EP2947396B1 - Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür - Google Patents

Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür Download PDF

Info

Publication number
EP2947396B1
EP2947396B1 EP15168390.1A EP15168390A EP2947396B1 EP 2947396 B1 EP2947396 B1 EP 2947396B1 EP 15168390 A EP15168390 A EP 15168390A EP 2947396 B1 EP2947396 B1 EP 2947396B1
Authority
EP
European Patent Office
Prior art keywords
air
temperature
humidity
sensor
absolute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP15168390.1A
Other languages
English (en)
French (fr)
Other versions
EP2947396A1 (de
Inventor
Werner Schwille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHWILLE ELEKTRONIK PRODUKTIONS und VERTRIEBS GmbH
Schwille-Elektronik Produktions- und Vertriebs GmbH
Original Assignee
SCHWILLE ELEKTRONIK PRODUKTIONS und VERTRIEBS GmbH
Schwille-Elektronik Produktions- und Vertriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53264485&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2947396(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SCHWILLE ELEKTRONIK PRODUKTIONS und VERTRIEBS GmbH, Schwille-Elektronik Produktions- und Vertriebs GmbH filed Critical SCHWILLE ELEKTRONIK PRODUKTIONS und VERTRIEBS GmbH
Priority to PL15168390T priority Critical patent/PL2947396T3/pl
Publication of EP2947396A1 publication Critical patent/EP2947396A1/de
Application granted granted Critical
Publication of EP2947396B1 publication Critical patent/EP2947396B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air

Definitions

  • the invention relates to the ventilation of particular cool rooms such as cellars or garages in which precipitates due to excessive humidity condensation on the walls.
  • the masonry will absorb this moisture, but from a certain saturation of the masonry with absorbed moisture, this will lead to mold on the insides of the walls of the room.
  • a higher outdoor temperature than the indoor temperature does not always mean that the air outside is drier than inside the room to be ventilated.
  • the respective temperatures and relative humidity are determined by means of an outdoor temperature sensor and an indoor temperature sensor and the measured values to a control device via USB, RJ45, Ethernet, Bluetooth, NFC, WLAN and / or GPRS / UMTS so that it can calculate the dew point and, based on the comparison of the calculated outside dew point with the measured internal temperature or a change in the relative indoor humidity, initiates or terminates ventilation.
  • the DE 10 2008 044 439 A1 discloses a method according to the preamble of claims 1 and 2 and a ventilation system according to the preamble of claim 8.
  • a mainly intended for use in a roof truss ventilation is from the WO 2007/139507 A1 known.
  • the ventilation takes place by means of an outside air in the interior of the advancing blower and a flap through which the internal air can escape.
  • the relative humidity, the temperature and possibly the (partial) water vapor pressure passed to a computing unit and processed by this effect that either i) the ventilation is started when within the room to be ventilated, the water vapor pressure higher is turned off or the ventilation is switched off if, within the room to be ventilated, the water vapor pressure is lower than outside or ii) the operating condition results from a value X calculated by means of an algorithm dependent on the relative humidity and the temperature.
  • a temperature and humidity dependent ventilation method is in the DE 199 52 519 A1 shown. If the relative humidity inside the room to be ventilated exceeds a predefined value, it is decided on the basis of the partial pressure difference inside and outside the room to be ventilated whether the fan is switched on or off. In the opposite case, ie if the predefined value is not exceeded, the fan is switched on when the dew point temperature of the air inside the room to be ventilated is greater than the surface temperature at the outer wall edge, measured inside the room, or switched off, if this is not the case Case is.
  • the measurement data required for this purpose are determined by temperature and humidity sensors and fed to a controller so that the partial vapor and saturation pressures as well as the dew point temperature can be calculated therefrom.
  • a control of a dry room ventilator which monitors that there can be no dew point undershot within the drying room at any time.
  • the fan is switched off when a corresponding parameter, selected from the outside and inside temperature, humidity inside and outside and the internal wall temperature, the dew point below the basement wall approaches.
  • the absolute humidity which expresses the amount of water dissolved in grams in a volume fraction of air, can not be measured directly, or measured only with great effort.
  • the humid air perceived by humans is the relative humidity, which can amount to a maximum of 100 %, which corresponds to a saturation of the air with steam.
  • a maximum saturation of the air with moisture, ie water vapor, thus a relative humidity of 100 %, is at any temperature and at an associated air pressure - more precisely: associated partial pressure of the water - or vice versa for a given air pressure - associated partial pressure of the water - at a certain temperature.
  • this can be done as a so-called dew point curve according to FIG. 2 a represent.
  • the air temperature T Li inside and outside T La are known from the current state .
  • the dew point which is at the same pressure level, can be read on the dew point curve, as well as the dew point temperature T T.
  • the method can be used to permanently or at short intervals by means of appropriate sensors to determine the absolute humidity in the room and outside the room, so the outside air, and automatically by activating the at least one fan outside air in the To transport space only when the absolute humidity of the outside air is lower than that of the indoor air, preferably by a predetermined absolute humidity difference. Because if this difference is too small, the effect of reducing the absolute humidity in the room is so low that the energy required for the fan is not worthwhile.
  • the determination of the absolute humidity from the data usually available namely air temperature and relative humidity of the air
  • the dew point temperature inside and outside the room used The supply and discharge of outside air, so the ventilation, takes place only when the dew point temperature of the outside air is lower than the dew point temperature of the indoor air.
  • the effect would be to reduce the moisture the indoor air is so low that this does not pay for the energy required for the fan.
  • the determination of the dew point temperature inside and outside the room is technically much easier than the determination of the respective absolute humidities, and in most cases, when the absolute humidity outside is lower than inside the room, the corresponding dew point -Temperature outside lower than inside.
  • the actual air pressure on the result of the absolute humidity plays only a minor role, the actual air pressure replaced by the present at the respective sea level of the site average air pressure and given the control, preferably even independent of the respective sea level for this purpose, the standard air pressure stored in the controller.
  • the dew point temperature difference and / or the absolute humidity difference can be selected and set.
  • ventilation can only be provided if the air temperature in the room is above this minimum set temperature, and the ventilation stops when the temperature in the room has dropped to this predetermined minimum temperature.
  • a maximum temperature can be selected as the air temperature inside the room.
  • the vent may preferably be performed at intervals, preferably wherein the ventilation intervals are not longer than the pause intervals, preferably only one fifth as long, more preferably only 1 / 10th as long, more preferably only 1 / 20th as long as the pause intervals.
  • the temperature sensor and / or the moisture sensor both on the outside and / or on the inside is activated for the measurement at most every 1000 milliseconds.
  • the distance between the activated phases that is to say the measurements, and thus also the ratio of durations of deactivity to activity of these sensors, is increased the lower the measured temperature is.
  • a corresponding ventilation system for ventilating a room according to the invention comprises the features of claim 8.
  • the two sensors can either measure the relative humidity and the temperature or directly measure the absolute humidity, from which the controller, or a processor eg in the respective sensor, the absolute humidity is calculated.
  • the air pressure is then a predetermined, for this height, on which the ventilation system operates, mean air pressure, or independently of the sea level known standard air pressure entered into the controller, except indoor sensor and outdoor sensor are also able to measure the current air pressure , Then the latter is used.
  • the absolute humidity is determined from temperature and relative humidity according to the known contexts, see in particular FIG. 3 ,
  • Calculated by the controller determines the absolute humidity from the relative humidity and temperature, in particular on the basis of a fixed predetermined, in particular average, air pressure according to the formulas given above.
  • the respective dew point temperature is also determined according to the formula explained in the procedure.
  • the controller preferably has a display which separately displays the dew point temperatures and / or the absolute humidity for the inner sensor and the outer sensor.
  • the dew point temperature difference and / or the absolute humidity difference between inside and outside can be displayed.
  • the display can in particular also display the current temperature in the room and outside the room, as measured at the respective sensors.
  • the two sensors and / or the at least one fan are signal-technically connected by cable or wirelessly, in particular by radio.
  • the ventilation system comprises a second fan, so that one fan transports outside air into the room and the other fan discharges inside air to the outside, the two fans are preferably located opposite each other in the room, with a maximum possible distance to each other to flow through its entirety as well as possible.
  • the system comprises only one fan, in addition - preferably again at a point as far as possible from the one fan of the room - another air opening is necessary, which is only open when it is ventilated. It thus has a closure element, which is only when activating the fan, preferably active, opened, for example in the form of a flap.
  • the one or the existing two fans also have flaps that close the air passage opening as tight as possible with the fan off, and are open only when the fan is running.
  • the controller usually contains a relay.
  • the controller also includes a test function for this relay to always be able to determine whether the relay is working properly, which is crucial for the overall function of the controller.
  • the controller may preferably include a program for continuous ventilation in which ventilation is continuous, provided that the prerequisite is met, ie dew point temperature outside ⁇ as dew point temperature in the room to be ventilated or / and absolute humidity outside ⁇ as absolute humidity in the ventilated Room.
  • the controller may also preferably include a refrigeration program in which the temperature in the room may be lowered by supplying colder outside air.
  • the supply of outside air can be continued as long as either the relative humidity in the room and / or the absolute humidity in the room does not exceed a corresponding predetermined maximum limit, ie maximum predetermined relative humidity or maximum predetermined absolute humidity, if not previously the desired target temperature is reached.
  • the controller may also include a heating program in which the temperature in the room can be increased by supplying warmer outside air.
  • the supply of outside air can be continued until the relative humidity in the room does not rise above a predetermined maximum relative humidity in the room and / or the absolute humidity in the room Room does not rise above a predetermined maximum absolute humidity in the room and / or the dew point temperature in the room does not fall below the dew point temperature outside the room, unless the desired target temperature has already been reached.
  • the moisture sensor is a capacitive sensor, as they measure very accurately and are durable.
  • the temperature sensor is preferably a bend-gap sensor.
  • the ventilation system is preferably constructed so that no significant temperature line from the controller, in particular from its processor, to the sensor, in particular the humidity sensor takes place.
  • FIG. 1 shows the typical application in which the ventilation system is installed in a room 50 whose internal air 52 is too humid, for example in a garage or a basement room:
  • the air inlet point - in this case, the left air inlet opening 9 - and the air outlet point - in this case the right air outlet opening 11 - is each a motor-driven Fan 1 mounted.
  • the fan 1 on the left side in the air inlet opening 9 has such a direction of rotation that it transports outside air 51 into the space 50 .
  • the fan 1 shown in the right-hand edge of the image in the air outlet opening 11 in the activated state has such a direction of rotation that it carries away interior air 52 outside the space 50 .
  • the fans 1 or in particular closure flaps 12 fastened to them close the respective openings 9 , 11 as tightly as possible. If only one of the openings 9 , 11 has a fan 1 , then the other opening must have at least such closing flaps 12 which, when the fan 1 is inactive, close the corresponding opening as tightly as possible.
  • an outdoor sensor 4 is arranged, and within the space 50, an indoor sensor 3, both of which respectively measure in position the prevailing temperature of the air and the relative humidity.
  • controller 2 which is preferably weather-protected, for example, in the interior of the room 50 , and the signal also with the two fans 1 and / or the shutter 12 of the openings 9 , 11 is in communication and these controls , So the fan 1 on or off and possibly regulated in its speed and the shutter 12 opens or closes.
  • Aeration is only carried out and the at least one corresponding fan 1 is rotated, if the conditions described above are present.
  • FIG. 2a shows the relationship between the air temperature, the water vapor partial pressure, the relative humidity LF rel. and the dew point temperature T T in the form of the so-called dew point curve.
  • the dew point ie 100 % relative humidity, plotted against the air temperature, forms an exponentially rising curve and the dew point is present at a different water vapor partial pressure at each temperature.
  • the air pressure is composed of the partial pressures of the constituents contained in the air, in the case of air laden with water vapor thus the partial pressure of the water vapor, the partial pressure of the oxygen, the partial pressure of the nitrogen and the partial pressure of the other components contained in the air.
  • This graph also shows that when the temperature changes, but the amount of dissolved water per unit volume of air remains constant, the relative humidity LF rel. changes, and thus from this graph, the relationship between absolute and relative humidity can not be determined.
  • the dew point temperature T T is plotted and read in a simple form above the air temperature T L , specifically for different relative air humidities LF rel .
  • the situation A 1.1 is recorded as a typical outdoor summer situation, with a temperature significantly higher than that of the interior and a lower relative humidity.
  • the dew-point temperature outside T TA is lower than the dew-point temperature inside T TI , and can be ventilated.
  • an exceptional situation in the form of the summer situation is represented as A 1.2 , namely humid, damp summer air, ie at the same high temperature as in A 1.1 , but with significantly higher relative humidity. It is immediately apparent that then the dew-point temperature T TA outside is higher than the dew-point temperature T TI inside and should not be aired.
  • FIG. 2b now shows in a detail situation FIG. 2 a for the relevant temperature range also the situation in the interior (I) as well as the external situation in two typical summer situations A 1.1 and A 1.2 and a typical winter situation A 1.3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Description

