EP3280830B1 - Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen - Google Patents

Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen Download PDF

Info

Publication number
EP3280830B1
EP3280830B1 EP16717585.0A EP16717585A EP3280830B1 EP 3280830 B1 EP3280830 B1 EP 3280830B1 EP 16717585 A EP16717585 A EP 16717585A EP 3280830 B1 EP3280830 B1 EP 3280830B1
Authority
EP
European Patent Office
Prior art keywords
comparative example
nickel
solution
ions
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16717585.0A
Other languages
English (en)
French (fr)
Other versions
EP3280830A1 (de
Inventor
Olaf Dahlenburg
Frank Hollmann
Michael DRÖGE
Thomas Kolberg
Lisa SCHMEIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55802343&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3280830(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Publication of EP3280830A1 publication Critical patent/EP3280830A1/de
Application granted granted Critical
Publication of EP3280830B1 publication Critical patent/EP3280830B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a method for the targeted adjustment of the electrical conductivity of a conversion coating on a metallic surface by means of an aqueous composition as well as a corresponding aqueous composition and a corresponding conversion coating.
  • WO 2005/061761 A1 relates to a process for the two-stage anti-corrosion treatment of metal surfaces, such as vehicle bodies or household appliances. Such coatings serve to protect the metallic surfaces from corrosion and also act as an adhesion promoter for subsequent paint coats
  • US-A-2008/230395 discloses a method in which a conversion solution containing Zr ions and a condensate of a silane is used.
  • the subsequent paint layers are mainly cathodically deposited electrodeposition paints (KTL). Since a current must flow between the metallic surface and the treatment bath when KTL is deposited, it is important to set a defined electrical conductivity of the conversion coating in order to ensure efficient and homogeneous deposition.
  • KTL cathodically deposited electrodeposition paints
  • Conversion coatings are therefore usually applied using a phosphating solution containing nickel.
  • the nickel ions built into the conversion coating or the elementally deposited nickel ensure a suitable conductivity of the coating during the subsequent electrodeposition coating.
  • nickel ions are no longer desirable as a component of treatment solutions and should therefore be avoided if possible or at least reduced in their content.
  • nickel-free or low-nickel systems are thin-film coatings, which are, for example, thin coatings of zirconium oxide and optionally at least one organosiloxane and / or of at least one organic polymer.
  • mapping In many cases, more or less pronounced inhomogeneities in the deposited KTL cannot be avoided (so-called mapping).
  • the object of the present invention was therefore to provide a method with which the electrical conductivity of a conversion coating on a metallic surface can be set in a targeted manner, and in which in particular the disadvantages known from the prior art are avoided.
  • a metallic surface is first treated with a conversion / passivation solution containing 10 to 500 mg / l Zr in complexed form, calculated as metal, and at least one organosilane and / or at least one Hydrolysis product thereof and / or at least one condensation product thereof in a concentration range of 5 to 200 mg / l, calculated as Si, contains, whereby a corresponding thin film coating is formed on the metallic surface, and the metallic surface coated in this way is after optional drying with an aqueous Composition treated as a rinsing solution, which comprises 20 to 225 mg / l of molybdenum ions.
  • aqueous composition a composition which for the most part, ie more than 50% by weight, contains water as a solvent. In addition to dissolved constituents, it can also comprise dispersed, ie emulsified and / or suspended constituents.
  • the metallic surface is preferably steel, hot-dip galvanizing, electrolytic galvanizing, aluminum or their alloys such as Zn / Fe or Zn / Mg.
  • Aqueous compositions can contain a type of metal ions selected from the group consisting of the ions of the following metals in the following preferred, particularly preferred and very particularly preferred concentration ranges (all calculated as the corresponding metal): Mon 1 to 1000 mg / l 10 to 500 mg / l 20 to 225 mg / l Cu 1 to 1000 mg / l 3 to 500 mg / l 5 to 225 mg / l Ag 1 to 500 mg / l 5 to 300 mg / l 20 to 150 mg / l Au 1 to 500 mg / l 10 to 300 mg / l 20 to 200 mg / l Pd 1 to 200 mg / l 5 to 100 mg / l 5 to 100 mg / l Sn 1 to 500 mg / l 2 to 200 mg / l 3 to 100 mg / l Sb 1 to 500 mg / l 2 to 200 mg / l 3 to 100 mg / l l
  • the metal ions contained in the aqueous composition either separate in the form of a salt, which contains the corresponding metal cation (e.g. molybdenum or tin) preferably in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elemental on the surface to be treated (e.g. copper, silver, gold or palladium).
  • a salt which contains the corresponding metal cation (e.g. molybdenum or tin) preferably in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elemental on the surface to be treated (e.g. copper, silver, gold or palladium).
  • an aqueous composition is used as the rinsing solution and the metal ions are molybdenum ions. These are preferably added to the aqueous composition as molybdate, more preferably as ammonium heptamolybdate and particularly preferably as ammonium heptamolybdate ⁇ 7H 2 O.
  • Molybdenum ions can, however, also be added to the aqueous composition in the form of at least one salt containing molybdenum cations, such as molybdenum chloride, and then oxidized to molybdate by a suitable oxidizing agent, for example by the accelerators described below.
  • a suitable oxidizing agent for example by the accelerators described below.
  • the aqueous composition further preferably contains molybdenum ions in combination with copper ions, tin ions or zirconium ions.
  • the content of molybdenum ions is in the range from 20 to 225 mg / l, preferably from 50 to 225 mg / l and particularly preferably from 100 to 225 mg / l, and the content of zirconium ions is preferably in the range from 30 to 300 mg / l, especially preferably from 50 to 200 mg / l.
  • the composition contains copper ions.
  • the post-rinse solution then preferably contains this in a concentration of 5 to 225 mg / l, more preferably 150 to 225 mg / l.
  • the aqueous composition according to the invention contains at least one electrically conductive polymer selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryrenes.
  • the polyamine is preferably a polyethylene amine
  • the polyimine is a polyethyleneimine
  • the at least one electrically conductive polymer is preferably in a concentration in the range from 0.1 to 5.0 g / l, more preferably from 0.2 to 3.0 g / l and particularly preferably in the range from 0.5 to 1 , 5 g / l (calculated as pure polymer).
  • Cationic polymers such as polyamines or polyethyleneimines are preferably used as electrically conductive polymers.
  • aqueous compositions according to the invention which are less than 1.5 g / l, more preferably less than 1 g / l, more preferably less than 0.5 g / l, particularly preferably less than 0.1 g / l and very particularly preferably contain less than 0.01 g / l nickel ions.
  • a treatment solution or aqueous composition according to the invention contains less than 0.01 g / l nickel ions, it should be considered to be at least essentially free of nickel.
  • the conversion coatings that are treated with the post-rinse solution are thin-film coatings.
  • the thin-film coatings are thin coatings of zirconium oxide and at least one organosiloxane. Such conversion coatings are applied by means of a corresponding conversion / passivation solution.
  • the phosphating solution can be an aqueous zinc phosphate solution or an aqueous alkali metal phosphate solution.
  • a zinc phosphate solution preferably comprises the following components in the following preferred and particularly preferred concentration ranges: Zn 0.3 to 3.0 g / l 0.5 to 2.0 g / l Mn 0.3 to 2.0 g / l 0.5 to 1.5 g / l Phosphate (calculated as P 2 O 5 ) 8 to 25 g / l 10 to 18 g / l free fluoride 30 to 250 mg / l 50 to 180 mg / l Complex fluoride (calculated e.g. as SiF 6 2- and / or BF 4 - ) up to 5 g / l 0.5 to 3 g / l
  • the complex fluoride is preferably tetrafluoroborate (BF 4 - ) and / or hexafluorosilicate (SiF 6 2- ).
  • the complex fluoride is a combination of tetrafluoroborate (BF 4 - ) and hexafluorosilicate (SiF 6 2- ), the concentration of tetrafluoroborate (BF 4 - ) in the range up to 3 g / l, preferably of 0.2 to 2 g / l, and the concentration of hexafluorosilicate (SiF 6 2- ) in the range up to 3 g / l, preferably from 0.2 to 2 g / l.
  • the complex fluoride is hexafluorosilicate (SiF 6 2- ) with a concentration in the range from 0.2 to 3 g / l, preferably from 0.5 to 2 g / l.
  • the complex fluoride is tetrafluoroborate (BF 4 - ) with a concentration in the range from 0.2 to 3 g / l, preferably from 0.5 to 2 g / l.
  • the phosphating solution preferably contains at least one accelerator selected from the group consisting of the following compounds in the following preferred and particularly preferred concentration ranges: Nitroguanidine 0.2 to 3.0 g / l 0.2 to 1.55 g / l H 2 O 2 10 to 100 mg / l 15 to 50 mg / l Nitroguanidine / H 2 O 2 0.2 to 2.0 g / L / 10 to 50 mg / L 0.2 to 1.5 g / l / 15 to 30 mg / l nitrite 30 to 300 mg / l 90 to 150 mg / l
  • nitroguanidine a concentration in the range from 0.1 to 3.0 g / l, and with regard to H 2 O 2, a concentration in the range from 5 to 200 mg / l has already proven advantageous.
  • FS stands for free acid
  • FS (dil.) For free acid (diluted)
  • GSF for total acid according to Fischer
  • GS for total acid
  • S value for acid value
  • a suitable vessel for example a 300 ml Erlenmeyer flask. Contains the phosphating solution complex fluoride, 2-3 g of potassium chloride are added to the sample. It is then titrated with 0.1 M NaOH using a pH meter and an electrode to a pH of 3.6. The amount of 0.1 M NaOH consumed in ml per 10 ml of the phosphating solution gives the value of the free acid (FS) in points.
  • a suitable vessel for example a 300 ml Erlenmeyer flask. Contains the phosphating solution complex fluoride, 2-3 g of potassium chloride are added to the sample. It is then titrated with 0.1 M NaOH using a pH meter and an electrode to a pH of 3.6. The amount of 0.1 M NaOH consumed in ml per 10 ml of the phosphating solution gives the value of the free acid (FS) in points.
  • FS free acid
  • the diluted phosphating solution is titrated after adding potassium oxalate solution using a pH meter and an electrode with 0.1 M NaOH up to a pH value of 8.9.
  • the consumption of 0.1 M NaOH in ml per 10 ml of the dilute phosphating solution gives the total acid according to Fischer (GSF) in points. If this value is multiplied by 0.71, the total content of phosphate ions is calculated as P 2 O 5 (see W. Rausch: "The phosphating of metals”. Eugen G. Leuze-Verlag 2005, 3rd edition, pp. 332 ff ).
  • the total acid (GS) is the sum of the divalent cations it contains as well as free and bound phosphoric acids (the latter are phosphates). It is determined by the consumption of 0.1 M NaOH using a pH meter and an electrode. For this purpose, 10 ml of the phosphating solution are pipetted into a suitable vessel, for example a 300 ml Erlenmeyer flask, and diluted with 25 ml of deionized water. Then with 0.1 M NaOH up to a pH value of 9 titrated. The consumption in ml per 10 ml of the diluted phosphating solution corresponds to the number of points for the total acid (GS).
  • S value stands for the ratio FS: GSF and results from dividing the value of the free acid (FS) by the value of the total acid according to Fischer (GSF).
  • the conversion / passivation solution is aqueous and always comprises 10 to 500 mg / l, preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l Ti, Zr and / or Hf in complexed form (calculated as metal). These are preferably fluorocomplexes.
