EP3328630A1 - Composition polymerique fluoree - Google Patents

Composition polymerique fluoree

Info

Publication number
EP3328630A1
EP3328630A1 EP16760125.1A EP16760125A EP3328630A1 EP 3328630 A1 EP3328630 A1 EP 3328630A1 EP 16760125 A EP16760125 A EP 16760125A EP 3328630 A1 EP3328630 A1 EP 3328630A1
Authority
EP
European Patent Office
Prior art keywords
composition according
component
equal
composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16760125.1A
Other languages
German (de)
English (en)
Inventor
Anthony Bonnet
Cyrille Mathieu
Alejandra REYNA-VALENCIA
RAMFEL (Epouse WIEGERT), Barbara
Christophe DEGOULET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3328630A1 publication Critical patent/EP3328630A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a fluorinated polymeric composition, processes for the manufacture thereof, and products that can be made therefrom, including polymeric sheaths of flexible hoses used for transporting fluids from petroleum marine, or "off-shore", and land, or “on-shore”) or gas.
  • the transport of chemicals in the liquid or gaseous state in pipes has many advantages: it is more economical once the infrastructure is in place; it allows the transport of large volumes; it ensures a great security of supply, thanks to a regular flow; finally, it is safer than rail or road.
  • PVDF polyvinylidene fluoride
  • Flexible hoses are also used for the transport of oil or natural gas extracted from submarine or terrestrial deposits. These pipes are formed of multilayer structures including polymeric sheaths and reinforcing layers of metal or composite materials.
  • Flexible hoses include, from the inside to the outside:
  • At least one internal sealing tube in contact with the transported fluid consisting of a polymeric material
  • BE 832851 discloses fluorinated elastomers comprising a molar proportion of 50 to 85% of VDF and 15 to 25% of hexafluoropropylene (HFP), ie a mass proportion of 47 to 71% of VDF and 29 to 53% of HFP, which are used for the manufacture of PVDF molded bodies comprising from 1 to 30% by weight of fluoroelastomer.
  • HFP hexafluoropropylene
  • EP 1342752 discloses PVDF-based compositions comprising: (A) a PVDF homopolymer or a VDF-based copolymer; (B) a fluoroelastomer; (C) optionally a plasticizer.
  • the fluorinated elastomer (B) is present in an amount of from 0.5 to 10 parts by weight per 100 parts of homopolymer or copolymer (A) and from 0 to 10 parts by weight of a plasticizer (C) with the condition further that the sum of (B) plus (C) is from 0.5 to 10.5 parts by weight.
  • compositions correspond to the following mass proportions: 89.5 to 90.5% of a PVDF homopolymer or a VDF-based copolymer (A); 0.5 to 9% of a fluoroelastomer (B); 0 to 9% of a plasticizer (C).
  • A a PVDF homopolymer or a VDF-based copolymer
  • B a fluoroelastomer
  • C a plasticizer
  • EP 608639 discloses polymeric compositions comprising, by weight, 60 to 80% of PVDF, 20 to 40% of a thermoplastic copolymer of VDF and another fluorinated comonomer (present in amounts of 5 to 25% in the copolymer), and from 5 to 20% of a plasticizer (relative to the sum of the PVDF and the copolymer).
  • thermoplastic copolymers envisaged include VDF / HFP copolymers.
  • the HFP contents indicated in the copolymers which are disclosed in the examples are of the order However, these compositions undergo an extraction of the plasticizer in contact with certain chemical substances. As a result, the sheaths made with these compositions do not maintain a stable geometry, their volume and therefore their thickness tending to decrease over time.
  • An excessive decrease in the thickness of the sheath may therefore have the effect of degrading the crimping pressure and the sealing of the nozzle.
  • WO 2006/045753 discloses polymeric compositions comprising a PVDF homopolymer, a thermoplastic fluorinated copolymer and a third component which can be a plasticizer at up to 5% by weight, a perfluorinated polymer or a low molecular weight VDF polymer.
  • the thermoplastic fluorinated copolymer may for example be a copolymer of VDF and another fluorinated comonomer, which may be present in a content of 5 to 25%.
  • the mixture of PVDF homopolymer and fluorinated copolymer has an average intrinsic viscosity of less than 2 dl / g.
  • the polymeric composition has a melt apparent viscosity of less than or equal to 60,000 Pa.s at a rate gradient of 1 s- 1 .
  • the fluorinated polymeric compounds of the tubular structures made with such compositions In particular, when the structures are subjected to repeated movements due to marine currents, the fatigue strength of these fluorinated polymeric compounds is considered insufficient.
  • FR 2987624 discloses compositions comprising a PVDF homopolymer, an elastomeric fluorinated copolymer and a plasticizer.
  • the copolymer has elastomeric properties which it confers on the fluorinated polymer compound and which makes it possible not only to increase the fatigue strength of said compound, but also to improve the cold strength. This is an essential difference with the object of the document WO 2006/045753, where, precisely, it is sought for compositions capable of forming non-elastomeric fluorinated polymeric compounds.
  • the extraction of the plasticizer that occurs during the lifetime of the tubular structure in addition to modifying the geometry of the sheaths (volume variation and thickness) as already mentioned above, gradually leads to a loss of properties initially provided. by plasticizing (flexibility, resilience), thus limiting the life of articles based on these compositions.
  • the object of the present invention is therefore to develop a novel polymeric composition based on a particular PVDF homopolymer, an elastomeric fluorinated copolymer and a third low viscosity fluorinated component, said composition having mechanical properties and improved chemical compared to known compositions, and which do not evolve over the life of the pipe in service to manufacture pipes and pipes remaining mechanically reliable in the long term especially for the monogaine pressure application used in the field off-shore.
  • thermoplastic polymeric composition comprising the following components A, B and C:
  • PVDF vinylidene polyfluoride homopolymer
  • FCTHM very high molecular weight chains
  • VDF vinylidene fluoride
  • the polymeric composition according to the invention is free of plasticizer.
  • component A is a PVDF homopolymer comprising a fraction of very high molecular weight chains (FCTHM), which are defined as chains with a molar mass greater than 3,000,000 g / mol, including non-transferred chains. or late transferred (FCNT) defined below.
  • FCTHM very high molecular weight chains
  • the other chains of component A are made by initiation and transfer or earlier transfer and have molar masses below 3,000,000 g / mol.
  • the mass proportion of chains of very high molar mass in component A is calculated by the following formula:
  • the mass proportion of chains with a molecular weight of less than 3000000 g / mol expressed as polymethyl methacrylate equivalent in component A is determined by steric exclusion chromatography under the conditions described below.
  • the dimethylsulfoxide (DMSO) to which sodium nitrate (NaN0 3 ) at a concentration of 0.1 mol / L has been added is both the eluent and the solvent of the samples.
  • the concentration of the samples of component A prepared is of 2 g / L, the dissolution is made for 4 hours at a temperature of 95 ° C.
  • the solution obtained is filtered using a syringe filter with a porosity of 0.45 ⁇ m and a volume of 200 ⁇ m is injected into the size exclusion chromatography line.
  • This is typically provided with 2 columns in series of length 300 mm and diameter 8 mm, particle size 7 ⁇ , porosity 100 Angstrom and 1000 Angstrom, regulated temperature at 50 ° C.
  • Polymer Standards Service columns referenced PSS PFG 1000 Angstrom and PSS PFG 100 Angstrom were used.
  • the detection at the column outlet is done by a differential refractometer. It is also regulated in temperature at 50 ° C.
  • the standards used for calibration of the columns are narrow polymethyl methacrylates (PMMA) covering the column separation range.
  • the proportion of chains of very high molecular weight thus calculated represents up to 50% by weight of component A, including the terminal.
  • Component A has a melt flow index of less than or equal to 15 g / 10 min, advantageously less than or equal to 10 g / 10 min, preferably less than or equal to 5 g / 10 min, according to the standard ISO 1,133.
  • Component B is present in the composition at a mass content higher than
  • the comonomer is hexafluoropropylene
  • the elastomeric copolymer is present in the composition in a mass proportion of more than 10 to 40%, advantageously 15 to 40%, preferably 17 to 35%, inclusive.
  • the proportion by weight of comonomer in the copolymer is greater than 25%.
  • it is: greater than or equal to 26%, and / or less than or equal to 40%, preferably less than or equal to 37%.
  • Component C is a VDF homopolymer having a lower viscosity than component A; it is present in the composition in a mass proportion ranging from 1 to 20%, in particular from 2 to 18% and preferably from 5 to 15%.
  • the ratio of the apparent melt viscosities of components A and C is greater than or equal to 5, in particular greater than or equal to 10 and preferably greater than or equal to 50. This ratio is less than 500, preferably less than 400
  • the apparent melt viscosities of components A and C are expressed in Pa.s and measured on a capillary rheometer at a temperature of 230 ° C. and a shear of 100s -1 .
  • thermoplastic polymer composition consists of:
  • FCTHM very high molar mass
  • the subject of the invention is also a process for the manufacture of the above composition, comprising the mixture of homopolymer, copolymer, fluorinated modifier and any additives.
  • This manufacturing method comprises any method which makes it possible to obtain a homogeneous mixture of the various constituents. Among these methods, mention may be made of the mixture in the molten or dry state.
  • the composition according to the invention is prepared by melt blending all the constituents, on a compounding tool such as a twin-screw extruder, a co-kneader or an internal or cylinder mixer.
  • a compounding tool such as a twin-screw extruder, a co-kneader or an internal or cylinder mixer.
  • the homopolymer of PVDF (component A) and the elastomeric copolymer (component B) are in dry form during mixing, preferably in the form of powders, and preferably the mixture with component C is carried out at room temperature.
  • the molten state on a compounding tool such as a twin-screw extruder, a co-kneader or an internal or cylinder mixer.
  • the above process comprises mixing the PVDF homopolymer (component A) and the elastomeric copolymer (component B) in latex form, drying the homopolymer and copolymer mixture, and the Combination of the dried mixture with the component C is carried out in the molten state on a compounding tool such as a twin-screw extruder, a comalizer or an internal or cylinder mixer.
  • a compounding tool such as a twin-screw extruder, a comalizer or an internal or cylinder mixer.
  • composition according to the invention obtained by the manufacturing method described above can then be transformed for use in the form of pipes or cables, in particular using tools such as an extruder equipped with a suitable die. .
  • the subject of the invention is also, in general, a tube comprising at least one layer consisting of the composition according to the invention.
  • said tube is intended to be used as a polymeric sheath of flexible hoses used for transporting fluids from oil and gas operations.
  • the sheath can be used, in combination with at least one reinforcing layer and possibly an outer protective sheath, as a flexible hose for transporting fluids from oil or gas operations.
  • said tube is a land transport pipe of products in the gaseous state.
  • the aforementioned pipe is for the transport of gaseous products, especially for the transport of hydrogen, oxygen, water vapor, carbon monoxide, ammonia, hydrogen fluoride, hydrochloric acid, hydrogen sulphide, any gas from the cracking of hydrocarbons, or mixtures thereof.
  • said tube is intended for the ground transportation of products in the liquid state, for example the transport of water, solvents, petroleum products, or mixtures thereof.
  • the aforementioned pipe is a service station underground pipe or a vehicle fuel supply pipe.
  • the invention also relates to an electric cable made from the above-mentioned composition.
  • the invention also relates to the use of the composition described above, for the manufacture of pipes or electrical cables.
  • the present invention overcomes the disadvantages of the state of the art.
  • composition according to the invention makes it possible to manufacture pipes and pipes that remain mechanically reliable in the long term.
  • the composition according to the invention is particularly suitable for the manufacture of polymeric sheaths for flexible hoses for the transport of fluids from petroleum operations and pipes for the transport of liquid or gaseous synthesis products (for example for the transport of hydrogen).
  • the composition according to the invention is particularly suitable for being implemented by extrusion or coextrusion, which allows its transformation into tubes.
  • a PVDF homopolymer of low viscosity makes it possible to lower the viscosity of the composition in order to make it easily transformable by extrusion or coextrusion in the molten state.
  • the use for this purpose of a PVDF homopolymer of lower viscosity than that of component A (component C) makes it possible to obtain a 100% fluorinated composition, in which all the components are compatible and which do not encounter any problems.