    I. Anwendungsgebiet
  • Die Erfindung betrifft die Belüftung von insbesondere kühlen Räumen wie Kellerräumen oder Garagen, in denen sich aufgrund einer zu hohen Luftfeuchtigkeit Kondenswasser an den Wänden niederschlägt.
  • Zu Beginn wird das Mauerwerk diese Feuchtigkeit aufnehmen, ab einer gewissen Sättigung des Mauerwerks mit aufgenommener Feuchtigkeit wird dies jedoch zu Schimmelbildung auf den Innenseiten der Wände des Raumes führen.
  • II. Technischer Hintergrund
  • Dies hat man bisher bereits versucht durch konventionelles Lüften zu vermeiden, also entweder indem die Fenster dieses Raumes zu einem hohen Zeitanteil wenigstens geringfügig geöffnet waren oder durch regelmäßige Stoßlüftung, mit dem Ziel, die feuchte Luft aus dem Raum nach außen abströmen zu lassen und/oder trockene Luft von außen einströmen zu lassen.
  • Zu diesem Zweck hat man bei manueller Lüftung die Fenster nach Gefühl geöffnet, also wenn man das Gefühl hatte, dass die Luft außen trockener ist als innen, was subjektiv häufig nach der außen vorherrschenden Temperatur entschieden wurde:
    Es wurde also in der Regel gelüftet, wenn die Temperatur außen höher lag als im Raum und im Winter meist gar nicht, um den Raum nicht weiter abzukühlen.
  • Der Nachteil dieser Methode ist zum einen, dass man aktiv manuell die Fenster öffnen musste, wenn man diesen Eindruck hatte, und dass auch dann allein aufgrund der geöffneten Fenster der Luftdurchsatz und Austausch von Innen nach Außen mangels aktiver Erzeugung eines Luftstromes relativ gering war und damit auch der eintretende Effekt.
  • Hinzu kommt, dass eine höhere Außentemperatur gegenüber der Innentemperatur nicht immer bedeutet, dass die Luft außen trockener ist als im Inneren des zu lüftenden Raumes.
  • Es wurden daher Methoden entwickelt, bei denen neben den Außen- und Innentemperaturen weitere Messwerte in Betracht gezogen werden, um einen geeigneten Lüftungszeitraum zu bestimmen.
  • Bei der in der DE 10 2008 044 439 A1 beschriebenen Regelvorrichtung sowie dem dazugehörigen Verfahren zur automatischen Belüftung von Kellerräumen werden die jeweiligen Temperaturen und relativen Luftfeuchten mittels eines Außentemperatursensors und eines Innentemperatursensors bestimmt und die gemessenen Werte an eine Regelvorrichtung via USB, RJ45, Ethernet, Bluetooth, NFC, WLAN und/oder GPRS/UMTS übertragen, so dass diese den Taupunkt berechnen kann und anhand des Vergleichs des berechneten Außentaupunkts mit der gemessenen Innentemperatur bzw. einer Änderung der relativen Innenluftfeuchtigkeit eine Lüftung einleitet oder beendet.
  • Die DE 10 2008 044 439 A1 offenbart damit ein Verfahren gemäß dem Oberbegriff der Ansprüche 1 und 2 sowie eine Belüftungsanlage gemäß dem Oberbegriff von Anspruch 8.
  • Eine hauptsächlich zur Anwendung in einem Dachstuhl vorgesehene Belüftung ist aus der WO 2007/139507 A1 bekannt. Die Belüftung erfolgt mittels eines Außenluft in den Innenraum befördernden Gebläses und einer Klappe, durch welche die Innenluft entweichen kann. Innerhalb und außerhalb des zu belüftenden Raumes werden mittels entsprechender Sensorik die relative Luftfeuchte, die Temperatur und ggf. der (partiale) Wasserdampfdruck erfasst, an eine Recheneinheit weitergegeben und von dieser dahingehend verarbeitet, dass entweder i) die Belüftung gestartet wird, wenn innerhalb des zu belüftenden Raumes der Wasserdampfdruck höher ist als außerhalb bzw. die Belüftung abgeschaltet wird, wenn innerhalb des zu belüftenden Raumes der Wasserdampfdruck niedriger ist als außerhalb oder ii) sich der Betriebszustand anhand eines mittels eines von der relativen Feuchte und der Temperatur abhängigen Algorithmus berechneten Wertes X ergibt.
  • Eine andere Möglichkeit, wie ein temperatur- und feuchtigkeitsabhängiges Belüftungsverfahren gesteuert werden kann, ist in der DE 199 52 519 A1 gezeigt. Überschreitet die relative Luftfeuchtigkeit innenhalb des zu belüftenden Raumes einen vordefinierten Wert, dann wird anhand der Partialdruckdifferenz innerhalb und außerhalb des zu belüftenden Raumes entschieden, ob der Lüfter ein- oder ausgeschaltet wird. Im umgekehrten Fall, also wenn der vordefinierte Wert nicht überschritten wird, wird der Lüfter angeschaltet, wenn die Taupunkttemperatur der Luft innenhalb des zu belüftenden Raumes größer ist als die Oberflächentemperatur an der Außenwandkante, gemessen innerhalb des Raumes, bzw. ausgeschalten, wenn dies nicht der Fall ist. Die dafür benötigten Messdaten werden von Temperatur- und Feuchtigkeitsfühlern ermittelt und einer Steuerung zugeführt, sodass mittels dieser die Partialdampf- und Sättigungsdrücke sowie die Taupunkttemperatur berechnet werden kann.
  • Ein weiteres Verfahren sowie eine weitere Vorrichtung zum Entfeuchten von Gebäuden, indem die sich bildende Flüssigkeit direkt aus dem Kellergeschoss entfernt wird, ehe diese sich in andere Bereiche des Gebäudes ausbreitet, ist in der DE 44 12 251 A1 beschreiben. Das periodisch betriebene Gebläse zum Luftaustausch entzieht dem oder den Kellergeschossräumen Luft mit einer im Vergleich zur Außenluft höheren relativen Feuchte und höheren Temperatur, die dann durch Luft mit geringerer Feuchte und niedrigerer Temperatur, die durch Undichtigkeiten von außen eindringt, ersetzt wird. Bei Frostgefahr wird das Gebläse nicht eingeschaltet.
  • In der DE 10 2010 055 065 A1 ist gezeigt, wie einem Raum, ohne einen Durchbruch für ein Gebläse oder Lüfter vorzusehen, geregelt Außenluft zugeführt und im Raum vorhandene Luft abgeführt werden kann. Zu diesem Zwecke wird ein in den meisten Räumen ohnehin vorhandenes Fenster geregelt geöffnet und ggf. zusätzlich ein sich im Raum befindlicher Ventilator in Gang gesetzt. Abhängig von einer Wandfeuchte, einer Innenraumluftfeuchtigkeit und einer Außenluftfeuchtigkeit startet, vermindert, erhöht oder beendet eine Regelungseinheit die Belüftung des Kellerraums.
  • Zudem ist aus der DE 10 2011 108 021 A1 eine Steuerung eines Trockenraumlüfters bekannt, welche überwacht, dass es zu keinem Zeitpunkt zu einer Taupunktunterschreitung innerhalb des Trockenraumes kommen kann. Zu diesem Zweck wird der Lüfter abgeschaltet, wenn sich ein entsprechender Parameter, ausgewählt aus der Außen- und Innentemperatur, Luftfeuchte innen und außen sowie der inneren Wandtemperatur, der Taupunktunterschreitung an der Kellerwand nähert.
  • Die absolute Luftfeuchtigkeit, die also die in einem Volumenanteil Luft gelöste Menge an Wasser in Gramm ausdrückt, lässt sich nicht direkt messen, oder nur mit sehr hohem Aufwand messen.
  • Die vom Menschen subjektiv empfundene Feuchtigkeit der Luft ist die relative Luftfeuchtigkeit, die maximal 100 % betragen kann, was einer Sättigung der Luft mit Dampf entspricht. Eine maximale Sättigung der Luft mit Feuchtigkeit, also Wasserdampf, somit eine relative Luftfeuchtigkeit von 100 %, ist bei jeder Temperatur und bei einem zugehörigen Luftdruck - genauer: zugehörigem Partialdruck des Wassers - gegeben oder umgekehrt bei einem gegebenen Luftdruck - zugehörigem Partialdruck des Wassers - bei einer bestimmten Temperatur. In einem p-T-Diagramm lässt sich dies als sog. Taupunkt-Kurve gemäß Figur 2 a darstellen.
  • Vom aktuellen Zustand kennt man in der Regel die Luft-Temperatur TLi innen und außen TLa.