  • the conversion / passivation solution always comprises 10 to 500 mg / l, preferably 15 to 100 mg / l and particularly preferably 15 to 50 mg / l of free fluoride.
  • It contains 10 to 500 mg / l, more preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l Zr in complexed form (calculated as metal).
  • It additionally contains at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range from 5 to 200 mg / l, more preferably from 10 to 100 mg / l and particularly preferably from 20 to 80 mg / l (calculated as Si).
  • the at least one organosilane preferably has at least one amino group. It is particularly preferably one which can be hydrolyzed to an aminopropylsilanol and / or to 2-aminoethyl-3-aminopropylsilanol and / or a bis (trimethoxysilylpropyl) amine.
  • the conversion / passivation solution can also contain the following components in the following concentration ranges and preferred concentration ranges: Zn 0 to 5 g / l 0.05 to 2 g / l Mn 0 to 1 g / l 0.05 to 1 g / l nitrate 0 to 10 g / l 0.01 to 5 g / l
  • a rinsing solution for treating an already conversion-coated metallic surface is also described.
  • the rinsing solution contains molybdenum ions. These are preferably added to the rinsing solution as molybdate, more preferably as ammonium heptamolybdate and particularly preferably as ammonium heptamolybdate ⁇ 7 H 2 O.
  • Molybdenum ions can, however, also be added to the rinsing solution in the form of at least one salt containing molybdenum cations such as molybdenum chloride and then oxidized to molybdate by a suitable oxidizing agent, for example by the accelerators described above.
  • a suitable oxidizing agent for example by the accelerators described above.
  • the final rinse solution also preferably contains molybdenum ions in combination with copper ions, tin ions or zirconium ions.
  • a polymer or copolymer in particular selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryrenes and their mixtures and copolymers and polyacrylic acid, the content of molybdenum ions and zirconium ions each in the range from 10 to 500 mg / l (calculated as metal).
  • the content of molybdenum ions is in the range from 20 to 225 mg / l, particularly preferably from 50 to 225 mg / l and very particularly preferably from 100 to 225 mg / l and the content of zirconium ions in the range from 30 to 300 mg / l, particularly preferably from 50 to 200 mg / l.
  • the post-rinse solution contains copper ions.
  • the post-rinse solution then preferably contains this in a concentration of 5 to 225 mg / l, more preferably 150 to 225 mg / l.
  • the rinsing solution contains at least one electrically conductive polymer selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryrenes.
  • the polyamine is preferably a polyethylene amine
  • the polyimine is a polyethyleneimine
  • the at least one electrically conductive polymer is preferably in a concentration in the range from 0.1 to 5.0 g / l, more preferably from 0.2 to 3.0 g / l and particularly preferably in the range from 0.5 to 1 , 5 g / l (calculated as pure polymer).
  • Cationic polymers such as polyamines or polyethyleneimines are preferably used as electrically conductive polymers.
  • the post-rinse solution preferably additionally comprises 10 to 500 mg / l, more preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l Ti, Zr and / or Hf in complexed form (calculated as metal). These are preferably fluorocomplexes.
  • the post-rinse solution preferably comprises 10 to 500 mg / l, more preferably 15 to 100 mg / l and particularly preferably 15 to 50 mg / l of free fluoride.
  • a post-rinse solution comprising Ti, Zr and / or Hf in complexed form preferably additionally contains at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range from 5 to 200 mg / l, more preferably from 10 to 100 mg / l and particularly preferably from 20 to 80 mg / l (calculated as Si).
  • the at least one organosilane preferably has at least one amino group. It is particularly preferably one which can be hydrolyzed to an aminopropylsilanol and / or to 2-aminoethyl-3-aminopropylsilanol and / or a bis (trimethoxysilylpropyl) amine.
  • the pH of the post-rinse solution is preferably in the acidic range, more preferably in the range from 3 to 5, particularly preferably in the range from 3.5 to 5.
  • a metallic surface is first treated with a conversion / passivation solution which contains 10 to 500 mg / l Zr in complexed form (calculated as metal) and optionally at least one organosilane and / or at least one hydrolysis product thereof and / or contains at least one condensation product thereof in a concentration range from 5 to 200 mg / l (calculated as Si), and thus a corresponding thin-film coating is formed on the metallic surface.
  • a conversion / passivation solution which contains 10 to 500 mg / l Zr in complexed form (calculated as metal) and optionally at least one organosilane and / or at least one hydrolysis product thereof and / or contains at least one condensation product thereof in a concentration range from 5 to 200 mg / l (calculated as Si), and thus a corresponding thin-film coating is formed on the metallic surface.
  • the metallic surface coated in this way is treated with a rinsing solution according to the invention and in this way a thin-film coating with a defined electrical conductivity is obtained.
  • an electrodeposition paint is cathodically deposited on the metallic surface coated in this way.
  • the method according to the invention allows the electrical conductivity of a conversion coating to be set in a targeted manner.
  • the conductivity can be either be larger, the same size or smaller than that of a corresponding nickel-containing conversion coating.
  • the electrical conductivity of a conversion coating set using the method according to the invention can be influenced by varying the concentration of a given metal ion or electrically conductive polymer.
  • the present invention also relates to a concentrate which, by diluting with water by a factor of between 1 and 100, preferably between 5 and 50, and, if necessary, adding a pH-modifying substance, produces an aqueous composition according to the invention.
  • the present invention also relates to a conversion-coated metallic surface which can be obtained by the method according to the invention.
  • the present invention is to be explained by non-restrictive exemplary embodiments and comparative examples; only Examples 4 and 5 are according to the invention.
  • a test plate made of electrolytically galvanized steel (ZE) was coated with a phosphating solution containing 1 g / l nickel. No rinsing was carried out. The current density i in A / cm 2 was then measured via the voltage E in V applied vs. a silver / silver chloride (Ag / AgCl) electrode (see Fig. 1 : ZE_Variation11_2: curve 3). The measurement was carried out using so-called linear sweep voltammetry (potential range: -1.1 to -0.2 V ref ; scan rate: 1 mV / s).
  • the measured current density i is dependent on the electrical conductivity of the conversion coating. The following applies: the higher the measured current density i, the higher the electrical conductivity of the conversion coating. A direct measurement of the electrical conductivity in ⁇ S / cm, as it is possible in liquid media, cannot be carried out with conversion coatings.
  • the current density i measured for a nickel-containing conversion coating is always used as a reference point for statements about the electrical conductivity of a given conversion coating.
  • a test plate according to Comparative Example 1 was coated with a nickel-free phosphating solution without rinsing, and the current density i was then measured using the voltage E according to Comparative Example 1 (see FIG Fig. 1 .
  • ZE_Variation1_1 curve 1; ZE_Variation1_3: curve 2).
  • test plate according to Comparative Example 1 was made using a nickel-free
  • a test plate according to Comparative Example 1 was coated using a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a rinsing solution containing approx. 220 mg / l copper ions and having a pH of approx.
  • the current density i over the voltage E was measured according to comparative example 1 (see Fig. 3 .
  • Comparison is again made with comparative example 1 Fig. 3 : ZE_Variation11_2: curve 3).
  • a test plate according to Comparative Example 1 was coated using a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a rinsing solution which contained approx. 1 g / l (calculated on the pure polymer) of electrically conductive polyamine (Lupamin® 9030, manufacturer BASF) and had a pH of approx.
  • the current density i over the voltage E was measured according to comparative example 1 (see Fig. 4 .
  • ZE_Variation3_1 curve 1; ZE_Variation3_2: curve 2). It is compared with Comparative Example 1 ( Fig. 4 : ZE_Variation11_2: curve 3).
  • a test plate made of hot-dip galvanized steel (EA) was coated with a phosphating solution containing 1 g / l nickel.
  • the test plate coated in this way was then treated with a post-rinse solution containing approx. 120 mg / l ZrF 6 2- (calculated as Zr) with a pH of approx. 4 and then the current density i in A / cm 2 over the vs.
  • one Silver / silver chloride (Ag / AgCl) electrode applied voltage E measured in V (see Fig. 5 : EA 173: curve 1). The measurement was carried out using so-called linear sweep voltammetry.
  • a test plate according to Comparative Example 3 was coated with a nickel-free phosphating solution without rinsing, and the current density i was then measured using the voltage E according to Comparative Example 3 (see FIG Fig. 5 .
  • a test plate according to Comparative Example 3 was coated using a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a post-rinse solution containing approx. 120 mg / l ZrF 6 2- (calculated as Zr) and 220 mg / l molybdenum ions with a pH of approx.
  • the current density i over the voltage E was measured according to comparative example 1 (see Fig. 6 .
  • a comparison is made with comparative example 3 ( Fig. 6 : EA 173: curve 1).
  • the resting potential of the nickel-free system when using a post-rinse solution containing ZrF 6 2 and molybdenum ions corresponds to that of the nickel-containing system (comparative example 3).
  • the addition of molybdenum ions (Example 3) to the post-rinse solution containing ZrF 6 2- made it possible to significantly increase the conductivity on the substrate surface.
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) test plates made of steel were sprayed with an aqueous cleaning solution which contained a surfactant and had a pH of 10.8 for 180 s at 60 ° C.
  • the cleaning solution was then rinsed off the test plates by spraying them first with city water for 30 s and then with deionized water for 20 s.
  • the cleaned test plates were then immersed for 175 s in a conversion / passivation solution which contained 40 mg / l Si, 140 mg / l Zr, 2 mg / l Cu and 30 mg / l free fluoride and had a pH of 4, 8 and a temperature of 30 ° C.
  • the aqueous conversion / passivation solution was then rinsed off the test plates by immersing them in deionized water for 50 s and then spraying them with deionized water for 30 s.
  • the test plates pretreated in this way were then either cathodically dip coated with a first special KTL lacquer (KTL 1) or with a second special KTL lacquer (KTL 2).
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) test plates made of steel were treated according to Comparative Example 5 with the difference that the aqueous conversion / passivation solution was then rinsed off the test plates by immersing them in an aqueous solution with 100 mg / l for 50 s Mo (calculated as metal), which was added in the form of ammonium heptamolybdate, (rinsing solution) was immersed and then sprayed with deionized water for 30 s.
  • Mo calculated as metal
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) test plates made of steel were treated according to Comparative Example 5 with the difference that the aqueous conversion / passivation solution was then rinsed off the test plates by placing them in an aqueous solution with 200 mg / l for 50 s Mo (calculated as metal), which was added in the form of ammonium heptamolybdate, (rinsing solution) was immersed and then sprayed with deionized water for 30 s.
