EP2913513A1 - Ansauggeräuschdämpfer - Google Patents

Ansauggeräuschdämpfer Download PDF

Info

Publication number
EP2913513A1
EP2913513A1 EP15151861.0A EP15151861A EP2913513A1 EP 2913513 A1 EP2913513 A1 EP 2913513A1 EP 15151861 A EP15151861 A EP 15151861A EP 2913513 A1 EP2913513 A1 EP 2913513A1
Authority
EP
European Patent Office
Prior art keywords
resonator
channel
assembly
fluid
fluid channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15151861.0A
Other languages
English (en)
French (fr)
Other versions
EP2913513B1 (de
Inventor
Ingo Naubert
Michael Böhm
Olaf Lichtenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2913513A1 publication Critical patent/EP2913513A1/de
Application granted granted Critical
Publication of EP2913513B1 publication Critical patent/EP2913513B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1255Intake silencers ; Sound modulation, transmission or amplification using resonance
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/161Methods or devices for protecting against, or for damping, noise or other acoustic waves in general in systems with fluid flow

Definitions

  • the invention relates to an intake silencer for a fluid line and a heater with the intake silencer.
  • auxiliary heaters in motor vehicles.
  • a fluid such as air, mufflers
  • the intake is known to be a significant source of noise in the near field of the intake of the heater, it comes in the operation of the Heater and the necessary for combustion intake of combustion air to intake noise in different frequency ranges.
  • noise In the near field of the intake mouth arise noise with predominantly low-frequency frequency components, which are caused in particular by the combustion noise of the heater. Furthermore, noises arise with predominantly higher-frequency frequency components, which are caused in particular by a fan of the heater which heats the fluid, which are comparable to a turbine noise.
  • the publication DE 10 2010 049 578 A1 discloses a muffler assembly having a fluid conduit through which a fluid, in particular air, is guided.
  • the fluid line has seen in the flow direction to a fluid drain and a fluid supply.
  • the fluid, in particular the air thus flows from the fluid supply to the fluid outlet.
  • the fluid line is surrounded by a resonator arrangement which has three resonator tubes connected in series and arranged concentrically with one another.
  • the first resonator tube of the resonator arrangement is connected in a sound-transmitting manner to the fluid line via a connection opening in a wall. Only a small fluid exchange takes place via the connection opening, since the resonator arrangement has no outflow.
  • the muffler assembly further includes absorption devices that can be designed for different frequencies.
  • the invention is based on the object to further reduce the noise of the known muffler assemblies. Furthermore, the muffler assembly should be compact be formed and inexpensive and easy to produce. In addition, the silencer assembly should only have a low weight and be produced with low material costs.
  • the starting point of the invention is a silencer assembly comprising an insertion part, which is pushed in a state of assembly of the silencer assembly in a housing part, wherein the housing part has a fluid channel in which a fluid in the axial direction of the silencer assembly from an inflow opening to an outflow opening flows, and at the same time acts as a resonator tube for propagating in the fluid channel sound waves.
  • the housing part and the insertion part each have, prior to the assembly state, an open resonator chamber for each branch resonator branching off from the fluid channel, which are closed in the assembled state and in operative connection with the fluid channel acting as the resonator tube.
  • the noise development is substantially reduced by such a silencer assembly, wherein two resonator chambers are designed as branch resonators and a resonator tube by simple assembly, each providing the appropriate attenuation of sound waves.
  • the muffler assembly is thereby formed very compact, wherein the resonator tube and one of the resonator chambers are applied in the housing part, while the other resonator is applied in the insertion part, wherein advantageously the two resonator chambers are formed only by the assembly.
  • the two components, the housing part and the insertion part interlock with one another in such a way that two components of the silencer assembly which can be produced relatively simply and inexpensively can be produced.
  • These components also have a low weight, since only a small amount of material is necessary.
  • the two components, the insertion part and the housing part are designed such that they are in an advantageous manner after assembly in corresponding operative connection.
  • a lying on a midpoint in the axial direction longitudinal axis of a second housing part opening, which forms a feed channel of the fluid channel is arranged eccentrically with respect to a center of the lying in the axial direction longitudinal axis of the resonator chambers of the branch resonators.
  • This embodiment has the advantage that within the cylindrical muffler assembly of the feed channel is not in the center of the muffler assembly, in other words, the feed channel is arranged eccentrically with respect to the silencers of the prior art.
  • the eccentric arrangement of the feed channel has the advantage that a larger space is available for the resonator chambers above the longitudinal axis of the feed channel, so that a larger volume is available within the resonator chambers of both branch resonators, which is available to form a plurality of sub-chambers available.
  • the advantageous effects of these sub-chambers are explained in more detail in the description.
  • the muffler assembly is characterized in that the fluid channel comprises a first channel segment as inlet channel with the inlet opening for the fluid and coaxial thereto a second channel segment as a feed channel with the discharge opening for the fluid, so that the inflow opening and the outflow opening are arranged on one side of the muffler assembly, since the fluid channel is deflected within the housing part on the opposite side of the insertion part.
  • This embodiment has the advantage that the fluid channel is designed to be longer overall, since two channel segments are formed running substantially over the entire length of the muffler assembly.
  • the deflection also increases the sound attenuation within the fluid channel and part of the fluid channel, namely the inflow channel, can advantageously be used to collect condensate.
  • a further advantageous embodiment of the invention is that the housing part before the assembled state has an open resonator chamber which comprises a housing part plate extending in the axial direction, which already forms two partial chambers in the resonator chamber.
  • the insertion part which has a push-in plate, which is inserted in the assembled state into the resonator chamber designed as a branch resonator coaxially with the housing part plate extending in the axial direction.
  • three partial chambers are thus formed in the assembly state in the resonator chamber, which are connected to the fluid channel via a connection opening and in turn via connection openings according to the principle of reflection of sound in conjunction.
  • the insertion part which has the resonator chamber designed as a branch resonator, seen in the axial direction formed of two consecutive discs.
  • the two discs lying one behind the other are arranged on their inner diameters on a cylindrical wall, wherein the conversion comprises a nozzle opening extending in the axial direction of the muffler assembly of the insertion part forms.
  • the wall connecting openings are formed to two sub-chambers, which are connected via the connection openings with the fluid channel and in turn according to the principle of reflection of sound in conjunction.
  • the insertion part is thus already designed as a component so that a closed resonator chamber is created by simple insertion into the housing part, which ensures a sound attenuation of propagating into the muffler assembly sound.
  • first the second branch resonator, then the first branch resonator and finally the resonator tube develop their damping effect in the acoustic emission direction, the sound waves being transmitted radially into the branch resonators.
  • FIGS. 1 to 11 show a series type 100 of the muffler assembly.
  • FIGS. 12 to 14 show a prototype of the muffler assembly P100.
  • FIG. 1 shows a perspective view of a housing part 10 of a muffler assembly 100, in particular an assembly of a Ansauggeräuschdämpfers for a heater, in particular for a heater.
  • the intake silencer or the silencer assembly is referred to below as the silencer 100 shortened.
  • the muffler 100 in addition to the advantageous design and arrangement of the components 10, 20, 30, S1, S2 of the muffler assembly 100, achieves a broadband attenuation of sound waves L, wherein the muffler 100 uses the principle of absorption or reflection as well as the combination of absorption and reflection in certain areas.
  • FIG. 1 is a bottom of the muffler 100 visible.
  • a fastener 10E arranged in the later installation situation on the side (in FIG. 1 shown above) of the muffler 100.
  • the fastening element 10E is advantageously connected in one piece with the body of the housing part 10.
  • the housing part 10 and thus the entire muffler 100 can be connected via the fastening element 10E with a body or the like. It is understood that the fastening element 10E can also be arranged at a different location of the housing part 10 of the silencer 100.
  • the housing part 10 has a fluid channel which comprises a first channel segment 10A, in particular an inflow channel and a second channel segment 10B angled away from the first channel segment 10A, as well as a feed channel.
  • a fluid channel which comprises a first channel segment 10A, in particular an inflow channel and a second channel segment 10B angled away from the first channel segment 10A, as well as a feed channel.
  • FIG. 1 Within the feed channel 10B, an axially extending projection 10B-12 is visible.
  • fluid, in particular combustion air flows to the heater connected to the muffler 100.
  • FIG. 2 shows in a perspective view an insertion part 20 of the muffler 100.
  • the exact arrangement of the insertion part 20 within the housing part 10 will be explained in more detail.
  • the insertion part 20 comprises a nozzle 20A-1 provided with a nozzle 20A, which is integrally connected to a first disc 20B-1.
  • the first disk 20B-1 is located in the axial direction with respect to the nozzle opening 20A-1 of the nozzle 20A parallel to a second disk 20B-2 spaced from the first disk 20B-1.
  • the muffler 100 is connected to the heater.
  • the nozzle 20A represents in principle on the side of the insertion part 29 is an extension of the second channel segment 10B of the fluid channel.
  • a ridge 20G arranged in the installation situation on the underside of the insertion part 20 separates two sub-chambers 20E-1 and 20E-2 of a small resonator chamber 20E (of a second branch resonator R2) with a small volume from each other and at the same time ensures stability.
  • the smaller volume of the small resonator chamber 20E refers to the larger volume of a large resonator chamber 10C (a first branch resonator R1), and the branch resonators R1, R2 will be discussed in more detail.
  • a push-in shield 20F Disposed on the second disc 20B-2 is a push-in shield 20F which extends in the assembled state inside the muffler 100 in the axial direction, the function of the push-in shield 20F being discussed in more detail below.
  • a cylindrical wall 20C is provided on the inner diameter of the disks 20B-1 and 20B-2, and in the wall 20C in the radial direction, the axially extending nozzle port 20A-1 communicating holes 20D-1 and 20D -2 are arranged, which will also be discussed in more detail later. In FIG. 2 only one of the connection openings 20D-1 is visible.
  • the communication ports 20D-1, 20D-2 provide access to the small, lower volume sub-chambers 20E-1 and 20E-2 of the small resonator chamber 20E as described in the description of FIG. 10 will be explained in more detail.
  • FIG. 3 shows in a further perspective view of the lid 30 as a final element, which in the assembled state of the muffler 100 according to FIG. 5 closes the housing part 10 on one end, without the connecting opening S11 according to FIG. 7 close.
  • the housing part 10 is according to FIG. 5 in the assembled state by the insertion part 20 according to FIG. 2 closed, wherein the first disc 20B-1 of the insertion part 20 is flush with the edge of the housing part 10, as in FIG. 5 is shown in a slightly perspective side view of the muffler 100.
  • FIG. 4 shows to further explain the construction of the housing part 10 in yet another perspective view, a view into the interior of the housing part 10th
  • FIG. 4 shown position of the housing assembly 10 corresponds to the later installation situation of the muffler 100. It is clear that the supply channel 10B below and the fastener 10E are arranged laterally. It is also clear that the large resonator chamber 10 C is arranged in the installation situation of the muffler 100 above.
  • the viewing direction of the viewer in the interior of the housing part 10 is according to FIG. 4 Starting from the nozzle 20A directed towards the lid 30, wherein the lid 30 in FIG. 4 not mounted yet.
  • the housing part 10 comprises the slit-like inlet channel 10A, which is open on both sides and, in the assembled state, has a housing partial opening 10A-1 at one end and forms an inflow opening 10A-11, and at the other end in the assembled state to form a connection opening S11, as will be explained, is closed by the lid 30.
  • the housing part 10 further comprises the circular feed channel 10B, which is also initially open on both sides, and in the assembled state on one side by means of the lid 30 (see FIG. 7 ) is closed and is open on the other side facing the nozzle 20A, since there the insertion part 20 is inserted into the housing part 10, wherein the open nozzle opening 20A-1 forms the outflow opening 10B-11 for the fluid.
  • the circular feed channel 10B which is also initially open on both sides, and in the assembled state on one side by means of the lid 30 (see FIG. 7 ) is closed and is open on the other side facing the nozzle 20A, since there the insertion part 20 is inserted into the housing part 10, wherein the open nozzle opening 20A-1 forms the outflow opening 10B-11 for the fluid.
  • the housing part 10 has a third substantially circular resonator chamber opening 10C-1, which forms the access to the large resonator chamber 10C.
  • the large resonator chamber 10C forms a second branch resonator R2 of a plurality of sub-chambers 10C-I, 10C-II, 10C-III, as shown in FIG FIG. 9 is clarified.
  • FIG. 4 Furthermore, it is clear that the large resonator chamber 10C is closed on the bottom side.
  • the floor 10C-4 is in the assembled state, such as FIG. 5 in particular illustrated on the side of the lid 30.
  • the housing part 10 circumferentially has a widening 10C-2, which extends in the axial direction and whose length corresponds to the distance between the two discs 20B-1, 20B-2 of the insertion part 20.
  • the visible end face 10B-13 of the feed channel 10B also analogous to the expansion 10C-2 relative to the nozzle-side end face 10-1 of the housing part 10 is reset in the upper region, while it is continued in the lower region in the axial direction and the one flush end face 10A-12th to the end face 10-1 of the housing part 10 forms.
  • the lower part of the feed channel 10B with the end face 10A-12 and the shoulder 10C-21 with the end face 10B-13 of the feed channel 10B are designed to be flush in the assembled state, such as FIG. 6 clarified.
  • FIG. 4 Inside the large resonator chamber 10C is how FIG. 4 Further, a housing part plate 10D arranged, which also extends in the assembled state of the muffler 100 in the axial direction. It can be seen that the in FIG. 4 visible end face 10D-1 of the housing partial shield 10D is reset in the axial direction by an amount relative to the end face 10B-13 of the feed channel 10B, which will be discussed in more detail.
  • the housing part plate 10D is guided to the bottom 10C-4 of the large resonator 10C and thus already forms two sub-chambers, a third sub-chamber 10C-III and a sub-chamber 10C-II / 10C-I, which in the assembled state by the insertion plate 20F in two further individual chambers 10C-II and 10C-I is divided.
  • FIG. 5 shows the muffler 100 in a perspective view obliquely from above in the assembled state.
  • the arrow P1 shows the flow direction of the fluid in the inflow direction, wherein the inflow passage 10A forms an inflow opening 10A-11.
  • the arrow P2 shows the flow direction of the fluid in the outflow direction, wherein the nozzle 20A forms the outflow opening 10B-11.
  • the sound emission direction is opposite to the flow direction of the fluid.
  • the heater not shown is connected to the nozzle 20A.
  • the propagation of the sound waves L is in the FIGS. 7 and 10 shown with dashed lines L.
  • FIG. 6 shows a vertically extending in a plane section through the muffler 100 by the fastener 10E, which in FIG. 6 is arranged below. Across from FIG. 5 Thus, the muffler 100 is shown rotated by 90 ° down, so that the viewer looks at the muffler 100 from above with respect to the installation situation.
  • FIG. 7 shows a running in a vertical plane section through the muffler 100 right through the center of the muffler 100.
  • the muffler 100 in FIG. 7 has the same situation as FIG. 5 with the viewer now looking from the side of the muffler 100.
  • the insertion plate 20F also forms a distance at the front side with its free end opposite the bottom 10C-4 of the large resonator chamber 10C (FIG. FIG. 7 ), which will be discussed later ..
  • the feed channel 10B and the inflow channel 10A form a further resonator chamber in the manner of an angled resonator tube R.
  • the angled resonator tube R predominantly uses the functional principle of the absorption of sound waves L in the region of the straight feed channel 10B, since it is provided with an absorber element S1.
  • the supply channel 10B is in operative connection with the angled inflow channel 10A, it is seen in the direction of propagation of the sound waves L that the functional principle of the reflection is advantageously used as well.
  • the sound waves L propagate to the bend between the supply passage 10B and the inflow passage 10A and reach the U-shaped communication opening S11 between the supply passage 10B and the inflow passage 10A, and are strongly reflected on the inner wall of a lid 30, and then further into the inflow passage 10B in that they are reflected on the walls of the inflow channel 10A, 10B, whereby an attenuation of the sound waves L is achieved in an advantageous manner.
  • the resonator tube R attenuates sound frequencies in the acoustic wave range within a high-frequency frequency band by approximately 5 kHz, which is generated by the Volume of the resonator tube R, its cross section and its length and the arranged in the resonator tube R1 internals, such as the arranged first absorber element S1 and the absorber material depends.
  • an open-celled polyurethane foam based on polyester [polyester-based PU foam] is used as an absorber material for the first absorber element S1 in the resonator tube R.
  • the open-cell PU foam forms cell-like pores, which provide for reflection of the sound waves L in the pores for damping the sound waves L in the high-frequency frequency range by about 5 kHz around. It has been found that for the damping in the resonator tube R, a polyurethane foam based on polyester with a bulk density of about 57 kg / m 3 (+/- 5 kg / m 3 ) according to ISO 845 is particularly suitable.
  • FIGS. 6 and 7 illustrated how the first absorption element S1 within the feed channel 10B, here cylindrical, is arranged in FIG. 8 is shown as a detail.
  • the absorption element S1 extends in its longest extent from the cover 30 to the first disc 20B-2 of the insertion part 20 and is thereby easily positionable in the axial direction within the muffler 100.
  • the absorption element S1 is advantageously prior to installation a lying in a plane mat predeterminable thickness of about 5 -10 mm, in particular 6 mm, which is rolled up for installation to the cylindrical member, so that the axially extending end faces to each other lie.
  • a contact zone S13 forms (FIG. FIGS. 6 ) extending at the axially extending projection 10B-12 (FIG. FIGS. 1 and 6 ), so that the absorbing member S1 is uniquely positioned in the feeding channel 10B and secured against twisting at the same time. This solution is in FIG. 9 also recognizable.
  • the absorption element S1 according to FIG. 8 has at each end a segment-like cutout S11, S12, as seen in the flow direction of the fluid, the first segment-like Section S11 forms the fluid and sound transmitting connection opening S11 between the inflow passage 10A and the supply passage 10B, as in FIG. 7 is clearly visible.
  • the second segment-like cutout S12 forms a radially outgoing sound-transmitting connection opening S12 between the inflow channel 10A and the large resonator chamber 10C.
  • This connection opening S12 takes place almost no fluid exchange, that is, the fluid does not flow into the large resonator 10C.
  • FIG. 9 first shows for further explanation a running in a vertical plane section transverse to the axial extent of the muffler 100, wherein the section in the region of the second segment-like cutout S12 of the first absorption element S1 analogous to FIG. 4 is laid.
  • FIG. 9 and FIG. 4 differ in that in FIG. 9 in contrast to FIG. 4 the insertion part 20 is already inserted into the housing part 10 and the first absorption element S1 is already inserted.
  • FIG. 9 As a result, the sectional area of the insertion panel 20F in the area of the segment-like cutout S12 and the sectional area of the absorption element S1 are visible.
  • the insertion plate 20F is inserted with its extending in the axial direction outer end edge in a groove 10C-3, which also in FIG. 7 at least partially visible.
  • the insertion part 20 is advantageously positioned clearly within the large resonator chamber 10C and at the same time seals against the wall of the resonator chamber 10C.
  • the insertion part 20 is secured against rotation within the resonator 10C.
  • FIG. 9 shown section is that through the insertion plate 20F of the insertion part 20 within the resonator chamber 10C, three sub-chambers 10C-I; Form 10C-II and 10C-III. It has been proven by experiments that it is advantageous that the cross sections of the chambers 10C-I; I0C-II and I0C-III are formed substantially equal in size to effect an efficient sound attenuation.
  • the fluid flows in FIG. 9 in the direction of the viewer, while the sound or the sound wave propagates into the feed channel 10B, that is to say into the sheet plane, and radially into the large resonator chamber 10C via the segment-like cutout S12.
  • the resonator chamber 10C with the three large chambers 10C-I; 10C-II and 10C-III forms a resonator tube R of three adjacent large chambers 10C-I; 10C-II and 10C-III, which are interconnected by two connection openings A1, A2.
  • the first connection opening A1 ( FIG. 7 ) is formed by the gap between the bottom 10C-4 of the large resonator chamber 10C and the free end of the insertion shield 20F.
  • connection opening A2 is formed between the end face 10D-1 of the housing partial shield 10D within the resonator chamber 10C and the wall of the second disc 20B-2 of the insertion shield 20F facing the resonator chamber 10C. It has been found that it is advantageous if the cross sections of the connection openings A1, A2 are of substantially equal size, as in the exemplary embodiment shown, in order to bring about efficient sound damping.
  • connection openings A1, A2 are substantially the cross sections of the chambers 10C-I; 10C-II and 10C-III correspond to a highly effective sound dissipation within the interconnected chambers 10C-I; To reach 10C-II and 10C-III.
  • the optimal overall length of the resonator tube R was determined by special experiments using a prototype.
  • the opening size of the connection opening S12 of the segment-like section of the first absorption element S1 was also determined by special experiments by means of the prototype, as will be explained.
  • FIG. 10 shows for further explanation of the muffler 100 extending in a vertical plane section transverse to the axial extent of the muffler 100, wherein the section is in the region between the two discs 20B-1 and 20B-2 of the insertion part 20.
  • the communication holes 20D-1 and 20D-2 are visible to the sub-chambers 20E-1 and 20E-2 of the small resonator chamber 20E.
  • the second branch resonator R2 is designed such that it uses the principle of operation of the combination of absorption and reflection.
  • the two sub-chambers 20E-1 and 20E-2 of the small resonator chamber 20E are separated from each other by an upper vertical divider 20H.
  • an upper vertical divider 20H is formed between the two disks 20B-1 and 20B-2.
  • the upper vertical divider 20H is starting from the center M1 of the feed channel 10B in FIG. 10 formed in the vertical direction only so long that it does not reach the inner wall of the expansion 10C-2 of the resonator chamber opening 10C-1, so that the two sub-chambers 20E-1 and 20E-2 are still connected to each other in the upper area.
  • the second absorption element S2 forms two wing-like elements S21 and S22 corresponding to the inner contour of the sub-chambers 20E1 and 20E-2, so that the elements S21 and S22 in the two sub-chambers 20E-1 and 20E-2 can be arranged accurately.
  • the second absorption element S2, viewed in the axial direction, has a thickness of approximately 5 -10 mm, in particular 5 mm.
  • the small resonator chamber 20E thus forms, viewed in the propagation direction of the sound waves L, first a resonator chamber without absorption element S2 and then a resonator chamber with the absorption element S2, wherein the small resonator chamber 20E is formed from the two interconnected subcompartments 20E-1 and 20E-2.
  • the embodiment described and the absorbent internals in the small resonator chamber 20E ensure that the functional principle of the combination of reflection and absorption is utilized by the two chambers 20E-1 and 20E-2 first by reflection and then by the absorber element S2 by absorption becomes.
  • the small resonator chamber 20E is formed relatively large by the eccentric design of the muffler 100 compared to other mufflers from the prior art, so that the damping effect compared to conventional mufflers is further improved.
  • the center point M1 of the axial center axis of the second housing part opening 10B-1 which constitutes the supply passage 10B is positioned as shown in FIG FIG. 10 with respect to the center M2 of the axial center axis of the small resonator chamber 20E eccentrically.
  • connection openings 20D-1 and 20D-2 respectively in the radial direction, wherein it has been found that the segment-like connection openings 20D-1, 20D-2 are advantageously in an angular range between 60 ° to 150 ° and in particular in each case approximately 120 ° be to effect an efficient attenuation of the sound waves L.
  • the small resonator chamber 20E designed as branch resonator R2 likewise dampens sound frequencies in the acoustic wave range within a high-frequency frequency band by approximately 5 kHz, that of the volume of the small resonator chamber 20E, its chamber cross-section, the cross-sections of the connection openings 20D-1, 20D-2 and the in the Branch resonator R2 arranged internals, such as the arranged second absorber element S2 and the absorber material depends.
  • an open-celled polyurethane-based polyurethane foam [polyester-based polyurethane foam] is also used.
  • the open-cell PU foam of the second absorber element S2 likewise forms cell-like pores, which provide for reflection of the sound waves L in the pores for damping the sound waves L in the high-frequency frequency range by approximately 5 kHz. It has been found that for cushioning in the resonator chamber 20E, a polyester-based polyurethane foam having a bulk density of about 120 kg / m 3 (+/- 12 kg / m 3 ) according to ISO 845 is particularly suitable.
  • both in the resonator tube R and in the second branch resonator R2 sound waves L in the high-frequency frequency range are attenuated by approximately 5 kHz, but different foams are used. It has been found according to the invention that the further different boundary conditions, such as respectively different volumes, respectively different cross sections of the resonator chambers and respectively different cross sections of the connection openings, require different foams in order to match the desired high-frequency frequency ranges by approximately 5 kHz in the described manner.
  • both in the resonator tube R and in the second branch resonator R2 sound waves L in the higher-frequency range are attenuated by approximately 5 kHz.
  • high-frequency intake noise which is known in particular by a turbine-like noise of an intake fan of the heater, is effectively damped in the small resonator chamber 20E near and through the second branch resonator R2 away from the port side intake port of the heater.
  • the FIGS. 12 to 14 The prototype P100 differs from the series type 100 on the one hand in that in the third chamber 10C-III a displaceable in the axial direction volume controller 10V is arranged, which consists of the housing part 10 is pulled out so that it is displaceable on both sides in the axial direction.
  • the volume regulator 10V By means of the volume regulator 10V, the optimum overall length of the large resonator chamber 10C was determined in order to bring about a highly efficient damping of the sound waves L.
  • FIG. 12 is illustrated by the arrow P4, as the volume controller 10V is reciprocated in corresponding experiments within the third chamber 10C-III to at given Cross sections of the chambers 10C-I, 10C-II and 10C-III and at predetermined cross sections of the overflow or connection openings A1, A2, the optimal length of the large resonator chamber 10C formed from the sub-chambers 10C-I, 10C-II and 10C-III most efficient attenuation of the sound waves L to determine.
  • the first absorption element S1 has likewise been pulled out of the housing part 10, so that by rotation in accordance with the arrow P3 in FIG. 14 it is possible to rotate the segment-like opening S12 of the first absorption element S1 with respect to the first chamber 10C-I of the large resonator chamber 10C.
  • the necessary open cross-section of the segment-like cutouts S11 and S12 of the first absorption element S1 could thus be determined by corresponding experiments, in which a highly efficient attenuation of the sound waves entering the large resonator chamber 10C and deflected and reflected between the feed channel 10B and the inflow channel 10A through the connection opening L is feasible.
  • the opening angles of the segment-like cutouts S11 and S12 and also the width of the cutouts S11, S12 necessary in the axial direction were determined.
  • volume regulator 10V By the volume regulator 10V, the length of the resonator 20E and the first absorption element S1, the size of the connection opening S12 to the large resonator 10C is variable and adjustable within the planned controlled system.
  • Volumetric regulator 10V and rotatable first absorption element S1 are no longer prototype components in such an embodiment, but instead represent series components.
  • the described solution according to the invention also has the advantage that the body of the muffler is formed only of three simple components, the housing part 10, the insertion part 20 and the lid 30.
  • the described insertion of the insertion part 20 in the housing part 10 and placing the lid 30 can be assembled without error by simple installation of the body of the muffler 100 from the worker.
  • the lid 30 also has appropriate provisions for error-free installation.
  • the complementation with the absorption elements S1 and S2 is likewise simple, wherein the absorber elements S1 and S2 can be easily and securely positioned by the operator before assembly of the body into the feed channel 10B or into the small resonator chamber 20E.
  • the angled resonator tube R is already applied in the housing part 10.
  • the material requirement is small and the space required for reducing the intake noise in the resonator chambers 10C, 20E is particularly large compared to conventional silencers, as the explained eccentric design has been selected.
  • Another advantage is that an efficient reduction of the noise effect of intake noise is also achieved by the first absorption element S1 in the feed channel 10B, since it has been found that the deflection of the inflow channel 10A into the feed channel 10B also has a reducing and damping effect Sound is effected.
  • the inlet channel 10A which is arranged in the installation situation of the muffler 100 on the underside, acts as a collecting space for condensate possibly occurring within the muffler 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