  • selective degradation and / or extraction of the plasticizer in contact with certain chemical substances known during the use of a plasticizer such as dibutyl sebacate (DBS).
  • PVDF homopolymer of low viscosity in place of an extractable plasticizer makes it possible to preserve the mechanical properties of the composition over time, in particular the resistance to impact and fatigue and to avoid the volume variation of the objects obtained from the composition.
  • the composition is used for the manufacture of polymer sheaths for flexible hoses intended for the transport of fluids from petroleum operations and pipes for the transport of liquid or gaseous synthesis products (for example for the transport of hydrogen)
  • the hose considered is mechanically reliable in the long term and its volume is conserved over time which allows a simplified design of the tips.
  • thermoplastic polymer composition comprising the following 3 components:
  • FCTHM very high molar mass
  • Component A is a PVDF homopolymer comprising up to 50% by weight of chains of molar mass greater than 3,000,000 g / mol, representing the fraction of chains of very high molar mass. Said fraction is advantageously between 20 to 50%, preferably 25 to 45% by weight of component A.
  • These polymers are prepared by a synthesis process, especially in emulsion, in which:
  • VDF vinylene fluoride
  • a dispersion of VDF (vinylidene fluoride) in water is produced, optionally with the aid of a surfactant, the said dispersion being initially brought into contact with a non-organic initiator soaked in water capable of causing the polymerization of the monomers; and then, a portion of the PVDF having been formed in the presence of the non-organic initiator dissolved in water, is added: either (i) a chain transfer agent capable of propagating the polymerization, said polymerization is then initiated by a non-organic initiator soluble in water or by an organic initiator, or (ii) an organic initiator capable of to also carry out chain transfer and optionally a non-organic initiator soluble in water.
  • VDF vinylene fluoride
  • the principle of this process is based on the formation, at the beginning of polymerization, of a fraction of very high molecular weight macro-molecular chains, produced before the introduction of transfer agent (or before a transfer-type secondary reaction or termination helping to strongly limit the chain length) and without initiator capable of inducing a transfer reaction.
  • the reaction therefore starts without a transfer agent (CTA), and the first charge of CTA is injected at a conversion rate of the monomers, for example of the order of 5% by weight.
  • the necessary dose of CTA can then be introduced incrementally or continuously, the total amount and the rate of introduction to adjust the average molar mass of the polymer.
  • the product obtained will show a specific molecular weight distribution with a first population of very high mass and a second population of limited mass.
  • the polymerization step after addition of the first dose of transfer agent can also be carried out under the effect of an organic initiator whose contribution to the transfer reactions will be more or less important.
  • FCTHM is still obtained during the first polymerization step in the presence of the non-organic initiator, and a second fraction of moderate molar mass is formed under the sole action of the organic initiator.
  • the rate of conversion of the VDF before the first injection of CTA determines the fraction of very high-mass chains (in particular chains not transferred or transferred late) formed without transfer agent called "non-transferred chain fraction". Then the very high mass chains having been formed the number of injections or the rate of introduction of the CTA determines the distribution of the molar masses of the PVDF fraction which is not very high mass.
  • the total volume of CTA is not a critical parameter. It must be adjusted to set the average molar mass of the polymer that is associated with the melt viscosity. The volume of water in which the dispersion of the monomers is carried out, the amounts of surfactant, initiator and CTA are readily determinable by those skilled in the art.
  • the polymerization is carried out in a stirred reactor, then the PVDF is separated everywhere (it is in the form of solid particles) and the water is separated.
  • these techniques are known per se and are described in US Patents 4025709, US 4569978, US 4360652, EP 626396 and EP 0655468.
  • the aqueous emulsion is polymerized at a temperature of 50 to 130 ° C.
  • the polymerization is carried out at an absolute pressure of 40 to 120 bar.
  • surfactant any product capable of dispersing the monomers in water to facilitate their polymerization.
  • US Pat. No. 4,025,709, US Pat. No. 4,560,478, US Pat. No. 4,360,462, EP No. 6,046,666, EP No. 2,059,463 and EP No. 2,089,463 describe the methods for synthesizing PVDF by aqueous emulsification of VDF and its polymerization, there are numerous surfactant formulations.
  • the amount of surfactant introduced at the start or during polymerization may be between 0.01 and 5 parts per 100 parts of water present in the initial charge of the reactor.
  • inorganic peroxides for example in the form of salts, such as potassium or sodium persulfate, may be mentioned.
  • the amount of initiator may range from 0.002 to 0.2 parts per 100 parts of monomers consumed in the reaction.
  • Various coreactants well known to those skilled in the art may also be added to these inorganic peroxides to increase their rate of decomposition or to lower their temperature of use.
  • organic initiator optionally used to continue the reaction
  • hydrocarbon peroxides such as di-tert-butylperoxide, di-cumylperoxide or benzoyl peroxide
  • dialkyl percarbonates such as diethyl or di-so-propylpercarbonate
  • peracids or peresters such as t-butyl perpivalate; t-amyl perpivalate or t-butyl peroxybenzoate.
  • the transfer agent is meant any product that limits the molecular weight of the polymer while propagating the polymerization reaction.
  • the amount of transfer agent depends essentially on its nature and the average molar mass desired for the polymer fraction obtained in its presence, which conditions the average viscosity of the final product.
  • the transfer agent used represents from 0.01 to 5 parts per 100 parts of monomers consumed in the reaction.
  • the proportion of very high molar mass chains can represent up to 50% the weight of the component A and it is advantageously between 20 to 50%, preferably from 25 to 45% inclusive.
  • the PVDF homopolymer used in the context of the invention as component A has a melt flow index of less than or equal to 15 g / 10 min, advantageously less than or equal to 10 g / 10 min, and ideally less than or equal to 5 g / 10 min, according to ISO 1133 (230 ° C, 12.5 kg), in order to guarantee good mechanical strength properties.
  • Component B is present in the composition at a mass content greater than 10%).
  • the elastomeric copolymer is present in the composition in a mass proportion of more than 10 to 40%, advantageously 20 to 40%, preferably 25 to 35%, inclusive.
  • the mass content of copolymer in the composition is greater than or equal to 11%, or 12%, or 13%, or 14%, or 15%, or 16%>, or 17%>, or 18%, or 19%, or 20%, or 21%, or 22%, or 23%, or 24%, or 25%, or 26%, or 27%, or 28%, or 29%, or 30%, or 31%, or 32%>, or 33%>, or 34%, or 35%, or 36% , or 37%, or 38%, or 39%.
  • the mass content of copolymer in the composition is less than or equal to 39%, or 38%, or 37%, or 36%, or 35%, or 34%, or 33%.
  • the proportion by weight of comonomer in the copolymer is greater than 25%.
  • it is: greater than or equal to 26%, and / or less than or equal to 40%, preferably less than or equal to 37%.
  • the mass proportion of HFP in the copolymer is greater than 25%.
  • it is: greater than or equal to 26%, and / or less than or equal to 40%, preferably less than or equal to 37%.
  • the mass proportion of HFP in the elastomeric copolymer is preferably estimated by nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • the copolymer samples are dissolved in a 5 mm diameter NMR tube.
  • the copolymer samples are dissolved in tetrahydrofuran-d8 (THF-d8) at 60 ° C.
  • An amount of copolymer (about 10 mg) is placed in a tube and solvent is added to fill 5.5 cm of tube (about 0.75 mL solvent).
  • a heating block is used to bring the samples to the desired temperature.
  • the samples are heated for at least one hour until dissolution of the solid and disappearance of the gel.
  • the tubes are returned to check for frost.
  • the spectra are acquired on a Bruker Advance type spectrometer operated at 60 ° C. and are analyzed according to a method analogous to that described in "Composition and Sequence Distribution of Vinylidene Fluoride Copolymer and Terpolymer Fluoroelastomers". Determination by NMR spectroscopy and 19 F correlation With Some properties ". M. Pianca et al, Polymer, 1987, vol.28, 224-230. However, the integration of the group CF instead of the group CF3 is used.
  • the elastomeric copolymer used for the preparation of the composition according to the invention is devoid of homopolymer.
  • the copolymer can be manufactured by the method described in the publication by M. Pianca et al supra.
  • elastomeric copolymer is meant, as defined by ASTM in Special Technical Publication No. 184, a material capable of being stretched at room temperature up to twice its own length and which once released after holding on for 5 minutes, resumes to within 10%, its initial length at the same time.
  • the fluoroelastomers that may be used in the context of the invention may be chosen from true elastomers or polymeric resins serving as the basic constituent for obtaining true elastomers.
  • Component C is a low molecular weight VDF homopolymer; it is present in the composition in a mass proportion ranging from 1 to 20%, in particular from 2 to 18% and preferably from 5 to 15%.
  • the ratio of the apparent melt viscosities of the components A and C is greater than or equal to 5, in particular greater than or equal to 10 and preferably greater than or equal to 50. This ratio is less than 500, preferably less than 500. at 400.
  • the apparent melt viscosities of components A and C are expressed in Pa.s and measured on a capillary rheometer at a temperature of 230 ° C. and a shear of 100s 1 .
  • the composition according to the invention may comprise at least one additive and / or at least one filler and / or electrically conductive particles and / or inorganic or organic pigments or dyes.
  • fillers non-limiting mention may be made of mica, alumina, talc, carbon black, graphenes, expended graphites, carbon nanotubes, glass fibers and calcium carbonate.
  • UV stabilizers preferably with the exception of agents of the IRGANOX ® type
  • flame retardants preferably with the exception of flame retardants, heat stabilizers, manufacturing auxiliaries (preferably with the exception of polyolefins and in particular ethylene-based polymers).
  • the above compounds distinct from the FCTHM PVDF, the copolymer and the PVDF homopolymer of low mass, are present at a level of at most 20%, preferably at most 15%, or at 10%. not more than 7% or not more than 5% or not more than 3% or not more than 2% or not more than 1% (in mass proportion to total composition).
  • the subject of the invention is also a process for the manufacture of the above composition, comprising mixing the PVDF homopolymer (component A), the elastomeric copolymer (B) and the low molecular weight PVDF homopolymer (component C).
  • This manufacturing method comprises any method which makes it possible to obtain a homogeneous mixture of the various constituents. Among these methods, mention may especially be made of the mixture in the molten or dry state. More particularly, the composition according to the invention is prepared by melt blending of all the constituents, on a compounding tool such as a twin-screw extruder, a comalizer or an internal or roll mixer.
  • the FCTHM PVDF homopolymer (component A) and the copolymer (component B) are in dry form during mixing, preferably in the form of powders.
  • the above method comprises premixing components A and B in latex form (or emulsions), and then drying the premix in a powder.
  • An alternative is to pre-mix the component A in latex form with the copolymer B in powder form (or vice versa), then to dry this type of premix into a powder.
  • the component C in the form of powder or latex, as well as any additives may be incorporated into the compositions during the mixing of the PVDF and the copolymer, or else mixed with one or the other of these constituents prior to their mixing, or else during the premixing of the PVDF and the copolymer according to the pre-mixing techniques described above.
  • composition according to the invention makes it possible to manufacture: - all types of pipes for the transport of gaseous or liquid products, in particular intended to transport gaseous products for the synthesis of chemicals or intended to transport individual consumer products, whether industrial or public,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne une composition polymérique fluorée, des procédés de fabrication de celle-ci, ainsi que des produits pouvant être fabriqués à partir de cette composition. Plus particulièrement, l'invention concerne une composition polymérique thermoplastique comprenant les composants A, B et C suivants: A -un homopolymère de polyfluorure de vinylidène (PVDF) comprenant une fraction de chaînes de très haute masse molaire (FCTHM); B -un copolymère élastomérique de fluorure de vinylidène (VDF) et d'au moins un autre comonomère fluoré copolymérisable avec le VDF, et C -un homopolymère du VDFayant uneviscositéplus faible que le composant A.