  • Mo calculated as metal
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) test plates made of steel were treated according to Comparative Example 5 with the difference that the aqueous conversion / passivation solution additionally contained 100 mg / l Mo (calculated as metal), which was added in the form of ammonium heptamolybdate.
  • test plates according to Comparative Example 5 (CE5) and Examples 4 to 6 (B4 to B6) were then subjected to a paint adhesion test by the automobile manufacturer PSA (Cataplasma test).
  • test plates according to Comparative Example 5 (CE5) and Examples 4 to 6 (B4 to B6) were also examined using the so-called cathodic polarization method.
  • This method describes a short-term electrochemical test that is carried out on coated steel sheets that have been damaged in a defined manner. According to the principle of an electrostatic holding test, it is tested how well the coating of the test sheet resists the process of corrosive infiltration.
  • the cell is filled with approx. 400 mL 0.1 M Na sulfate solution. Then the clamps are connected as follows: green-blue clamp to working electrode (sheet metal), orange-red clamp to counter electrode (electrode with parallel bars), white clamp to reference electrode (in Haber-Luggin capillary).
  • the cathodic polarization is then started via the control software (control unit with software) and a current of 20 mA is set on the test panel over a period of 24 hours. During this time, the measuring cell is tempered to 40 ° C +/- 0.5 degrees with the aid of the thermostat. During the 24-hour exposure period, hydrogen develops on the cathode (test sheet) and oxygen on the counter electrode.
  • the sheet metal is removed immediately to avoid secondary corrosion, rinsed with deionized water and dried in the air. With the help of a blunt knife, the peeled paint layer is removed. Further peeled paint areas can be removed with a strong textile adhesive tape (e.g. Tesa tape 4657 gray). The exposed area is then evaluated using a ruler and, if necessary, a magnifying glass).
  • a strong textile adhesive tape e.g. Tesa tape 4657 gray
  • Test plates according to Comparative Examples 1 to 3 (CE1 to CE3) and Examples 1 and 2 (B1 and B2) were KTL-coated and then subjected to a cross-cut test according to DIN EN ISO 2409. 3 panels each were tested before and after exposure to condensation water for 240 hours (DIN EN ISO 6270-2 CH). The corresponding results can be found in Table 2.
  • a cross-section result of 0 is the best, and a cross-section of 5 is the worst.
  • Tab. 2 shows the poor results of VB2 and especially VB3 after exposure, while B1 (copper ions) and B2 (electrically conductive polyamine) deliver good - VB1 (nickel-containing phosphating) - comparable results.
  • a test plate according to Comparative Example 1 was coated using a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a rinsing solution which contained approx. 1 g / l (calculated on the pure polymer) of electrically conductive polyimine with a number average molecular weight of 5000 g / mol (Lupasol® G 100, manufacturer BASF) and a pH -Value of approx. 4.
  • a test plate according to Comparative Example 1 was coated using a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a post-rinse solution containing 130 mg / l ZrF 6 2- (calculated as Zr) and 20 mg / l molybdenum ions, which additionally contained 1.2 g / l (calculated on the pure polymer) polyacrylic acid with a number average Molecular weight of 60,000 g / mol and a pH of about 4.
  • test plate made of hot-dip galvanized steel (EA) was coated with a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a rinsing solution which contained approx. 1 g / l (calculated on the pure polymer) of electrically conductive polyimine with a number average molecular weight of 5000 g / mol (Lupasol® G 100, manufacturer BASF) and a pH -Value of approx. 4.
  • test plate made of hot-dip galvanized steel (EA) was coated with a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a post-rinse solution containing 130 mg / l ZrF 6 2- (calculated as Zr) and 20 mg / l molybdenum ions, which additionally contained 1.2 g / l (calculated on the pure polymer) polyacrylic acid with a number average Molecular weight of 60,000 g / mol and a pH of about 4.
  • a steel test plate was coated with a nickel-free phosphating solution.
  • the test plate coated in this way was then treated with a rinsing solution containing 230 mg / l copper ions and having a pH of approx.
  • a test plate made of electrolytically galvanized steel (ZE) was coated with a nickel-free phosphating solution which contained 1 g / l BF 4 - and 0.2 g / l SiF 6 2- .
  • the test plate coated in this way was then treated with a post-rinse solution containing 160 mg / l ZrF 6 2- (calculated as Zr) and 240 mg / l molybdenum ions with a pH of approx.
  • the phosphating solution contains 1 g / l BF 4 - and 0.2 g / l SiF 6 2- and after phosphating with a with an approx. 120 mg / l ZrF 6 2- (calculated as Zr) containing rinsing solution with a pH value of approx. 4 is treated.
  • test plate made of hot-dip galvanized steel (EA) was coated with a nickel-free phosphating solution which contained 1 g / l BF 4 - and 0.2 g / l SiF 6 2- .
  • the test plate coated in this way was then treated with a post-rinse solution containing 160 mg / l ZrF 6 2- (calculated as Zr) and 240 mg / l molybdenum ions with a pH of approx.
  • a test plate made of electrolytically galvanized steel (ZE) was coated with a nickel-free phosphating solution which contained 1 g / l SiF 6 2- .
  • the test plate coated in this way was then treated with a post-rinse solution containing 160 mg / l ZrF 6 2- (calculated as Zr) and 240 mg / l molybdenum ions with a pH of approx.
  • the phosphating solution contains 1 g / l SiF 6 2- and after phosphating with an approx. 120 mg / l ZrF 6 2- (calculated is treated as a post-rinse solution containing Zr) with a pH of approx. 4.
  • test plate made of hot-dip galvanized steel (EA) was coated with a nickel-free phosphating solution which contained 1 g / l SiF 6 2- .
  • the test plate coated in this way was then treated with a post-rinse solution containing 160 mg / l ZrF 6 2- (calculated as Zr) and 240 mg / l molybdenum ions with a pH of approx.
  • Test plates according to Comparative Examples 1, 2, 6 and 7 (CE1, CE2, CE6 and CE7) and Examples 7 to 10 (B7 to B10) were KTL-coated.
  • Four programs were used, which differed in terms of (a) the ramp duration - i.e. the time until the maximum voltage is reached -, (b) the maximum voltage and / or (c) the duration of the application of the maximum voltage:
  • Program 1 (a) 30 sec. (b) 240V (c) 150 sec.
  • Program 2 (a) 30 sec. (b) 220V (c) 150 sec.
  • Program 3 (a) 3 sec. (b) 240V (c) 150 sec.
  • Program 4 (a) 3 sec. (b) 220V (c) 150 sec.
  • the layer thickness of the deposited KTL lacquer measured in each case by means of a Fischer DUALSCOPE®, is shown in Tab. 3 .
  • Test plates according to Comparative Examples 8 to 17 (VB8 to VB17) and Examples 11 to 15 (B11 to B15) were subjected to an X-ray fluorescence analysis (XRF).
  • Tab. 4 shows the specific content of copper or zirconium and molybdenum (each calculated as metal) in the surface.
  • the test panels mentioned were then KTL-coated.
  • the following programs were used, which, depending on the (comparative) example, differ with regard to (a) the ramp duration - i.e. the time until the maximum voltage is reached -, (b) the maximum voltage and / or (c) the duration of the application of the maximum voltage: VB8, VB9, B11: (a) 30 sec. (b) 250V (c) 240 sec.
  • VB10, VB11, VB14, VB15, B12, B14 (a) 30 sec. (b) 260V (c) 300 sec. VB12; VB13, VB16; VB17, B13, B15: (a) 30 sec. (b) 260V (c) 280 sec.
  • Tab. 3 shows a clear decrease in the layer thickness of the KTL lacquer with the nickel-free compared to the nickel-containing phosphating (VB2 vs. VB1; VB7 vs. VB6).
  • the layer thickness obtained with nickel-free phosphating can be increased again (B7 and B8 vs. VB2; B9 and B10 vs. VB6) - in the case of B7 and B9 even beyond the level of nickel-containing phosphating.
  • Table 4 shows that the use of a copper-containing rinsing solution according to the invention (with prior nickel-free phosphating) leads to the incorporation of copper into the test plate surface. As a result, there is an improved KTL deposition - even compared to the nickel-containing system (B11 vs. VB8). The copper content of the surface increases its conductivity. This leads to a more effective KTL deposition, which is expressed in the higher layer thickness of the KTL lacquer under otherwise identical conditions.
  • zirconium and molybdenum-containing rinsing solutions according to the invention leads to the incorporation of molybdenum into the surface of the test plates, which brings the KTL deposition back (approximately) to the level of the nickel-containing phosphating (B12 vs. VB10; B13 vs VB12 .; B14 vs. VB14; B15 vs. VB16).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung auf einer metallischen Oberfläche mittels einer wässrigen Zusammensetzung sowie eine entsprechende wässrige Zusammensetzung und eine entsprechende Konversionsbeschichtung.
  • Aus dem Stand der Technik sind Konversionsbeschichtungen auf metallischen Oberflächen bekannt. WO 2005/061761 A1 bezieht sich auf ein Verfahren zur zweistufigen Korrosionsschutzbehandlung von Metalloberflächen, wie beispielsweise Fahrzeugkarosserien oder Haushaltsgeräte. Solche Beschichtungen dienen dem Korrosionsschutz der metallischen Oberflächen und darüber hinaus auch als Haftvermittler für nachfolgende Lackschichter US-A-2008/230395 offenbart ein Verfahren bei denen eine Konversionslösung enthaltend Zr-Ionen sowie ein Kondensat eines Silans verwendet wird.
  • Bei den nachfolgenden Lackschichten handelt es sich vor allem um kathodisch abgeschiedene Elektrotauchlacke (KTL). Da bei der Abscheidung von KTL ein Strom zwischen metallischer Oberfläche und Behandlungsbad fließen muss, ist es wichtig eine definierte elektrische Leitfähigkeit der Konversionsbeschichtung einzustellen, um eine effiziente und homogene Abscheidung zu gewährleisten.
  • Daher werden Konversionsbeschichtungen üblicherweise mittels einer nickelhaltigen Phosphatierlösung aufgebracht. Die so in die Konversionsbeschichtung eingebauten Nickelionen bzw. das elementar abgeschiedene Nickel sorgen für eine geeignete Leitfähigkeit der Beschichtung bei der anschließenden Elektrotauchlackierung.
  • Nickelionen sind jedoch ob ihrer hohen Toxizität und Umweltschädlichkeit nicht mehr als Bestandteil von Behandlungslösungen erwünscht und sollten daher nach Möglichkeit vermieden oder zumindest in ihrem Gehalt reduziert werden.
  • Die Verwendung von nickelfreien oder nickelarmen Phosphatierlösungen ist zwar bekannt. Eine gezielte Einstellung der elektrischen Leitfähigkeit entsprechender Phosphatbeschichtungen ist jedoch nach wie vor mit starken Problemen verbunden.
  • Andere nickelfreie oder nickelarme Systeme stellen Dünnfilmbeschichtungen dar, bei denen es sich etwa um dünne Beschichtungen aus Zirkoniumoxid und gegebenenfalls mindestens einem Organosiloxan und/oder aus mindestens einem organischen Polymer handelt.
  • Auch hier ist jedoch die gezielte Einstellung der elektrischen Leitfähigkeit zwecks nachfolgender Elektrotauchlackierung immer noch unbefriedigend. So lassen sich in vielen Fällen mehr oder weniger ausgeprägte Inhomogenitäten der abgeschiedenen KTL nicht vermeiden (sog. Mapping).
  • Bei den genannten nickelarmen oder nickelfreien Systemen können zudem ungünstige KTL-Abscheidebedingungen aufgrund einer nicht optimal eingestellten elektrischer Leitfähigkeit der Konversionsbeschichtung zu schlechten Korrosions- und Lackhaftungswerten führen.
  • Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren bereitzustellen, mit dem die elektrische Leitfähigkeit einer Konversionsbeschichtung auf einer metallischen Oberfläche gezielt eingestellt werden kann, und bei dem insbesondere die aus dem Stand der Technik bekannten Nachteile vermieden werden.