  • Es lässt sich jedoch mit herkömmlichen Methoden nur die relative Luftfeuchtigkeit FLrel entweder direkt messen oder durch Messung von vorherrschendem Druck und vorherrschender Temperatur gemäß dem Diagramm in Fig. 2a bestimmen.
  • Für diesen aktuellen Zustand (x) lässt sich der Taupunkt, der auf dem gleichen Druckniveau liegt, auf der Taupunkt-Kurve ablesen, und ebenso die Taupunkt-Temperatur TT.
  • III. Darstellung der Erfindung a) Technische Aufgabe
  • Es ist daher die Aufgabe gemäß der Erfindung, ein Verfahren zur Durchlüftung eines Raumes mit zu feuchter Luft zum Zwecke der Reduzierung der Luftfeuchtigkeit in dem Raum zur Verfügung zu stellen, welches zuverlässig und mit wenig Aufwand durchführbar ist, sowie eine Lüftungsanlage hierfür zur Verfügung zu stellen.
  • b) Lösung der Aufgabe
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch oder 2 sowie mit einer Belüftungsanlage mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Das Einbringen von Außenluft in den Raum, dessen Innenluft hinsichtlich der enthaltenen Feuchtigkeit reduziert werden soll, ist nur dann sinnvoll, wenn die absolute Luftfeuchtigkeit, also die in einem Kubikmeter Luft enthaltene Wassermenge, bei der Außenluft geringer ist als bei der Innenluft.
  • Nur dann wird beim Lüften der Feuchtigkeitsgehalt der Innenluft reduziert, was das primäre Ziel ist, nicht zuletzt um bereits im Mauerwerk gespeicherte Feuchtigkeit von der Mauer wieder an die Luft des Innenraumes abzugeben und dadurch langfristig auch das Mauerwerk wieder zu trocknen.
  • Um dies zu erreichen, kann das Verfahren angewandt werden, permanent oder in geringen Zeitabständen mittels entsprechender Sensoren die absolute Luftfeuchtigkeit im Raum als auch außerhalb des Raumes, also der Außenluft, zu bestimmen und von der Steuerung automatisch durch Aktivieren des wenigstens einen Lüfters Außenluft in den Raum nur dann zu transportieren, wenn die absolute Luftfeuchtigkeit der Außenluft geringer ist als die der Innenluft, vorzugsweise um eine vorgegebene absolute Luftfeuchtigkeits-Differenz. Denn wenn diese Differenz zu gering ist, ist der Effekt der Reduzierung der absoluten Luftfeuchtigkeit im Raum so gering, dass sich der hierfür für den Lüfter aufzubringende Energieaufwand nicht lohnt.
  • Da die Bestimmung der absoluten Luftfeuchtigkeit aus den in der Regel zur Verfügung stehenden Daten, nämlich Lufttemperatur und relative Luftfeuchtigkeit der Luft, sehr aufwändig bzw. ohne Kenntnis des Wasserdampf-Partialdruckes überhaupt nicht genau bestimmbar ist, wird erfindungsgemäß vorzugsweise für die Entscheidung, ob gelüftet werden soll oder nicht, statt der absoluten Luftfeuchtigkeit innerhalb und außerhalb des Raumes die Taupunkt-Temperatur innerhalb und außerhalb des Raumes herangezogen:
    Die Zu- und Abführung von Außenluft, also die Belüftung, erfolgt nur dann, wenn die Taupunkt-Temperatur der Außenluft geringer ist als die Taupunkt-Temperatur der Innenluft.
  • Erfindungsgemäß ist vorgesehen, dass zwischen den beiden Taupunkt-Temperaturen ein gewisser Mindestabstand vorliegt, nämlich eine in Grenzen frei wählbare Taupunkt-Temperaturdifferenz, denn bei zu geringem Abstand der beiden Taupunkt-Temperaturen wäre der Effekt der Reduzierung der Feuchtigkeit der Innenluft so gering, dass sich hierfür der für die Lüfter aufzubringende Energieaufwand nicht lohnt.
  • Denn die Bestimmung der Taupunkt-Temperatur innerhalb und außerhalb des Raumes ist technisch sehr viel einfacher möglich als die Bestimmung der jeweiligen absoluten Luftfeuchtigkeiten, und in den meisten Fällen ist dann, wenn die absolute Luftfeuchtigkeit außen niedriger ist als innerhalb des Raumes, auch die entsprechende Taupunkt-Temperatur außen niedriger als innen.
  • In einigen wenigen Ausnahmesituationen, beispielsweise wenn außerhalb des Raumes eine sehr schwüle, feuchte Luft bei hoher Temperatur vorliegt, wie etwa unmittelbar vor einem Gewitter, ist diese Synchronität durchbrochen, und dann könnte eine Steuerung der Belüftung in Abhängigkeit von der Relation der Taupunkt-Temperaturen zu einer Fehlsteuerung führen.
  • Da diese Ausnahmefälle jedoch sehr selten sind, wird dadurch das Belüftungsergebnis insgesamt nur wenig reduziert, und kann in Kauf genommen werden wegen des Vorteils der sehr viel einfacheren Steuerung.
  • Will man dagegen auf alle Fälle verhindern, dass auch nur in Einzelfällen feuchtere Außenluft, also mit einer höheren absoluten Feuchtigkeit außerhalb des Raumes, in den Raum strömt, so muss stattdessen oder zusätzlich die absolute Luftfeuchtigkeit innerhalb und außerhalb des Raumes ermittelt und miteinander verglichen werden und nur bei außerhalb des Raumes niedrigerer absoluter Luftfeuchtigkeit als im Raum belüftet werden.
  • Normalerweise ist dafür außer der Temperatur und der relativen Luftfeuchtigkeit auch die Bestimmung des aktuellen Luftdrucks notwendig.
  • Da in dem in der Regel vorherrschenden Temperaturbereich von -20°C bis +40°C jedoch der tatsächliche Luftdruck am Ergebnis der absoluten Luftfeuchtigkeit nur eine untergeordnete Rolle spielt, wird der aktuelle Luftdruck durch den auf der jeweiligen Meereshöhe des Einsatzortes vorliegenden Durchschnitts-Luftdruck ersetzt und der Steuerung vorgegeben, vorzugsweise sogar unabhängig von der jeweiligen Meereshöhe hierfür der Norm-Luftdruck in der Steuerung hinterlegt.
  • Auch wenn nach diesem Parameter gesteuert wird, sollte zwischen der absoluten Luftfeuchtigkeit außen und der absoluten Luftfeuchtigkeit innen eine mindestens vorliegende absolute Feuchtigkeitsdifferenz vorliegen, um das Belüften effizient zu gestalten.
  • Bei laufender Belüftung wird diese beendet, wenn die Taupunkt-Temperaturdifferenz und/oder die absolute Feuchtigkeitsdifferenz die jeweils vorgegebene Mindestdifferenz unterschreitet.
  • Erfindungsgemäß ist dabei die Taupunkt-Temperaturdifferenz und/oder die absolute Feuchtigkeitsdifferenz wählbar und einstellbar.
  • Um eine Unterkühlung des Raumes unter eine vorgegebene Mindesttemperatur zu vermeiden, kann eine Belüftung auch nur dann vorgesehen werden, wenn die Lufttemperatur im Raum über dieser vorgesehenen Mindesttemperatur liegt, und die Belüftung beendet, wenn die Temperatur im Raum bis auf diese vorgegebene Mindesttemperatur abgesunken ist.
  • In gleicher Weise kann auch eine Höchsttemperatur als Lufttemperatur im Inneren des Raumes gewählt werden.
  • Die Belüftung kann vorzugsweise in Intervallen erfolgen, wobei vorzugsweise die Belüftungsintervalle nicht länger sind als die Pausenintervalle, vorzugsweise nur 1/5 so lang, besser nur 1/10 so lang, besser nur 1/20 so lang wie die Pausenintervalle.
  • Der Temperatursensor und/oder der Feuchtigkeitssensor sowohl auf der Außenseite als auch/oder auf der Innenseite wird für die Messung höchstens alle 1000 Millisekunden aktiviert. Dabei wird der Abstand zwischen den aktivierten Phasen, also den Messungen, und damit auch das Verhältnis der Dauern von Deaktivität zu Aktivität dieser Sensoren vergrößert, je niedriger die gemessene Temperatur ist.
  • Vorzugsweise wird die gemessene relative Luftfeuchtigkeit vor der Weiterverarbeitung, insbesondere zur Berechnung der absoluten Feuchtigkeit, linearisiert zu LF'rel nach der Formel LF rel = C 1 + C 2 × LF rel + C 3 × LF rel 2 % LF rel
    Figure imgb0001
    wobei
    - bei einem 12 Bit Prozessor:
    C1 =-2.0468 ; C2 = 0,0367 ; C3 = -1,5955 x e-6