Description

COMPOSITION POLYMERIQUE FLUOREE
DOMAINE DE L'INVENTION
La présente invention concerne une composition polymérique fluorée, des procédés de fabrication de celle-ci, ainsi que des produits pouvant être fabriqués à partir de cette composition, notamment les gaines polymériques des tuyaux flexibles utilisés pour le transport de fluides des exploitations pétrolières (sous-marine, ou « off-shore », et terrestre, ou « on-shore ») ou gazières.
ARRIERE-PLAN TECHNIQUE
Le transport de produits chimiques à l'état liquide ou gazeux dans des conduites présente de nombreux avantages : il est plus économique, une fois l'infrastructure mise en place ; il permet le transport de gros volumes ; il assure une grande sécurité d'approvisionnement, grâce à un débit régulier ; enfin, c'est un moyen plus sûr que le rail ou la route.
Il est connu d'utiliser, pour le transport de produits liquides ou gazeux, des tubes métalliques ou en matières plastiques, ou encore des tubes métalliques revêtus d'une ou plusieurs couches polymériques. Selon le fluide à transporter, ces tubes doivent répondre à de multiples exigences, notamment en ce qui concerne les propriétés de résistance mécanique (en particulier à l'impact), d'élasticité, de tenue au fluage, de tenue à la fatigue, de résistance au gonflement, de résistance chimique (à la corrosion, à l'oxydation, à l'ozone, aux produits chlorés...) et de résistance thermique.
Par exemple, on connaît des tuyaux comportant un ou plusieurs éléments métalliques garantissant la rigidité mécanique mais non étanches aux fluides transportés (par exemple des éléments en acier ou en fonte), ainsi que diverses couches à base de compositions polymériques, pour assurer l'étanchéité aux fluides transportés ainsi que l'isolation thermique. Typiquement, dans le cas des couches polymériques, le ratio épaisseur/diamètre est de l'ordre de 1/10. Ces compositions polymériques peuvent être à base de polyéthylène, mais cela limite la température d'utilisation des tuyaux à 60°C au maximum. Elles peuvent également être à base de polymères fluorés tels que le polyfluorure de vinylidène encore appelé fluorure de polyvinylidène (PVDF), convenant à des températures d'utilisation plus élevées, jusqu'à 130°C, et présentant une bonne résistance chimique et une bonne tenue thermique. Toutefois, le PVDF est très rigide, et pour cette raison, les homopolymères de PVDF sont souvent formulés ou utilisés en mélange avec des copolymères à base de fluorure de vinylidène (VDF) et éventuellement de plastifiant afin d'en réduire la rigidité.
Des tuyaux flexibles sont également utilisés pour le transport du pétrole ou du gaz naturel extraits de gisements sous-marins ou terrestres. Ces tuyaux sont formés de structures multicouches comprenant notamment des gaines polymériques et des couches de renfort métalliques ou en matériaux composites.
Les tuyaux flexibles comprennent, de l'intérieur vers l'extérieur :
- au moins un tube d'étanchéité interne en contact avec le fluide transporté, constitué d'un matériau polymérique,
- une ou plusieurs couches de renfort entourant ledit tube d'étanchéité interne, et
- une gaine de protection externe.
Le document BE 832851 décrit des élastomères fluorés comprenant une proportion molaire de 50 à 85 % de VDF et de 15 à 25 % d'hexafluoropropylène (HFP) soit une proportion massique de 47 à 71 % de VDF et de 29 à 53 % d'HFP, qui sont utilisés pour la fabrication de corps moulés de PVDF comprenant de 1 à 30 % en poids d'élastomère fluoré. De telles compositions ont cependant une extrudabilité limitée, et ne permettent pas la fabrication de tubes ayant un ratio épaisseur/diamètre proche de 1/10.
Le document EP 1342752 décrit des compositions à base de PVDF comprenant : (A) un homopolymère PVDF ou un copolymère à base de VDF ; (B) un élastomère fluoré ; (C) éventuellement un plastifiant. L'élastomère fluoré (B) est présent à hauteur de 0,5 à 10 parties en poids pour 100 parties d'homopolymère ou copolymère (A) et de 0 à 10 parties en poids de d'un plastifiant (C) avec la condition supplémentaire que la somme de (B) plus (C) soit de 0,5 à 10,5 parties en poids. Ces compositions correspondent aux proportions massique suivantes : 89,5 à 90,5% d'un homopolymère PVDF ou un copolymère à base de VDF (A) ; 0,5 à 9% d'un élastomère fluoré (B) ; 0 à 9% d'un plastifiant (C). Les teneurs en élastomère fluoré, inférieures à 10 %, ne permettent pas de conférer au produit fini des caractéristiques de résistance en fatigue suffisante pour les applications décrites plus haut.
Le document EP 608639 décrit des compositions polymériques comprenant, en poids, de 60 à 80 % de PVDF, de 20 à 40 % d'un copolymère thermoplastique de VDF et d'un autre comonomère fluoré (présent à hauteur de 5 à 25 % dans le copolymère), et de 5 à 20 % d'un plastifiant (par rapport à la somme du PVDF et du copolymère). Parmi les copolymères thermoplastiques envisagés figurent des copolymères VDF/HFP. Les teneurs en HFP indiquées dans les copolymères qui sont divulgués dans les exemples sont de l'ordre de 10 %, Cependant, ces compositions subissent une extraction du plastifiant au contact de certaines substances chimiques. Par suite, les gaines réalisées avec ces compositions ne conservent pas une géométrie stable, leur volume et donc leur épaisseur ayant tendance à diminuer au fil du temps.
Ce phénomène peut avoir un effet préjudiciable sur l'étanchéité des embouts situés aux deux extrémités de la conduite. En effet, l'étanchéité entre d'une part l'extrémité de la gaine de pression et d'autre part le corps de l'embout (« end fîtting » en langue anglaise) se fait par un procédé de sertissage, c'est-à-dire de serrage de la gaine entre deux pièces concentriques prenant appui respectivement sur les faces internes et externe de la dite gaine.
Une diminution excessive de l'épaisseur de la gaine peut donc avoir pour effet de dégrader la pression de sertissage et l'étanchéité de l'embout.
Le document WO 2006/045753 décrit des compositions polymériques comprenant un PVDF homopolymère, un copolymère fluoré thermoplastique et un troisième composant pouvant être un plastifiant à hauteur de 5 % en poids au plus, un polymère perfluoré ou un polymère du VDF de faible masse moléculaire. Le copolymère fluoré thermoplastique peut par exemple être un copolymère de VDF et d'un autre comonomère fluoré, qui peut être présent en une teneur de 5 à 25 %. De manière caractéristique, le mélange de PVDF homopolymère et de copolymère fluoré possède une viscosité intrinsèque moyenne inférieure à 2 dl/g. Par ailleurs, la composition polymérique présente une viscosité apparente à l'état fondu inférieure ou égale à 60 000 Pa.s, à un gradient de vitesse de 1 s"1. Cependant, les composés polymériques fluorés des structures tubulaires réalisés avec de telles compositions ne donnent pas entièrement satisfaction. En particulier, lorsque les structures sont soumises à des mouvements répétés dus aux courants marins, la tenue à la fatigue de ces composés polymériques fluorés est jugée insuffisante.
Le document FR 2987624 décrit des compositions comprenant un PVDF homopolymère, un copolymère fluoré élastomérique et un plastifiant. Le copolymère présente des propriétés élastomériques qu'il confère au composé polymérique fluoré et qui permet non seulement d'augmenter la tenue en fatigue dudit composée, mais aussi d'améliorer la tenue à froid. C'est là une différence essentielle avec l'objet du document WO 2006/045753, où précisément, il est recherché des compositions aptes à former des composés polymériques fluorés non élastomériques. Cependant , l'extraction du plastifiant qui se produit durant la durée de vie de la structure tubulaire, en plus de modifier la géométrie des gaines (variation de volume et épaisseur) comme déjà mentionné plus haut, conduit progressivement à une perte des propriétés apportées initialement par la plastification (souplesse, résilience), limitant par conséquent la durée de vie des articles à base de ces compositions.
L'objet de la présente invention est donc de mettre au point une nouvelle composition polymérique à base d'un PVDF homopolymère particulier, d'un copolymère fluoré élastomérique et d'un troisième composant fluoré de basse viscosité, ladite composition présentant des propriétés mécaniques et chimiques améliorées par rapport aux compositions connues, et qui n'évoluent pas au cours de la vie de la conduite en service afin de fabriquer des tuyaux et conduites demeurant mécaniquement fiables sur le long terme notamment pour l'application monogaine de pression utilisée dans le domaine de l'off-shore.
RESUME DE L'INVENTION
L'invention concerne en premier lieu une composition polymérique thermoplastique comprenant les composants A, B et C suivants:
A- un homopolymère de polyfiuorure de vinylidène (PVDF) comprenant une fraction de chaînes de très haute masse molaire (FCTHM);
B- un copolymère élastomérique de fluorure de vinylidène (VDF) et d'au moins un autre comonomère fluoré copolymérisable avec le VDF, et
C- un homopolymère du VDFdéfmi par le rapport entre la viscosité du composant A et sa propre viscosité, comme indiqué ci-après.