  • Gelöst wird diese Aufgabe durch das erfindungsgemäße Verfahren sowie die erfindungsgemäße Konversionsbeschichtung.
  • Bei dem erfindungsgemäßen Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung wird eine metallische Oberfläche zunächst mit einer Konversions-/Passivierlösung behandelt, welche 10 bis 500 mg/l Zr in komplexierter Form, berechnet als Metall, und mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, berechnet als Si, enthält, wodurch eine entsprechende Dünnfilmbeschichtung auf der metallischen Oberfläche ausgebildet wird, und die so beschichtete metallische Oberfläche wird nach optionaler Trocknung mit einer wässrigen Zusammensetzung als Nachspüllösung behandelt, welche 20 bis 225 mg/l an Molybdänionen umfasst.
  • Mit einer "wässrigen Zusammensetzung" ist eine Zusammensetzung gemeint, welche zum überwiegenden Teil, d.h. zu mehr als 50 Gew.-%, Wasser als Lösungsmittel enthält. Sie kann neben gelösten Bestandteilen auch dispergierte, d.h. emulgierte und/oder suspendierte Bestandteile umfassen.
  • Bei der metallischen Oberfläche handelt es sich vorzugsweise um Stahl, eine Feuerverzinkung, eine elektrolytische Verzinkung, Aluminium oder deren Legierungen wie beispielsweise Zn/Fe oder Zn/Mg.
  • Wässrige Zusammensetzungen können eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen der folgenden Metalle in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (alle berechnet als entsprechendes Metall) enthalten:
    Mo 1 bis 1000 mg/l 10 bis 500 mg/l 20 bis 225 mg/l
    Cu 1 bis 1000 mg/l 3 bis 500 mg/l 5 bis 225 mg/l
    Ag 1 bis 500 mg/l 5 bis 300 mg/l 20 bis 150 mg/l
    Au 1 bis 500 mg/l 10 bis 300 mg/l 20 bis 200 mg/l
    Pd 1 bis 200 mg/l 5 bis 100 mg/l 5 bis 100 mg/l
    Sn 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
    Sb 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
  • Die in der wässrigen Zusammensetzung enthaltenen Metallionen scheiden sich entweder in Form eines Salzes, welches das entsprechende Metallkation (z.B. Molybdän oder Zinn) bevorzugt in mindestens zwei Oxidationsstufen enthält - insbesondere in Form eines Oxid-Hydroxyds, eines Hydroxyds, eines Spinells oder eines Defektspinells - oder elementar auf der zu behandelnden Oberfläche ab (z.B. Kupfer, Silber, Gold oder Palladium).
  • Erfindungsgemäß wird eine wässrige Zusammensetzung als Nachspüllösung verwendet und bei den Metallionen handelt es sich um Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der wässrigen Zusammensetzung zugegeben.
  • Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der wässrigen Zusammensetzung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter unten beschriebenen Beschleuniger, zu Molybdat oxidiert werden.
  • Weiter bevorzugt enthält die wässrige Zusammensetzung Molybdänionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.
  • Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Zirkoniumionen im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.
  • Der Gehalt an Molybdänionen liegt im Bereich von 20 bis 225 mg/l bevorzugt von 50 bis 225 mg/l und besonders bevorzugt von 100 bis 225 mg/l und der Gehalt an Zirkoniumionen liegt bevorzugt im Bereich von 30 bis 300 mg/l, besonders bevorzugt von 50 bis 200 mg/l.
  • Gemäß einer weiteren bevorzugten Ausführungsform enthält die Zusammensetzung Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 5 bis 225 mg/l, weiter bevorzugt von 150 bis 225 mg/l.
  • Gemäß einer weiteren Ausführungsform enthält die erfindungsgemäße wässrige Zusammensetzung mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole. Bevorzugt kommt ein Polyamin und/oder Polyimin, besonders bevorzugt ein Polyamin zum Einsatz.
  • Bei dem Polyamin handelt es sich vorzugsweise um ein Polyethylenamin, bei dem Polyimin um ein Polyethylenimin.
  • Das mindestens eine elektrisch leitfähige Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5,0 g/l, weiter bevorzugt von 0,2 bis 3,0 g/l und besonders bevorzugt im Bereich von 0,5 bis 1,5 g/l (berechnet als reines Polymer) enthalten.
  • Als elektrisch leitfähige Polymere werden bevorzugt kationische Polymere wie z.B. Polyamine oder Polyethylenimine eingesetzt.
  • Vorzugsweise werden im erfindungsgemäßen Verfahren nur Behandlungslösungen sowie erfindungsgemäße wässrige Zusammensetzungen verwendet, welche weniger als 1,5 g/l, weiter bevorzugt weniger als 1 g/l, weiter bevorzugt weniger als 0,5 g/l, besonders bevorzugt weniger als 0,1 g/l und ganz besonders bevorzugt weniger als 0,01 g/l Nickelionen enthalten.
  • Enthält eine Behandlungslösung oder erfindungsgemäße wässrige Zusammensetzung weniger als 0,01 g/l Nickelionen soll sie als zumindest im Wesentlichen nickelfrei gelten.
  • Die Konversionsbeschichtungen, welche mit der Nachspüllösung behandelt werden, sind Dünnfilmbeschichtungen. Bei den Dünnfilmbeschichtungen handelt es sich um dünne Beschichtungen aus Zirkoniumoxid und mindestens einem Organosiloxan. Solche Konversionsbeschichtungen werden mittels einer entsprechenden Konversions-/Passivierlösung aufgebracht.
  • Nachfolgend werden zum einen Phosphatierlösungen sowie Konversions-/ Passivierlösungen beschrieben.
  • i) Phosphatierlösung
  • Bei der Phosphatierlösung kann es sich um eine wässrige Zinkphosphatlösung oder um eine wässrige Alkalimetallphosphatlösung handeln.
  • Handelt es sich um eine Zinkphosphatlösung, umfasst diese vorzugsweise die folgenden Komponenten in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbere ichen:
    Zn 0,3 bis 3,0 g/l 0,5 bis 2,0 g/l
    Mn 0,3 bis 2,0 g/l 0,5 bis 1,5 g/l
    Phosphat (berechnet als P2O5) 8 bis 25 g/l 10 bis 18 g/l
    freies Fluorid 30 bis 250 mg/l 50 bis 180 mg/l
    Komplexfluorid (berechnet z.B. als SiF6 2- und/oder BF4 -) bis 5 g/l 0,5 bis 3 g/l
  • Hinsichtlich der Manganionen hat sich aber bereits eine Konzentration im Bereich von 0,3 bis 2,5 g/l, hinsichtlich des freien Fluorids eine Konzentration im Bereich von 10 bis 250 mg/l als vorteilhaft herausgestellt.
  • Bei dem Komplexfluorid handelt es sich bevorzugt um Tetrafluoroborat (BF4 -) und/oder Hexafluorosilicat (SiF6 2-).
  • Gemäß einer besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfluorid um eine Kombination von Tetrafluoroborat (BF4 -) und Hexafluorosilicat (SiF6 2-), wobei die Konzentration an Tetrafluoroborat (BF4 -) im Bereich bis 3 g/l, bevorzugt von 0,2 bis 2 g/l, und die Konzentration an Hexafluorosilicat (SiF6 2-) im Bereich bis 3 g/l, bevorzugt von 0,2 bis 2 g/l, liegt.
  • Gemäß einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfluorid um Hexafluorosilicat (SiF6 2-) mit einer Konzentration im Bereich von 0,2 bis 3 g/l, bevorzugt von 0,5 bis 2 g/l.
  • Gemäß einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfluorid um Tetrafluoroborat (BF4 -) mit einer Konzentration im Bereich von 0,2 bis 3 g/l, bevorzugt von 0,5 bis 2 g/l.
  • Zudem enthält die Phosphatierlösung vorzugsweise mindestens einen Beschleuniger ausgewählt aus der Gruppe bestehend aus den folgenden Verbindungen in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen:
    Nitroguanidin 0,2 bis 3,0 g/l 0,2 bis 1,55 g/l
    H2O2 10 bis 100 mg/l 15 bis 50 mg/l
    Nitroguanidin / H2O2 0,2 bis 2,0 g/l/10 bis 50 mg/l 0,2 bis 1,5 g/l / 15 bis 30 mg/l
    Nitrit 30 bis 300 mg/l 90 bis 150 mg/l
  • Hinsichtlich des Nitroguanidins hat sich aber bereits eine Konzentration im Bereich von 0,1 bis 3,0 g/l, hinsichtlich des H2O2 eine Konzentration im Bereich von 5 bis 200 mg/l als vorteilhaft herausgestellt.
  • Des Weiteren lässt sie sich durch die folgenden bevorzugten und besonders bevorzugten Parameterbereiche charakterisieren:
    FS 0,3 bis 2,0 0,7 bis 1,6
    FS (verd.) 0,5 bis 8 1 bis 6
    GSF 12 bis 28 22 bis 26
    GS 12 bis 45 18 bis 35
    S-Wert 0,01 bis 0,2 0,03 bis 0,15
    Temperatur °C 30 bis 50 °C 35 bis 45 °C
  • Hinsichtlich des FS-Parameters hat sich aber bereits ein Wert im Bereich von 0,2 bis 2,5, hinsichtlich der Temperatur eine solche im Bereich von 30 bis 55 °C als vorteilhaft herausgestellt.
  • Hierbei steht "FS" für freie Säure, "FS (verd.)" für freie Säure (verdünnt), "GSF" für Gesamtsäure nach Fischer, "GS" für Gesamtsäure und "S-Wert" für Säurewert.
  • Diese Parameter sind werden dabei folgendermaßen ermittelt:
  • Freie Säure (FS):
  • Zur Bestimmung der freien Säure werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert. Enthält die Phosphatierlösung Komplexfluoride, werden der Probe noch 2-3 g Kaliumchlorid zugegeben. Sodann wird unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 3,6 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der Phosphatierlösung ergibt den Wert der freien Säure (FS) in Punkten.
  • Freie Säure (verdünnt) (FS (verd.)):
  • Zur Bestimmung der freien Säure (verdünnt) werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise in einen 300 ml-Erlenmeyerkolben pipettiert. Anschließend werden 150 ml VE-Wasser zugegeben. Unter Verwendung eines pH-Meters und einer Elektrode wird mit 0,1 M NaOH bis zu einem pH-Wert von 4,7 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierlösung ergibt den Wert der freien Säure (verdünnt) (FS (verd.)) in Punkten. Über die Differenz zur freien Säure (FS) kann der Gehalt an Komplexfluorid ermittelt werden. Wenn diese Differenz mit dem Faktor 0,36 multipliziert wird, ergibt sich der Gehalt an Komplexfluorid als SiF6 2- in g/l.
  • Gesamtsäure nach Fischer (GSF):
  • Im Anschluss an die Ermittlung der freien Säure (verdünnt) wird die verdünnte Phosphatierlösung nach Zusatz von Kaliumoxalatlösung unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 8,9 titriert. Der Verbrauch an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierlösung ergibt hierbei die Gesamtsäure nach Fischer (GSF) in Punkten. Wenn dieser Wert mit 0,71 multipliziert wird, ergibt sich der Gesamtgehalt an Phosphationen gerechnet als P2O5 (Siehe W. Rausch: "Die Phosphatierung von Metallen". Eugen G. Leuze-Verlag 2005, 3. Auflage, pp. 332 ff).
  • Gesamtsäure (GS):
  • Die Gesamtsäure (GS) ist die Summe aus den enthaltenen zweiwertigen Kationen sowie freien und gebundenen Phosphorsäuren (letztere sind Phosphate). Sie wird durch den Verbrauch an 0,1 M NaOH unter Verwendung eines pH-Meters und einer Elektrode bestimmt. Dazu werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert und mit 25 ml VE-Wasser verdünnt. Anschließend wird mit 0,1 M NaOH bis zu einem pH-Wert von 9 titriert. Der Verbrauch in ml pro 10 ml der verdünnten Phosphatierlösung entspricht hierbei der Punktzahl der Gesamtsäure (GS).
  • Säurewert (S-Wert):
  • Der sogenannte Säurewert (S-Wert) steht für das Verhältnis FS : GSF und ergibt sich durch Division des Wertes der freien Säure (FS) durch den Wert der Gesamtsäure nach Fischer (GSF).
  • ii) Konversions-ZPassivierlösung
  • Die Konversions-/Passivierlösung ist wässrig und umfasst stets 10 bis 500 mg/l, bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Konversions-/Passivierungslösung stets 10 bis 500 mg/l, bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid.
  • Sie enthält 10 bis 500 mg/l, weiter bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Zr in komplexierter Form (berechnet als Metall).
  • Sie enthält zusätzlich mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, weiter bevorzugt von 10 bis 100 mg/l und besonders bevorzugt von 20 bis 80 mg/l (berechnet als Si).
  • Das mindestens eine Organosilan weist bevorzugt mindestens eine Aminogruppe auf. Besonders bevorzugt handelt es sich um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin.
  • Die Konversions-/Passivierlösung kann zudem die folgenden Komponenten in den folgenden Konzentrationsbereichen und bevorzugten Konzentrationsbereichen enthalten:
    Zn 0 bis 5 g/l 0,05 bis 2 g/l
    Mn 0 bis 1 g/l 0,05 bis 1 g/l
    Nitrat 0 bis 10 g/l 0,01 bis 5 g/l
  • iii) Nachspüllösung
  • Eine Nachspüllösung zur Behandlung einer bereits konversionsbeschichteten metallischen Oberfläche wird ebenfalls beschrieben.
  • Die Nachspüllösung enthält Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der Nachspüllösung zugegeben.
  • Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der Nachspüllösung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter oben beschriebenen Beschleuniger, zu Molybdat oxidiert werden.