    - bei einem 8 Bit Prozessor:
    C1 = 2.0468 ; C2 =0.5872 ; C3 =.-4,0845 x e-4
  • Vorzugsweise wird dann die linearisierte relative Luftfeuchtigkeit bei Abweichung der Temperatur am Sensor von 25°C in eine wahre relative Luftfeuchtigkeit LF"rel umgerechnet nach der Formel LF " rel = t ° C 25 × T 1 + T 2 × LF rel + LF rel ,
    Figure imgb0002
    wobei T1 und T2
    • bei einem 12 Bit-Prozessor T1 = 0,01 und T2 = 0,00008 betragen und
    • bei einem 8 Bit-Prozessor T1 = 0,01 und T2 = 0,00128 betragen.
  • Die absolute Luftfeuchtigkeit wird aus der relativen Luftfeuchtigkeit und der Temperatur ermittelt, insbesondere unter Zugrundelegung eines fix vorgegebenen, insbesondere durchschnittlichen, Luftdrucks nach der Formel L F abs . = 216 . 7 × L F rel 100 % × α × exp β × t ° C λ + t ° C 273 . 15 ° C + t ° C ,
    Figure imgb0003
    wobei
    Zustand t Bereich (°C) α (hPa) β λ (°C)
    Über Wasser -45 - 60 6.112 17.62 243.12
    Über Eis -80 - 0.01 6.112 22.46 272.62
  • Falls die die Taupunkt-Temperaturen für die Steuerung verwendet werden, wird die jeweilige Taupunkt-Temperatur ermittelt nach der Formel: T T L F rel . , T ° K = T n × In L F rel . 100 % + m × T ° K T n + T ° K m In L F rel . 100 % m × T ° K T n + T ° K
    Figure imgb0004
    wobei
    T-Bereich Tn (°C) m
    Über Wasser, 0-50°C 243-12 17,62
    Über Eis, -40-0°C 274,62 22,46
  • Eine entsprechende Belüftungsanlage zum Belüften eines Raumes gemäß der Erfindung umfasst die Merkmale von Anspruch 8.
  • Damit die Sensoren und/oder die Steuerung zumindest die Taupunkt-Temperatur innerhalb und außerhalb des Raumes, also an dem Innensensor und dem Außensensor, bestimmen können, können die beiden Sensoren entweder die relative Luftfeuchtigkeit und die Temperatur messen oder direkt die absolute Luftfeuchtigkeit messen, woraus die Steuerung, oder ein Prozessor z.B. in dem jeweiligen Sensor, die absolute Luftfeuchtigkeit errechnet. Als Luftdruck wird dann ein vorgegebener, für diese Höhe, auf der die Belüftungsanlage arbeitet, mittlerer Luftdruck, oder ein unabhängig von der Meereshöhe bekannter Norm-Luftdruck in die Steuerung eingegeben, außer Innensensor und Außensensor sind zusätzlich in der Lage, den aktuellen Luftdruck zu messen. Dann wird letzterer benutzt.
  • Die absolute Luftfeuchtigkeit wird aus Temperatur und relativer Luftfeuchtigkeit nach den bekannten Zusammenhängen ermittelt, siehe insbesondere Figur 3 .
  • Rechnerisch wird von der Steuerung die absolute Luftfeuchtigkeit aus der relativen Luftfeuchtigkeit und der Temperatur ermittelt, insbesondere unter Zugrundelegung eines fix vorgegebenen, insbesondere durchschnittlichen, Luftdrucks nach den oben angegebenen Formeln.
  • Falls für die Steuerung die Taupunkt-Temperaturen verwendet werden, wird die jeweilige Taupunkt-Temperatur ebenfalls ermittelt nach der zum Verfahren erläuterten Formel.
  • Die Steuerung weist vorzugsweise ein Display auf, das für den Innensensor und den Außensensor getrennt die Taupunkt-Temperaturen und/oder die absolute Luftfeuchtigkeit anzeigt.
  • Darüber hinaus kann auch die Taupunkt-Temperaturdifferenz und/oder die absolute Luftfeuchte-Differenz zwischen innen und außen angezeigt werden.
  • Zusätzlich kann das Display insbesondere auch die aktuelle Temperatur im Raum und außerhalb des Raumes anzeigen, wie an den jeweiligen Sensoren gemessen.
  • Die beiden Sensoren und/oder der wenigstens eine Lüfter sind mit der Steuerung signaltechnisch per Kabel oder drahtlos, insbesondere per Funk, verbunden.
  • Falls die Lüftungsanlage einen zweiten Lüfter umfasst, sodass der eine Lüfter Außenluft in den Raum transportiert und der andere Lüfter Innenluft nach außen abführt, so sind die beiden Lüfter vorzugsweise im Raum einander gegenüberliegend, mit einem maximal zueinander möglichen Abstand, angeordnet, um den Raum in seiner Gesamtheit möglichst gut zu durchströmen.
  • Falls die Anlage nur einen Lüfter umfasst, ist zusätzlich - vorzugsweise wieder an einem von dem einen Lüfter möglichst weit entfernten Punkt des Raumes - eine weitere Luftöffnung notwendig, die nur dann offen steht, wenn belüftet wird. Sie verfügt also über ein Verschlusselement, welches nur bei Aktivieren des einen Lüfters, vorzugsweise aktiv, geöffnet wird, beispielsweise in Form einer Klappe.
  • Der eine oder auch die vorhandenen zwei Lüfter verfügen ebenfalls über Klappen, die bei deaktiviertem Lüfter die Luftdurchtrittsöffnung möglichst dicht verschließen, und nur bei laufendem Lüfter geöffnet sind.
  • Die Steuerung enthält in der Regel ein Relais. Vorzugsweise enthält die Steuerung auch eine Testfunktion für dieses Relais, um jederzeit feststellen zu können, ob das Relais ordnungsgemäß funktioniert, was für die Gesamtfunktion der Steuerung ausschlaggebend ist.
  • Die Steuerung kann vorzugsweise ein Programm für Dauerlüftung enthalten, bei dem durchgehend gelüftet wird, sofern die Voraussetzung dafür erfüllt ist, also Taupunkt-Temperatur außen < als Taupunkt-Temperatur im zu belüftenden Raum oder/und absolute Luftfeuchtigkeit außen < als absolute Luftfeuchtigkeit im zu belüftenden Raum.
  • Die Steuerung kann vorzugsweise auch ein Kühlprogramm enthalten, bei dem die Temperatur im Raum durch Zuführen von kälterer Außenluft gesenkt werden kann. Die Zuführung von Außenluft kann dabei solange fortgesetzt werden, solange entweder die relative Luftfeuchtigkeit im Raum und/oder die absolute Luftfeuchtigkeit im Raum nicht über einen entsprechenden vorgegebenen maximalen Grenzwert, also maximale vorgegebene relative Luftfeuchtigkeit oder maximale vorgegebene absolute Luftfeuchtigkeit, steigt, sofern nicht schon vorher die gewünschte Ziel-Temperatur erreicht ist.
  • Falls für die Steuerung der Taupunkt verwendet wird, wird die Zuführung von Außenluft fortgesetzt, solange die Taupunkt-Temperatur außen niedriger ist als die Taupunkt-Temperatur innen.
  • Die Steuerung kann auch ein Heizprogramm enthalten, bei dem die Temperatur im Raum durch Zuführen von wärmerer Außenluft erhöht werden kann. Die Zufuhr von Außenluft kann dabei solange fortgesetzt werden, bis die relative Luftfeuchtigkeit im Raum nicht über eine vorgegebene maximale relative Luftfeuchtigkeit im Raum steigt und/oder die absolute Luftfeuchtigkeit im Raum nicht über eine vorgegebene maximale absolute Luftfeuchtigkeit im Raum steigt und/oder die Taupunkt-Temperatur im Raum nicht unter die Taupunkt-Temperatur außerhalb des Raumes fällt, sofern nicht schon vorher die gewünschte Ziel-Temperatur erreicht ist.
  • Vorzugsweise ist der Feuchtigkeitssensor ein kapazitiver Sensor, da diese besonders genau messen und langlebig sind.
  • Aus dem gleichen Grund ist der Temperatursensor vorzugsweise ein Bend-Gap-Sensor.
  • Die Lüftungsanlage ist vorzugsweise so aufgebaut, dass keine signifikante Temperatur-Leitung von der Steuerung, insbesondere von deren Prozessor, an den Sensor, insbesondere den Feuchtigkeitssensor, erfolgt.
  • c) Ausführungsbeispiele
  • Ausführungsformen gemäß der Erfindung sind im Folgenden beispielhaft näher beschrieben. Es zeigen:
  • Fig. 1:
    eine Belüftungssituation,
    Fig. 2a, b:
    den Taupunkt in Abhängigkeit vom Wasserdampf-Partialdruck und der Lufttemperatur,
    Fig. 3:
    die Taupunkt-Temperatur in Abhängigkeit von der Lufttemperatur und der relativen Luftfeuchtigkeit
  • Figur 1 zeigt die typische Anwendung, bei der die Belüftungsanlage eingebaut ist in einem Raum 50, dessen Innenluft 52 zu feucht ist, beispielsweise in einer Garage oder einem Kellerraum:
    An möglichst weit voneinander entfernten Punkten, der Lufteintrittsstelle - in diesem Fall links die Lufteintrittsöffnung 9 - und der Luftaustrittsstelle - in diesem Fall rechts die Luftaustrittsöffnung 11 - ist jeweils ein motorisch angetriebener Lüfter 1 montiert. Der Lüfter 1 an der linken Seite in der Lufteintrittsöffnung 9 besitzt eine solche Drehrichtung, dass er Außenluft 51 in den Raum 50 transportiert.
  • Der am rechten Bildrand dargestellte Lüfter 1 in der Luftaustrittsöffnung 11 besitzt im aktivierten Zustand eine solche Drehrichtung, dass er Innenluft 52 nach außerhalb des Raumes 50 abtransportiert.
  • Im deaktivierten Zustand verschließen die Lüfter 1 oder insbesondere daran befestigte Verschlussklappen 12 die jeweilige Öffnung 9, 11 möglichst dicht. Ist nur in einer der Öffnungen 9, 11 ein Lüfter 1 vorhanden, so muss die andere Öffnung zumindest derartige Verschlussklappen 12 aufweisen, die bei inaktivem Lüfter 1 die entsprechende Öffnung möglichst dicht verschließen.
  • Außerhalb des Raumes 50, möglichst nah an der Lufteinlassöffnung 9, ist ein Außensensor 4 angeordnet, und innerhalb des Raumes 50 ein Innensensor 3, die beide jeweils an ihrer Position die vorherrschende Temperatur der Luft als auch die relative Luftfeuchtigkeit messen.
  • Sie geben ihre Messwerte an eine Steuerung 2 weiter, die vorzugsweise witterungsgeschützt, im z.B. Inneren des Raumes 50, angeordnet ist, und die signaltechnisch auch mit den beiden Lüftern 1 und/oder den Verschlussklappen 12 der Öffnungen 9, 11 in Verbindung steht und diese ansteuert, also den Lüfter 1 ein- oder ausschaltet und ggf. in seiner Drehzahl reguliert als auch die Verschlussklappen 12 öffnet oder schließt.
  • Eine Belüftung wird nur dann vorgenommen und der mindestens eine entsprechende Lüfter 1 in Drehung versetzt, wenn die weiter oben beschriebenen Voraussetzungen vorliegen.
  • Figur 2a zeigt den Zusammenhang zwischen der Lufttemperatur, dem Wasserdampf-Partialdruck, der relativen Luftfeuchtigkeit LFrel. und der Taupunkt-Temperatur TT in Form der sog. Taupunktkurve.
  • Daraus ist ersichtlich, dass der Taupunkt, also 100 % relativer Luftfeuchtigkeit, aufgetragen über der Lufttemperatur, eine exponentiell ansteigende Kurve bildet und der Taupunkt bei jeder Temperatur bei einem anderen Wasserdampf-Partialdruck vorliegt.
  • Der Luftdruck setzt sich zusammen aus den Partialdrücken der in der Luft enthaltenen Bestandteile, bei mit Wasserdampf beladener Luft also dem Partialdruck des Wasserdampfes, dem Partialdruck des Sauerstoffes, dem Partialdruck des Stickstoffes und dem Partialdruck der weiteren in der Luft enthaltenen Bestandteile.
  • Sofern man bei einer aktuellen Situation z.B. in Form feuchter Luft deren Temperatur TL und deren relative Feuchtigkeit LFrel. kennt, kann man diese aktuelle Situation in diesem Diagramm eintragen in Form einer vertikalen Linie bei der vorliegenden Temperatur:
    Deren Länge von der horizontalen Abszisse bis zur Taupunkt-Kurve bedeutet 100 % rel. Luftfeuchtigkeit und auf dieser Strecke kann von unten her die aktuelle Situation x entsprechend des Prozentwertes der relativen Luftfeuchtigkeit LFrel. aufgetragen werden in Form dieses Prozentwertes auf der genannten Strecke von unten her, z.B. 42 %.
  • Auf der Horizontalen kann man von dieser aktuellen Situation x aus ablesen, dass dabei der aktuelle Wasserdampf-Partialdruck 20 kPa beträgt. Wo diese Horizontale die Taupunkt-Kurve schneidet, kann exakt darunter die Taupunkt-Temperatur TT für die aktuelle Situation x abgelesen werden.
  • Würde man also in der aktuellen Situation die Lufttemperatur auf die Taupunkt-Temperatur TT absenken, würde ab Erreichen dieser Temperatur sich die in der Luft enthaltene Feuchtigkeit kondensieren und als Wasser ausfallen.
  • Diese Grafik zeigt weiterhin, dass sich bei ändernder Temperatur, aber gleichbleibender gelöster Wassermenge pro Volumeneinheit Luft die relative Luftfeuchtigkeit LFrel. ändert, und somit aus dieser Grafik der Zusammenhang zwischen absoluter und relativer Luftfeuchtigkeit nicht bestimmt werden kann.
  • In Figur 3 ist dagegen die Taupunkt-Temperatur TT in einfacher Form über der Lufttemperatur TL aufgetragen und ablesbar, und zwar für unterschiedliche relative Luftfeuchtigkeiten LFrel.
  • Für den Zustand im Inneren (I) eines Raumes ist die Temperatur im Inneren als auch die Taupunkt-Temperatur im Inneren TTi unmittelbar ablesbar.
  • Die Situation A1.1 ist als typische äußere Sommersituation eingetragen, mit einer Temperatur deutlich höher gegenüber der des Innenraumes und einer niedrigeren relativen Luftfeuchtigkeit.
  • Unmittelbar ablesbar ist hierbei, dass dann auch die Taupunkt-Temperatur außen TTA niedriger ist als die Taupunkt-Temperatur Innen TTI, und gelüftet werden kann.
  • Das gleiche gilt für die dargestellte typische Wintersituation bei A1.3, wo die Außen-Temperatur deutlich niedriger als die Temperatur im Innenraum ist, aber ebenfalls bei einer niedrigeren relativen Luftfeuchtigkeit als im Innenraum. Auch hier sind die Bedingungen für Belüftung gegeben.
  • Gleichzeitig ist eine Ausnahmesituation in Form der Sommersituation als A1.2 dargestellt, nämlich schwüle, feuchte Sommerluft, also bei gleicher hoher Temperatur wie bei A1.1, aber mit deutlich höherer relativer Luftfeuchtigkeit. Dabei ist unmittelbar ersichtlich, dass dann die Taupunkt-Temperatur TTA außen höher liegt als die Taupunkt-Temperatur TTI Innen und nicht gelüftet werden sollte.
  • Figur 2b zeigt nun in einer Ausschnittsituation aus Figur 2 a für den relevanten Temperaturbereich ebenfalls die Situation im Innenraum (I) sowie die Außensituation in zwei typischen Sommersituationen A1.1 und A1.2 und einer typischen Wintersituation A1.3.
  • Da der Wasserdampf-Partialdruck stark mit der absoluten Luftfeuchtigkeit (Masse an Wasser pro Volumeneinheit Luft) korreliert, ist die senkrechte Koordinate auch als absolute Luftfeuchtigkeit zu betrachten.
  • Dies zeigt ebenfalls unmittelbar, dass es Situationen wie A1.2 geben kann, in denen die Taupunkt-Temperatur TTA1.2 außen höher liegt als die Taupunkt-Temperatur innen TTi, und dennoch die absolute Luftfeuchtigkeit außen höher liegen kann als innen und somit eine Belüftung des Raumes kontraproduktiv wäre.
  • Für eine absolut sichere Belüftung müssten also auch die absoluten Luftfeuchtigkeiten innen und außen miteinander verglichen werden, dafür ist jedoch ein bei der Auswertung der Sensormesswerte sehr viel höherer Auswertungs- und Umrechnungsaufwand zu betreiben.
  • Wie die Situationen von A1.1 und A1.3 im Vergleich zu I zeigen, reicht jedoch in den meisten Fällen ein Vergleich der Taupunkt-Temperaturen (z.B. TTa1.1 < TTi) aus als Entscheidungsgrundlage für die Belüftung.
  • BEZUGSZEICHENLISTE
  • 1
    Lüfter
    2
    Steuerung
    3
    Innensensor
    4
    Außensensor
    5
    Temperaturdifferenz
    7
    Mindesttemperatur
    8
    Display
    9
    Lufteintrittsöffnung
    10
    Strömungsrichtung
    11
    Luftaustrittsöffnung
    12
    Verschlussklappe
    50
    Raum
    51
    Außenluft
    52
    Innenluft
    LFrel.
    relative Luftfeuchtigkeit
    LFabs.
    absolute Luftfeuchtigkeit
    p
    Luftdruck
    TTi
    Taupunkt-Temperatur innen
    TTa
    Taupunkt-Temperatur außen
    TLi
    Luft-Temperatur innen
    TLa
    Luft-Temperatur außen
    X
    aktuelle Situation