Avantageusement, la composition polymérique selon l'invention est exempte de plastifiant.
De manière caractéristique, le composant A est un PVDF homopolymère comprenant une fraction de chaînes de très haute masse molaire (FCTHM), qui sont définies comme étant des chaînes de masse molaire supérieure à 3 000 000 g/mol, englobant notamment les chaînes non transférées ou transférées tardivement (FCNT) définies plus loin. Les autres chaînes du composant A sont fabriquées par initiation et transfert ou transfert plus précoce et ont des masses molaires inférieures à 3 000 000 g/mol.
La proportion massique des chaînes de très haute masse molaire dans le composant A est calculée par la formule suivante :
100 - (proportion massique de chaînes de masse moléculaire inférieure à 3000000 g/mol exprimée en équivalent Polyméthacrylate de Méthyle).
La proportion massique de chaînes de masse moléculaire inférieure à 3000000 g/mol exprimée en équivalent Polyméthacrylate de Méthyle dans le composant A est déterminée par chromatographie d'exclusion stérique dans les conditions décrites ci-après. Le diméthylsulfoxide (DMSO) auquel on a ajouté du nitrate de sodium (NaN03) à une concentration de 0,1 mol/L est à la fois l'éluant et le solvant des échantillons. La concentration des échantillons de composant A préparés est de de 2g/L, la mise en solution est faite pendant 4 heures à une température de 95 °C. La solution obtenue est filtrée à l'aide d'un filtre sur seringue de porosité 0,45μιη et un volume de 200 μΐ est injecté dans la ligne de chromatographie d'exclusion stérique. Celle-ci est typiquement munie de 2 colonnes en série de longueur 300 mm et de diamètre 8 mm, de granulométrie 7μιη, de porosité 100 Angstrom et 1000 Angstrom, régulées en température à 50°C. Il a été utilisé les colonnes Polymer Standards Service référencées PSS PFG 1000 Angstrom et PSS PFG 100 Angstrom. La détection en sortie de colonne se fait par un refractomètre différentiel. Il est également régulé en température à 50°C. Les étalons utilisés pour l'étalonnage des colonnes sont des polyméthacylates de méthyle (PMMA) étroits couvrant la gamme de séparation des colonnes.
La proportion des chaînes de très haute masse moléculaire (notamment des chaînes non transférées ou transférés tardivement) ainsi calculée représente jusqu'à 50% en poids du composant A, borne comprise.
Le composant A présente un indice de fluidité à chaud inférieur ou égal à 15 g / 10 min, avantageusement inférieur ou égal à 10 g / 10 min, de préférence inférieur ou égal à 5 g / 10 min, selon la norme ISO 1 133.
Le composant B est présent dans la composition à une teneur massique supérieure à
10%. Selon un mode de réalisation le comonomère fluoré copolymérisable avec le VDF est choisi parmi le fluorure de vinyle, le trifluoroéthylène, le chlorotrifluoroéthylène (CTFE), le l,2-difluoroéthylène,tétrafluoroéthylène (TFE), l'hexafluoropropylène (HFP), les perfluoro(alky vinyl) éthers tels que le perfluoro(méthylvinyl)éther (PMVE), le perfluoro(éthylvinyl)éther (PEVE), le perfluoro(propylvinyl)éther (PPVE), le perfluoro(l,3- dioxozole); le perfluoro(2,2diméthyl-l,3dioxozole) (PDD), le produit de formule CF2=CF0CF2CF(CF3)OCF2CF2X dans laquelle X est S02F, C02H, CH2OH; CH2OCN ou CH2OP03H, le produit de formule CF2=CFOCF2CF2S02F; le produit de formule F(CF2)nCH20CF=CF2 dans laquelle n est 1,2,3,4 ou 5, le produit de formule R1CH20CF=CF2 dans laquelle RI est l'hydrogène ou F(CF2)z et z vaut 1, 2, 3, ou 4; le produit de formule R30CF=CH2 dans laquelle R3 est F(CF2)z et z vaut 1, 2, 3, ou 4 ou encore le perfluorobutyléthylène (PFBE), le fluoroéthylènepropylène (FEP), le 3,3,3- trifluoropropène, le 2 trifluoromethyl-3,3,3-trifluoro-l-propène, le 2,3,3,3- tétrafluoropropène ou HFO-1234yf, le E-l,3,3,3-tétrafluoropropène ou HFO-1234zeE, le Z- 1,3,3,3-tétrafluoropropène ou HFO-1234zeZ, le 1,1,2,3-tétrafluoropropene ou HFO-1234yc, lel,2,3,3-tétrafluoropropène ou HFO-1234ye, le 1,1,3,3-tétrafluoropropène ou HFO- 1234zc et le chlorotétrafluoropropène ou HCFO-1224.
Selon un mode de réalisation préféré, le comonomère est Phexafluoropropylène
(HFP).
Selon un mode de réalisation, le copolymère élastomérique est présent dans la composition dans une proportion massique de plus de 10 à 40%, avantageusement de 15 à 40%) de préférence de 17 à 35 %, bornes comprises.
La proportion massique de comonomère dans le copolymère est supérieure à 25 %. Avantageusement, elle est : supérieure ou égale à 26 %, et / ou inférieure ou égale à 40 %, de préférence inférieure ou égale à 37%.
Le composant C est un homopolymère de VDF ayant une viscosité plus faible que le composant A; il est présent dans la composition dans une proportion massique allant de 1 à 20 %>, en particulier de 2 à 18 % et de préférence de 5 à 15 %.
Le rapport des viscosités apparentes à l'état fondu des composants A et C est supérieur ou égal à 5, en particulier supérieur ou égal à 10 et de préférence supérieur ou égal à 50. Ce rapport est inférieur à 500, de préférence inférieur à 400. Les viscosités apparentes à l'état fondu des composants A et C sont exprimées en Pa.s et mesurées sur un rhéomètre capillaire à une température de 230°C et un cisaillement de 100s"1.
Selon un mode de réalisation, la composition polymère thermoplastique est constituée de :
A - un homopolymère de polyfluorure de vinylidène comprenant une fraction de chaînes de très haute masse molaire (FCTHM);
B - un copolymère VDF-HFP, et
C - un homopolymère du VDF,
les composants A, B et C étant comme définis ci-dedans.
L'invention a également pour objet un procédé de fabrication de la composition ci- dessus, comprenant le mélange de F homopolymère, du copolymère, du modifiant fluoré et des éventuels additifs. Ce procédé de fabrication comprend toute méthode qui permet d'obtenir un mélange homogène des différents constituants. Parmi ces méthodes, on peut notamment citer le mélange à l'état fondu ou sec.
Plus particulièrement, la composition selon l'invention est préparée par mélange à l'état fondu de tous les constituants, sur un outil de compoundage comme une extrudeuse bi- vis, un co-malaxeur ou un mélangeur interne ou à cylindre. Selon un mode de réalisation, l'homopolymère de PVDF (composant A) et le copolymère élastomérique (composant B) sont sous forme sèche lors du mélange, de préférence sous forme de poudres, et de préférence le mélange avec le composant C est effectué à l'état fondu sur un outil de compoundage comme une extrudeuse bi-vis, un co- malaxeur ou un mélangeur interne ou à cylindre.
Selon un mode de réalisation, le procédé ci-dessus comprend le mélange de l'homopolymère de PVDF (composant A) et du copolymère élastomérique (composant B) sous forme de latex, le séchage du mélange d'homopolymère et de copolymère, et la combinaison du mélange séché avec le composant C est effectuée à l'état fondu sur un outil de compoundage comme une extrudeuse bi-vis, un comalaxeur ou un mélangeur interne ou à cylindre.
La composition selon l'invention obtenue par le procédé de fabrication décrit ci- dessus peut être ensuite transformée pour une utilisation sous forme de tuyaux ou de câbles, notamment à l'aide d'outils tels qu'une extrudeuse munie d'une filière adaptée.
L'invention a également pour objet, d'une manière générale, un tube comprenant au moins une couche constituée de la composition selon l'invention.
Selon un mode de réalisation, ledit tube est destiné à être employé comme gaine polymérique des tuyaux flexibles utilisés pour le transport de fluides des exploitations pétrolières et gazières. Sous cette forme, la gaine peut être utilisée, en combinaison avec au moins une couche de renfort et possiblement une gaine de protection externe, en tant que tuyau flexible pour le transport de fluides des exploitations pétrolières ou gazières.
Selon un mode de réalisation, ledit tube est un tuyau de transport terrestre de produits à l'état gazeux.
Selon un mode de réalisation, le tuyau susmentionné est pour le transport de produits gazeux, notamment pour le transport d'hydrogène, d'oxygène, de vapeur d'eau, de monoxyde de carbone, d'ammoniac, de fluorure d'hydrogène, d'acide chlorhydrique, de sulfure d'hydrogène, de tout gaz issu du craquage des hydrocarbures, ou de mélanges de ceux-ci.
Selon un mode de réalisation, ledit tube est destiné au transport terrestre de produits à l'état liquide, par exemple le transport d'eau, solvants, produits pétroliers, ou de mélanges de ceux-ci.
Selon un mode de réalisation, le tuyau susmentionné est un tuyau souterrain pour station-service ou un tuyau d'alimentation en carburant pour véhicules. L'invention a également pour objet un câble électrique fabriqué à partir de la composition susmentionnée.
L'invention a également pour objet l'utilisation de la composition décrite ci-dessus, pour la fabrication de tuyaux ou de câbles électriques.
La présente invention permet de surmonter les inconvénients de l'état de la technique.
Elle fournit plus particulièrement une nouvelle composition polymérique présentant des propriétés mécaniques et chimiques améliorées qui n'évoluent pas au cours de la vie du matériau tout en étant aisément transformable par extrusion ou co-extrusion à l'état fondu.
