäuse 7 des Tiefenrüttlers 2 aufgenommen, beziehungsweise in diesem drehbar gelagert. Es ist vorgesehen, dass sich der erste und zweite Massekörper 5, 6 hinsichtlich ihrer Form und/oder Masse und/oder ihres jeweiligen Schwerpunktabstands zur Antriebswelle 4 voneinander unterscheiden.
  • Der Drehantrieb 3 ist vorliegend in Form eines Elektromotors gestaltet, der einen im Drehsinn gegenüber dem Gehäuse 7 abgestützten Stator 8 und einen hierzu drehbaren Rotor 9 umfasst. Es versteht sich jedoch, dass auch andere Motoren verwendbar sind, beispielsweise ein Hydraulikantrieb. Der Rotor 9 des Elektromotors 3 ist mit einer Motorwelle 10 verbunden, um diese drehend anzutreiben. Die Motorwelle 10 ist mittels eines ersten Lagers 12, das oberhalb des Drehantriebs 3 angeordnet ist, und eines zweiten Lagers 13, das unterhalb des Drehantriebs 3 angeordnet ist, im Gehäuse 7 um eine Drehachse A drehbar gelagert. Der Drehantrieb 3 ist so gestaltet, dass er die Motorwelle 10 in zwei Drehrichtungen, also im Uhrzeigersinne und gegen den Uhrzeigersinn antreiben kann.
  • Die Motorwelle 10 ist mittels geeigneter Verbindungsmittel 14 mit der darunter liegenden Antriebswelle 4 zur Übertragung eines Drehmoments drehfest verbunden. Die Verbindungsmittel 14 sind vorliegend in Form einer Flanschverbindung gestaltet, wobei es sich versteht, dass andere Wellenkupplungen zur drehfesten Verbindung ebenso möglich sind.
  • Die Antriebswelle 4 ist mittels geeigneter Lagermittel 15, 16 im Gehäuse 7 drehbar gelagert, beispielsweise mittels Wälzlagern oder Gleitlagern. Der erste Massekörper 6, der auch als primärer Massekörper bezeichnet werden kann, ist drehfest mit der Antriebswelle 4 verbunden. Die drehfeste Verbindung kann über bekannte Mittel realisiert werden, beispielsweise formschlüssig mittels Welle-Nabe-Verbindung und/oder stoffschlüssig mittels Schweißverbindung. Es ist auch möglich, dass die Antriebswelle 4 einteilig mit dem ersten Massekörper 6 hergestellt ist.
  • Der zweite Massekörper 6, der auch als sekundärer Massekörper bezeichnet werden kann, ist relativ zum ersten Massenkörper 5 begrenzt drehbar. Dabei ist vorgesehen, dass der sekundäre Massekörper 6 beim Drehen der Antriebswelle 4 in der ersten Drehrichtung R1 eine erste Drehposition P1 und beim Drehen der Antriebswelle 4 in der entgegengesetzten zweiten Drehrichtung R2 eine zweite Drehposition P2 relativ zum ersten Massekörper 5 einnimmt. In der ersten Drehposition P1, die in den Figuren 1 bis 5 jeweils in der linken Bildhälfte erkennbar ist, ist der sekundäre Massekörper 6 an den primären Massekörper 5 angenähert, beziehungsweise, die beiden Massekörper 5, 6 befinden sich in Bezug auf die Drehachse A auf derselben Halbseite. In der zweiten Drehposition P2 des schwenkbaren Massekörpers 6, die in den Figuren 1 bis 5 jeweils in der rechten Bildhälfte gestrichelt dargestellt ist (Bezugszeichen 6'), ist der sekundäre Massekörper 6 von dem primären Massekörper 5 beabstandet angeordnet, beziehungsweise die beiden Massekörper 5, 6 befinden sich in Bezug auf die Drehachse A auf gegenüberliegenden Halbseiten. Durch diese Ausgestaltung ergibt sich, dass der aus dem ersten und zweiten Massekörper 5, 6 gebildete resultierende Masseschwerpunkt Sres1 in der ersten Position P1 des Massekörpers 6 einen größeren radialen Abstand zur Drehachse A aufweist, als der resultierende Masseschwerpunkt Sres2, der sich aus dem ersten und zweiten Massekörper 5, 6 ergibt, wenn sich der sekundäre Massekörper (6') in der zweiten Position P2 befindet. Hieraus folgt, dass die Größe der Unwucht durch einfache Drehrichtungsumkehr (R1, R2) des Drehantriebs 3 zwischen zwei Größen verändert werden kann. Zur Verstellung der Unwucht muss lediglich die Drehrichtung R1, R2 des Drehantriebs 3 geändert werden, wozu dieser kurz gestoppt werden muss.