Claims (17)

  1. Verfahren zum Belüften eines Raumes (50) mittels gesteuerter Zuführung von Außenluft (51) an einer Zuführungsstelle des Raumes (50) und Abführung von Innenluft (52) an einer Abführungsstelle entfernt von der Zuführungsstelle, wobei die Taupunkt-Temperatur (TTa) der Außenluft (51) und die Taupunkt-Temperatur (TTi) der Innenluft (52) aus einer von einem Innensensor (3) gemessenen Innenlufttemperatur und inneren relativen Feuchte und einer von einem Außensensor (4) gemessenen Außenlufttemperatur und äußeren relativen Feuchte von den Sensoren oder einer Steuerung bestimmt werden,
    dadurch gekennzeichnet, dass
    die Zu- und Abführung nur dann erfolgt, wenn die Taupunkt-Temperatur (TTa) der Außenluft (51) um eine frei wählbare und einstellbare Mindest-Temperaturdifferenz (5) geringer ist als die Taupunkt-Temperatur (TTi) der Innenluft (52).
  2. Verfahren zum Querlüften eines Raumes (50) mittels gesteuerter Zuführung von Außenluft (51) an einer Zuführungsstelle des Raumes (50) und Abführung von Innenluft an einer Abführungsstelle entfernt von der Zuführungsstelle, insbesondere nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die absolute Luftfeuchtigkeit (LFabs) der Außenluft (51) und die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52) aus einer von einem Innensensor (3) gemessenen Innenlufttemperatur und inneren relativen Feuchte und einer von einem Außensensor (4) gemessenen Außenlufttemperatur und äußeren relativen Feuchte von den Sensoren oder einer Steuerung bestimmt werden und
    die Zu- und Abführung nur dann erfolgt, wenn die absolute Luftfeuchtigkeit (LFabs) der Außenluft (51) um eine absolute Feuchtigkeitsdifferenz, welche frei wählbar und einstellbar ist, geringer ist als die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52).
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Zu- und Abführung nur dann erfolgt, wenn die Lufttemperatur TLi im Inneren eines Raumes (50) über einer vorgegebenen Mindesttemperatur (7) liegt, und/oder bei laufender Zu- und Abführung diese beendet wird, wenn die Temperaturdifferenz (5) und/oder die absolute Feuchtigkeitsdifferenz eine vorgegebene jeweilige Mindestdifferenz unterschreitet.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die Zu- und Abführung bei Vorliegen der Mindesttemperatur (7) in Intervallen erfolgt und dabei die Belüftungsintervalle insbesondere nicht länger sind als die Pausenintervalle, vorzugsweise nur 1/5, besser 1/10, besser 1/20 solange wie die Pausenintervalle,
    und/oder die Luftdrücke zur Bestimmung der absoluten Luftfeuchtigkeiten von dem Innensensor (3) und dem Außensensor (4) gemessen werden.
  5. Verfahren nach einem der Ansprüche 2 bis 4,
    dadurch gekennzeichnet, dass
    für die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52), ein durchschnittlicher Luftdruck angenommen wird oder im Falle einer vorhandenen Luftdruckmessung der tatsächlich gemessene Luftdruck verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ein Temperatur-Sensor und ein Feuchtigkeitssensor des Außensensors (4) und/oder des Innensensors (3) höchstens alle 1000 ms aktiviert wird/werden, wobei das Verhältnis der Dauern von Deaktivität zu Aktivität dieser Sensoren (3, 4) abhängig von der zuletzt gemessenen Temperatur vergrößert wird, wenn die Temperatur gefallen ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die absolute Luftfeuchtigkeit (LFabs.) ermittelt wird aus der relativen Luftfeuchtigkeit (LFrel.) und der von einem Sensor (3, 4) gemessenen Temperatur (TL) der Luft, insbesondere unter Zugrundelegung eines durchschnittlichen Luftdruckes (p), nach der Formel L F abs . = 216 . 7 × L F rel 100 % × α × exp β × t ° C λ + t ° C 273 . 15 ° C + t ° C ,
    Figure imgb0005
    wobei Zustand t Bereich (°C) α (hPa) β λ (°C) Über Wasser -45 - 60 6.112 17.62 243.12 Über Eis -80 - 0.01 6.112 22.46 272.62
    und/oder die Taupunkt-Temperatur ermittelt wird aus T T L F rel . , T ° K = T n × In L F rel . 100 % + m × T ° K T n + T ° K m In L F rel . 100 % m × T ° K T n + T ° K
    Figure imgb0006
    wobei T-Bereich Tn (°C) m Über Wasser, 0-50°C 243,12 17,62 Über Eis, -40-0°C 274,62 22,46
  8. Belüftungsanlage zum Belüften eines Raumes (50) mittels gesteuerter Zuführung von Außenluft (51) und Abführung von Innenluft (52) mit
    - mindestens einem Lüfter (1),
    - einem Innensensor (3),
    - einem Außensensor (4),
    - einer Steuerung (2), die den wenigstens einen Lüfter (1) ansteuert und die Messwerte der Sensoren (3, 4) erhält,
    dadurch gekennzeichnet, dass
    - der Innensensor (3) und der Außensensor (4) in der Lage sind, entweder
    -- die absolute Luftfeuchtigkeit zu messen oder
    -- die relative Luftfeuchtigkeit (LFrel.) und die Temperatur (TL) der Luft zu messen,
    - die Steuerung (2) in der Lage ist, im Falle der Messung von relativer Luftfeuchtigkeit (LFrel.) und Temperatur (TL) der Luft durch die Sensoren (3, 4) daraus die absolute Luftfeuchtigkeit (LFabs) am Innensensor (3) und am Außensensor (4) zu ermitteln und
    - die Steuerung (2) die Messwerte der Sensoren (3, 4) erhält und den wenigstens einen Lüfter zur Zu- und Abführung von Luft ansteuert, wenn die absolute Luftfeuchtigkeit (LFabs) der Außenluft (51) um eine absolute Feuchtigkeitsdifferenz, welche frei wählbar und einstellbar ist, geringer ist als die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52).
  9. Belüftungsanlage nach Anspruch 8,
    dadurch gekennzeichnet, dass
    Innensensor (3) und Außensensor (4) in der Lage sind, den Luftdruck (p) zu messen,
    und/oder der Luftdruck (p) im Falle, dass die Zu-und Abführung nur dann erfolgt, wenn die absolute Luftfeuchtigkeit (LFabs) der Außenluft (51) geringer ist als die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52) oder die absolute Luftfeuchtigkeit (LFabs) der Außenluft (51) um eine absolute Feuchtigkeitsdifferenz geringer ist als die absolute Luftfeuchtigkeit (LFabs) der Innenluft (52),ein durchschnittlicher Luftdruck angenommen wird oder im Falle einer vorhandenen Druckmessung der tatsächlich gemessene Luftdruck verwendet wird.
  10. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die Steuerung (2) in der Lage ist, die absolute Luftfeuchtigkeit zu ermitteln aus der relativen Luftfeuchtigkeit (LFrel.) und der von einem Sensor (3, 4) gemessenen Temperatur (TL) der Luft, insbesondere unter Zugrundelegung eines durchschnittlichen Luftdrucks, nach der Formel L F abs . = 216 . 7 × L F rel 100 % × α × exp β × t ° C λ + t ° C 273 . 15 ° C + t ° C ,
    Figure imgb0007
    wobei Zustand t Bereich (°C) α (hPa) β λ (°C) Über Wasser -45 - 60 6.112 17.62 243.12 Über Eis -80 - 0.01 6.112 22.46 272.62
  11. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die Steuerung (2) in der Lage ist, die Taupunkt-Temperatur zu ermitteln aus T T L F rel . , T ° K = T n × In L F rel . 100 % + m × T ° K T n + T ° K m In L F rel . 100 % m × T ° K T n + T ° K
    Figure imgb0008
    wobei T-Bereich Tn (°C) m Über Wasser, 0-50°C 243-12 17,62 Über Eis, -40-0°C 274,62 22,46
  12. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die Steuerung (2) ein Display (8) aufweist, das für Außen- und Innensensor (4, 3) getrennt die Taupunkt-Temperatur (TT) und/oder die absolute Luftfeuchte (LFabs) anzeigt,
    und/oder die Steuerung (2) ein Display (8) aufweist, das für Außen- und Innensensor (4, 3) getrennt die aktuelle Temperatur (TL) der Luft anzeigt.
  13. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die beiden Sensoren (3, 4) und der wenigstens eine Lüfter (1) mit der Steuerung (2) signaltechnisch drahtlos, insbesondere per Funk, verbunden sind, und/oder die Lüftungsanlage zwei Lüfter (1) an voneinander entfernten Punkten des Raumes (50), insbesondere im Raum (50) einander gegenüber liegend an maximal voneinander entfernten Punkten, umfasst.
  14. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    der Außen- oder der Innensensor (4, 3) einen Prozessor zur Bestimmung der Taupunkt-Temperatur und/oder der absoluten Luftfeuchtigkeit beinhalten, insbesondere einen Chip, insbesondere einen CMOS-Chip,
    und/oder die Steuerung (2) eine Testfunktion für das enthaltene Relais enthält.
  15. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die Steuerung (2) ein Programm für Dauerlüftung enthält, bei dem immer gelüftet wird, sofern die Voraussetzung (Taupunkt-Temperatur außen (TTa) < als Taupunkt-Temperatur innen (TTi) und ggf. zusätzlich absolute Luftfeuchtigkeit außen < als absolute Luftfeuchtigkeit innen) erfüllt ist,
    und/oder die Steuerung (2) ein Kühlprogramm enthält, bei dem die Temperatur im Raum (50) durch Zuführen von kälterer Außenluft gesenkt werden kann, sofern dabei eine relative und/oder absolute Luftfeuchtigkeit im Raum nicht über eine vorgegebene max. relative und/oder absolute Raumluftfeuchte übersteigt.
  16. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    die Steuerung (2) ein Heizprogramm enthält, bei dem die Temperatur im Raum (50) durch Zuführen von wärmerer Außenluft erhöht werden kann, sofern dabei eine relative und/oder absolute Luftfeuchtigkeit im Raum nicht über eine vorgegebene max. relative und oder absolute Luftfeuchtigkeit im Raum (50) steigt,
    und/oder der Feuchtigkeitssensor ein kapazitiver Sensor ist.
  17. Belüftungsanlage nach einem der vorhergehenden Vorrichtungsansprüche,
    dadurch gekennzeichnet, dass
    der Temperatursensor ein Bend-Gap-Sensor ist,
    und/oder die Lüftungsanlage so aufgebaut ist, dass keine signifikante Temperaturleitung von der Steuerung (2), insbesondere deren Prozessor, an den Feuchtigkeitssensor erfolgt.
EP15168390.1A 2014-05-20 2015-05-20 Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür Revoked EP2947396B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15168390T PL2947396T3 (pl) 2014-05-20 2015-05-20 Sposób wentylacji pomieszczenia oraz układ wietrzenia do tego celu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014107119.0A DE102014107119A1 (de) 2014-05-20 2014-05-20 Verfahren zum Belüften eines Raumes sowie Lüftungsanlage hierfür