Cette composition permet donc de fabriquer des tuyaux et conduites qui demeurent mécaniquement fiables sur le long terme. La composition selon l'invention est particulièrement appropriée pour la fabrication de gaines polymériques pour les tuyaux flexibles destinés au transport de fluides des exploitations pétrolières et des tuyaux pour le transport de produits de synthèse liquides ou gazeux (par exemple pour le transport d'hydrogène). Comme déjà mentionné, la composition selon l'invention est particulièrement apte à être mise en œuvre par extrusion ou co-extrusion, ce qui permet sa transformation sous forme de tubes.
Ceci est accompli en associant à un homopolymère PVDF à fraction de chaînes non transférées, un copolymère élastomérique à base de VDF, le copolymère étant présent dans la composition finale en une proportion de plus de 10% ; et en ajoutant un PVDF homopolymère de basse viscosité dans la composition à une teneur massique de 20%> au plus. L'utilisation d'un homopolymère de PVDF dont la masse moléculaire est très élevée confère à la composition des propriétés de résistance au choc à froid et à la fatigue améliorées. L'association à un copolymère de nature élastomérique permet en outre la formation d'un système biphasique dans lequel les nodules d'élastomère jouent le rôle de renfort, ce qui conduit à des propriétés au choc à froid et en fatigue encore améliorées. Enfin, l'ajout d'un homopolymère PVDF de basse viscosité permet d'abaisser la viscosité de la composition afin de la rendre aisément transformable par extrusion ou co-extrusion à l'état fondu. En outre l'utilisation pour ce faire d'un homopolymère PVDF de viscosité plus faible que celle du composant A (composant C) permet d'obtenir une composition 100% fluorée, dans laquelle tous les composants sont compatibles et qui ne rencontrent pas des problèmes de dégradation sélective et/ou d'extraction du plastifiant au contact de certaines substances chimiques, connues lors de l'utilisation d'un plastifiant tel que le sébaçate de dibutyle (DBS). L'emploi d'un homopolymère PVDF de basse viscosité à la place d'un plastifiant extractible permet la conservation des propriétés mécaniques de la composition au cours du temps, notamment la résistance au choc et en fatigue ainsi que d'éviter la variation volumique des objets obtenus à partir de la composition. Notamment lorsque la composition est utilisée pour la fabrication de gaines polymériques pour les tuyaux flexibles destinés au transport de fluides des exploitations pétrolières et des tuyaux pour le transport de produits de synthèse liquides ou gazeux (par exemple pour le transport d'hydrogène), le tuyau considéré est mécaniquement fiable sur le long terme et son volume est conservé au cours du temps ce qui permet un design simplifié des embouts.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Selon un premier objet, l'invention concerne une composition polymère thermoplastique comprenant les 3 composants suivants:
A - un homopolymère PVDF comprenant une fraction de chaînes de très haute masse molaire (FCTHM);
B - un copolymère élastomérique de VDF et d'au moins un autre comonomère fluoré copolymérisable avec le VDF, et
C - un homopolymère PVDF de basse viscosité.
Le composant A est un PVDF homopolymère comprenant jusqu'à 50% en poids de chaînes de masse molaire supérieure à 3 000 000 g/mol, représentant la fraction de chaînes de très haute masse molaire. Ladite fraction est avantageusement comprise entre 20 à 50%, de préférence de 25 à 45% en poids du composant A.
Ces polymères sont connus, leur préparation a été décrite par la Demanderesse dans le document EP 1279685.
Ces polymères sont préparés par un procédé de synthèse notamment en émulsion dans lequel :
- on réalise une dispersion de VDF (fluorure de vinylidène) dans l'eau, éventuellement à l'aide d'un tensioactif, la dite dispersion étant initialement mise en contact avec un amorceur non organique so lubie dans l'eau capable de provoquer la polymérisation des monomères ; - puis, une partie du PVDF ayant été formée en présence de l'amorceur non organique so lubie dans l'eau, on ajoute: soit (i) un agent de transfert de chaînes capable de propager la polymérisation, la dite polymérisation est alors initiée par un amorceur non organique soluble dans l'eau ou par un amorceur organique, soit (ii) un amorceur organique capable d'effectuer aussi du transfert de chaînes et éventuellement un amorceur non organique soluble dans l'eau.
Le principe de ce procédé est basé sur la formation, en début de polymérisation, d'une fraction de chaînes macro moléculaires de très haute masse molaire, produite avant l'introduction d'agent de transfert (ou avant une réaction secondaire de type transfert ou terminaison contribuant à limiter fortement la longueur de chaîne) et sans amorceur capable d'induire une réaction de transfert. La réaction démarre donc sans agent de transfert (CTA), et la première charge de CTA est injectée à un taux de conversion des monomères par exemple de l'ordre de 5% en poids. La dose nécessaire de CTA peut alors être introduite par incrément ou en continu, la quantité totale et le rythme d'introduction permettant d'ajuster la masse molaire moyenne du polymère. Dans le cas d'une seule injection d'agent de transfert, le produit obtenu va montrer une distribution spécifique des masses moléculaires avec une première population de très haute masse et une seconde population de masse limitée. L'étape de polymérisation après addition de la première dose d'agent de transfert peut également être conduite sous l'effet d'un amorceur organique dont la contribution aux réactions de transfert sera plus ou moins importante.
Dans le cas particulier d'un amorceur organique possédant un effet transfert suffisant pour ajuster la masse molaire, il est également possible de s'affranchir de l'agent de transfert proprement dit sans changer la nature de l'invention. Dans ce cas, la FCTHM est encore obtenue lors de la première étape de polymérisation en présence de l'amorceur non- organique, et une seconde fraction de masse molaire modérée est formée sous la seule action de l'amorceur organique.
Le taux de conversion du VDF avant la première injection de CTA détermine la fraction de chaînes de très haute masse (notamment des chaînes non transférées ou transférées tardivement) formée sans agent de transfert dite « fraction de chaînes non transférées ». Puis les chaînes de très haute masse ayant été formées le nombre d'injections ou le débit d'introduction du CTA détermine la distribution des masses molaires de la fraction du PVDF qui n'est pas de très haute masse. Le volume total de CTA n'est pas un paramètre critique. Il doit être ajusté de manière à fixer la masse molaire moyenne du polymère qui est associé à la viscosité à l'état fondu. Le volume d'eau dans lequel on réalise la dispersion des monomères, les quantités de tensioactif, d'initiateur et de CTA sont déterminables facilement par l'homme de métier. On effectue la polymérisation dans un réacteur agité puis on sépare partout moyen le PVDF (il est sous forme de particules solides) et l'eau. Ces techniques sont connues en elles-mêmes et sont décrites dans les brevets US 4025709, US 4569978, US 4360652, EP 626396 et EP 0655468. Avantageusement, l'émulsion aqueuse est polymérisée à une température de 50 à 130°C. De préférence, la polymérisation est réalisée à une pression absolue de 40 à 120 bar.
S'agissant du tensioactif on désigne ainsi tout produit capable de disperser les monomères dans l'eau afin de faciliter leur polymérisation. Les brevets US 4025709, US 4569978, US 4360652, EP 626396, EP 0655468, EP 1891153 et EP 2089463 décrivent les procédés de synthèse du PVDF par mise en émulsion aqueuse du VDF et sa polymérisation, on y trouve de nombreuses formules de tensioactifs. La quantité de tensioactif introduite au départ ou en cours de polymérisation, peut être comprise entre 0,01 et 5 parties pour 100 parties d'eau présente dans la charge initiale du réacteur.
S'agissant de l'amorceur non organique soluble dans l'eau capable de provoquer la polymérisation du VDF, on peut citer essentiellement les peroxydes inorganiques, par exemple sous forme de sels, tels que le persulfate de potassium ou de sodium. La quantité d'initiateur peut être comprise entre 0,002 et 0,2 parties pour 100 parties de monomères consommés dans la réaction. Différents coréactifs bien connus par l'homme du métier peuvent être également ajoutés à ces peroxydes inorganiques pour augmenter leur vitesse de décomposition ou abaisser leur température d'utilisation.
S'agissant de l'amorceur organique éventuellement employé pour poursuivre la réaction, on peut citer essentiellement les peroxydes hydrocarbonés, tel que le di- tertiobutylperoxyde, le di-cumylperoxyde ou le peroxyde de benzoyle, les percarbonates de dialkyle, tel que le diethyl ou di-so-propylpercarbonate, les peracides ou peresters, tel que le perpivalate de t-butyle ; le perpivalate de t-amyle ou le peroxybenzoate de t-butyle.