  • Eine Besonderheit der vorliegenden Erfindung ist, dass der Masseschwerpunkt S6 des schwenkbaren Massekörpers 6 einen größeren radialen Abstand zur Drehachse A aufweist als der Masseschwerpunkt S5 des drehfest mit der Welle 4 verbundenen Massekörpers 5, beziehungsweise, dass der schwenkbare Massekörper 6 gegenüber dem drehfesten Massekörper 5 zumindest teilweise radial vorsteht. Durch diese Ausgestaltung können in der ersten Drehposition P1 besonders hohe Unwuchten erreicht werden, beziehungsweise, die Amplitude des Tiefenrüttlers 2 ist in besonders großen Bereichen verstellbar. Je nach Masse und Form des sekundären Massenkörpers 6 kann die Amplitude in der ersten Drehposition P1 gegenüber der zweiten Drehposition P2 mehr als verdoppelt werden.
  • Bei der in den Figuren 1 und 2 gezeigten Ausführungsform umfasst der primäre Massenkörper 5 ein Zylindersegment, das sich um 180°um die Drehachse A erstreckt. Der sekundäre Massekörper 6 ist bei dieser Ausführung mit axialer Überdeckung zum primären Massekörper 5 angeordnet und weist ein Ringsegment 17 mit einem oberen Deckelteil 18 und einem unteren Deckelteil 19 auf. Oberes Deckelteil 18, Ringsegment 17 und unteres Deckelteil 19 bilden eine Halbschale, welche so dimensioniert ist, dass der erste Massekörper 5 darin aufgenommen werden kann, wenn der zweite Massekörper 6 in der ersten Drehposition P1 ist. Hierfür ist ein kleinster Innenradius des Ringsegments 17 des sekundären Massenkörpers 6 größer ist als ein größter Außenradius des primären Massenkörpers 6. In der ersten Drehposition P1 liegt der sekundäre Massekörper 6 radial außerhalb des primären Massenkörpers 5 und umgibt diesen. Dadurch, dass das Ringsegment 17 des sekundären Massenkörpers 6 radial außerhalb des primären Massenkörpers 5 liegt, werden eine besonderes große Unwucht und entsprechend auch eine große Schwingungsamplitude erzeugt.
  • Die Lagerung des halbschalenförmigen Massekörpers 5 an der Antriebswelle 4 erfolgt über zwei Lager 20, 21. Dabei ist das obere Deckelteil 18 über ein erstes Lager 20, das axial oberhalb des ersten Massekörpers 5 angeordnet ist, und das untere Deckelteil 19 über ein zweites Lager 21, das axial unterhalb des ersten Massekörpers 5 angeordnet ist, auf der Welle 4 drehbar gelagert. Es ist insbesondere in Figur 2 erkennbar, dass sich das Ringsegment 17 über einen Winkelbereich von etwas weniger als 180° um die Drehachse A erstreckt.
  • Die relativen Drehpositionen P1, P2 werden jeweils durch ein Anschlagelement 22 definiert, gegen den der sekundäre Massekörper 6 bei Drehung des Drehantriebs 3 anschlagen und so in einer definierten Drehposition relativ zum primären Massekörper 5 angeordnet ist. Vorliegend ist genau ein Anschlagelement 22 vorgesehen, das sowohl einen Anschlag in der ersten Drehrichtung R1 als auch einen Anschlag in der zweiten Drehrichtung R2 bildet. Das Anschlagelement 22 ist vorliegend in Form einer Leiste beziehungsweise eines Balkens gestaltet, die mit dem primären Massekörper 5 fest verbunden ist, beispielsweise kraftschlüssig mittels Schraubverbindungen oder stoffschlüssig mittels Schweißen. Das Anschlagelement 22 steht radial über eine Außenumfangsfläche des primären Massekörpers 5 vor und erstreckt sich in axiale Richtung, wie insbesondere in Figur 1 erkennbar, über mindestens die halbe axiale Länge des primären Massekörpers 5, so dass eine möglichst gleichmäßige Krafteinleitung beziehungsweise Abstützung des sekundären Massekörpers 6 gegeben ist. Eine erste Seitenfläche 23 der Leiste 22 bildet einen ersten Anschlag in erster Drehrichtung R1 des schwenkbaren Massekörpers 6, während eine entgegengesetzte zweite Seitenfläche 24 der Leiste 22 einen zweiten Anschlag in entgegengesetzter Drehrichtung R1 des Massekörpers 6 bildet.