  • Weiter bevorzugt enthält die Nachspüllösung Molybdänionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.
  • Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Molybdänionen und Zirkoniumionen jeweils im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.
  • Der Gehalt an Molybdänionen liegt dabei im Bereich von 20 bis 225 mg/l besonders bevorzugt von 50 bis 225 mg/l und ganz besonders bevorzugt von 100 bis 225 mg/l und der Gehalt an Zirkoniumionen im Bereich von 30 bis 300 mg/l, besonders bevorzugt von 50 bis 200 mg/l.
  • Gemäß einer weiteren bevorzugten Ausführungsform enthält die Nachspüllösung Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 5 bis 225 mg/l, weiter bevorzugt von 150 bis 225 mg/l.
  • Gemäß einer weiteren Ausführungsform enthält die Nachspüllösung mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole. Bevorzugt kommt ein Polyamin und/oder Polyimin, besonders bevorzugt ein Polyamin zum Einsatz.
  • Bei dem Polyamin handelt es sich vorzugsweise um ein Polyethylenamin, bei dem Polyimin um ein Polyethylenimin.
  • Das mindestens eine elektrisch leitfähige Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5,0 g/l, weiter bevorzugt von 0,2 bis 3,0 g/l und besonders bevorzugt im Bereich von 0,5 bis 1,5 g/l (berechnet als reines Polymer) enthalten.
  • Als elektrisch leitfähige Polymere werden bevorzugt kationische Polymere wie z.B. Polyamine oder Polyethylenimine eingesetzt.
  • Die Nachspüllösung umfasst vorzugsweise zusätzlich 10 bis 500 mg/l, weiter bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Nachspüllösung vorzugsweise 10 bis 500 mg/l, weiter bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid.
  • Eine Ti, Zr und/oder Hf in komplexierter Form umfassende Nachspüllösung, enthält vorzugsweise zusätzlich mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, weiter bevorzugt von 10 bis 100 mg/l und besonders bevorzugt von 20 bis 80 mg/l (berechnet als Si).
  • Das mindestens eine Organosilan weist bevorzugt mindestens eine Aminogruppe auf. Besonders bevorzugt handelt es sich um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin.
  • Der pH-Wert der Nachspüllösung liegt vorzugsweise im sauren Bereich, weiter bevorzugt im Bereich von 3 bis 5, besonders bevorzugt im Bereich von 3,5 bis 5.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine metallische Oberfläche zunächst mit einer Konversions-/Passivierlösung behandelt, welche 10 bis 500 mg/l Zr in komplexierter Form (berechnet als Metall) und gegebenenfalls noch mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukte davon und/oder mindestens ein Kondensationsprodukte davon in einem Konzentrationsbereich von 5 bis 200 mg/l (berechnet als Si) enthält, und so eine entsprechende Dünnfilmbeschichtung auf der metallischen Oberfläche ausgebildet.
  • Nach optionaler Trocknung wird die so beschichtete metallische Oberfläche mit einer erfindungsgemäßen Nachspüllösung behandelt und auf diese Weise eine Dünnfilmbeschichtung mit einer definierten elektrischen Leitfähigkeit erhalten.
  • Anschließend - wiederum nach optionaler Trocknung - wird auf der so beschichteten metallischen Oberfläche kathodisch ein Elektrotauchlack abgeschieden.
  • Durch das erfindungsgemäße Verfahren lässt sich die elektrische Leitfähigkeit einer Konversionsbeschichtung gezielt einstellen. Dabei kann die Leitfähigkeit entweder größer, gleich groß oder kleiner als die einer entsprechenden nickelhaltigen Konversionsbeschichtung sein.
  • Die mit dem erfindungsgemäßen Verfahren eingestellte elektrische Leitfähigkeit einer Konversionsbeschichtung lässt sich über die Variation der Konzentration eines gegebenen Metallions bzw. elektrisch leitfähigen Polymers beeinflussen.
  • Die vorliegende Erfindung betrifft zudem ein Konzentrat, welches durch Verdünnen mit Wasser um einen Faktor zwischen 1 und 100, vorzugsweise zwischen 5 und 50, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz eine erfindungsgemäße wässrige Zusammensetzung ergibt.
  • Schließlich betrifft die vorliegende Erfindung noch eine konversionsbeschichtete metallische Oberfläche, welche durch das erfindungsgemäße Verfahren erhältlich ist. Im Folgenden soll die vorliegende Erfindung durch nicht einschränkend zu verstehende Ausführungsbeispiele und Vergleichsbeispiele erläutert werden, nur die Beispiele 4 und 5 sind erfindungsgemäß.
  • Vergleichsbeispiel 1
  • Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer 1 g/l Nickel enthaltenden Phosphatierlösung beschichtet. Es wurde keine Nachspülung vorgenommen. Anschließend wurde die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCl)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 1: ZE_Variation11_2: Kurve 3). Die Messung erfolgte mittels sog. Linear-Sweep-Voltametrie (Potentialbereich: -1,1 bis -0,2 Vref; Scanrate: 1 mV/s).
  • In allen Beispielen und Vergleichsbeispielen ist die gemessene Stromdichte i abhängig von der elektrischen Leitfähigkeit der Konversionsbeschichtung. Es gilt: Je höher die gemessene Stromdichte i, desto höher ist auch die elektrische Leitfähigkeit der Konversionsbeschichtung. Eine unmittelbare Messung der elektrischen Leitfähigkeit in µS/cm, wie sie in flüssigen Medien möglich ist, kann bei Konversionsbeschichtungen nicht durchgeführt werden.
  • Vorliegend dient daher stets die bei einer nickelhaltigen Konversionsbeschichtung gemessene Stromdichte i als Bezugspunkt für Aussagen über die elektrische Leitfähigkeit einer gegebenen Konversionsbeschichtung.
  • Die Angabe "1E" in den Figuren 1 bis 4 steht stets für "10". Beispielsweise bedeutet "1E-4" dementsprechend "10-4".
  • Vergleichsbeispiel 2
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 1 . ZE_Variation1_1: Kurve 1; ZE_Variation1_3: Kurve 2).
  • Wie Fig. 1 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 2) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1) nach links verschoben. Auch die elektrische Leitfähigkeit ist niedriger: Die "Arme" der Kurve 1 sowie der Kurve 2 befinden sind jeweils unterhalb der Kurve 3, d.h. zu niedrigeren Stromdichten hin.
  • Vergleichsbeispiel 3
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien
  • Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 2 . ZE_Variation6_1: Kurve 1; ZE_Variation6_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 ( Fig. 2 : ZE_Variation11_2: Kurve 3).
  • Wie Fig. 2 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2- enthaltenden Nachspüllösung (Vergleichsbeispiel 3) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1) nach links verschoben. Auch die elektrische Leitfähigkeit ist beim genannten nickelfreien System niedriger (vgl. die Ausführungen zu Vergleichsbeispiel 2).
  • Beispiel 1
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 220 mg/l Kupferionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 3 . ZE_Variation2_1: Kurve 1 ; ZE_Variation2_2: Kurve 2). Verglichen wird wieder mit Vergleichsbeispiel 1 ( Fig. 3 : ZE_Variation11_2: Kurve 3).
  • Wie Fig. 3 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer Kupferionen enthaltenden Nachspüllösung (Beispiel 1) dem des nickelhaltigen Systems (Vergleichsbeispiel 1). Die Leitfähigkeit dieses nickelfreien Systems ist gegenüber dem des nickelhaltigen Systems leicht erhöht.
  • Beispiel 2
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyamin (Lupamin® 9030, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 4 . ZE_Variation3_1: Kurve 1; ZE_Variation3_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 ( Fig. 4 : ZE_Variation11_2: Kurve 3).
  • Wie Fig. 4 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ein elektrisch leitfähiges Polymer enthaltenden Nachspüllösung (Beispiel 2) dem des nickelhaltigen Systems (Vergleichsbeispiel 1). Dabei ist die elektrische Leitfähigkeit des nickelfreien Systems gegenüber dem nickelhaltigen etwas verringert.
  • Vergleichsbeispiel 3
  • Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 g/l Nickel enthaltenden Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt und danach die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCl)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 5 : EA 173: Kurve 1). Die Messung erfolgte mittels sog. Linear-Sweep-Voltametrie.
  • Vergleichsbeispiel 4
  • Eine Testplatte gemäß Vergleichsbeispiel 3 wurde mittels einer nickelfreien Phosphatierlösung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 3 gemessen (siehe Fig. 5 . EA 167: Kurve 3; EA 167 2: Kurve 2).
  • Wie Fig. 5 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 4) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 3) nach rechts verschoben. Die elektrische Leitfähigkeit ist beim nickelhaltigen System deutlich niedriger, was auf die Passivierung mittels der ZrF6 2- enthaltenden Nachspüllösung zurückzuführen ist.
  • Beispiel 3
  • Eine Testplatte gemäß Vergleichsbeispiel 3 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 6 . EA 178: Kurve 3; EA 178 2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 3 ( Fig. 6 : EA 173: Kurve 1).
  • Wie Fig. 6 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2- und Molybdänionen enthaltenden Nachspüllösung (Beispiel 3) dem des nickelhaltigen Systems (Vergleichsbeispiel 3). Durch den Zusatz von Molybdänionen (Beispiel 3) zur ZrF6 2- enthaltenden Nachspüllösung (Vergleichsbeispiel 3) konnte die Leitfähigkeit an der Substratoberfläche deutlich erhöht werden.
  • Vergleichsbeispiel 5
  • Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden mit einer wässrigen Reinigungslösung, welche ein Tensid enthielt und einen pH-Wert von 10,8 aufwies, für 180 s bei 60 °C besprüht. Die Reinigungslösung wurde anschließend von den Testplatten abgespült, indem diese zunächst für 30 s mit Stadtwasser und dann für 20 s mit deionisiertem Wasser besprüht wurden. Die gereinigten Testplatten wurden sodann für 175 s in eine Konversions-/Passivierlösung getaucht, welche 40 mg/l Si, 140 mg/l Zr, 2 mg/l Cu und 30 mg/l freies Fluorid enthielt und einen pH-Wert von 4,8 sowie eine Temperatur von 30 °C aufwies. Die wässrige Konversions-/Passivierlösung wurde anschließend von den Testplatten abgespült, indem diese für 50 s in dionisiertes Wasser getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden. Die so vorbehandelten Testplatten wurden dann entweder mit einem ersten speziellen KTL-Lack (KTL 1) oder mit einem zweiten speziellen KTL-Lack (KTL 2) kathodisch tauchlackiert.
  • Beispiel 4
  • Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/Passivierlösung anschließend von den Testplatten abgespült wurde, indem diese für 50 s in eine wässrige Lösung mit 100 mg/l Mo (berechnet als Metall), welches in Form von Ammoniumheptamolybdat zugesetzt wurde, (Nachspüllösung) getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden.
  • Beispiel 5
  • Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/Passivierlösung anschließend von den Testplatten abgespült wurde, indem diese für 50 s in eine wässrige Lösung mit 200 mg/l Mo (berechnet als Metall), welches in Form von Ammoniumheptamolybdat zugesetzt wurde, (Nachspüllösung) getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden.
  • Beispiel 6
  • Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/ Passivierlösung zusätzlich 100 mg/l Mo (berechnet als Metall) enthielt, welches in Form von Ammoniumheptamolybdat zugesetzt wurde.
  • Die Testplatten gemäß Vergleichsbeispiel 5 (VB5) und den Beispielen 4 bis 6 (B4 bis B6) wurden anschließend einem Lackhaftungstest des Automobilherstellers PSA unterzogen (Cataplasmatest).
  • Die erhaltenen Gitterschnitt- und Lackverlustergebnisse sind Tab. 1 zu entnehmen. Bei den Gitterschnittergebnissen steht 1 für den besten und 6 für den schlechtesten Wert. Bei den Lackverlustergebnissen bedeutet 100 % vollständigen Lackverlust.
  • Die Testplatten gemäß Vergleichsbeispiel 5 (VB5) und den Beispielen 4 bis 6 (B4 bis B6) wurden zudem mittels der Methode der sog. kathodischen Polarisation untersucht.
  • Diese Methode beschreibt einen elektrochemischen Kurzzeittest, der an definiert verletzten, beschichteten Stahlblechen durchgeführt wird. Nach dem Prinzip eines elektrostatischen Halteversuchs wird geprüft, wie gut die Beschichtung des Prüfblechs dem Vorgang der korrosiven Unterwanderung widersteht.