S'agissant de l'agent de transfert, on désigne ainsi tout produit qui permet de limiter la masse molaire du polymère tout en propageant la réaction de polymérisation. A titre d'exemple on peut citer l'acétone, l'isopropanol, l'acétate de méthyle, l'acétate d'éthyle, le diéthyléther, l'acétate de n-butyle, le malonate de diéthyle et le carbonate de diéthyle et différent composés chlorofluorocarbonés. La quantité d'agent de transfert dépend essentiellement de sa nature et de la masse molaire moyenne désirée pour la fraction de polymère obtenue en sa présence, laquelle conditionne la viscosité moyenne du produit final. De préférence, l'agent de transfert mis en œuvre représente de 0,01 à 5 parties pour 100 parties de monomères consommés dans la réaction.
S'agissant de la proportion des chaînes de très haute masse molaire (notamment des chaînes non transférées ou transférées tardivement), elle peut représenter jusqu'à 50% en poids du composant A et elle est avantageusement comprise entre 20 à 50%, de préférence de 25 à 45% bornes comprises.
Dans un mode de réalisation, l'homopolymère de PVDF utilisé dans le cadre de l'invention en tant que composant A présente un indice de fluidité à chaud inférieur ou égal à 15 g / 10 min, avantageusement inférieur ou égal à 10 g / 10 min, et idéalement inférieur ou égal à 5 g / 10 min, selon la norme ISO 1133 (230°C, 12,5 kg), afin de garantir de bonnes propriétés de résistance mécanique.
Le composant B est présent dans la composition à une teneur massique supérieure à 10%). Selon un mode de réalisation, le copolymère élastomérique est présent dans la composition dans une proportion massique de plus de 10 à 40%>, avantageusement de 20 à 40%) de préférence de 25 à 35%, bornes comprises.
Selon certains modes de réalisation, la teneur massique en copolymère dans la composition est supérieure ou égale à 11 %, ou à 12 %, ou à 13 %, ou à 14 %, ou à 15 %, ou à 16 %>, ou à 17 %>, ou à 18 %, ou à 19 %, ou à 20 %, ou à 21 %, ou à 22 %, ou à 23 %, ou à 24 %, ou à 25 %, ou à 26 %, ou à 27 %, ou à 28 %, ou à 29 %, ou à 30 %, ou à 31 %, ou à 32 %>, ou à 33 %>, ou à 34 %, ou à 35%, ou à 36%, ou à 37%, ou à 38%, ou à 39%.
Selon certains modes de réalisation, la teneur massique en copolymère dans la composition est inférieure ou égale à 39%, ou à 38%, ou à 37%, ou à 36%, ou à 35%, ou à 34 %, ou à 33 %, ou à 32 %, ou à 31 %, ou à 30 %, ou à 29 %, ou à 28 %, ou à 27 %, ou à 26 %, ou à 25 %, ou à 24 %, ou à 23 %, ou à 22 %, ou à 21 %, ou à 20 %, ou à 19 %, ou à 18 %, ou à 17 %, ou à 16 %, ou à 15 %, ou à 14 %, ou à 13 %, ou à 12 %, ou à 11 %.
La proportion massique de comonomère dans le copolymère est supérieure à 25 %. Avantageusement, elle est : supérieure ou égale à 26 %, et / ou inférieure ou égale à 40 %, de préférence inférieure ou égale à 37%.
Selon un mode de réalisation, lorsque le comonomère est l'HFP, la proportion massique d'HFP dans le copolymère est supérieure à 25 %. Avantageusement, elle est : supérieure ou égale à 26 %, et / ou inférieure ou égale à 40 %, de préférence inférieure ou égale à 37%.
La proportion massique d'HFP dans le copolymère élastomérique est de préférence estimée par résonance magnétique nucléaire (RMN). On peut notamment utiliser la méthode de RMN 19F décrite ci-après. Les échantillons de copolymère sont dissous dans un tube pour RMN de 5 mm de diamètre. Les échantillons de copolymère sont dissous dans le tétrahydrofurane-d8 (THF-d8) à 60°C. Une quantité de copolymère (environ 10 mg) est placée dans un tube et on ajoute du solvant pour remplir 5,5 cm de tube (environ 0,75 mL de solvant). On utilise un bloc chauffant pour porter les échantillons à la température souhaitée. Les échantillons sont chauffés pendant au moins une heure jusqu'à dissolution du solide et disparition du gel. Les tubes sont retournés pour vérifier l'absence de gel.
Typiquement les spectres sont acquis sur un spectromètre type Bruker Advance opéré à 60°C et sont analysés selon une méthode analogue à celle décrite dans « Composition and séquence distribution of vinylidene fluoride copolymer and terpolymer fluoroelastomers. Détermination by 19F NMR spectroscopy and corrélation with some properties ». M. Pianca et al, Polymer, 1987, vol.28, 224-230. Cependant on utilise l'intégration du groupe CF au lieu du groupement CF3.
De préférence, le copolymère élastomérique utilisé pour la préparation de la composition selon l'invention est dépourvu d'homopolymère.
Le copolymère peut être fabriqué par le procédé décrit dans la publication de M. Pianca et al précitée.
Par copolymère "élastomérique", on entend désigner, comme défini par l'ASTM dans la Spécial Technical Publication n° 184, un matériau susceptible d'être étiré, à la température ambiante, jusqu'à deux fois sa propre longueur et qui, une fois relâché après maintien sous tension pendant 5 minutes, reprend à 10 % près, sa longueur initiale dans le même temps.
Les élastomères fluorés utilisables dans le cadre de l'invention peuvent être choisis parmi les élastomères vrais ou les résines polymères servant de constituant de base pour l'obtention des élastomères vrais.
Le composant C est un homopolymère de VDF de basse masse moléculaire ; il est présent dans la composition dans une proportion massique allant de 1 à 20 %, en particulier de 2 à 18 % et de préférence de 5 à 15 %.
Avantageusement, le rapport des viscosités apparentes à l'état fondu des composants A et C est supérieur ou égal à 5, en particulier supérieur ou égal à 10 et de préférence supérieur ou égal à 50. Ce rapport est inférieur à 500, de préférence inférieur à 400. Les viscosités apparentes à l'état fondu des composants A et C sont exprimées en Pa.s et mesurées sur un rhéomètre capillaire à une température de 230°C et un cisaillement de 100s1.
Outre le composant A, copolymère B et composant C, la composition selon l'invention peut comprendre au moins un additif et / ou au moins une charge et / ou des particules électriquement conductrices et / ou pigments ou colorants minéraux ou organiques. Parmi les charges possibles, on peut citer de manière non limitative le mica, l'alumine, le talc, le noir de carbone, les graphènes, les graphites expensés, les nanotubes de carbone, les fibres de verre et le carbonate de calcium.
Parmi les additifs possibles, on peut citer de manière non limitative les stabilisants UV (de préférence à l'exception des agents de type IRGANOX®), les produits ignifuges, les stabilisants thermiques, les adjuvants de fabrication (de préférence à l'exception des polyoléfmes et notamment des polymères à base d'éthylène).
Lorsqu'ils sont présents, les composés ci-dessus, distincts du PVDF à FCTHM, du copolymère et du PVDF homopolymère de basse masse, sont présents à hauteur de 20 % au plus, de préférence de 15 % au plus, ou de 10 % au plus, ou de 7 % au plus, ou de 5 % au plus, ou de 3 % au plus, ou de 2 % au plus, ou de 1 % au plus (en proportion massique par rapport à la composition totale).
L'invention a également pour objet un procédé de fabrication de la composition ci- dessus, comprenant le mélange de l'homopolymère de PVDF (composant A), du copolymère élastomérique (B) et de PVDF homopolymère de faible masse molaire (composant C). Ce procédé de fabrication comprend toute méthode qui permet d'obtenir un mélange homogène des différents constituants. Parmi ces méthodes, on peut notamment citer le mélange à l'état fondu ou à sec. Plus particulièrement, la composition selon l'invention est préparée par mélange à l'état fondu de tous les constituants, sur un outil de compoundage comme une extrudeuse bi-vis, un comalaxeur ou un mélangeur interne ou à cylindres.
Selon un mode de réalisation, l'homopolymère de PVDF à FCTHM (composant A) et le copolymère (composant B) sont sous forme sèche lors du mélange, de préférence sous forme de poudres.
Selon un mode de réalisation, le procédé ci-dessus comprend le pré-mélange de composants A et B sous forme de latex (ou émulsions), puis le séchage du pré-mélange en une poudre. Une variante consiste à pré-mélanger le composant A sous forme de latex avec le copolymère B sous forme de poudre (ou l'inverse), puis de sécher ce type de pré-mélange en une poudre.
Le composant C sous forme de poudre ou de latex, ainsi que les additifs éventuels peuvent être incorporés dans les compositions lors du mélange du PVDF et du copolymère, ou encore mélangés à l'un ou l'autre de ces constituants préalablement à leur mélange, ou encore lors du pré-mélange du PVDF et du copolymère selon les techniques de pré-mélange énoncées plus haut.
La composition selon l'invention permet de fabriquer : - tous types de tuyaux de transport de produits gazeux ou liquides, notamment destinés à transporter des produits gazeux pour la synthèse de produits chimiques ou destinés à transporter des produits de consommation individuelle, industrielle ou publique,
- des ombilicaux et tubes flexibles utilisés on-shore et off-shore pour contenir et / ou transporter du pétrole brut, du gaz naturel, de l'eau et d'autres gaz utilisés pour le forage, tels que définis dans les normes API 17J, API 17K, API 16C et API 15S.