Die Erfindung betrifft eine Schalldämpfer-Baugruppe (100), insbesondere einen Ansauggeräuschdämpfer für ein Heizgerät, umfassend ein Einschubteil (20), welches in einem Zusammenbauzustand der Schalldämpfer-Baugruppe (100) in ein Gehäuseteil (10) geschoben ist, wobei das Gehäuseteil (10) einen Fluidkanal (10A, 10B) aufweist, in welchem ein Fluid in axialer Richtung der Schalldämpfer-Baugruppe (100) von einer Einströmöffnung (10A-11) zu einer Ausströmöffnung (10B-11) strömt, über die das Heizgerät mit Fluid versorgt wird, wobei der Fluidkanal (10A, 10B) gleichzeitig als Resonatorröhre (R) für sich in dem Fluidkanal (10A, 10B) ausbreitende Schallwellen (L) fungiert. Es ist vorgesehen, dass das Gehäuseteil (10) und das Einschubteil (20) vor dem Zusammenbauzustand jeweils eine offene Resonatorkammer (10C, 20E) für je einen von dem Fluidkanal (10, 10B) abzweigenden Abzweigresonator (R1, R2) aufweisen, die im Zusammenbauzustand geschlossen sind und schallübertragend mit dem als Resonatorröhre (R) fungierenden Fluidkanal (10A, 10B) in Wirkverbindung stehen.