  • Das geritzte Prüfblech (Ritzstichel für 0,5 mm Ritzbreite, z.B. Prüfspitze nach Clemen (R=1 mm); Schablone zum Anritzen) wird in die Messzelle eingebaut (Galvanostat als Stromquelle (20 mA im Regelbereich); Thermostat mit Anschlüssen zur Temperaturregelung 40 °C +/- 0,5 °C; Elektrolysezelle Glas mit Temperiermantel, komplett mit Referenzelektrode; Gegenelektrode, Dichtring und Oliven). Dabei ist darauf zu achten, dass die beiden Elektrodenstäbe parallel zum Ritz liegen.
  • Nach dem Einrasten des Deckels wird die Zelle mit ca. 400 mL 0,1 m Na-sulfatlösung gefüllt. Danach werden die Klemmen wie folgt angeschlossen: Grün-blaue Klemme an Arbeitselektrode (Blech), orange-rote Klemme an Gegenelektrode (Elektrode mit Parallelstäben), weiße Klemme an Referenzelektrode (in Haber-Lugginkapillare).
  • Anschließend wird die kathodische Polarisation über die Steuerungssoftware (Steuergerät mit Software) gestartet und ein Strom von 20 mA über einen Zeitraum von 24 Stunden am Prüfblech eingestellt. Während dieser Zeit wird die Messzelle mit Hilfe des Thermostaten auf 40 °C +/- 0,5 Grad temperiert. In der 24-stündigen Belastungsdauer entwickelt sich an der Kathode (Prüfblech) Wasserstoff und an der Gegenelektrode Sauerstoff.
  • Nach der Messung wird das Blech zur Vermeidung von Sekundärkorrosion sofort ausgebaut, mit VE-Wasser abgespült und an der Luft getrocknet. Mit Hilfe eines stumpfen Messers wird die abgelöste Lackschicht abgetragen. Weitere abgelöste Lackbereiche können mit einem starken Textilklebeband (z.B. Tesaband 4657 grau) entfernt werden. Danach wird die freigelegte Fläche ausgewertet Lineal, ggf. Lupe).
  • Dazu wird jeweils im Abstand von 5 mm die Breite der abgelösten Fläche mit einer Genauigkeit von 0,5 mm ermittelt. Die gemittelte Breite der Enthaftung wird nach folgenden Gleichungen berechnet: d 1 = a 1 + a 2 + a 3 + / n
    Figure imgb0001
    d = d 1 w / 2
    Figure imgb0002
    • d1: Mittelwert der Enthaftungsbreite in mm
    • a1, a2, a3: Einzelwerte der Enthaftungsbreite in mm
    • n: Anzahl der Einzelwerte
    • w: Breite des Anritzes in mm
    • d: mittlere Breite der Enthaftung, Unterwanderungsbreite in mm
  • Die Angabe des Ergebnisses erfolgt in mm und wird auf eine Kommastelle gerundet. Die Standardabweichung der Messungen liegt unter 20 %. Die so ermittelten Delaminationswerte werden ebenfalls in Tab. 1 gezeigt.
  • Testplatten gemäß den Vergleichsbeispielen 1 bis 3 (VB1 bis VB3) sowie den Beispielen 1 und 2 (B1 und B2) wurden KTL-beschichtet und anschließend einem Gitterschnitttest nach DIN EN ISO 2409 unterzogen. Getestet wurden jeweils 3 Bleche vor und nach Belastung für 240 Stunden mit Kondenswasser (DIN EN ISO 6270-2 CH). Die entsprechenden Ergebnisse finden sich in Tab. 2. Ein Gitterschnittergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert. Tabelle 1:
    (Vgl.-) Bsp. Testplatte KTL-Lack Gitterschnitt (1-6) Lackverlust (%) Delamination (mm)
    VB5 HDG KTL 1 6 50 11,9
    6 50
    KTL 2 2 0 8,9
    2 0
    EG KTL 1 6 50 8,5
    6 50
    KTL 2 2 0 6,3
    2 0
    B4 HDG KTL 1 3 1 2,9
    2 1
    KTL 2 2 0 2,8
    2 0
    EG KTL 1 2 1 1,9
    4 1
    KTL 2 2 0 2,4
    1 0
    B5 HDG KTL 1 5 1 3,3
    5 1
    KTL 2 3 0 2,6
    2 0
    EG KTL 1 2 1 2,1
    2 1
    KTL 2 2 0 1,7
    2 0
    B6 HDG KTL 1 2 1 2,8
    2 0
    KTL 2 2 0 2,2
    2 0
    EG KTL 1 1 1 1,4
    2 0
    KTL 2 2 0 1,6
    1 0
    Tabelle 2:
    (Vergleichs-) Beispiel Gitterschnitt (0-5)
    vor Belastung nach Belastung
    VB1 0 / 0 / 0 1 / 1 / 0
    VB2 1 / 0 / 0 3 / 1 / 0
    VB3 0 / 0 / 1 1 / 5 / 4
    B1 1 / 0 / 0 0 / 0 / 1
    B2 1 / 1 / 1 1 / 1 / 1
  • Wie Tab. 1 zu entnehmen ist, führt der Einsatz von Mo sowohl in der Konversions-/ Passivierlösung als auch in der Nachspüllösung vor allem in Verbindung mit dem KTL 1-Lack zum Vorteil einer verbesserten Lackhaftung (niedrigere Gitterschnitt- sowie Lackverlustswerte bei B4 bis B6 im Vergleich zu VB5). Zudem ist Tab. 1 zu entnehmen, dass Mo sowohl in der Konversions-/ Passivierlösung als auch in der Nachspüllösung zu einer deutlich verringerten Delamination führt (B4 bis B6 im Vergleich zu VB5).
  • Zurückzuführen ist dieser positive Effekt auf die Tatsache, dass der Einsatz von Mo zu einer erhöhten Leitfähigkeit der Oberfläche führt und somit einen Angriff auf die Konversionsschicht während der stromflussabhängigen kathodischen Tauchlackierung weitestgehend unterbindet.
  • Tab. 2 lässt die schlechten Ergebnisse von VB2 und insbesondere VB3 jeweils nach Belastung erkennen, während B1 (Kupferionen) und B2 (elektr. leitfähiges Polyamin) gute - VB1 (nickelhaltige Phosphatierung) vergleichbare - Resultate liefern.
  • Beispiel 7
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyimin mit einem zahlenmittleren Molekulargewicht von 5000 g/mol (Lupasol® G 100, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies.
  • Beispiel 8
  • Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 130 mg/l ZrF6 2- (berechnet als Zr) und 20 mg/l Molybdänionen enthaltenden Nachspüllösung behandelt, welche zusätzlich 1,2 g/l (gerechnet auf das reine Polymer) Polyacrylsäure mit einem zahlenmittleren Molekulargewicht von 60.000 g/mol enthielt und einen pH-Wert von ca. 4 aufwies.
  • Vergleichsbeispiel 6
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird.
  • Vergleichsbeispiel 7
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird.
  • Beispiel 9
  • Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyimin mit einem zahlenmittleren Molekulargewicht von 5000 g/mol (Lupasol® G 100, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies.
  • Beispiel 10
  • Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 130 mg/l ZrF6 2- (berechnet als Zr) und 20 mg/l Molybdänionen enthaltenden Nachspüllösung behandelt, welche zusätzlich 1,2 g/l (gerechnet auf das reine Polymer) Polyacrylsäure mit einem zahlenmittleren Molekulargewicht von 60.000 g/mol enthielt und einen pH-Wert von ca. 4 aufwies.
  • Vergleichsbeispiel 8
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus Stahl verwendet wird.
  • Vergleichsbeispiel 9
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus Stahl verwendet wird.
  • Beispiel 11
  • Eine Testplatte aus Stahl wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 230 mg/l Kupferionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
  • Vergleichsbeispiel 10
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass die Phosphatierlösung 1 g/l BF4 - und 0,2 g/l SiF6 2- enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
  • Vergleichsbeispiel 11
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass die Phosphatierlösung 1 g/l BF4 - und 0,2 g/l SiF6 2- enthält.
  • Beispiel 12
  • Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l BF4 - und 0,2 g/l SiF6 2- enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2- (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
  • Vergleichsbeispiel 12
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird, die Phosphatierlösung 1 g/l BF4 - und 0,2 g/l SiF6 2- enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
  • Vergleichsbeispiel 13
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird und die Phosphatierlösung 1 g/l BF4 - und 0,2 g/l SiF6 2- enthält.
  • Beispiel 13
  • Eine Testplatte feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l BF4 - und 0,2 g/l SiF6 2- enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2- (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
  • Vergleichsbeispiel 14
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass die Phosphatierlösung 1 g/l SiF6 2- enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
  • Vergleichsbeispiel 15
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass die Phosphatierlösung 1 g/l SiF6 2- enthält.
  • Beispiel 14
  • Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l SiF6 2- enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2- (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
  • Vergleichsbeispiel 16
  • Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird, die Phosphatierlösung 1 g/l SiF6 2- enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2- (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
  • Vergleichsbeispiel 17
  • Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird und die Phosphatierlösung 1 g/l SiF6 2- enthält.
  • Beispiel 15
  • Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l SiF6 2- enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2- (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
  • Testplatten gemäß den Vergleichsbeispielen 1, 2, 6 und 7 (VB1, VB2, VB6 und VB7) sowie den Beispielen 7 bis 10 (B7 bis B10) wurden KTL-beschichtet. Dabei wurden vier Programme verwendet, welche sich hinsichtlich (a) der Rampendauer - also der Zeit bis zum Erreichen der maximalen Spannung -, (b) der maximalen Spannung und/oder (c) der Dauer des Anliegens der maximalen Spannung unterschieden:
    Programm 1: (a) 30 Sek. (b) 240 V (c) 150 Sek.
    Programm 2: (a) 30 Sek. (b) 220 V (c) 150 Sek.
    Programm 3: (a) 3 Sek. (b) 240 V (c) 150 Sek.
    Programm 4: (a) 3 Sek. (b) 220 V (c) 150 Sek.
  • Die jeweils mittels eines Fischer DUALSCOPE® gemessene Schichtdicke des abgeschiedenen KTL-Lackes ist Tab. 3 zu entnehmen.
  • Testplatten gemäß den Vergleichsbeispielen 8 bis 17 (VB8 bis VB17) sowie den Beispielen 11 bis 15 (B11 bis B15) wurden einer Röntgenfluoreszenzanalyse (RFA) unterzogen. Tab. 4 zeigt den jeweils bestimmten Gehalt an Kupfer bzw. Zirkonium und Molybdän (jeweils berechnet als Metall) in der Oberfläche. Anschließend wurden die genannten Testplatten KTL-beschichtet. Dabei wurden die folgenden Programme verwendet, welche sich je nach (Vergleichs-)Beispiel hinsichtlich (a) der Rampendauer - also der Zeit bis zum Erreichen der maximalen Spannung -, (b) der maximalen Spannung und/oder (c) der Dauer des Anliegens der maximalen Spannung unterschieden:
    VB8, VB9, B11: (a) 30 Sek. (b) 250 V (c) 240 Sek.
    VB10, VB11, VB14, VB15, B12, B14: (a) 30 Sek. (b) 260 V (c) 300 Sek.
    VB12; VB13, VB16; VB17, B13, B15: (a) 30 Sek. (b) 260 V (c) 280 Sek.
  • Die jeweils mittels eines Fischer DUALSCOPE® gemessene Schichtdicke des 2 abgeschiedenen KTL-Lackes ist Tab. 4 zu entnehmen. Tabelle 3:
    (Vergleichs-) Beispiel Programm 1: Schichtdicke (µm) Programm 2: Schichtdicke (µm) Programm 3: Schichtdicke (µm) Programm 4: Schichtdicke (µm)
    VB1 19,4 17,7 21,4 18,4
    VB2 16 15 17,4 15,9
    B7 20,4 17,8 22,6 19,1
    B8 19 17,4 19,8 18
    VB6 21,5 19,5 21,2 19,2
    VB7 19,1 17 18,6 17,1
    B9 22,8 20 23,5 20,5
    B10 20,3 18,7 21,6 18,8
    Tabelle 4:
    (Vergleichs-) Beispiel Cu-Gehalt (mg/m2) Mo-Gehalt (mg/m2) Zr-Gehalt (mg/m2) KTL-Dicke (µm)
    VB8 0 --- --- 19,5
    VB9 0 --- --- 19,9
    B11 20 --- --- 22,9
    VB10 --- 0 5 19,7
    VB11 --- 0 0 18
    B12 --- 8 6 19,6
    VB12 --- 0 7 21,6
    VB13 --- 0 0 20
    B13 --- 5 6 21,7
    VB14 --- 0 5 19,7
    VB15 --- 0 0 18
    B14 --- 9 8 19,1
    VB16 --- 0 6 22,1
    VB17 --- 0 0 20
    B15 --- 10 10 21,7
  • Tab. 3 zeigt jeweils eine deutliche Abnahme der Schichtdicke des KTL-Lackes bei der nickelfreien im Vergleich zur nickelhaltigen Phosphatierung (VB2 vs. VB1; VB7 vs. VB6). Durch Verwendung der erfindungsgemäßen Nachspüllösungen lässt sich die bei nickelfreier Phosphatierung erhaltene Schichtdicke jedoch wieder erhöhen (B7 und B8 vs. VB2; B9 und B10 vs. VB6) - im Falle von B7 sowie B9 sogar über das Niveau der nickelhaltigen Phosphatierung hinaus.
  • Tab. 4 ist zu entnehmen, dass die Verwendung einer erfindungsgemäßen kupferhaltigen Nachspüllösung (bei vorheriger nickelfreier Phosphatierung) zu einem Einbau von Kupfer in die Testplattenoberfläche führt. In der Folge kommt es einer - sogar gegenüber dem nickelhaltigen System - verbesserten KTL-Abscheidung (B11 vs. VB8). Der Kupfergehalt der Oberfläche erhöht deren Leitfähigkeit. Hierdurch kommt es zu einer effektiveren KTL-Abscheidung, was sich bei ansonsten gleichen Bedingungen in der höheren Schichtdicke des KTL-Lackes äußert. Durch die Verwendung erfindungsgemäßer zirkon- sowie molybdänhaltiger Nachspüllösungen (nach nickelfreier Phosphatierung) kommt es entsprechend zum Einbau von Molybdän in die Oberfläche der Testplatten, was die KTL-Abscheidung wieder (annähernd) auf das Niveau des nickelhaltigen Phosphatierung bringt (B12 vs. VB10; B13 vs VB12.; B14 vs. VB14; B15 vs. VB16).