Claims

REVENDICATIONS
1. Composition polymérique thermoplastique comprenant les composants A, B et C suivants:
A - un homopolymère de polyfluorure de vinylidène (PVDF) comprenant jusqu'à
50% en poids d'une fraction de chaînes de très haute masse molaire (FCTHM) qui sont des chaînes ayant une masse molaire supérieure à 3 000 000 g/mol, le composant A présentant un indice de fluidité à chaud inférieur ou égal à 15 g / 10 min, selon la norme ISO 1133;
B - un copolymère élastomérique de fluorure de vinylidène (VDF) et d'au moins un autre comonomère fluoré copolymérisable avec le VDF, et
C - un homopolymère du VDF., tel que
le rapport des viscosités apparentes à l'état fondu des composants A et C, exprimées en Pa.s, étant supérieur ou égal à 5 et inférieur à 500, les viscosités apparentes à l'état fondu des composants A et C étant mesurées sur un rhéomètre capillaire à une température de 230°C et un cisaillement de 100s"1.
2. Composition selon la revendication 1, dans laquelle ledit PVDF homopolymère à FCTHM comprend une fraction de chaînes de très haute masse molaire, représentant entre 20 à 50%, de préférence de 25 à 45%> en poids du composant A.
3. Composition selon l'une des revendications 1 et 2 dans laquelle la proportion massique de chaînes de très haute masse molaire dans le composant A est calculée par la formule suivante:
100 - (proportion massique de chaînes de masse moléculaire inférieure à 3000000 g/mol exprimée en équivalent Polyméthacrylate de Méthyle),
ladite proportion massique de chaînes de masse moléculaire inférieure à 3000000 g/mol exprimée en équivalent Polyméthacrylate de Méthyle étant déterminée par chromatographie d'exclusion stérique.
4. Composition selon l'une de revendications 1 à 3 dans laquelle le composant A présente un indice de fluidité à chaud inférieur ou égal à 10 g / 10 min, de préférence inférieur ou égal à 5 g / 10 min, selon la norme ISO 1 133.
5. Composition selon l'une des revendications précédentes dans laquelle le copolymère élastomérique est présent dans une proportion massique de plus de 10 à 40%, avantageusement de 15 à 40% de préférence de 17 à 35 %.
6. Composition selon l'une des revendications précédentes dans laquelle la proportion massique de comonomère dans le copolymère élastomérique est supérieure à 25 %, avantageusement supérieure ou égale à 26 %, et / ou inférieure ou égale à 40 %, de préférence inférieure ou égale à 37%.
7. Composition selon l'une des revendications précédentes dans laquelle ledit comonomère est l'hexafluoropropylène (HFP).
8. Composition selon l'une des revendications précédentes dans laquelle la proportion massique de composant C est de 1 à 20 %, en particulier de 2 à 18 % et de préférence de 5 à 15 %.
9. Composition selon l'une des revendications précédentes dans laquelle le rapport des viscosités apparentes à l'état fondu des composants A et C, exprimées en Pa.s, est supérieur ou égal à 10 et de préférence supérieur ou égal à 50, et il est inférieur à 500, de préférence inférieur à 400, les viscosités apparentes à l'état fondu des composants A et C étant mesurées sur un rhéomètre capillaire à une température de 230°C et un cisaillement de 100s 1.
10. Composition selon l'une des revendications 1 à 9, ladite composition étant constituée des composants A, B et C.
11. Composition selon la revendication 10, dans laquelle le composant B est un copolymère VDF-HFP.
12. Composition selon l'une des revendications 1 à 9, ladite composition comprenant au moins un additif et / ou au moins une charge et / ou des particules électriquement conductrices et / ou des pigments ou colorants minéraux ou organiques.
13. Procédé de fabrication d'une composition selon l'une des revendications 1 à 12, comprenant le mélange des composants A, B, C et des éventuels additifs.
14. Procédé selon la revendication 13, dans lequel les composants A et B sont sous forme sèche, de préférence sous forme de poudres, lors du mélange avec le composant C, et le mélange est effectué à l'état fondu.
15. Procédé selon l'une des revendications 13, comprenant le mélange des composants A et B sous forme de latex, le séchage dudit latex, et la combinaison à l'état fondu du mélange séché avec le composant C.
16. Tuyau comprenant au moins une couche constituée d'une composition selon l'une des revendications 1 à 12.
17. Gaine polymérique des tuyaux flexibles utilisés pour le transport de fluides des exploitations pétrolières et gazières, ladite gaine étant constituée d'une composition selon l'une des revendications 1 à 12.
18. Utilisation du tuyau selon la revendication 16, pour le transport de produits de synthèse à l'état gazeux, notamment pour le transport d'hydrogène, d'oxygène, de vapeur d'eau, de monoxyde de carbone, d'ammoniac, de fluorure d'hydrogène, d'acide chlorhydrique, de sulfure d'hydrogène, de tout gaz issu du craquage des hydrocarbures, ou de mélanges de ceux-ci.
19. Utilisation du tuyau selon la revendication 16 pour le transport de produits à l'état liquide, notamment pour le transport d'eau, solvants, produits pétroliers ou de mélanges de ceux-ci.
20. Utilisation du tuyau selon la revendication 16 comme tuyau souterrain pour station-service.
21. Utilisation du tuyau selon la revendication 16 comme tuyau d'alimentation en carburant pour véhicules.
22. Câble électrique fabriqué à partir de la composition selon l'une des revendications
23. Tuyau flexible utilisé pour le transport de fluides des exploitations pétrolières et gazières, comprenant une gaine polymérique constituée d'une composition selon l'une des revendications 1 à 12, ladite gaine étant contact avec le fluide transporté, au moins une couche de renfort et une gaine de protection externe.
EP16760125.1A 2015-07-27 2016-07-27 Composition polymerique fluoree Withdrawn EP3328630A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557155A FR3039559B1 (fr) 2015-07-27 2015-07-27 Composition polymerique fluoree
PCT/FR2016/051943 WO2017017373A1 (fr) 2015-07-27 2016-07-27 Composition polymerique fluoree