  • Bei den Ausführungsformen gemäß den Figuren 1 und 3 sind ferner optionale Zusatzmassen 25, 26 vorgesehen, die fest mit der Antriebswelle 4 verbunden sind. Vorliegend ist eine erste Zusatzmasse 25 oberhalb des oberen Lagers 15 und eine zweite Zusatzmasse 26 unterhalb des zweiten Lagers 16 angeordnet. Die drehfeste Verbindung mit der Welle 4 kann beispielsweise mittels einer formschlüssigen Welle-Nabe-Verbindung hergestellt werden. Es kann vorgesehen sein, dass zumindest einer der Massekörper 5, 6, 25, 26 Schmermetall beinhaltet. Im Übrigen können die Massekörper aus einem metallischen Werkstoff, wie Stahl, hergestellt sein.
  • Die Figuren 3 und 4 zeigen einen Tiefenrüttler 2 in einer etwas abgewandelten zweiten Ausführungsform. Diese entspricht weitestgehend der Ausführungsform nach Figur 1 und 2, so dass hinsichtlich der Gemeinsamkeiten auf die obige Beschreibung Bezug genommen wird. Dabei sind gleiche beziehungsweise abgewandelte Einzelheiten mit gleichen Bezugszeichen versehen, wie in den Figuren 1 und 2.
  • Im Unterschied zur obigen Ausführungsform sind vorliegend bei der Ausführungsform nach Figur 3 und 4 zwei schwenkbare sekundäre Massekörper 61, 62 vorgesehen, die auf der Antriebswelle 4 jeweils drehbar gelagert sind. Dabei ist ein erster schwenkbarer Massekörper 61 oberhalb des primären Massekörpers 5 angeordnet und mittels eines Verbindungsstegs 27 und das obere Lager 20 an der Welle 4 gelagert. Ein zweiter schwenkbarer Massekörper 62 ist unterhalb des primären Massekörpers 5 angeordnet und mittels eines Verbindungsstegs 28 und ein unteres Lager 21 an der Welle 4 schwenkbar verbunden. Die beiden sekundären Massekörper 61, 62 sind in Form von Ringsegmenten gestaltet, die sich über etwa 180° um die Drehachse A erstrecken. Es ist insbesondere in Figur 3 erkennbar, dass eine Außenumfangsfläche der sekundären Massekörper 61, 62 gegenüber einer Außenumfangsfläche des primären Massekörpers 5 radial vorstehen. Hieraus folgt, dass der Masseschwerpunkt S61, S62 der sekundären Massekörper 61, 62 einen größeren radialen Abstand zur Drehachse A aufweisen als der Masseschwerpunkt S5 des primären Massekörpers 5.
  • Bei der vorliegenden Ausführungsform sind entsprechend der Anzahl der schwenkbaren Massen 61, 62 auch zwei Anschläge 221, 222 vorgesehen, die jeweils mit dem primären Massekörper 5 verbunden sind. Die Anschläge 221, 222 stehen jeweils axial über eine endseitige Stirnfläche und radial über eine Außenumfangsfläche 29 des primären Massekörper 5 vor. Sie sind in Form von kürzeren Balken gestaltet, die im Übrigen wie bei der oben beschriebenen Ausführungsform mit dem Massekörper 5 verbunden sein können. Die vorliegende Ausführungsform baut radial etwas kleiner, da eine radiale Überdeckung zwischen den schwenkbaren Massekörper 61, 62 und dem drehfesten Massekörper 5 gegeben ist. Im Übrigen entsprechen Aufbau und Funktionsweise der obigen Ausführungsform, auf deren Beschreibung zur Vermeidung von Wiederholungen insofern verwiesen wird.
  • Die Figur 5 zeigt einen Tiefenrüttler 2 in einer weiteren Ausführungsform. Diese entspricht weitgehend der Ausführungsform nach Figur 1 und 2, so dass hinsichtlich der Gemeinsamkeiten auf die obige Beschreibung Bezug genommen wird. Dabei sind gleiche beziehungsweise abgewandelte Einzelheiten mit gleichen Bezugszeichen versehen, wie in den Figuren 1 und 2 beziehungsweise in den Figuren 3 und 4.
  • Eine Besonderheit der vorliegenden Ausführungsform ist, dass der Tiefenrüttler 2 mehrere Unwucht-Baugruppen 111, 112 umfasst, die jeweils als Einheit in dem Gehäuse 7 aufgenommen sind. Jede Unwucht-Baugruppe 111, 112 umfasst jeweils ein Wellenteil 41, 42, das jeweils mittels zweier Lager 121, 131; 122, 132 in dem Gehäuse 7 drehbar gelagert und von dem Drehantrieb 3 drehend antreibbar ist, sowie einen primären und einen sekundären Massenkörper 5, 6. Dabei ist jeweils ein erstes Lager 121, 122 oberhalb und ein zweites Lager 131, 132 unterhalb der zugehörigen Massekörper 5, 6 angeordnet, um