Description

  • Die Erfindung betrifft einen Ansauggeräuschdämpfer für eine Fluidleitung und ein Heizgerät mit dem Ansauggeräuschdämpfer.
  • Es ist bekannt, in Kraftfahrzeugen Standheizungen zu verwenden. Zur Vermeidung von Lärmbelästigung durch die im Fahrzeug vorhandenen Aggregate der Standheizung ist es insbesondere bekannt, im Ansaugbereich eines Fluids, wie beispielsweise Luft, Schalldämpfereinrichtungen anzuordnen, denn der Ansaugbereich stellt bekanntermaßen eine erhebliche Lärmquelle dar. Im Nahfeld der Ansaugmündung des Heizgerätes kommt es beim Betrieb des Heizgerätes und der zur Verbrennung notwendigen Ansaugung von Verbrennungsluft zu Ansauggeräuschen in verschiedenen Frequenzbereichen.
  • Im Nahfeld der Ansaugmündung entstehen Geräusche mit vorwiegend niedrigfrequenten Frequenzanteilen, die insbesondere durch das Verbrennungsgeräusch des Heizgerätes hervorgerufen werden. Ferner entstehen Geräusche mit vorwiegend höherfrequenten Frequenzanteilen, die insbesondere durch ein das Fluid ansaugende Gebläse des Heizgerätes, die mit einem Turbinengeräusch vergleichbar sind, hervorgerufen werden.
  • Die Druckschrift DE 10 2010 049 578 A1 offenbart eine Schalldämpferanordnung mit einer Fluidleitung, durch die ein Fluid, insbesondere Luft, geführt wird. Die Fluidleitung weist in Strömungsrichtung gesehen einen Fluidablass und eine Fluidzuführung auf. Das Fluid, insbesondere die Luft, strömt somit von der Fluidzuführung zu dem Fluidablass. Eine Schallausbreitung aus einem am Fluidablass angeschlossenen Aggregat, wie beispielsweise einem Heizgerät, erfolgt entsprechend in der Gegenrichtung, die als Schallemissionsrichtung definiert ist. Die Fluidleitung ist von einer Resonatoranordnung umgeben, welche drei hintereinander geschaltete und konzentrisch zueinander angeordnete Resonatorröhren aufweist. Die erste Resonatorröhre der Resonatoranordnung ist über eine Anschlussöffnung in einer Wand mit der Fluidleitung schallübertragend verbunden. Über die Anschlussöffnung findet lediglich ein geringer Fluidaustausch statt, da die Resonatoranordnung keinen Abfluss aufweist. Die Schalldämpferanordnung weist ferner Absorptionseinrichtungen auf, die für verschiedene Frequenzen ausgelegt werden können.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die Geräuschentwicklung der bekannten Schalldämpferanordnungen noch weiter zu reduzieren. Ferner soll die Schalldämpferanordnung kompakt ausgebildet und preiswert und einfach herstellbar sein. Zudem soll die Schalldämpferanordnung nur ein geringes Gewicht aufweisen und mit geringem Materialaufwand herstellbar sein.
  • Ausgangspunkt der Erfindung ist eine Schalldämpfer-Baugruppe umfassend ein Einschubteil, welches in einem Zusammenbauzustand der Schalldämpfer-Baugruppe in ein Gehäuseteil geschoben ist, wobei das Gehäuseteil einen Fluidkanal aufweist, in welchem ein Fluid in axialer Richtung der Schalldämpfer-Baugruppe von einer Einströmöffnung zu einer Ausströmöffnung strömt, und der gleichzeitig als Resonatorröhre für sich in dem Fluidkanal ausbreitende Schallwellen fungiert.
  • Erfindungsgemäß ist vorgesehen, dass das Gehäuseteil und das Einschubteil vor dem Zusammenbauzustand jeweils eine offene Resonatorkammer für je einen von dem Fluidkanal abzweigenden Abzweigresonator aufweist, die im Zusammenbauzustand geschlossen sind und schallübertragend mit dem als Resonatorröhre fungierenden Fluidkanal in Wirkverbindung stehen.
  • Gemäß der Aufgabe der Erfindung wird durch eine solche Schalldämpfer-Baugruppe die Geräuschentwicklung wesentlich reduziert, wobei durch einfachen Zusammenbau zwei Resonatorkammern als Abzweigresonatoren und eine Resonatorröhre ausgebildet sind, die jeweils für die entsprechende Dämpfung von Schallwellen sorgen. Die Schalldämpfer-Baugruppe ist dadurch sehr kompakt ausgebildet, wobei die Resonatorröhre und eine der Resonatorkammern im Gehäuseteil angelegt sind, während die andere Resonatorkammer im Einschubteil angelegt ist, wobei in vorteilhafter Weise nur durch den Zusammenbau die beiden Resonatorkammern ausgebildet werden.
  • In vorteilhafter Weise greifen die beiden Bauteile, das Gehäuseteil und das Einschubteil, derart ineinander, dass zwei relativ einfach und preiswert herstellbare Komponenten der Schalldämpfer-Baugruppe herstellbar sind. Diese Komponenten weisen zudem ein geringes Gewicht auf, da nur ein geringer Materialaufwand notwendig ist. Die beiden Komponenten, das Einschubteil und das Gehäuseteil sind derartig ausgebildet, dass sie in vorteilhafter Weise nach dem Zusammenbau in entsprechender Wirkverbindung stehen.
  • In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass eine auf einem Mittelpunkt in axialer Richtung liegende Längsachse einer zweiten Gehäuseteilöffnung, die einen Zuführkanal des Fluidkanals bildet, bezüglich einem Mittelpunkt der in axialer Richtung liegenden Längsachse der Resonatorkammern der Abzweigresonatoren exzentrisch angeordnet ist. Diese Ausgestaltung hat den Vorteil, dass innerhalb der zylindrischen Schalldämpfer-Baugruppe der Zuführkanal nicht im Zentrum der Schalldämpfer-Baugruppe liegt, mit andren Worten, der Zuführkanal ist gegenüber den Schalldämpfern aus dem Stand der Technik außermittig angeordnet. Die exzentrische Anordnung des Zuführkanals hat den Vorteil, dass für die Resonatorkammern oberhalb der Längsachse des Zuführkanals ein größerer Bauraum zur Verfügung steht, so dass innerhalb der Resonatorkammern beider Abzweigresonatoren ein größeres Volumen zur Verfügung steht, welches zur Ausbildung von mehreren Teilkammern zur Verfügung steht. Die vorteilhaften Wirkungen dieser Teilkammern sind in der Beschreibung näher erläutert.
  • In weiterer bevorzugter Ausgestaltung der Erfindung zeichnet sich die Schalldämpfer-Baugruppe dadurch aus, dass der Fluidkanal ein erstes Kanalsegment als Einströmkanal mit der Einströmöffnung für das Fluid und koaxial dazu ein zweites Kanalsegment als Zuführkanal mit der Ausströmöffnung für das Fluid umfasst, so dass die Einströmöffnung und die Ausströmöffnung auf einer Seite der Schalldämpfer-Baugruppe angeordnet sind, da der Fluidkanal innerhalb des Gehäuseteiles auf der dem Einschubteil gegenüberliegenden Seite umgelenkt ist.
  • Diese Ausgestaltung hat den Vorteil, dass der Fluidkanal insgesamt länger ausgebildet ist, da zwei Kanalsegmente im Wesentlichen über die gesamte Länge der Schalldämpfer-Baugruppe verlaufend ausgebildet sind. Durch die Umlenkung kommt es zudem zu einer Verstärkung der Schalldämpfung innerhalb des Fluidkanals und ein Teil des Fluidkanals, nämlich der Einströmkanal, kann in vorteilhafter Weise zum Auffangen von Kondensat genutzt werden.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass das Gehäuseteil vor dem Zusammenbauzustand eine offene Resonatorkammer aufweist, die ein sich in axialer Richtung erstreckendes Gehäuseteilschild umfasst, welches in der Resonatorkammer bereits zwei Teilkammern bildet.
  • Der Vorteil wird insbesondere im Zusammenhang mit dem Einschubteil deutlich, welches ein Einschubschild aufweist, das im Zusammenbauzustand in die als Abzweigresonator ausgebildete Resonatorkammer koaxial zu dem sich in axialer Richtung erstreckenden Gehäuseteilschild eingeschoben ist. In vorteilhafter Weise sind so im Zusammenbauzustand in der Resonatorkammer drei Teilkammern ausgebildet, die mit dem Fluidkanal über eine Verbindungsöffnung und ihrerseits über Anschlussöffnungen nach dem Wirkprinzip der Reflexion schallreduzierend in Verbindung stehen.
  • Weiterhin ist in bevorzugter Ausgestaltung der Erfindung das Einschubteil, welches die als Abzweigresonator ausgebildete Resonatorkammer aufweist, in axialer Richtung gesehen aus zwei hintereinander liegenden Scheiben ausgebildet. Die beiden hintereinanderliegenden Scheiben sind an ihren Innendurchmessern an einer zylindrischen Wandung angeordnet, wobei die Wandlung eine sich in axialer Richtung der Schalldämpfer-Baugruppe erstreckende Stutzenöffnung des Einschubteiles bildet. In der Wandung sind Verbindungsöffnungen zu zwei Teilkammern ausgebildet, die über die Verbindungsöffnungen mit dem Fluidkanal und ihrerseits nach dem Wirkprinzip der Reflexion schallreduzierend in Verbindung stehen. In vorteilhafter Weise ist somit das Einschubteil bereits als Komponente so ausgebildet, dass durch einfachen Einschub in das Gehäuseteil eine geschlossene Resonatorkammer entsteht, die für eine Schalldämpfung des sich in die Schalldämpfer-Baugruppe ausbreitenden Schalls sorgt.
  • In vorteilhafter Weise entfalten in Schallemissionsrichtung zuerst der zweite Abzweigresonator, anschließend der erste Abzweigresonator und schließlich die Resonatorröhre ihre dämpfende Wirkung, wobei die Schallwellen radial in die Abzweigresonatoren übertragen werden.
  • Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen erläutert. Die Figuren 1 bis 11 zeigen einen Serientyp 100 der Schalldämpfer-Baugruppe. Die Figuren 12 bis 14 zeigen einen Prototyp der Schalldämpfer-Baugruppe P100.
  • Es zeigen:
  • Figur 1
    eine perspektivische Ansicht eines Gehäuseteils einer Schalldämpfer-Baugruppe;
    Figur 2
    eine perspektivische Ansicht eines Einschubteils der Schalldämpfer-Baugruppe;
    Figur 3
    eine perspektivische Ansicht eines Abschlusselementes einer Schalldämpfer-Baugruppe;
    Figur 4
    eine Ansicht in das Innere der Gehäuseteils gemäß Figur 1;
    Figur 5
    eine perspektivische Ansicht der Schalldämpfer-Baugruppe in ihrem Zusammenbauzustand und in ihrer bevorzugten Einbausituation;
    Figur 6
    einen Schnitt in einer vertikalen Ebene durch ein in Einbausituation seitlich angeordnetes Befestigungselement gemäß Figur 5, wobei die Schalldämpfer-Baugruppe gegenüber Figur 5 um 90° nach unten verdreht dargestellt ist;
    Figur 7
    einen Schnitt durch die Schalldämpfer-Baugruppe gemäß Figur 5 in einer vertikalen Ebene, durch die Mitte der Schalldämpfer-Baugruppe;
    Figur 8
    ein erstes Absorptionselement;
    Figur 9
    eine Ansicht in das Innere des Gehäuseteils ausgehend von einem in einer vertikalen Ebene verlaufenden Schnitt quer zur axialen Erstreckung der Schalldämpfer-Baugruppe im Zusammenbauzustand, wobei der Schnitt im Bereich eines zweiten segmentartigen Ausschnittes des ersten Absorptionselementes gemäß Figur 8 gelegt ist;
    Figur 10
    eine Ansicht in das Innere des Einschubteiles im Bereich von zwei Scheiben des Einschubteiles, mittels eines in einer vertikalen Ebene verlaufenden Schnitts gemäß Figur 6, quer zur axialen Erstreckung der Schalldämpfer-Baugruppe im Zusammenbauzustand;
    Figur 11
    ein zweites Absorptionselement;
    Figur 12
    eine Schalldämpfer-Baugruppe im Zusammenbauzustand als Prototyp (ohne Abschlusselement) in einer perspektivischen Außenansicht analog zu Figur 5;
    Figur 13
    einen in einer vertikalen Ebene verlaufenden Schnitt oberhalb des ersten Absorptionselementes durch den Prototypen, quer zur axialen Erstreckung der als Prototyp ausgebildeten Schalldämpfer-Baugruppe gemäß Figur 12, jedoch bei einer um circa 90° nach unten gedrehten Schalldämpfer-Baugruppe; und
    Figur 14
    eine Ansicht in das Innere des Gehäuseteils ausgehend von einem, in einer vertikalen Ebene verlaufenden Schnitt, quer zur axialen Erstreckung der als Prototyp ausgebildeten Schalldämpfer-Baugruppe im Zusammenbauzustand (ohne Abschlusselement) gemäß Figur 12 und 13, wobei der Schnitt im Bereich des zweiten segmentartigen Ausschnittes des ersten Absorptionselementes gelegt ist.
  • Figur 1 zeigt in einer perspektivischen Ansicht ein Gehäuseteil 10 einer Schalldämpfer-Baugruppe 100, insbesondere einer Baugruppe eines Ansauggeräuschdämpfers für ein Heizgerät, insbesondere für eine Standheizung. Der Ansauggeräuschdämpfer beziehungsweise die Schalldämpfer-Baugruppe wird nachfolgend verkürzt als Schalldämpfer 100 bezeichnet.