Publications (1)

Publication Number Publication Date
EP3328630A1 true EP3328630A1 (fr) 2018-06-06

Family

ID=54066143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16760125.1A Withdrawn EP3328630A1 (fr) 2015-07-27 2016-07-27 Composition polymerique fluoree

Country Status (8)

Country Link
US (1) US10400097B2 (fr)
EP (1) EP3328630A1 (fr)
JP (1) JP2018529783A (fr)
CN (1) CN107787348B (fr)
AU (1) AU2016299374B2 (fr)
BR (1) BR112017023900A2 (fr)
FR (1) FR3039559B1 (fr)
WO (1) WO2017017373A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070134A1 (fr) * 2018-10-02 2020-04-09 Solvay Specialty Polymers Italy S.P.A. Composition thermoplastique souple
KR20210096625A (ko) * 2018-11-26 2021-08-05 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Vdf 중합체 및 흑연을 포함하는 중합체 조성물
WO2021206174A1 (fr) * 2020-04-10 2021-10-14 Agc株式会社 Diélectrique, composition diélectrique et son utilisation, dispositif électronique et procédé d'alimentation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200568A (en) 1974-09-03 1980-04-29 Dynamit Nobel Aktiengesellschaft Polyvinylidene fluoride compositions, and fabricated products thereof having increased notch impact toughness and elongation at rupture
JPS56117627A (en) * 1980-02-23 1981-09-16 Kureha Chem Ind Co Ltd Polyvinilydene fluoride resin pipe
JPS56163140A (en) * 1980-05-21 1981-12-15 Kureha Chem Ind Co Ltd Vinylidene fluoride resin composition
JPS6268844A (ja) * 1985-09-19 1987-03-28 Central Glass Co Ltd 柔軟性含ふつ素樹脂組成物
AU608320B2 (en) * 1987-03-11 1991-03-28 Raychem Corporation Polymeric blends
BE1006614A3 (fr) * 1993-01-25 1994-11-03 Solvay Compositions polymeriques destinees a la fabrication de tuyaux pour le transport d'hydrocarbures et articles a base de ces compositions.
JP2765792B2 (ja) * 1993-02-09 1998-06-18 セントラル硝子株式会社 フッ化ビニリデン樹脂組成物
JP3664560B2 (ja) * 1997-02-07 2005-06-29 Tdk株式会社 リチウム2次電池
EP1279685B1 (fr) * 2001-07-16 2007-03-07 Arkema France Polymère du fluorure de vinylidène à fraction de chaînes non transférées et son procédé de fabrication
EP1342752A1 (fr) 2002-03-07 2003-09-10 Atofina Compositions à base de polyfluorure de vinylidène
FR2877009B1 (fr) * 2004-10-21 2007-03-09 Solvay Composition polymere a base de pvdf homopolymere et de copolymere thermoplastique fluore
JP2009057463A (ja) * 2007-08-31 2009-03-19 Tokai Rubber Ind Ltd 成形加工用フッ素系ゴム組成物およびそれを用いた燃料用ホース
FR2935706A1 (fr) * 2008-09-08 2010-03-12 Arkema France Composition fluoree pour tuyau offshore
JP5067466B2 (ja) * 2010-11-02 2012-11-07 ユニマテック株式会社 含フッ素エラストマーブレンド物
FR2987624B1 (fr) 2012-03-01 2015-02-20 Arkema France Composition polymerique fluoree
JP5998588B2 (ja) * 2012-04-02 2016-09-28 ユニマテック株式会社 含フッ素エラストマーブレンド物およびその組成物
FR3010082A1 (fr) * 2013-09-02 2015-03-06 Arkema France Procede de preparation d'une composition de polymeres fluores reticules
MX2018008263A (es) * 2016-01-29 2018-09-12 Borealis Ag Copolimero de propileno heterofasico con baja contraccion.
EP3283533B1 (fr) * 2016-02-23 2019-04-24 Basell Polyolefine GmbH Procédé de polymérisation d'oléfines

Also Published As

Publication number Publication date
FR3039559A1 (fr) 2017-02-03
AU2016299374B2 (en) 2020-09-17
WO2017017373A1 (fr) 2017-02-02
US20180134886A1 (en) 2018-05-17
FR3039559B1 (fr) 2019-03-15
AU2016299374A1 (en) 2017-11-23
US10400097B2 (en) 2019-09-03
BR112017023900A2 (pt) 2018-07-17
CN107787348A (zh) 2018-03-09
JP2018529783A (ja) 2018-10-11
CN107787348B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CA2865480C (fr) Composition de polyfluorure de vinylidene
FR3010082A1 (fr) Procede de preparation d'une composition de polymeres fluores reticules
CA2735847C (fr) Procede de determination de la tenue a la fatigue d'une composition polymerique
EP3328630A1 (fr) Composition polymerique fluoree
FR2918067A1 (fr) Materiau composite comprenant des nanotubes disperses dans une matrice polymerique fluroree.
EP3041898A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
FR2877009A1 (fr) Composition polymere a base de pvdf homopolymere et de copolymere thermoplastique fluore
CA2420419A1 (fr) Compositions a base de polyfluorure de vinylidene
FR2935706A1 (fr) Composition fluoree pour tuyau offshore
EP1242486A1 (fr) ELASTOMERES FLUOROSULFONES A FAIBLE T g? A BASE D'HEXAFLUOROPROPENE ET NE CONTENANT NI DU TETRAFLUOROETHYLENE, NI DE GROUPEMENT SILOXANE
CN104640705B (zh) 包含含有高分子量聚乙烯的内部和/或外部聚合物密封护套的水下软质管
EP0884358B1 (fr) Compositions à base de poly(fluorure de vinylidène), souples et résilientes, leur procédé de préparation
FR2772108A1 (fr) Conduite flexible comportant une gaine en polymere bicouche
EP1279685B1 (fr) Polymère du fluorure de vinylidène à fraction de chaînes non transférées et son procédé de fabrication
WO2017098139A1 (fr) Structure multicouche comprenant une couche contenant un polymère fluore et copolymère acrylique - procédé de fabrication et tube associés
WO2022152995A1 (fr) Materiau composite thermoplastique pour structures tubulaires composites
KR20210096625A (ko) Vdf 중합체 및 흑연을 포함하는 중합체 조성물
CA2293847A1 (fr) Elastomeres fluores a faible tg a base de fluorure de vinylidene et ne contenant ni du tetrafluoroethylene, ni de groupement siloxane
CA2293845A1 (fr) Elastomeres fluorosulfones a faible tg a base d'hexafluoropropene et ne contenant ni du tetrafluoroethylene, ni de groupement siloxane
CA2293846A1 (fr) Elastomeres fluorosulfones a faible tg a base de fluorure de vinylidene et ne contenant ni du tetrafluoroethylene, ni de l'hexafluoropropene, ni de groupement siloxane

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210413