eine sichere Radiallagerung über die gesamte Länge der Welle zu gewährleisten. Die einzelnen Wellenteile 41, 42 sind über geeignete Wellenverbindungen 141, 142, wie Flanschverbindungen, miteinander verbunden, wobei andere Verbindungsmittel ebenso denkbar sind. Vorliegend sind zwei Unwucht-Baugruppen 111, 112 vorgesehen, die von einem einzigen Drehantrieb angetrieben werden. Es versteht sich, dass auch drei oder mehr Unwucht-Baugruppen verwendbar sind, um noch größere Schwingungsamplituden zu erzeugen. Diese werden über weitere Wellenverbindungen (14) miteinander antriebsverbunden.
  • Die Figuren 6 und 7 zeigen einen Tiefenrüttler 2 in einer weiteren Ausführungsform. Diese entspricht weitestgehend der Ausführungsform nach Figur 1 und 2, so dass hinsichtlich der Gemeinsamkeiten auf die obige Beschreibung Bezug genommen wird. Dabei sind gleiche beziehungsweise abgewandelte Einzelheiten mit gleichen Bezugszeichen versehen, wie in den Figuren 1 und 2.
  • Ein Unterschied der vorliegenden Ausführungsform gegenüber derjenigen nach Figur 1 und 2 liegt in der Zuordnung der beiden Massekörper 5, 6, welche vorliegend vertauscht ist. Es ist erkennbar, dass in der vorliegenden Ausführungsform nach Figur 6 und 7 der primäre Massekörpers 5, der mit der Antriebswelle 4 drehfest verbunden ist, derjenige mit größerem Abstand des Masseschwerpunkts S5 ist, während der um die Antriebswelle 4 schwenkbare Massekörper 6, derjenige ist, dessen Masseschwerpunkt S6 auf einem kleineren Radius liegt. Der drehfeste Massekörper 5 umfasst ein Ringsegment 17, einen oberen Deckel 18 und einen unteren Deckel 19, die miteinander fest verbunden sind. Zur drehfesten Verbindung können zwischen dem oberen und unteren Deckel 18, 19 einerseits und der Antriebswelle 4 andererseits Wellenverzahnungen 30, 30' oder andere übliche Welle-Nabe-Verbindung vorgesehen sein. Eine axiale Abstützung kann über ein Axiallager erfolgen. Der schwenkbare Massekörper 6 kann auf der Antriebswelle 4 beispielsweise mittels eines Gleitlagers 20 beziehungsweise einer Gleitbuchse drehbar gelagert werden.
  • Die relativen Drehpositionen P1, P2 des schwenkbaren Massekörpers 6 werden durch ein Anschlagelement 22 definiert, gegen das der Massekörper 6 bei Drehung des Drehantriebs 3 anschlagen und so in einer definierten Drehposition relativ zum drehfesten Massekörper 5 angeordnet ist. Der Drehanschlag 22 ist als Leiste oder Balken gestaltet, der mit dem primären Massekörper 5 verbunden ist und von einer Innenumfangsfläche nach radial innen vorsteht. Im Übrigen entspricht die Ausführungsform nach Figur 6 hinsichtlich Aufbau und Funktionsweise derjenigen gemäß Figur 1 und 2, auf deren Beschreibung insofern Bezug genommen wird.
  • Es versteht sich, dass auch weitere Ausführungsformen denkbar sind, die vorliegend nicht alle offenbart sind. Insbesondere ist es möglich, dass auch die Ausführungsformen gemäß den Figuren 3 bis 5 mit umgekehrter Zuordnung von erstem und zweitem Massekörper 5, 6 gestaltet sein können, das heißt außen liegender Massekörper drehfest mit Antriebswelle 4 verbunden und innen liegender Massekörper um die Antriebswelle 4 schwenkbar gelagert.
  • Bezugszeichenliste
  • 2
    Tiefenrüttler
    3
    Drehantrieb
    4
    Antriebswelle
    5
    Massekörper
    6
    Massekörper
    7
    Gehäuse
    8
    Stator
    9
    Rotor
    10
    Motorwelle
    11
    Unwucht-Baugruppe
    12, 13
    Lager
    14
    Verbindungsmittel
    15, 16
    Lager
    17
    Ringsegment
    18
    Deckelteil
    19
    Deckelteil
    20, 21
    Lager
    22
    Anschlagelement
    23
    Seitenfläche
    24
    Seitenfläche
    25
    Zusatzmasse
    26
    Zusatzmasse
    27
    Verbindungssteg
    28
    Verbindungssteg
    29
    Umfangsfläche
    30
    Verbindung
    A
    Drehachse
    P
    Position
    R
    Richtung
    S
    Schwerpunkt