Publications (2)

Publication Number Publication Date
EP2947396A1 EP2947396A1 (de) 2015-11-25
EP2947396B1 true EP2947396B1 (de) 2018-10-17

Family

ID=53264485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15168390.1A Revoked EP2947396B1 (de) 2014-05-20 2015-05-20 Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür

Country Status (4)

Country Link
EP (1) EP2947396B1 (de)
DE (1) DE102014107119A1 (de)
ES (1) ES2705584T3 (de)
PL (1) PL2947396T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381702A1 (en) * 2019-03-29 2021-12-09 Nihon Spindle Manufacturing Co., Ltd. Dry room and method for controlling same
EP3978815A1 (de) * 2020-10-01 2022-04-06 Humian Technologies Oy Verfahren zur überwachung und belüftung von empfindlichen bereichen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203806A1 (de) * 2015-03-03 2016-09-08 Maico Elektroapparate-Fabrik Gmbh Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum sowie entsprechende Lüftungseinrichtung
FR3053769B1 (fr) * 2016-07-06 2018-08-10 Somfy Sas Procede de determination d'un etat d'ouverture d'un ouvrant d'un local d'un batiment et dispositif de determination associe
CN109869870A (zh) * 2019-01-24 2019-06-11 杭州美时美刻物联网科技有限公司 一种基于区块链技术的室内空气循环***
EP4348121A1 (de) 2021-05-27 2024-04-10 Udlejer, Hans Jørgen Christensen Verfahren zur belüftung eines raums und belüftungssystem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072371B (de)
CH238816A (de) 1942-11-11 1945-08-31 Haenni & Cie Ag Steuereinrichtung für eine Belüftungsvorrichtung.
DE1219520B (de) 1965-03-22 1966-06-23 Licentia Gmbh Schmitt-Trigger mit einstellbarer Hysterese
DE7633120U1 (de) 1976-10-22 1977-02-17 Voetsch Gmbh, 6450 Hanau Vorrichtung zur klimatisierung
DE3439288A1 (de) 1983-10-28 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Verfahren zur optimierung des energieverbrauchs einer luftaufbereitungsanlage fuer raumklimatisierung
DE10122435A1 (de) 2001-05-09 2003-01-30 Werner Hein Energiespar Lüftungssteuerung
DE202006004226U1 (de) 2006-03-16 2006-07-06 Tfa-Dostmann Gmbh & Co Kg Vorrichtung zur Vorhersage einer lokalen Nachttiefsttemperatur sowie eine entsprechende Vorrichtung
DE102011108021A1 (de) * 2011-07-20 2013-01-24 Dirk Sauter Trockenraumlüfter
DE102016118812A1 (de) 2016-10-05 2018-04-05 David Bredt Verfahren zur Verhinderung einer oberflächlichen Kondensation von Wasserdampf sowie eine Vorrichtung zum Einbau in einen Feuchtraum zur Verhinderung einer oberflächlichen Kondensation von Wasserdampf