Claims (8)

  1. Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung dadurch gekennzeichnet, dass eine metallische Oberfläche zunächst mit einer Konversions-/Passivierlösung behandelt wird, welche 10 bis 500 mg/l Zr in komplexierter Form, berechnet als Metall, und mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, berechnet als Si, enthält, und so eine entsprechende Dünnfilmbeschichtung auf der metallischen Oberfläche ausgebildet wird, und dass die so beschichtete metallische Oberfläche nach optionaler Trocknung mit einer wässrigen Zusammensetzung als Nachspüllösung behandelt wird, welche 20 bis 225 mg/l an Molybdänionen umfasst.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass es sich bei dem Organosilan um ein solches handelt, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin.
  3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die wässrige Zusammensetzung Zirkoniumionen umfasst.
  4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass die wässrige Zusammensetzung 50 bis 200 mg/l an Zirkoniumionen umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die wässrige Zusammensetzung ein Polyamin und/oder Polyimin umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die wässrige Zusammensetzung Kupferionen umfasst.
  7. Verfahren nach Anspruch 6 dadurch gekennzeichnet, dass die wässrige Zusammensetzung 150 bis 225 mg/l an Kupferionen umfasst.
  8. Konversionsbeschichtete metallische Oberfläche, dadurch gekennzeichnet, dass sie durch ein Verfahren nach einem der Ansprüche 1 bis 7 erhältlich ist.
EP16717585.0A 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen Active EP3280830B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015206145 2015-04-07
PCT/EP2016/057620 WO2016162422A1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen

Publications (2)

Publication Number Publication Date
EP3280830A1 EP3280830A1 (de) 2018-02-14
EP3280830B1 true EP3280830B1 (de) 2021-03-31

Family

ID=55802343

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16718613.9A Pending EP3280831A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen
EP16717585.0A Active EP3280830B1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen
EP17703041.8A Pending EP3440235A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16718613.9A Pending EP3280831A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17703041.8A Pending EP3440235A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Country Status (12)

Country Link
US (2) US11492707B2 (de)
EP (3) EP3280831A1 (de)
JP (3) JP6810704B2 (de)
KR (3) KR20170133480A (de)
CN (3) CN107735511B (de)
BR (2) BR112017021409B1 (de)
DE (2) DE102016205814A1 (de)
ES (1) ES2873381T3 (de)
MX (3) MX2017012917A (de)
RU (3) RU2746373C2 (de)
WO (3) WO2016162422A1 (de)
ZA (2) ZA201707384B (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735511B (zh) 2015-04-07 2022-05-10 凯密特尔有限责任公司 无镍磷化金属表面的方法
EP3358041B1 (de) * 2015-09-29 2021-03-24 Nippon Steel Corporation Kornorientiertes elektrostahlblech und verfahren zur herstellung des kornorientierten elektrostahlblechs
US11124880B2 (en) 2016-04-07 2021-09-21 Chemetall Gmbh Method for nickel-free phosphating metal surfaces
EP3392376A1 (de) * 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Verfahren zur schichtbildenden zinkphosphatierung von metallischen bauteilen in serie
EP3392375B1 (de) 2017-04-21 2019-11-06 Henkel AG & Co. KGaA Verfahren zur schlammfreien schichtbildenden zinkphosphatierung von metallischen bauteilen in serie
ES2966844T3 (es) 2017-08-31 2024-04-24 Chemetall Gmbh Procedimiento mejorado para él fosfatado sin níquel de superficies metálicas
CN109183015B (zh) * 2018-08-03 2020-09-15 广州正利金属表面处理剂有限公司 一种无镍皮膜剂及其制备方法
KR20210093242A (ko) * 2018-10-08 2021-07-27 케메탈 게엠베하 금속 표면의 ni-무함유 인산염처리 방법 및 이러한 방법에 사용하기 위한 조성물
MX2021004002A (es) * 2018-10-08 2021-06-23 Rhodia Operations Metodo para la fosfatacion libre de ni de superficies metalicas y composicion para su uso en dicho metodo.
ES2946018T3 (es) * 2019-01-29 2023-07-11 Chemetall Gmbh Composición alternativa y procedimiento alternativo para la fosfatación efectiva de superficies metálicas
JP2021066916A (ja) * 2019-10-21 2021-04-30 日本パーカライジング株式会社 金属材料の処理剤及び塗膜を有する金属材料
CN110699681B (zh) * 2019-10-24 2021-12-14 河南北方红阳机电有限公司 一种高强度钢和硬铝合金组合体喷淋磷化工艺
WO2021116320A1 (de) * 2019-12-11 2021-06-17 Salzgitter Flachstahl Gmbh Blech mit haftvermittlerbeschichtung als halbzeug zur fertigung von metall-thermoplastverbundbauteilen und verfahren zur herstellung eines solchen bleches
AU2022249935A1 (en) 2021-03-29 2023-10-05 Nippon Steel Corporation Surface-treated steel sheet

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819423A (en) * 1972-06-15 1974-06-25 Chemfil Miles Chem & Filter Co Final rinse step in phosphating of metals
ES2036023T3 (es) * 1988-11-25 1993-05-01 Metallgesellschaft Aktiengesellschaft Procedimiento para la aplicacion de recubrimiento de fosfato.
JPH03268939A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 電着塗装性と耐食性に優れた有機複合被覆鋼板
ATE162233T1 (de) * 1993-09-06 1998-01-15 Henkel Kgaa Nickelfreies phosphatierverfahren
JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
EP0760871B1 (de) 1994-05-27 1998-05-06 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur beschichtung phosphatierter metallsubstrate
JP3088623B2 (ja) * 1994-11-08 2000-09-18 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
JPH08158061A (ja) * 1994-12-06 1996-06-18 Nippon Parkerizing Co Ltd 金属材料用りん酸亜鉛系化成処理液
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19834796A1 (de) * 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE19956383A1 (de) * 1999-11-24 2001-05-31 Henkel Kgaa Verfahren zur Phospatierung mit metallhaltiger Nachspülung
DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
EP1440110A2 (de) 2001-09-27 2004-07-28 The Board Of Governors For Higher Education State Of Rhode Island And Providence Plantations Leitfähiges polymer zur vorbehandlung von oberflächen aus metallen und nichtmetallen
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
DE10323305B4 (de) * 2003-05-23 2006-03-30 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände
DE10358310A1 (de) * 2003-12-11 2005-07-21 Henkel Kgaa Zweistufige Konversionsbehandlung
FR2866029B1 (fr) * 2004-02-11 2006-05-26 Dacral Composition de revetement anti-corrosion en dispersion aqueuse comprenant un titanate et/ou un zirconate organique
US20050176592A1 (en) * 2004-02-11 2005-08-11 Tenaris Ag Method of using intrinsically conductive polymers with inherent lubricating properties, and a composition having an intrinsically conductive polymer, for protecting metal surfaces from galling and corrosion
KR101237842B1 (ko) * 2004-11-10 2013-03-04 케메탈 게엠베하 수성 조성물 및 그 수성 조성물을 이용하여 금속 표면을코팅하는 방법
US20060099332A1 (en) * 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
JP2007262577A (ja) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd 金属表面処理用組成物、金属表面処理方法、及び金属材料
JP2008174832A (ja) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
WO2009017535A2 (en) * 2007-06-07 2009-02-05 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
CA2883180C (en) * 2012-08-29 2017-12-05 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
DE102014007715B4 (de) * 2014-05-28 2018-06-07 Chemetall Gmbh Verfahren zur Herstellung einer Sandwichstruktur, die hiermit hergestellte Sandwichstruktur und ihre Verwendung
CN107735511B (zh) 2015-04-07 2022-05-10 凯密特尔有限责任公司 无镍磷化金属表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109312466A (zh) 2019-02-05
US11492707B2 (en) 2022-11-08
BR112017021307B1 (pt) 2022-10-11
WO2017174222A1 (de) 2017-10-12
BR112017021307A2 (pt) 2018-06-26
CN109312466B (zh) 2022-04-19
ZA201707384B (en) 2022-06-29
MX2018012228A (es) 2019-02-07
WO2016162422A1 (de) 2016-10-13
RU2017138445A3 (de) 2019-10-09
CN107683348A (zh) 2018-02-09
ES2873381T3 (es) 2021-11-03
JP6804464B2 (ja) 2020-12-23
US10738383B2 (en) 2020-08-11
BR112017021409A2 (pt) 2018-07-03
RU2017138445A (ru) 2019-05-07
CN107735511A (zh) 2018-02-23
RU2018138295A (ru) 2020-05-12
BR112018070593A2 (pt) 2019-02-05
JP2018512511A (ja) 2018-05-17
RU2748349C2 (ru) 2021-05-24
EP3440235A1 (de) 2019-02-13
RU2018138295A3 (de) 2020-05-12
KR20190002504A (ko) 2019-01-08
RU2746373C2 (ru) 2021-04-12
BR112017021409B1 (pt) 2023-02-28
KR20170134613A (ko) 2017-12-06
DE102016205814A1 (de) 2016-10-13
EP3280830A1 (de) 2018-02-14
MX2017012917A (es) 2018-01-30
CN107735511B (zh) 2022-05-10
ZA201707420B (en) 2019-05-29
MX2017012919A (es) 2018-01-15
DE102016205815A1 (de) 2016-10-13
RU2017138446A3 (de) 2019-10-17
RU2721971C2 (ru) 2020-05-25
JP6986028B2 (ja) 2021-12-22
EP3280831A1 (de) 2018-02-14
US20180112313A1 (en) 2018-04-26
KR20170133480A (ko) 2017-12-05
US20180334748A9 (en) 2018-11-22
RU2017138446A (ru) 2019-05-07
JP2018510971A (ja) 2018-04-19
US20180112314A1 (en) 2018-04-26
JP2019510886A (ja) 2019-04-18
JP6810704B2 (ja) 2021-01-06
WO2016162423A1 (de) 2016-10-13

Similar Documents

Publication Publication Date Title
EP3280830B1 (de) Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen
EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
EP0817872B1 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
EP0261519B1 (de) Schichtbildende Passivierung bei Multimetall-Verfahren
EP2215285A1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
WO2017186931A1 (de) Verfahren zur korrosionsschützenden behandlung einer metallischen oberfläche mit vermindertem beizabtrag
EP0366941B1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
EP3512981B1 (de) Verbessertes verfahren zur korrosionsschützenden vorbehandlung einer metallischen oberfläche, welche stahl, verzinkten stahl, aluminium, eine aluminiumlegierung, magnesium und/oder eine zink-magnesium-legierung enthält
EP3676419B1 (de) Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen
EP3918108B1 (de) Alternative zusammensetzung und alternatives verfahren zur effektiven phosphatierung von metallischen oberflächen
DE4334628C2 (de) Verfahren zum Schutz von metallischen Werkstoffen gegen Korrosion durch Passivierung
WO2015090418A1 (de) Verfahren zur beschichtung elektrisch leitfähiger substrate
EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
WO2001059180A1 (de) Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile
WO2014202294A1 (de) Mehrstufiges verfahren zur elektrotauchlackierung
EP0477204A1 (de) Verfahren zur erzeugung von manganhaltigen phosphatüberzügen auf metalloberflächen
EP4283012A1 (de) Verfahren zur alkalischen reinigung von zink-magnesium-legiertem bandstahl
DE19723350A1 (de) Nachspülung von Phosphatschichten mit rutheniumhaltigen Lösungen
DE3821402A1 (de) Verbesserte elektrogalvanisierte beschichtung fuer stahl
DE102017011379A1 (de) Anti-Korrosionsbeschichtung für metallische Substrate
DE102008034757A1 (de) Schichtüberzüge von Polyanilin und Polyanin-Derivaten auf Zinkoberflächen
WO1994007131A1 (de) Badkontrolle kupfer-haltiger metallbehandlungsbäder

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200626

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 13/12 20060101ALI20200904BHEP

Ipc: C23C 22/34 20060101ALI20200904BHEP

Ipc: C25D 5/48 20060101ALI20200904BHEP

Ipc: C25D 13/20 20060101ALI20200904BHEP

Ipc: C23C 22/83 20060101AFI20200904BHEP

Ipc: C23C 22/36 20060101ALI20200904BHEP

Ipc: C23C 22/18 20060101ALI20200904BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012707

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2873381

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012707

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1377017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 8

Ref country code: FR

Payment date: 20230421

Year of fee payment: 8

Ref country code: ES

Payment date: 20230515

Year of fee payment: 8

Ref country code: DE

Payment date: 20230427

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240319

Year of fee payment: 9