Claims (15)

  1. Tiefenrüttler zum Verdichten von Erdreich, umfassend:
    einen Drehantrieb (3);
    eine Antriebswelle (4), die von dem Drehantrieb (3) in eine erste Drehrichtung (R1) und in eine entgegengesetzte zweite Drehrichtung (R2) um eine Drehachse (A) drehend antreibbar ist;
    einen primären Massekörper (5), der mit der Antriebswelle (4) drehfest verbunden ist und gemeinsam mit dieser um die Drehachse (A) umläuft;
    einen sekundären Massekörper (6), der durch Drehen der Antriebswelle (4) in der ersten Drehrichtung (R1) in eine erste Drehposition (P1) relativ zum primären Massekörper (5) verstellbar ist, in der ein Schwerpunkt (S6) des sekundären Massekörper (6) an einen Schwerpunkt (S5) des primären Massekörpers (5) angenähert ist, und der durch Drehen der Antriebswelle (4) in der zweiten Drehrichtung (R2) in eine zweite Drehposition (P2) relativ zum primären Massekörper (5) verstellbar ist, in welcher der Schwerpunkt (S6) des sekundären Massekörper (6) vom Schwerpunkt (S5) des primären Massekörpers (5) weiter beabstandet ist, wobei der sekundäre Massekörper (6) in der ersten und zweiten Drehposition (P1) gemeinsam mit dem primären Massekörper (5) um die Drehachse (A) drehbar ist;
    dadurch gekennzeichnet,
    dass der Masseschwerpunkt (S6) des sekundären Massekörpers (6) und der Masseschwerpunkt (S5) des primären Massekörpers (5) unterschiedliche radiale Abstände zur Drehachse (A) aufweisen.
  2. Tiefenrüttler nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Masseschwerpunkt (S6) des sekundären Massekörpers (6) einen größeren radialen Abstand zur Drehachse (A) aufweist als der Masseschwerpunkt (S5) des primären Massekörpers (5).
  3. Tiefenrüttler nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der sekundäre Massekörper (6) durch Drehrichtungsumkehr des Drehantriebs (3) relativ zum primären Massekörper (5) verstellbar ist, wobei in der ersten Drehposition (P1) ein aus dem primären Massekörper (5) und dem sekundären Massekörper (6) erster resultierender Masseschwerpunkt (Sres1) von der Drehachse (A) einen ersten Abstand aufweist, der größer ist, als ein zweiter Abstand, den in der zweiten Drehposition (P2) ein aus dem primären Massekörper (5) und dem sekundären Massekörper (6) zweiter resultierender Masseschwerpunkt (Sres2) von der Drehachse (A) aufweist.
  4. Tiefenrüttler nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass ein erster Drehanschlag (23) vorgesehen ist, gegen den der sekundäre Massekörper (6) bei Drehung des Drehantriebs (3) in der ersten Drehrichtung (R1) abgestützt ist, und,
    dass ein zweiter Drehanschlag (24) vorgesehen ist, gegen den der sekundäre Massekörper (6) bei Drehung des Drehantriebs (3) in der zweiten Drehrichtung (R2) abgestützt ist.
  5. Tiefenrüttler nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass zumindest einer von dem ersten und dem zweiten Drehanschlag (23, 24) am primären Massekörper (5) vorgesehen ist.
  6. Tiefenrüttler nach einem der Ansprüche 4 bis 5,
    dadurch gekennzeichnet,
    dass zumindest einer von dem ersten und dem zweiten Drehanschlag (23, 24) Teil eines Anschlagelements (22) ist, das mit dem primären Massekörper (5) fest verbunden ist.
  7. Tiefenrüttler nach Anspruch 6,
    dadurch gekennzeichnet,