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333195A1 (de) * 1993-09-29 1995-03-30 Schoettler Lunos Lueftung Gerät zur Be- oder Entlüftung eines Innenraumes
DE4412251A1 (de) * 1994-04-07 1995-10-12 Schmidt Michael Verfahren und Vorrichtung zum Entfeuchten von Gebäuden im Kellergeschoß
DE19952519A1 (de) * 1999-10-30 2001-06-07 Stahl Thomas Friedemann Temperatur- und Feuchtigkeitsabhängige Ventilatorsteuerung
DE10143540A1 (de) * 2001-09-06 2003-04-03 Wolfgang Ludwig Verfahren und Vorrichtung zur Beseitigung und/oder Verhinderung von Feuchtigkeitsabscheidungen auf kondensationsgefährdeten Innenwänden von Gebäuden
DE20216334U1 (de) * 2002-10-22 2003-12-04 Meltem Wärmerückgewinnung GmbH & Co. KG Luftaustauschsystem für die Belüftung wenigstens eines Raums eines Gebäudes
DE102005045991A1 (de) * 2005-09-27 2007-04-12 Hamatrol Mauertrockenlegungssysteme Hildegard Berger E.K. Vorrichtung zur Be- und Entlüftung eines Raums
US7758408B2 (en) * 2006-06-01 2010-07-20 Ventotech Ab Dehumidifying ventilation and regulation of airflow in enclosed structures
DE102008044439A1 (de) * 2008-08-17 2010-02-18 Wolfram Pilz Regelungsvorrichtung und Verfahren zur automatischen Belüftung von Kellerräumen
DE202009010917U1 (de) * 2009-08-12 2009-12-03 Brandl, Gunar-Helge Lüftungssystem zur Feuchteregulierung in Räumen
DE102010055065A1 (de) * 2010-12-17 2012-06-21 Renate Seifarth Belüftungsvorrichtung zur automatischen Belüftung und Entfeuchtung von Kellerräumen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072371B (de)
CH238816A (de) 1942-11-11 1945-08-31 Haenni & Cie Ag Steuereinrichtung für eine Belüftungsvorrichtung.
DE1219520B (de) 1965-03-22 1966-06-23 Licentia Gmbh Schmitt-Trigger mit einstellbarer Hysterese
DE7633120U1 (de) 1976-10-22 1977-02-17 Voetsch Gmbh, 6450 Hanau Vorrichtung zur klimatisierung
DE3439288A1 (de) 1983-10-28 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Verfahren zur optimierung des energieverbrauchs einer luftaufbereitungsanlage fuer raumklimatisierung
DE10122435A1 (de) 2001-05-09 2003-01-30 Werner Hein Energiespar Lüftungssteuerung
DE202006004226U1 (de) 2006-03-16 2006-07-06 Tfa-Dostmann Gmbh & Co Kg Vorrichtung zur Vorhersage einer lokalen Nachttiefsttemperatur sowie eine entsprechende Vorrichtung
DE102011108021A1 (de) * 2011-07-20 2013-01-24 Dirk Sauter Trockenraumlüfter
DE102016118812A1 (de) 2016-10-05 2018-04-05 David Bredt Verfahren zur Verhinderung einer oberflächlichen Kondensation von Wasserdampf sowie eine Vorrichtung zum Einbau in einen Feuchtraum zur Verhinderung einer oberflächlichen Kondensation von Wasserdampf

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"DHT11 Humidity & Temperature Sensor", D-ROBOTICS UK, 30 July 2010 (2010-07-30), pages 1 - 9
ANONYMOUS: "Datasheet SHT7x (SHT71, SHT75) Humidity and Temperature Sensor", SENSIRION, September 2008 (2008-09-01), pages 1 - 11, XP055583824
ANONYMOUS: "Humidity at a Glance", SENSIRON, August 2008 (2008-08-01), pages 1 - 2
ANONYMOUS: "Kellerlüftomat Feuchte", RAUM+LUFT BEDIENUNGSANLEITUNG, 4 May 2012 (2012-05-04), pages 1 - 13, XP055583837
ANONYMOUS: "Kellerlüftung mit Taupunkt-Kellerregler 10-72", EBERHARD SCHENK, 22 March 2019 (2019-03-22), pages 1 - 7
ANONYMOUS: "LogiDry Bedienungsanleitung "Multi-Raum"", EBH SERVICE GMBH, 29 August 2012 (2012-08-29), pages 1 - 14, XP055583841
ANONYMOUS: "LogiDry Bedienungsanleitung", EBH SERVICE GMBH, 29 August 2012 (2012-08-29), pages 1 - 13, XP055583839
ANONYMOUS: "Mollier-h-x-Diagramm, Wikipedia", 24 August 2016 (2016-08-24), XP055583803
ANONYMOUS: "Richard Mollier, Wikipedia", 13 February 2017 (2017-02-13), XP055583808, Retrieved from the Internet <URL:https://de.wikipedia.org/w/index.php?title=Richard_Mollier&oldid=162605987>
ANONYMOUS: "Sättigungsdampfdruck, wikipedia", 22 February 2019 (2019-02-22), XP055583814
ANONYMOUS: "Taupunkt, Wikipedia", 3 February 2019 (2019-02-03), XP055583810, Retrieved from the Internet <URL:https://de.wikipedia.org/w/index.php?title=Taupunkt&oldid=185334540>
ANONYMOUS: "Taupunktregler Airsecure TPW-60 Funktionsbeschreibung, Montage-und Bedienungsanleitung", PRO AIR GMBH, September 2008 (2008-09-01), XP055583835
JÜRGEN SCHNIEDERS: "Einfluss von Kellerdeckendämmung auf die Feuchtebelastung von Kellerräumen", PASSIV HAUS INSTITUT, 13 November 2009 (2009-11-13), pages 1 - 39, XP055583820

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381702A1 (en) * 2019-03-29 2021-12-09 Nihon Spindle Manufacturing Co., Ltd. Dry room and method for controlling same
EP3978815A1 (de) * 2020-10-01 2022-04-06 Humian Technologies Oy Verfahren zur überwachung und belüftung von empfindlichen bereichen

Also Published As

Publication number Publication date
DE102014107119A1 (de) 2015-11-26
EP2947396A1 (de) 2015-11-25
ES2705584T3 (es) 2019-03-26
PL2947396T3 (pl) 2019-04-30

Similar Documents

Publication Publication Date Title
EP2947396B1 (de) Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür
EP1878979B1 (de) Verfahren und Vorrichtung zum kontrollierten Lüften gegen Schimmelbildung
DE4205735C2 (de) Verfahren zur Regelung der Luftfeuchtigkeit eines Innenraumes
DE102013013665B4 (de) Laboratoriumsbrutschrank mit verbesserter Feuchtigkeitseinstellung
EP2136147B1 (de) Verfahren und Einrichtung zur Regelung der Temperatur, der Feuchtigkeit und des Kohlendioxidanteils der Luft in Räumen
DE102005057454A1 (de) Luftdichtevergleichsregelung
DE2149548B2 (de) Klimaanlage für Eisenbahnfahrzeuge
EP1554526B1 (de) Luftaustauschsystem für die belüftung wenigstens eines raumes eines gebäudes
DE102016105305A1 (de) Innenraumlüftungsanlage
AT514801B1 (de) Verfahren zum Trocknen von Trocknungsgut
EP0001048B1 (de) Verfahren und Einrichtung zum Desinfizieren des Operationsraums eines Krankenhauses
EP3098527B1 (de) Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung
EP3108903B1 (de) Desinfektionseinrichtung zum desinfizieren von räumen sowie verfahren zum desinfizieren von räumen
DE102005032042A1 (de) Vorrichtung und Verfahren zur Ermittlung des Energieeintrags in einen Raum durch eine Strahlungsquelle
DE102004051912A1 (de) Verfahren zur Steuerung einer Klimaanlage eines Kraftfahrzeugs
DE4430704A1 (de) Lüftungsgerät und Verfahren zu dessen Betreiben
DE102015118475A1 (de) Verfahren zum Betrieb einer dezentralen Vorrichtung zur kontrollierten Wohnraumlüftung sowie verfahrensgemäß ausgebildete Wohnraumlüftungsvorrichtung
DE3516505C1 (de) Holzbehandlungskammer
EP2716987A2 (de) Steuerung für einen Raumlüfter, Lüftungssystem und Fenster mit Raumlüfter
DE3516910A1 (de) Lueftungseinrichtung fuer raeume in wohnungen od.dgl.
EP0003970B1 (de) Verfahren zum Lüften von Räumen sowie Lüftungsvorrichtung zur Durchführung des Verfahrens
EP1167576B1 (de) Eingehauste Beizanlage
DE19947945C2 (de) Verfahren zur Steuerung einer Lüftung von einem Innenraum
WO2021032671A1 (de) Entfeuchtungsvorrichtung für einen transformator
DE102022202341A1 (de) Kühlschrank und Verfahren für einen Kühlschrank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160525

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015006423

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24F0011000000

Ipc: F24F0011300000

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 110/12 20180101ALI20180518BHEP

Ipc: F24F 11/30 20180101AFI20180518BHEP

Ipc: F24F 110/10 20180101ALI20180518BHEP

Ipc: F24F 110/22 20180101ALI20180518BHEP

Ipc: F24F 110/20 20180101ALI20180518BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180629

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006423

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2705584

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015006423

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

26 Opposition filed

Opponent name: MADER, PETER

Effective date: 20190409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190613

Year of fee payment: 5

Ref country code: DE

Payment date: 20190527

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190523

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190523

Year of fee payment: 5

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502015006423

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502015006423

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200618

Year of fee payment: 6

Ref country code: CH

Payment date: 20200522

Year of fee payment: 6

Ref country code: FR

Payment date: 20200519

Year of fee payment: 6

Ref country code: NL

Payment date: 20200518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200528

Year of fee payment: 6

Ref country code: BE

Payment date: 20200518

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200515

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20200622

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20200622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1054519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200622

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017