  • Im Nachfolgenden wird erläutert, dass der erfindungsgemäße Schalldämpfer 100 neben der vorteilhaften Ausbildung und Anordnung der Bauteile 10, 20, 30, S1, S2 der SchalldämpferBaugruppe 100 eine breitbandige Dämpfung von Schallwellen L erzielt, wobei der Schalldämpfer 100 in bestimmen Bereichen das Funktionsprinzip der Absorption oder der Reflexion sowie die Kombination von Absorption und Reflexion nutzt.
  • Im Vordergrund der Figur 1 ist eine Unterseite des Schalldämpfers 100 sichtbar. Im Ausführungsbeispiel ist in der späteren Einbausituation an der Seite (in Figur 1 oben dargestellt) des Schalldämpfers 100 ein Befestigungselement 10E angeordnet. Das Befestigungselement 10E ist in vorteilhafter Weise einstückig mit dem Körper des Gehäuseteiles 10 verbunden. Das Gehäuseteil 10 und damit der gesamte Schalldämpfer 100 ist über das Befestigungselement 10E mit einer Karosserie oder dergleichen verbindbar. Es versteht sich, dass das Befestigungselement 10E auch an einer anderen Stelle des Gehäuseteiles 10 des Schalldämpfers 100 anordbar ist.
  • Das Gehäuseteil 10 weist einen Fluidkanal auf, der ein erstes Kanalsegment 10A, insbesondere einen Einströmkanal und ein vom ersten Kanalsegment 10A abgewinkeltes zweites Kanalsegment 10B sowie einen Zuführkanal umfasst. In Figur 1 ist innerhalb des Zuführkanals 10B ein sich in axialer Richtung erstreckender Vorsprung 10B-12 sichtbar. In diesen Kanälen 10A, 10B strömt Fluid, insbesondere Verbrennungsluft zu dem an den Schalldämpfer 100 angeschlossenen Heizgerät.
  • Figur 2 zeigt in einer perspektivischen Ansicht ein Einschubteil 20 des Schalldämpfers 100. Die genaue Anordnung des Einschubteiles 20 innerhalb des Gehäuseteiles 10 wird noch näher erläutert.
  • Das Einschubteil 20 umfasst einen mit einer Stutzenöffnung 20A-1 versehenen Stutzen 20A, der einteilig mit einer ersten Scheibe 20B-1 verbunden ist. Die erste Scheibe 20B-1 liegt in axialer Richtung bezüglich der Stutzenöffnung 20A-1 des Stutzens 20A gesehen parallel zu einer zu der ersten Scheibe 20B-1 beabstandeten zweiten Scheibe 20B-2. Über den Stutzen 20A ist der Schalldämpfer 100 mit dem Heizgerät verbunden. Der Stutzen 20A stellt im Prinzip auf der Seite des Einschubteiles 29 eine Verlängerung des zweiten Kanalsegmentes 10B des Fluidkanals dar.
  • Ein in der Einbausituation auf der Unterseite des Einschubteiles 20 angeordneter Steg 20G trennt zwei Teilkammern 20E-1 und 20E-2 einer kleinen Resonatorkammer 20E (eines zweiten Abzweigresonators R2) mit geringem Volumen voneinander und sorgt gleichzeitig für Stabilität.
  • Das geringere Volumen der kleinen Resonatorkammer 20E bezieht sich auf das größere Volumen einer großen Resonatorkammer 10C (eines ersten Abzweigresonators R1), wobei auf die Abzweigresonatoren R1, R2 noch näher eingegangen wird.
  • An der zweiten Scheibe 20B-2 ist ein Einschubschild 20F angeordnet, welches sich im Zusammenbauzustand innerhalb des Schalldämpfers 100 in axialer Richtung erstreckt, wobei auf die Funktion des Einschubschildes 20F nachfolgend noch näher eingegangen wird.
  • Zwischen den Scheiben 20B-1 und 20B-2 ist am Innendurchmesser der Scheiben 20B-1 und 20B-2 eine zylindrische Wandung 20C vorgesehen, wobei in der Wandung 20C in radialer Richtung der sich axial erstreckenden Stutzenöffnung 20A-1 Verbindungsöffnungen 20D-1 und 20D-2 angeordnet sind, auf die ebenfalls später noch genauer eingegangen wird. In Figur 2 ist nur eine der Verbindungsöffnungen 20D-1 sichtbar.
  • Die Verbindungsöffnungen 20D-1, 20D-2 ermöglichen den Zugang zu den kleinen, das geringere Volumen aufweisenden Teilkammern 20E-1 und 20E-2 der kleinen Resonatorkammer 20E, wie in der Beschreibung zu der Figur 10 noch näher erläutert wird.
  • Figur 3 zeigt in einer weiteren perspektivischen Darstellung den Deckel 30 als Abschlusselement, welcher im Zusammenbauzustand des Schalldämpfers 100 gemäß Figur 5 das Gehäuseteil 10 einendseitig verschließt, ohne dabei die Verbindungsöffnung S11 gemäß Figur 7 zu schließen.
  • Anderenends wird das Gehäuseteil 10 gemäß Figur 5 im Zusammenbauzustand durch das Einschubteil 20 gemäß Figur 2 verschlossen, wobei die erste Scheibe 20B-1 des Einschubteiles 20 bündig mit dem Rand des Gehäuseteiles 10 abschließt, wie in Figur 5 in einer leicht perspektivischen Seitenansicht des Schalldämpfers 100 dargestellt ist.
  • Figur 4 zeigt zur weiteren Erläuterung des Aufbaus des Gehäuseteils 10 in noch einer weiteren perspektivischen Ansicht einen Blick in das Innere des Gehäuseteils 10.
  • Die in Figur 4 dargestellte Lage des Gehäuseteils 10 entspricht der späteren Einbausituation des Schalldämpfers 100. Es wird deutlich, dass der Zuführkanal 10B unten und das Befestigungselement 10E seitlich angeordnet sind. Es wird ferner deutlich, dass die große Resonatorkammer 10C in der Einbausituation des Schalldämpfers 100 oben angeordnet ist.
  • Die Blickrichtung des Betrachters in das Innere des Gehäuseteils 10 ist gemäß Figur 4 von dem Stutzen 20A ausgehend in Richtung Deckel 30 gerichtet, wobei der Deckel 30 in Figur 4 noch nicht montiert ist. Das Gehäuseteil 10 umfasst den spaltartig ausgebildeten beidseitig offenen Einströmkanal 10A, der im Zusammenbauzustand einendseitig eine Gehäuseteilöffnung 10A-1 aufweist und eine Einströmöffnung 10A-11 bildet, und anderenends im Zusammenbauzustand unter Bildung einer Verbindungsöffnung S11, wie noch erläutert wird, von dem Deckel 30 verschlossen ist.
  • Das Gehäuseteil 10 umfasst ferner den kreisrunden Zuführkanal 10B, der ebenfalls zunächst beidseitig offen ist, und im Zusammenbauzustand auf der einen Seite mittels des Deckels 30 (siehe Figur 7) verschlossen ist und auf der anderen dem Stutzen 20A zugewandten Seite offen ist, da dort das Einschubteil 20 in das Gehäuseteil 10 eingeschoben ist, wobei die offene Stutzenöffnung 20A-1 die Ausströmöffnung 10B-11 für das Fluid bildet.
  • Zudem weist das Gehäuseteil 10 eine dritte im Wesentlichen kreisrunde Resonatorkammeröffnung 10C-1 auf, die den Zugang zu der großen Resonatorkammer 10C bildet.
  • Die große Resonatorkammer 10C bildet einen zweiten Abzweigresonator R2 aus mehreren Teilkammern 10C-I, 10C-II, 10C-III, wie in Figur 9 verdeutlicht wird.
  • Es wird in Figur 4 ferner deutlich, dass die große Resonatorkammer 10C bodenseitig geschlossen ist. Der Boden 10C-4 liegt im Zusammenbauzustand, wie Figur 5 insbesondere verdeutlicht, auf der Seite des Deckels 30.
  • Es ist ferner in Figur 4 in Zusammenschau mit den Figuren 1 und 6 sichtbar, dass das Gehäuseteil 10 umfangsseitig eine Aufweitung 10C-2 aufweist, die sich in axialer Richtung erstreckt und deren Länge dem Abstand der beiden Scheiben 20B-1, 20B-2 des Einschubteiles 20 entspricht. Dadurch bildet sich in dem Gehäuseteil 10 ein Absatz 10C-21, der dafür sorgt, dass das Einschubteil 20 im Zusammenbauzustand innerhalb des Gehäuseteiles 10 in axialer Richtung gesehen eine definierte Position einnimmt, wie insbesondere in den Figuren 6 und 7 zu sehen ist.
  • Ferner ist gemäß Figur 4 die sichtbare Stirnfläche 10B-13 des Zuführkanals 10B ebenfalls analog zu der Aufweitung 10C-2 gegenüber der stutzenseitigen Stirnfläche 10-1 des Gehäuseteils 10 im oberen Bereich zurückgesetzt, während er im unteren Bereich in axialer Richtung weitergeführt ist und die eine bündige Stirnfläche 10A-12 zu der Stirnfläche 10-1 des Gehäuseteils 10 bildet.
  • Der untere Teil des Zuführkanals 10B mit der Stirnfläche 10A-12 und der Absatz 10C-21 mit der Stirnfläche 10B-13 des Zuführkanals 10B sind im Zusammenbauzustand vertikal gesehen bündig ausgebildet, wie Figur 6 verdeutlicht.
  • Innerhalb der großen Resonatorkammer 10C ist, wie Figur 4 weiter zeigt, ein Gehäuseteilschild 10D angeordnet, welches sich im Zusammenbauzustand des Schalldämpfers 100 ebenfalls in axialer Richtung erstreckt. Es ist erkennbar, dass die in Figur 4 sichtbare Stirnfläche 10D-1 des Gehäuseteilschildes 10D um einen Betrag gegenüber der Stirnfläche 10B-13 des Zuführkanals 10B in axialer Richtung zurückgesetzt ist, worauf noch näher eingegangen wird. Dabei ist das Gehäuseteilschild 10D bis zu dem Boden 10C-4 der großen Resonatorkammer 10C geführt und bildet dadurch bereits zwei Teilkammern, eine dritte Teilkammer 10C-III und eine Teilkammer 10C-II/10C-I, die erst im Zusammenbauzustand durch das Einschubschild 20F in zwei weitere Einzelkammern 10C-II und 10C-I unterteilt wird.
  • Zudem ist in Figur 4 sichtbar, dass der Mittelpunkt M1 der in axialer Richtung liegenden Mittelachse der kreisrunden zweiten Gehäuseteilöffnung 10B-1, die den Zuführkanal 10B bildet, bezüglich des Mittelpunktes M2 der in axialer Richtung liegenden Mittelachse der Resonatorkammeröffnung 10C-1 der Resonatorkammer 10C exzentrisch angeordnet ist.
  • Dadurch ist innerhalb der kreisrunden zylindrischen Ausgestaltung der Resonatorkammeröffnung 10C-1 des Schalldämpfers 100 eine Anordnung des Einströmkanals 10A im unteren Bereich möglich, wobei gleichzeitig für die große Resonatorkammer 10C (Figur 4) und auch die kleine Resonatorkammer 20E (Figur 10) oberhalb der zweiten Gehäuseteilöffnung 10B-1 herum beziehungsweise um den sich an die zweite Gehäuseteilöffnung 10B-1 anschließenden Stutzen 20A herum ein großer Bauraum für die Abzweigresonatoren R1, R2 zur Verfügung steht. Der jeweilige Bauraum wird in vorteilhafter Weise zur Dämpfung niederfrequenter Schallwellen L in der großen Resonatorkammer 10C (erster Abzweigresonator R1) und hochfrequenter Schallwellen L in der kleinen Resonatorkammer 20E (zweiter Abzweigresonator R2) genutzt.
  • Figur 5 zeigt den Schalldämpfer 100 in einer perspektivischen Ansicht schräg von oben im Zusammenbauzustand. Der Pfeil P1 zeigt die Strömungsrichtung des Fluids in Einströmrichtung, wobei der Einströmkanal 10A eine Einströmöffnung 10A-11 bildet. Der Pfeil P2 zeigt die Strömungsrichtung des Fluids in Ausströmungsrichtung, wobei der Stutzen 20A die Ausströmöffnung 10B-11 bildet. Wie bereits definiert, ist die Schallemissionsrichtung entgegengesetzt zur Strömungsrichtung des Fluids. Das nicht näher dargestellte Heizgerät ist an dem Stutzen 20A angeschlossen.
  • Die Ausbreitung der Schallwellen L wird in den Figuren 7 und 10 mit gestrichelten Linien L dargestellt.
  • Die Figur 6 zeigt einen vertikal in einer Ebene verlaufenden Schnitt durch den Schalldämpfer 100 durch das Befestigungselement 10E, welches in Figur 6 unten angeordnet ist. Gegenüber Figur 5 ist der Schalldämpfer 100 somit um 90° nach unten verdreht dargestellt, so dass der Betrachter bezüglich der Einbausituation von oben auf den Schalldämpfer 100 blickt.
  • Die Figur 7 zeigt einen in einer vertikalen Ebene verlaufenden Schnitt durch den Schalldämpfer 100 genau durch die Mitte des Schalldämpfers 100. Der Schalldämpfer 100 in Figur 7 hat die gleiche Lage wie Figur 5, wobei der Betrachter jetzt von der Seite auf den Schalldämpfer 100 blickt.
  • Die nachfolgende Beschreibung erfolgt in einer Zusammenschau der Figuren 6 und 7.
  • Es ist insbesondere in Figur 6 sichtbar, dass der Zuführkanal 10B mit seinem stirnseitigen zurückgesetzten freien Ende der Gehäuseteilöffnung mit der Stirnfläche 10B-13 gegenüber der zweiten Scheibe 20B-2 einen Abstand bildet, worauf noch eingegangen wird.
  • Es ist insbesondere in Figur 7 ferner sichtbar, dass das Einschubschild 20F stirnseitig mit seinem freien Ende gegenüber dem Boden 10C-4 der großen Resonatorkammer 10C ebenfalls einen Abstand bildet (Figur 7), worauf noch eingegangen wird..
  • Der Zuführkanal 10B und der Einströmkanal 10A bilden eine weitere Resonatorkammer in der Art eines abgewinkelten Resonatorrohres R.
  • Das abgewinkelte Resonatorrohr R nutzt im Bereich des geraden Zuführkanals 10B vorwiegend das Funktionsprinzip der Absorption von Schallwellen L, da er mit einem Absorberelement S1 versehen ist.