    dass genau ein Anschlagelement (22) vorgesehen ist, das den ersten Drehanschlag (23) und den zweiten Drehanschlag (24) umfasst.
  8. Tiefenrüttler nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet,
    dass das Anschlagelement (22) in Form eines Anschlagbalkens gestaltet ist, der mit dem primären Massenkörper (5) fest verbunden ist und gegenüber einer Außenumfangsfläche (29) des primären Massenkörpers (5) radial vorsteht und sich in axiale Richtung über zumindest ein Drittel der Höhe des primären Massekörpers (5) erstreckt.
  9. Tiefenrüttler nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass der primäre Massenkörper (5) in Form eines Zylindersegments gestaltet ist, das sich um insbesondere 180° um die Drehachse (A) erstreckt.
  10. Tiefenrüttler nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass der sekundäre Massekörper (6) ein Ringsegment (17) umfasst, das um die Antriebswelle (4) drehbar gelagert ist, wobei sich das Ringsegment (17) insbesondere um mehr als 160° und/oder weniger als 180° um die Drehachse (A) erstreckt.
  11. Tiefenrüttler nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass der sekundäre Massekörper (6) mit axialer Überdeckung oder mit axialem Versatz zum primären Massekörper (5) angeordnet ist.
  12. Tiefenrüttler nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass der sekundäre Massekörper (6) zumindest teilweise radial außerhalb des primären Massekörpers (5) angeordnet ist.
  13. Tiefenrüttler nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass zumindest einer von dem primären und dem sekundären Massekörper (5, 6) Schmermetall beinhaltet.
  14. Tiefenrüttler nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass der primäre Massenkörper (5) und der sekundäre Massenkörper (6) an einem Wellenabschnitt (4) angeordnet sind, wobei der Wellenabschnitt (4) mittels eines oberen Lagers (15), das oberhalb des primären Massenkörpers (5) angeordnet ist, und mittels eines unteren Lagers (16), das unterhalb des primären Massenkörpers (5) angeordnet ist, in einem Gehäuseteil (7) des Tiefenrüttlers drehbar gelagert ist.
  15. Tiefenrüttler nach Anspruch 14,
    dadurch gekennzeichnet,
    dass der Wellenabschnitt (4) mit einem weiteren Wellenabschnitt (4) zur Drehmomentübertragung verbunden ist, wobei der weitere Wellenabschnitt (4) einen weiteren primären Massenkörper (5) und einem weiteren sekundären Massenkörper (6) trägt, wobei der weitere Wellenabschnitt (4) mittels eines oberen Lagers (152) und eines unteren Lagers (162) in einem Gehäuseteil (7) des Tiefenrüttlers drehbar gelagert ist.
EP17189317.5A 2017-09-05 2017-09-05 Tiefenrüttler mit verstellbarer unwucht Active EP3450631B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES17189317T ES2774010T3 (es) 2017-09-05 2017-09-05 Vibrador en profundidad con masa desequilibrada regulable
PL17189317T PL3450631T3 (pl) 2017-09-05 2017-09-05 Wibrator wgłębny z regulowanym niewyważeniem
EP17189317.5A EP3450631B1 (de) 2017-09-05 2017-09-05 Tiefenrüttler mit verstellbarer unwucht
SG10201807258TA SG10201807258TA (en) 2017-09-05 2018-08-27 Depth vibrator with adjustable imbalance
US16/117,498 US10508401B2 (en) 2017-09-05 2018-08-30 Depth vibrator with adjustable imbalance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17189317.5A EP3450631B1 (de) 2017-09-05 2017-09-05 Tiefenrüttler mit verstellbarer unwucht