  • Da der Zuführkanal 10B mit dem abgewinkelten Einströmkanal 10A in Wirkverbindung steht, wird in Richtung der Ausbreitung der Schallwellen L gesehen, in vorteilhafter Weise auch das Funktionsprinzip der Reflexion genutzt.
  • Die Schallwellen L breiten sich bis zur Abwinkelung zwischen dem Zuführkanal 10B und dem Einströmkanal 10A aus und erreichen die U-förmige Verbindungsöffnung S11 zwischen Zuführkanal 10B und Einströmkanal 10A und werden an der Innenwandung eines Deckels 30 stark reflektiert und breiten sich danach weiter in den Einströmkanal 10B aus, in dem sie an den Wandungen des Einströmkanals 10A, 10B reflektiert werden, wodurch in vorteilhafter Weise eine Dämpfung der Schallwellen L erreicht wird.
  • Das Resonatorrohr R dämpft im Ausführungsbeispiel Schallfrequenzen im Schallwellenbereich innerhalb eines hochfrequenten Frequenzbandes um circa 5 kHz herum, der vom Volumen des Resonatorrohres R, seinem Querschnitt und seiner Länge sowie den im Resonatorrohr R1 angeordneten Einbauten, wie beispielsweise dem angeordneten ersten Absorberelement S1 und dem Absorbermaterial abhängt.
  • Als Absorbermaterial für das erste Absorberelement S1 im Resonatorrohr R wird ein offenzelliger Polyurethanschaum auf Polyesterbasis [PU-Schaum auf Polyesterbasis] verwendet. Der offenzellige PU-Schaum bildet zellenartige Poren, die durch Reflexion der Schallwellen L in den Poren für eine Dämpfung der Schallwellen L im hochfrequenten Frequenzbereich um circa 5 kHz herum sorgen. Es wurde herausgefunden, dass für die Dämpfung im Resonatorrohr R ein Polyurethanschaum auf Polyesterbasis mit einer Rohdichte von circa 57 kg/m3 (+/- 5 kg/m3) nach ISO 845 besonders geeignet ist.
  • In vorteilhafter Weise erhöht sich durch die gewählte Ausgestaltung die Länge des Resonatorrohres R gegenüber herkömmlichen Schalldämpfern, da das Resonatorrohr R aus dem Einströmkanal 10A und dem abgewinkelten Zuführkanal 10B ausgebildet ist, wodurch die Geräuschentwicklung gegenüber den herkömmlichen Schalldämpfern reduziert wird.
  • Erstes Absorptionselement S1:
  • Ferner ist in den Figuren 6 und 7 dargestellt, wie das erste Absorptionselement S1 innerhalb des Zuführkanals 10B, hier zylindrisch ausgebildet, angeordnet ist, das in Figur 8 als Einzelheit dargestellt ist.
  • Das Absorptionselement S1 erstreckt sich in seiner längsten Ausdehnung von dem Deckel 30 bis zu der ersten Scheibe 20B-2 des Einschubteiles 20 und ist dadurch einfach in axialer Richtung innerhalb des Schalldämpfers 100 positionierbar.
  • Das Absorptionselement S1 ist in vorteilhafter Weise vor dem Einbau eine in einer Ebene liegende Matte vorgebbarer Dicke von circa 5 -10 mm, insbesondere 6 mm, welche für den Einbau zu dem zylindrischen Element zusammengerollt wird, so dass die sich in axialer Richtung erstreckenden Stirnflächen aneinander liegen. Es bildet sich eine Kontaktzone S13 (Figuren 6), die an dem sich in axialer Richtung erstreckenden Vorsprung 10B-12 (Figuren 1 und 6) positioniert wird, so dass das Absorptionselement S1 eindeutig in dem Zuführkanal 10B positioniert ist und gleichzeitig gegen Verdrehen gesichert ist. Diese Lösung ist in Figur 9 ebenfalls erkennbar.
  • Das Absorptionselement S1 gemäß Figur 8 weist jeweils endseitig einen segmentartigen Ausschnitt S11, S12 auf, wobei in Strömungsrichtung des Fluids gesehen, der erste segmentartige Ausschnitt S11 die fluid- und schallübertragende Verbindungsöffnung S11 zwischen dem Einströmkanal 10A und dem Zuführkanal 10B bildet, wie in Figur 7 gut sichtbar ist.
  • Der zweite segmentartige Ausschnitt S12 bildet eine in radialer Richtung abgehende schallübertragende Verbindungsöffnung S12 zwischen dem Einströmkanal 10A und der großen Resonatorkammer 10C. Über diese Verbindungsöffnung S12 findet nahezu kein Fluidaustausch statt, das heißt, das Fluid strömt nicht in die große Resonatorkammer 10C ein.
  • Zweites Absorptionselement S2:
  • In den verschiedenen Schnitten der Figuren 6 und 7 ist ein weiteres Absorptionselement S2 sichtbar, das zwischen den Scheiben 20B-1 und 20B-2 angeordnet ist. Die genaue Anordnung ist in den Figuren 10 und 11 dargestellt und wird bei der Beschreibung der Figuren noch näher erläutert.
  • Figur 9 zeigt zunächst zur weiteren Erläuterung einen in einer vertikalen Ebene verlaufenden Schnitt quer zur axialen Erstreckung des Schalldämpfers 100, wobei der Schnitt im Bereich des zweiten segmentartigen Ausschnittes S12 des ersten Absorptionselementes S1 analog zu Figur 4 gelegt ist.
  • Figur 9 und Figur 4 unterscheiden sich dahingehend, dass in Figur 9 im Gegensatz zu Figur 4 das Einschubteil 20 bereits in das Gehäuseteil 10 eingeschoben ist und das erste Absorptionselement S1 bereits eingelegt ist.
  • Im Schnitt der Figur 9 ist dadurch die Schnittfläche des Einschubschildes 20F im Bereich des segmentartigen Ausschnittes S12 und die Schnittfläche des Absorptionselementes S1 sichtbar.
  • Das Einschubschild 20F wird mit seiner sich in axialer Richtung erstreckenden außen liegenden Stirnkante in eine Nut 10C-3 eingeschoben, die auch in Figur 7 zumindest teilweise sichtbar ist.
  • Durch die Nut 10C-3 ist das Einschubteil 20 in vorteilhafter Weise eindeutig innerhalb der großen Resonatorkammer 10C positioniert und dichtet gleichzeitig gegenüber der Wandung der Resonatorkammer 10C ab.
  • Zudem ist das Einschubteil 20 innerhalb der Resonatorkammer 10C gegen Verdrehen gesichert. Durch den in Figur 9 dargestellten Schnitt wird deutlich, dass sich durch das Einschubschild 20F des Einschubteiles 20 innerhalb der Resonatorkammer 10C drei Teilkammern 10C-I; 10C-II und 10C-III ausbilden. Es hat sich durch Versuche herausgestellt, dass es vorteilhaft ist, dass die Querschnitte der Kammern 10C-I; I0C-II und I0C-III im Wesentlichen gleich groß ausgebildet werden, um eine effiziente Schalldämpfung zu bewirken.
  • Gemäß der bisherigen Beschreibung strömt das Fluid in Figur 9 in Richtung des Betrachters, während sich der Schall beziehungsweise die Schallwelle in den Zuführkanal 10B, das heißt in die Blattebene hinein und radial über den segmentartigen Ausschnitt S12 in die große Resonatorkammer 10C ausbreitet. Die Resonatorkammer 10C mit den drei großen Kammern 10C-I; 10C-II und 10C-III bildet eine Resonatorröhre R aus drei nebeneinander liegenden großen Kammern 10C-I; 10C-II und 10C-III, die durch zwei Anschlussöffnungen A1, A2 miteinander verbunden sind.
  • Die erste Anschlussöffnung A1 (Figur 7) wird durch den Zwischenraum zwischen dem Boden 10C-4 der großen Resonatorkammer 10C und dem freien Ende des Einschubschildes 20F gebildet.
  • Die zweite Anschlussöffnung A2 wird zwischen der Stirnfläche 10D-1 des Gehäuseteilschildes 10D innerhalb der Resonatorkammer 10C und der der Resonatorkammer 10C zugewandten Wandung der zweiten Scheibe 20B-2 des Einschubschildes 20F gebildet. Es hat sich herausgestellt, dass es von Vorteil ist, wenn die Querschnitte der Anschlussöffnungen A1, A2 wie im dargestellten Ausführungsbeispiel im Wesentlichen gleich groß ausgebildet sind, um eine effiziente Schalldämpfung zu bewirken.
  • Zudem wurde durch Versuche gefunden, dass es vorteilhaft ist, wenn die Querschnitte der Anschlussöffnungen A1, A2 im Wesentlichen den Querschnitten der Kammern 10C-I; 10C-II und 10C-III entsprechen, um eine hochwirksame Schallableitung innerhalb der miteinander verbundenen Kammern 10C-I; 10C-II und 10C-III zu erreichen.
  • Die Schallwelle breitet sich gemäß einer Zusammenschau der Figuren 7 und 9 von der Stutzenöffnung 20A-1 des Stutzens 20A aus der segmentartigen Öffnung S12 des ersten Absorptionselementes in radialer Richtung abzweigend durch die Verbindungsöffnung S12 in die erste Kammer 10C-I der Resonatorröhre R wieder in axialer Richtung abzweigend aus und durchläuft die erste Kammer 10C-I (Figur 9 in die Blattebene hinein), wonach sie durch die erste Anschlussöffnung A1 umgelenkt und am Boden 10C-4 reflektierend in die zweite Kammer 10C-II eintritt (Figur 9 aus der Blattebene heraus) und noch einmal umgelenkt über die zweite Anschlussöffnung A2 in die dritte Kammer 10C-III (Figur 9 in die Blattebene hinein) eintritt. Es versteht sich, dass die Schallwellen L auch von den Wandungen der Kammern 10C-I; 10C-II und 10C-III reflektiert und gedämpft werden.
  • Es wurde dafür gesorgt, dass durch die beschriebene Resonatorkammer 10C mit den drei Teilkammern 10C-I; 10C-II und 10C-III Schallwellen L in einem niedrigfrequenten Frequenzband im Bereich von circa 200 Hz bis 500 Hz gedämpft werden. In der Resonatorkammer 10C werden somit nahe der Ansaugmündung des Heizgerätes entstehende niedrigfrequente Ansauggeräusche, wie sie insbesondere durch ein wummerndes Verbrennungsgeräusch bekannt sind, wirksam gedämpft.
  • Dabei wurde die optimale Gesamtlänge der Resonatorröhre R durch spezielle Versuche anhand eines Prototypen ermittelt. Zudem wurde die Öffnungsgröße der Verbindungsöffnung S12 des segmentartigen Ausschnittes des ersten Absorptionselements S1 ebenfalls durch spezielle Versuche mittels des Prototypen ermittelt, wie noch erläutert wird.
  • Figur 10 zeigt zur weiteren Erläuterung des Schalldämpfers 100 einen in einer vertikalen Ebene verlaufenden Schnitt quer zur axialen Erstreckung des Schalldämpfers 100, wobei der Schnitt im Bereich zwischen den beiden Scheiben 20B-1 und 20B-2 des Einschubteiles 20 liegt.
  • In dieser Darstellung gemäß Figur 10 sind die Verbindungsöffnungen 20D-1 und 20D-2 zu den Teilkammern 20E-1 und 20E-2 der kleinen Resonatorkammer 20E sichtbar.
  • Diese Teilkammern 20E-1 und 20E-2 der Resonatorkammer 20E bilden einen von dem Zuführkanal 10B radial abzweigenden zweiten Abzweigresonator R2. Der zweite Abzweigresonator R2 ist derart ausgestaltet, dass er das Funktionsprinzip der Kombination aus Absorption und Reflexion nutzt.
  • Die beiden Teilkammern 20E-1 und 20E-2 der kleinen Resonatorkammer 20E sind durch einen oberen vertikalen Trennsteg 20H voneinander getrennt angeordnet. Zwischen den beiden Scheiben 20B-1 und 20B-2 bildet sich somit ein weiterer Resonatorraum in der Art einer kleinen Resonatorkammer 20E mit geringerem Volumen aus.
  • Der obere vertikale Trennsteg 20H ist dabei ausgehend von dem Mittelpunkt M1 des Zuführkanals 10B in Figur 10 in vertikaler Richtung nur so lang ausgebildet, dass er die Innenwandung der Aufweitung 10C-2 der Resonatorkammeröffnung 10C-1 nicht erreicht, so dass die beiden Teilkammern 20E-1 und 20E-2 im oberen Bereich noch miteinander verbunden sind.
  • Dadurch kann auf dem Trennsteg 20H über einen Schlitz S23 gemäß Figur 11 in den oberen Bereich der Teilkammern 20E-1 und 20E-2 das zweite Absorptionselement S2 zwischen den beiden Scheiben 20B-1 und 20B-2 einfach positioniert werden, wobei der Trennsteg 20H in den Schlitz S23 eingreift.
  • Das zweite Absorptionselement S2 bildet dabei zwei mit der Innenkontur der Teilkammern 20E1 und 20E-2 korrespondierende flügelartige Elemente S21 und S22 aus, so dass die Elemente S21 und S22 in den beiden Teilkammern 20E-1 und 20E-2 passgenau angeordnet werden können. Das zweite Absorptionselement S2 weist in axialer Richtung gesehen eine Dicke von circa 5 -10 mm, insbesondere 5 mm auf.
  • Die kleine Resonatorkammer 20E bildet somit in Ausbreitungsrichtung der Schallwellen L gesehen zunächst einen Resonatorraum ohne Absorptionselement S2 und anschließend einen Resonatorraum mit dem Absorptionselement S2, wobei die kleine Resonatorkammer 20E aus den zwei miteinander verbundenen Teilkammern 20E-1 und 20E-2 ausgebildet ist.
  • Durch die beschriebene Ausbildung und die absorbierenden Einbauten in der kleinen Resonatorkammer 20E wird dafür gesorgt, dass durch die beiden Kammern 20E-1 und 20E-2 zunächst durch Reflexion und anschließend durch das Absorberelement S2 durch Absorption das Funktionsprinzip aus der Kombination von Reflexion und Absorption genutzt wird.
  • Wie bereits erläutert, ist die kleine Resonatorkammer 20E durch die exzentrische Ausbildung des Schalldämpfers 100 gegenüber anderen Schalldämpfern aus dem Stand der Technik relativ groß ausgebildet, so dass die dämpfende Wirkung gegenüber herkömmlichen Schalldämpfern noch zusätzlich verbessert ist. Der Mittelpunkt M1 der in axialer Richtung liegenden Mittelachse der zweiten Gehäuseteilöffnung 10B-1, die den Zuführkanal 10B bildet, liegt gemäß Figur 10 bezüglich des Mittelpunktes M2 der in axialer Richtung liegenden Mittelachse der kleinen Resonatorkammer 20E exzentrisch.
  • Die Schallwellen L breiten sich in der kleine Resonatorkammer 20E gemäß Figur 10 über die Verbindungsöffnungen 20D-1 und 20D-2 jeweils in radialer Richtung aus, wobei gefunden wurde, dass die segmentartigen Verbindungsöffnungen 20D-1, 20D-2 in vorteilhafter Weise in einem Winkelbereich zwischen 60° bis 150° liegen und insbesondere jeweils circa 120° betragen, um eine effiziente Dämpfung der Schallwellen L zu bewirken.
  • Die als Abzweigresonator R2 ausgebildete kleine Resonatorkammer 20E dämpft im Ausführungsbeispiel ebenfalls Schallfrequenzen im Schallwellenbereich innerhalb eines hochfrequenten Frequenzbandes um circa 5 kHz herum, der vom Volumen der kleinen Resonatorkammer 20E, seinem Kammerquerschnitt, den Querschnitten der Verbindungsöffnungen 20D-1, 20D-2 sowie den im Abzweigresonator R2 angeordneten Einbauten, wie beispielsweise dem angeordneten zweiten Absorberelement S2 und dem Absorbermaterial abhängt.
  • Als Absorbermaterial für das zweite Absorberelement S2 in der Resonatorkammer 20E wird ebenfalls ein offenzelliger Polyurethanschaum auf Polyesterbasis [PU-Schaum auf Polyesterbasis] verwendet. Der offenzellige PU-Schaum des zweiten Absorberelementes S2 bildet ebenfalls zellenartige Poren, die durch Reflexion der Schallwellen L in den Poren für eine Dämpfung der Schallwellen L im hochfrequenten Frequenzbereich um circa 5 kHz herum sorgen. Es wurde herausgefunden, dass für die Dämpfung in der Resonatorkammer 20E ein Polyurethanschaum auf Polyesterbasis mit einer Rohdichte von circa 120 kg/m3 (+/- 12 kg/m3) nach ISO 845 besonders geeignet ist.
  • Es wird deutlich, dass sowohl im Resonatorrohr R als auch im zweiten Abzweigresonator R2 Schallwellen L im hochfrequenten Frequenzbereich um circa 5 kHz herum gedämpft werden, jedoch unterschiedliche Schäume verwendet werden. Es wurde erfindungsgemäß herausgefunden, dass die weiteren unterschiedlichen Randbedingungen wie jeweils unterschiedliches Volumen, jeweils unterschiedliche Querschnitte der Resonatorräume und jeweils unterschiedliche Querschnitte der Verbindungsöffnungen unterschiedliche Schäume bedingen, um die gewünschten hochfrequenten Frequenzbereiche um circa 5 kHz herum in der beschriebenen Weise aufeinander abzustimmen.
  • Es werden, wie erwähnt, sowohl im Resonatorrohr R als auch im zweiten Abzweigresonator R2 Schallwellen L im höherfrequenten Bereich um circa 5 kHz herum gedämpft. Dadurch werden in der kleinen Resonatorkammer 20E nahe und durch den zweiten Abzweigresonator R2 entfernt von der stutzenseitigen Ansaugmündung des Heizgerätes entstehende höherfrequente Ansauggeräusche, wie sie insbesondere durch ein turbinenartiges Geräusch eines Ansauggebläses des Heizgerätes bekannt sind, wirksam gedämpft.
  • Die Figuren 12 bis 14 zeigen jeweils mit gleichen Bezugszeichen den erwähnten Prototypen P100 des bisher dargestellten Schalldämpfers 100. Der Prototyp P100 unterscheidet sich von dem Serientyp 100 zum einen darin, dass in der dritten Kammer 10C-III ein in axialer Richtung verschiebbarer Volumenregler 10V angeordnet ist, der aus den Gehäuseteil 10 herausgezogen ist, so dass er in axialer Richtung beidseitig verschiebbar ist. Mithilfe des Volumenreglers 10V wurde die optimale Gesamtlänge der großen Resonatorkammer 10C ermittelt, um eine hoch effiziente Dämpfung der Schallwellen L zu bewirken.
  • In Figur 12 ist anhand des Pfeiles P4 dargestellt, wie der Volumenregler 10V in entsprechenden Versuchen innerhalb der dritten Kammer 10C-III hin- und herbewegt wird, um bei vorgegebenen Querschnitten der Kammern 10C-I, 10C-II und 10C-III und bei vorgegebenen Querschnitten der Überström- beziehungsweise Anschlussöffnungen A1, A2 die optimale Länge der großen aus den Teilkammern 10C-I, 10C-II und 10C-III gebildeten Resonatorkammer 10C mit der effizientesten Dämpfung der Schallwellen L zu ermitteln.
  • Analog dazu wurde als weiterer Unterschied zwischen dem Prototyp P100 und dem Serientyp 100 das erste Absorptionselement S1 ebenfalls aus dem Gehäuseteil 10 herausgezogen, so dass durch Drehung gemäß dem Pfeil P3 in Figur 14 die Möglichkeit besteht, die segmentartige Öffnung S12 des ersten Absorptionselementes S1 gegenüber der ersten Kammer 10C-I der großen Resonatorkammer 10C zu verdrehen.
  • Durch entsprechende Versuche konnte somit der notwendige offene Querschnitt der segmentartigen Ausschnitte S11 und S12 des ersten Absorptionselementes S1 ermittelt werden, bei dem eine hocheffiziente Dämpfung der in die große Resonatorkammer 10C eintretenden und zwischen dem Zuführkanal 10B und dem Einstromkanal 10A durch die Verbindungsöffnung umgelenkten und reflektierten Schallwellen L bewirkbar ist. Dadurch wurden die Öffnungswinkel der segmentartigen Ausschnitte S11 und S12 und auch die in axialer Richtung notwendige Breite der Ausschnitte S11, S12 ermittelt.
  • Es ist somit erfindungsgemäß angedacht, dass je nach den auftretenden Frequenzen, die zu den ungewünschten Ansauggeräuschen führen, innerhalb des Ansauggeräuschdämpfers 100 eine Regelstrecke realisiert wird, die in Abhängigkeit der erfassten Schallfrequenzen über den in axialer Richtung verschiebbaren Volumenregler 10V oder über das drehbare erste Absorptionselement S1 eine Anpassung der zu dämpfenden Frequenzen innerhalb entsprechender Frequenzbänder und damit eine noch weiter optimierte Schalldämpfung erfolgt.
  • Durch den Volumenregler 10V ist die Länge der Resonatorkammer 20E und durch das erste Absorptionselement S1 ist die Größe der Verbindungsöffnung S12 zu der großen Resonatorkammer 10C veränderbar und innerhalb der angedachten Regelstrecke regulierbar. Volumenregler 10V und drehbares erstes Absorptionselement S1 sind bei einer solchen Ausgestaltung keine Prototypenbauteile mehr, sondern stellen dann Serienbauteile dar.
  • Die beschriebene erfindungsgemäße Lösung hat ferner den Vorteil, dass der Korpus des Schalldämpfers lediglich aus drei einfachen Bauteilen, dem Gehäuseteil 10, dem Einschubteil 20 und dem Deckel 30 gebildet wird. Durch das beschriebene Einschieben des Einschubteiles 20 in das Gehäuseteil 10 und Aufsetzen des Deckels 30 ist durch einfache Montage der Korpus des Schalldämpfers 100 vom Werker fehlerfrei montierbar. Die Positionierung des Gehäuseteiles gegenüber dem Einschubteil 20 erfolgt über die bereits erläuterte Nut 10C-3 an der Innenwandung der großen Resonatorkammer 10C. Der Deckel 30 weist ebenfalls entsprechende Vorkehrungen zur fehlerfreien Montage auf.
  • Die Komplementierung mit den Absorptionselementen S1 und S2 ist ebenfalls einfach ausgestaltet, wobei die Absorptionselemente S1 und S2 vom Werker vor dem Zusammenbau des Korpus einfach und sicher positionierbar in den Zuführkanal 10B beziehungsweise in die kleine Resonatorkammer 20E eingesetzt werden können.
  • Mit den Absorptionselementen S1 und S2 steht somit ein nur fünfteiliger Ansaugschalldämpfer zur Verfügung, der durch Zusammenbau eine große Resonatorkammer 10C mit drei Teilkammern 10C-I, 10C-II, 10C-III (Abzweigresonator R1) und eine kleine Resonatorkammer 20E mit zwei Teilkammern 20E-1 und 20E-2 (Abzweigresonator R2 ausbildet.
  • Die abgewinkelte Resonatorröhre R ist bereits im Gehäuseteil 10 angelegt.
  • Der Materialbedarf ist gering und der erforderliche Raum für die Reduzierung der Ansauggeräusche in den Resonatorkammern 10C, 20E ist gegenüber herkömmlichen Schalldämpfern besonders groß, da die erläuterte exzentrische Bauweise gewählt worden ist.
  • Eine komplizierte Verschachtelung der Resonatorräume, die aus dem Stand der Technik bekannt ist, wird durch die erfindungsgemäße Lösung überwunden, wodurch die Bauteile als Einzelkomponenten einfach herstellbar sind und einen geringeren Materialbedarf erfordern, wodurch zudem ein geringes Gewicht bewirkt wird und geringere Kosten entstehen.
  • Es wurde in Versuchen festgestellt, dass der von außen registrierbare Geräuschpegel gegenüber den herkömmlichen Schalldämpfern um bis zu 15 dB reduziert wird.
  • Ein weiterer Vorteil besteht darin, dass durch das erste Absorptionselement S1 in dem Zuführkanal 10B ebenfalls eine effiziente Reduzierung der Geräuschwirkung von Ansauggeräuschen erzielt wird, da sich herausgestellt hat, dass durch die Umlenkung des Einströmkanals 10A in den Zuführkanal 10B ebenfalls eine reduzierende und dämpfende Wirkung der Schallgeräusche bewirkt wird.
  • Zudem wirkt der Einströmkanal 10A, der in der Einbausituation des Schalldämpfers 100 auf der Unterseite angeordnet ist, als Auffangraum für eventuell innerhalb des Schalldämpfers 100 auftretendes Kondensat.
  • Es ist vorgesehen, den Schalldämpfer 100 in der Einbausituation gegenüber einer gedachten Horizontalen geneigt anzuordnen, so dass anfallendes Kondensat während des Betriebes des Heizgerätes und des Schalldämpfers 100 und auch außerhalb des Betriebes durch die entsprechende Neigung über die Einströmöffnung 10A-11 des Fluids austritt.
  • Bezugszeichenliste
  • 100
    Schalldämpfer-Baugruppe (Serientyp)
    P100
    Schalldämpfer-Baugruppe (Prototyp)
    10
    Gehäuseteil
    10-1
    Stirnfläche
    10A
    erstes Kanalsegment/Einströmkanal/Fluidkanal
    10A-1
    Gehäuseteilöffnung
    10A-11
    Einströmöffnung
    10A-12
    Stirnfläche
    10B
    zweites Kanalsegment/Zuführkanal/Fluidkanal
    10B-1
    Gehäuseteilöffnung
    10B-11
    Ausströmöffnung
    10B-12
    Vorsprung
    10B-13
    Stirnfläche
    M1
    Mittelpunkt des zweiten Kanalsegments 10B
    10C
    große Resonatorkammer
    10C-1
    Resonatorkammeröffnung
    10C-2
    Aufweitung
    10C-21
    Absatz
    10C-3
    Nut
    10C-4
    Boden
    10C-I
    erste Teilkammer
    10C-II
    zweite Teilkammer
    10C-III
    dritte Teilkammer
    M2
    Mittelpunkt der großen Resonatorkammeröffnung 10C
    10D
    Gehäuseteilschild
    10D-1
    Stirnfläche
    10E
    Befestigungselement
    10V
    Volumenregler
    20
    Einschubteil
    20A-1
    Stutzenöffnung
    20A
    Stutzen
    20B-1
    erste Scheibe
    20B-2
    zweite Scheibe
    20C
    Wandung
    20D-1
    Verbindungsöffnung als segmentartiger Ausschnitt in 20C
    20D-2
    Verbindungsöffnung als segmentartiger Ausschnitt in 20C
    20E-1
    Teilkammer
    20E-2
    Teilkammer
    20E
    kleine Resonatorkammer
    20G
    Steg
    20H
    Trennsteg
    20F
    Einschubschild
    30
    Deckel
    A1
    erste Anschlussöffnung
    A2
    zweite Anschlussöffnung
    P1
    Strömungsrichtung des Fluids in Einströmrichtung
    P2
    Strömungsrichtung des Fluids in Ausströmrichtung
    P3
    Drehrichtung von Absorptionselement s S1
    P4
    Verschiebebewegung des Volumenreglers 10V
    R
    Resonatorröhre
    R1
    Abzweigresonator
    R2
    Abzweigresonator
    S1
    erstes Absorptionselement
    S2
    zweites Absorptionselement
    S11
    Verbindungsöffnung als segmentartiger Ausschnitt von S1
    S12
    Verbindungsöffnung segmentartiger Ausschnitt S1
    S13
    Kontaktzone
    S21
    flügelartiges Element
    S22
    flügelartiges Element
    S23
    Schlitz
    L
    Schallwellen