Publications (2)

Publication Number Publication Date
EP3450631A1 true EP3450631A1 (de) 2019-03-06
EP3450631B1 EP3450631B1 (de) 2019-12-04

Family

ID=59790981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17189317.5A Active EP3450631B1 (de) 2017-09-05 2017-09-05 Tiefenrüttler mit verstellbarer unwucht

Country Status (5)

Country Link
US (1) US10508401B2 (de)
EP (1) EP3450631B1 (de)
ES (1) ES2774010T3 (de)
PL (1) PL3450631T3 (de)
SG (1) SG10201807258TA (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798366A1 (de) * 2019-09-25 2021-03-31 Albert Schneider Tiefenrüttler zum verdichten eines bodens
CN115748655A (zh) * 2022-11-30 2023-03-07 北京振冲工程机械有限公司 一种液压振冲器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517687B1 (de) * 2018-01-26 2020-08-05 Keller Holding GmbH Verfahren zur verdichtungserfassung und -steuerung beim verdichten eines bodens mittels tiefenrüttler
CN113019873B (zh) * 2020-09-29 2023-09-12 南京利卡维智能科技有限公司 一种协震偏心振动装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948403A1 (de) * 1979-12-01 1981-06-04 Fritz Pollems KG Spezialtiefbau, 1000 Berlin Vibrator zur verdichtung von erdreich
DE19930884A1 (de) 1999-07-05 2001-02-01 Keller Grundbau Gmbh Verfahren und Vorrichtung zur Tiefenverdichtung mit gesteuerter Frequenz- und Unwuchtänderung eines Tiefenrüttlers
DE202007003532U1 (de) * 2007-03-07 2007-07-05 Abi Gmbh Schwingungserreger
DE102014019139A1 (de) 2014-12-23 2016-06-23 Rsm Grundbau Gmbh + Willi Meyer Bauunternehmen Gmbh In Gbr Tiefenrüttler mit veränderbarer Unwucht