Claims (9)

  1. Schalldämpfer-Baugruppe (100) umfassend ein Einschubteil (20), welches in einem Zusammenbauzustand der Schalldämpfer-Baugruppe (100) in ein Gehäuseteil (10) geschoben ist, wobei das Gehäuseteil (10) einen Fluidkanal (10A, 10B) aufweist, in welchem ein Fluid in axialer Richtung der Schalldämpfer-Baugruppe (100) von einer Einströmöffnung (10A-11) zu einer Ausströmöffnung (10B-11) strömt, und der gleichzeitig als Resonatorröhre (R) für sich in dem Fluidkanal (10A, 10B) ausbreitende Schallwellen (L) fungiert, dadurch gekennzeichnet, dass das Gehäuseteil (10) und das Einschubteil (20) vor dem Zusammenbauzustand jeweils eine offene Resonatorkammer (10C, 20E) für je einen von dem Fluidkanal (10, 10B) abzweigenden Abzweigresonator (R1, R2) aufweisen, die im Zusammenbauzustand geschlossen sind und schallübertragend mit dem als Resonatorröhre (R) fungierenden Fluidkanal (10A, 10B) in Wirkverbindung stehen.
  2. Schalldämpfer-Baugruppe (100) nach Anspruch 1, dadurch gekennzeichnet, dass eine auf einem Mittelpunkt (M1) in axialer Richtung liegende Längsachse einer zweiten Gehäuseteilöffnung (10B-1), die einen Zuführkanal (10B) des Fluidkanals bildet, bezüglich eines Mittelpunkts (M2) der in axialer Richtung liegenden Längsachse der Resonatorkammern (10C, 20E) der Abzweigresonatoren (R1, R2) exzentrisch angeordnet ist.
  3. Schalldämpfer-Baugruppe (100) nach Anspruch 1, dadurch gekennzeichnet, dass der Fluidkanal (10A, 10B) ein erstes Kanalsegment (10A) als Einströmkanal mit der Eintrittsöffnung (10A-11) für das Fluid, und das koaxial zu dem ersten Kanalsegment (10A) liegende zweite Kanalsegment (10B) als Zuführkanal mit der Ausströmöffnung (10B-11) für das Fluid umfasst, so dass die Einströmöffnung (10A-11) und die Ausströmöffnung (10B11) auf einer Seite der Schalldämpfer-Baugruppe (100) angeordnet sind, da der Fluidkanal (10, 10B) innerhalb des Gehäuseteiles (10) auf einer dem Einschubteil (20) gegenüberliegenden Seite umgelenkt ist.
  4. Schalldämpfer-Baugruppe (100) nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuseteil (10) vor dem Zusammenbauzustand eine offene Resonatorkammer (10C) aufweist, die ein sich in axialer Richtung erstreckendes Gehäuseteilschild (10D) umfasst, welches in der Resonatorkammer (10C) zwei Teilkammern bildet.
  5. Schalldämpfer-Baugruppe (100) nach Anspruch 4, dadurch gekennzeichnet, dass das Einschubteil (20) ein Einschubschild (20F) aufweist, welches im Zusammenbauzustand in die als Abzweigresonator (R1) ausgebildete Resonatorkammer (10C) koaxial zu dem sich in axialer Richtung erstreckenden Gehäuseteilschild (10D) eingeschoben ist, so dass im Zusammenbauzustand in der Resonatorkammer (10C) drei Teilkammern (10C-I, 10C-II; 10C-III) ausgebildet sind, die mit dem Fluidkanal (10B) über eine schallübertragende Verbindungsöffnung (S12) und ihrerseits überAnschlussöffnungen (A1, A2) nach dem Wirkprinzip der Reflexion schallreduzierend in Verbindung stehen.
  6. Schalldämpfer-Baugruppe (100) nach Anspruch 1, dadurch gekennzeichnet, dass das Einschubteil (20) die als Abzweigresonator (R2) ausgebildete Resonatorkammer (20E) aufweist, die in axialer Richtung gesehen aus zwei hintereinander liegenden Scheiben (20B-1, 20B-2) ausgebildet ist, die an ihrem Innendurchmesser an einer zylindrischen Wandung (20C) angeordnet sind, wobei die Wandung (20C) eine sich in axialer Richtung der Schalldämpfer-Baugruppe (100) erstreckende Stutzenöffnung (20A-1) des Einschubteiles (20) bildet, wobei in der Wandung (20C) schallübertragende Verbindungsöffnungen (20D-1, 20D-2) zu zwei Teilkammern (20E-1, 20E-2) ausgebildet sind, die über die Verbindungsöffnungen (20D-1, 20D-2) mit dem Fluidkanal (10B) und ihrerseits nach dem Wirkprinzip der Reflexion schallreduzierend in Verbindung stehen.
  7. Schalldämpfer-Baugruppe (100) nach Anspruch 1 und 3, dadurch gekennzeichnet, dass im Zuführkanal (10B) des Fluidkanals (10A, 10B) ein erstes Absorptionselement (S1) angeordnet ist, welches aus einem ersten Absorptionsmaterial, insbesondere einem Polyurethanschaum auf Polyesterbasis mit einer Rohdichte von circa 57 kg/m3 (+/- 5 kg/m3) ausgebildet ist, so dass der als Resonatorröhre (R) ausgebildete Fluidkanal (10A, 10B) nach dem Wirkprinzip der Absorption und der Reflexion eine schallreduzierende Wirkung erzielt.
  8. Schalldämpfer-Baugruppe (100) nach Anspruch 1 und 5, dadurch gekennzeichnet, dass in der Resonatorkammer (20E) des Einschubteiles (20) die Resonatorkammer (20E) nur als teilweise ausfüllendes zweites Absorptionselement (S2) angeordnet ist, welches aus einem zweiten Absorptionsmaterial, insbesondere einem Polyurethanschaum auf Polyesterbasis mit einer Rohdichte von circa 120 kg/m3 (+/- 12 kg/m3) ausgebildet ist, so dass die als Abzweigresonator (R2) ausgebildete Resonatorkammer (20E) nach dem Wirkprinzip der Absorption und der Reflexion eine schallreduzierende Wirkung erzielt.
  9. Schalldämpfer-Baugruppe (100) nach Anspruch 1 und 3, dadurch gekennzeichnet, dass die Resonatorröhre (R) und der zweite Abzweigresonator (R2) hochfrequente Schallwellen (L) innerhalb eines hochfrequenten Frequenzbandes dämpft, während im ersten Abzweigresonator (R1) niederfrequente Schallwellen (L) innerhalb eines niederfrequenten Frequenzbandes gedämpft werden.
EP15151861.0A 2014-02-12 2015-01-20 Ansauggeräuschdämpfer Active EP2913513B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014202538.9A DE102014202538A1 (de) 2014-02-12 2014-02-12 Ansauggeräuschdämpfer

Publications (2)

Publication Number Publication Date
EP2913513A1 true EP2913513A1 (de) 2015-09-02
EP2913513B1 EP2913513B1 (de) 2018-08-08

Family

ID=52434555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15151861.0A Active EP2913513B1 (de) 2014-02-12 2015-01-20 Ansauggeräuschdämpfer

Country Status (2)

Country Link
EP (1) EP2913513B1 (de)
DE (1) DE102014202538A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339997A (zh) * 2018-12-04 2019-02-15 南京工程学院 一种连续可变谐振腔的内燃机进气***
CN110617121A (zh) * 2018-06-19 2019-12-27 现代自动车株式会社 易于排出冷凝液的***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215176A1 (de) * 2016-08-15 2018-02-15 Elringklinger Ag Resonanzvorrichtung und Verfahren zur Herstellung einer Resonanzvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392228A1 (fr) * 1977-05-27 1978-12-22 Honda Motor Co Ltd Silencieux pour moteurs a combustion interne
DE102008020721A1 (de) * 2008-04-23 2009-10-29 J. Eberspächer GmbH & Co. KG Schalldämpferbaugruppe für eine Abgasleitung
DE102010049578A1 (de) 2010-10-26 2012-04-26 Webasto Ag Schalldämpfereinrichtung für eine Fluidleitung sowie Heizgerät mit einer Schalldämpfereinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952625A (en) * 1998-01-20 1999-09-14 Jb Design, Inc. Multi-fold side branch muffler
DE202010012541U1 (de) * 2010-09-13 2011-12-15 Aerzener Maschinenfabrik Gmbh Schalldämpfender Ansaugtopf
DE102010037540A1 (de) * 2010-09-15 2012-03-15 Contitech Mgw Gmbh Fluidleitung mit Resonator
CN102644531B (zh) * 2011-02-16 2015-02-25 曼·胡默尔有限公司 谐振***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392228A1 (fr) * 1977-05-27 1978-12-22 Honda Motor Co Ltd Silencieux pour moteurs a combustion interne
DE102008020721A1 (de) * 2008-04-23 2009-10-29 J. Eberspächer GmbH & Co. KG Schalldämpferbaugruppe für eine Abgasleitung
DE102010049578A1 (de) 2010-10-26 2012-04-26 Webasto Ag Schalldämpfereinrichtung für eine Fluidleitung sowie Heizgerät mit einer Schalldämpfereinrichtung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617121A (zh) * 2018-06-19 2019-12-27 现代自动车株式会社 易于排出冷凝液的***
CN110617121B (zh) * 2018-06-19 2022-08-02 现代自动车株式会社 易于排出冷凝液的***
CN109339997A (zh) * 2018-12-04 2019-02-15 南京工程学院 一种连续可变谐振腔的内燃机进气***
CN109339997B (zh) * 2018-12-04 2023-04-07 南京工程学院 一种连续可变谐振腔的内燃机进气***

Also Published As

Publication number Publication date
DE102014202538A1 (de) 2015-08-13
EP2913513B1 (de) 2018-08-08

Similar Documents

Publication Publication Date Title
EP1715189B1 (de) Schalldämpfer ausgebildet und bestimmt für einen Kompressor
DE2822971C2 (de) Auspuffvorrichtung für Verbrennungsmotoren
DE3429633C2 (de)
DE102010049578A1 (de) Schalldämpfereinrichtung für eine Fluidleitung sowie Heizgerät mit einer Schalldämpfereinrichtung
WO2007012537A1 (de) Schalldämpfer, insbesondere für ein hausgerät
DE102012003769B3 (de) Lautsprechersystem für ein Kraftfahrzeug
EP2913513B1 (de) Ansauggeräuschdämpfer
DE7815666U1 (de) Schalldaempfer fuer brennkraftmaschinen
EP3707701B1 (de) Vorrichtung zur absenkung von luft- und körperschall
EP1715188A1 (de) Schalldämpfer ausgebildet und bestimmt für einen Kompressor
EP1510667A2 (de) Schalldämpfer
WO2018060428A1 (de) Belüftungseinrichtung zur belüftung eines innenraums eines kraftfahrzeugs
EP0713046B1 (de) Vorrichtung zur Schalldämmung in Rohrleitungen
DE2131410B2 (de) Schalldämpfer, insbesondere für lufttechnische Anlagen
DE1292667B (de) Schalldaempfer fuer stroemende Gase
DE2908506A1 (de) Schalldaempfer fuer verbrennungskraftmaschinen
DE102020100162A1 (de) Vorrichtung zur Absenkung von Luft- und Körperschall
DE29607010U1 (de) Schalldämpfer
DE2158702B2 (de) Schalldämmende Gasschleuse
DE102012207198B4 (de) Vorrichtung zur Verringerung der Lärmemission von Luftansaugrohren
DE2816159A1 (de) Reflexionsschalldaempfer fuer brennkraftmaschinen
DE202005015241U1 (de) Schalldämpfer, insbesondere für ein Hausgerät
DE102008007967A1 (de) Brennstoffbetriebenes Fahrzeugheizgerät und Abgasführungssystem für ein brennstoffbetriebenes Fahrzeugheizgerät
EP3610205A1 (de) Kulissenschalldämpferanordnung mit schallabsorbierenden stirnseiten
EP3244130B1 (de) Abgasschalldämpfer für eine abgasleitung, insbesondere für eine aus einem ölbefeuerten kessel austretende abgasleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160302

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1027304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005344

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005344

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1027304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 10

Ref country code: GB

Payment date: 20240123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240125

Year of fee payment: 10