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639376A1 (fr) * 1988-11-24 1990-05-25 Albaret Travaux Publics Sa Engin compacteur vibrant a amplitude modifiable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948403A1 (de) * 1979-12-01 1981-06-04 Fritz Pollems KG Spezialtiefbau, 1000 Berlin Vibrator zur verdichtung von erdreich
DE19930884A1 (de) 1999-07-05 2001-02-01 Keller Grundbau Gmbh Verfahren und Vorrichtung zur Tiefenverdichtung mit gesteuerter Frequenz- und Unwuchtänderung eines Tiefenrüttlers
DE202007003532U1 (de) * 2007-03-07 2007-07-05 Abi Gmbh Schwingungserreger
DE102014019139A1 (de) 2014-12-23 2016-06-23 Rsm Grundbau Gmbh + Willi Meyer Bauunternehmen Gmbh In Gbr Tiefenrüttler mit veränderbarer Unwucht

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798366A1 (de) * 2019-09-25 2021-03-31 Albert Schneider Tiefenrüttler zum verdichten eines bodens
CN115748655A (zh) * 2022-11-30 2023-03-07 北京振冲工程机械有限公司 一种液压振冲器

Also Published As

Publication number Publication date
EP3450631B1 (de) 2019-12-04
PL3450631T3 (pl) 2020-06-01
US20190071831A1 (en) 2019-03-07
SG10201807258TA (en) 2019-04-29
US10508401B2 (en) 2019-12-17
ES2774010T3 (es) 2020-07-16

Similar Documents

Publication Publication Date Title
EP2881516B1 (de) Bodenverdichtungsmaschine
EP3450631B1 (de) Tiefenrüttler mit verstellbarer unwucht
EP2809848B1 (de) Verdichterwalze für einen bodenverdichter
EP2504490B1 (de) Verdichtungsgerät, sowie verfahren zum verdichten von böden
EP3951057B1 (de) Bodenbearbeitungswalzensystem für eine bodenbearbeitungsmaschine
EP1712681A1 (de) Anbauverdichter mit einstellbarer Erregermasse
DE2553800A1 (de) Unwuchtantriebseinrichtung
DE102015216245A1 (de) Getriebeeinrichtung mit exzentrischer Auslenkung und Drehmomenteinstellungsverfahren dazu
EP2564943A2 (de) Schwingungserreger zur Erzeugung einer gerichteten Erregerschwingung
EP2198091A1 (de) Vorrichtung zur erzeugung von schwingungen
DE3515690C1 (de) Vibrationsbaer mit Unwuchtverstellung
WO2016102432A1 (de) Tiefenrüttler
WO2013010277A1 (de) Unwuchterreger für ein bodenverdichtungsgerät
EP2242590B1 (de) Unwuchterreger mit einer oder mehreren rotierbaren unwuchten
EP0239561A2 (de) Einrichtung zur Erzeugung von Vibrationen
EP2781269A1 (de) Schwingungserreger, insbesondere für eine Baumaschine
EP1534439B1 (de) Schwingungserreger für bodenverdichtungsgeräte
DE102015009698B4 (de) Richterreger und Schwingmaschine mit Richterreger
DE3105611C2 (de) Verfahren und Vorrichtung zum Tiefverdichten
EP3237687B1 (de) Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers
EP3384096B1 (de) Anordnung zur bereitstellung einer pulsierenden druckkraft
EP4012099B1 (de) Verdichterwalze für einen bodenverdichter
WO2023094384A2 (de) Unwuchteinrichtung, sowie vibrationsrammgerät
EP2050873A2 (de) Vibrationswalze
DE3231543A1 (de) Vibrationsgeraet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190321

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/28 20060101ALI20190408BHEP

Ipc: B06B 1/16 20060101ALI20190408BHEP

Ipc: E02D 3/054 20060101AFI20190408BHEP

Ipc: E02D 3/068 20060101ALI20190408BHEP

INTG Intention to grant announced

Effective date: 20190515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003034

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261454

Country of ref document: HK

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2774010

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003034

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230915

Year of fee payment: 7

Ref country code: IT

Payment date: 20230908

Year of fee payment: 7

Ref country code: GB

Payment date: 20230926

Year of fee payment: 7

Ref country code: AT

Payment date: 20230906

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230825

Year of fee payment: 7

Ref country code: FR

Payment date: 20230912

Year of fee payment: 7

Ref country code: DE

Payment date: 20230907

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231005

Year of fee payment: 7