EP2795233B1 - VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR - Google Patents

VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR Download PDF

Info

Publication number
EP2795233B1
EP2795233B1 EP12794195.3A EP12794195A EP2795233B1 EP 2795233 B1 EP2795233 B1 EP 2795233B1 EP 12794195 A EP12794195 A EP 12794195A EP 2795233 B1 EP2795233 B1 EP 2795233B1
Authority
EP
European Patent Office
Prior art keywords
tube
material projections
rib
ribs
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12794195.3A
Other languages
English (en)
French (fr)
Other versions
EP2795233A1 (de
Inventor
Ronald Lutz
Andreas Beutler
Andreas Schwitalla
Markus Revermann
Christian RETTICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP2795233A1 publication Critical patent/EP2795233A1/de
Application granted granted Critical
Publication of EP2795233B1 publication Critical patent/EP2795233B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the invention relates to a metallic heat exchanger tube for the evaporation of liquids from pure substances or mixtures on the pipe outside according to the preamble of claim 1.
  • Heat transfer occurs in many technical processes, for example in refrigeration and air conditioning technology or in chemical and energy engineering.
  • heat exchangers heat is transferred from one medium to another.
  • the media are usually separated by a wall. This wall serves as a heat transfer surface and for separating the media.
  • the temperature of the heat-emitting medium must be higher than the temperature of the heat-absorbing medium. This temperature difference is called the driving temperature difference.
  • the higher the driving temperature difference the more heat can be transferred per unit of heat transfer area.
  • the structuring of the heat transfer surface can improve heat transfer. This can be achieved that more heat can be transmitted per unit of heat transfer surface than a smooth surface. Furthermore, it is possible to reduce the driving temperature difference and thus make the process more efficient.
  • heat exchangers are tube bundle heat exchangers.
  • tubes are often used, which are structured both on their inside and on their outside.
  • Structured heat exchanger tubes for shell-and-tube heat exchangers usually have at least one structured region and smooth end pieces and possibly smooth intermediate pieces. The smooth end or intermediate pieces limit the structured areas. So that the tube can be easily installed in the shell and tube heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.
  • the process of bubbling is intensified. It is known that the formation of bubbles begins at germinal sites. These germinal sites are usually small gas or steam inclusions. Such nucleation sites can already be produced by roughening the surface. When the growing bubble reaches a certain size, it detaches from the surface. If in the course of bladder detachment the germinal site is flooded by inflowing liquid, the gas or vapor inclusion can be displaced by liquid. In this case, the germinal site is inactivated. This can be avoided by a suitable design of the germinal sites. For this purpose, it is necessary that the opening of the nucleus is smaller than the cavity located below the opening.
  • Integrally rolled finned tubes are understood to mean finned tubes in which the fins are formed from the wall material of a smooth tube. The ribs are therefore monolithically connected to the pipe wall and can thus transfer heat optimally.
  • Such finned tubes have a round cross section over their entire length and the outer contour of the finned tube is coaxial with the tube axis.
  • Various methods are known with which the channels located between adjacent ribs are sealed in such a way that connections between channel and environment remain in the form of pores or slots. Since the opening of the pores or slots is smaller than the width of the channels, the channels are suitably shaped cavities that promote formation and stabilization of nucleation sites.
  • substantially closed channels are formed by bending or flipping the ribs (FIG. US 3,696,861 . US 5,054,548 . US 7,178,361 . US 7,254,964 ), by splitting and upsetting the ribs ( DE 27 58 526 A1 . US 4,577,381 ) and by notching and upsetting the ribs ( US 4,660,630 . EP 0 713 072 A2 . US 4,216,826 . US 5,697,430 . US 7,789,127 ) generated.
  • structures which are produced by bending over or splitting the ribs it is disadvantageous that even slight changes in the rib geometry caused by manufacturing tolerances or tool wear lead to a performance-reducing change in the pore structure.
  • the most powerful commercially available finned tube finned tubes have on the tube exterior a ribbed structure with a fin density of 55 to 60 fins per inch ( US 5,669,441 . US 5,697,430 . DE 197 57 526 C1 ). This corresponds to a rib pitch of about 0.45 to 0.40 mm.
  • a smaller rib division inevitably requires equally finer tools. Finer tools are however subjected to a higher risk of breakage and faster wear.
  • the currently available tools enable the safe production of finned tubes with rib densities of up to 60 ribs per inch.
  • the invention includes a metallic heat exchanger tube for the evaporation of liquids on the tube outside with a tube axis, with a tube wall and with on the tube outside circumferential, integrally molded ribs.
  • the ribs have a ribbed foot, rib flanks and a ribbed tip, the ribbed foot projecting substantially radially from the tube wall. Between two adjacent ribs in the axial direction is in each case a groove. On the rib flanks lateral material projections are arranged, which are formed from material of the ribs.
  • At least first, second and third lateral material projections are arranged such that the grooves are largely covered by the entirety of the material projections, wherein the first, second and third lateral material projections are formed on the tube wall in the radial direction each differently spaced levels.
  • the present invention relates to structured tubes for use in heat exchangers in which the heat-absorbing medium vaporizes.
  • evaporator tube bundle heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and thereby cool a brine or water on the inside of the tube.
  • the invention is based on the consideration that in evaporator tubes performance increases can be achieved by closing the grooves between the ribs by deformation of the ribs in a suitable manner, so that an undercut structure is formed.
  • bladder boiling there are small pockets of steam in the grooves at the bottom of the groove in the area of the rib foot. These steam inclusions are the germinal sites of the vapor bubbles.
  • the growing bubble reaches a certain size, it separates from the groove between the ribs and from the tube surface. If the germinal site is flooded with fluid in the course of bladder detachment, the germinal site is deactivated.
  • the structure on the pipe surface must therefore be designed so that when detaching the bubble a small bubble remains, which then serves as a germination point for a new cycle of blistering.
  • the size of the steam pockets depends on the properties of the substance to be vaporized, the pressure and the local temperature conditions, in particular the overtemperature of the tube wall with respect to the evaporation temperature. So that the steam inclusions can assume a sufficient size, it is advantageous to select the distance of the lateral material projections, which are formed closest to the pipe wall, greater than half the groove width, relative to the pipe wall.
  • the width W of the groove is measured between the rib flanks above the rib foot.
  • the lateral material projections may be continuous or discontinuous in the tube circumferential direction. Continuously formed lateral material projections change their cross section along the pipe circumferential direction only insignificantly. Discontinuous lateral material projections substantially change their cross section along the pipe circumferential direction; they can even be interrupted in some places. It is also possible to make one part of the lateral material projections continuous and another part of the lateral material projections discontinuous.
  • the grooves can be covered so far that in the radial direction of the groove bottom is visible on at most 4% of the pipe surface. This can be achieved by a suitable dimensioning of the ribs and the lateral material protrusions.
  • the material projections may be formed on both flanks of the groove. In particular, the width W of the grooves and the lateral extent of the material projections can be matched to one another.
  • the grooves may be covered so far that at least 2% of the pipe surface is visible in the radial direction of the groove bottom.
  • material protrusions may be formed on both flanks of the groove.
  • a very advantageous embodiment of the invention can be realized if the grooves are so far covered, for example, by material protrusions formed on both flanks of the groove, that the groove bottom is not visible in the radial direction of view.
  • the lateral material projections may be discontinuous in the pipe circumferential direction. As a result, discrete openings or pores are formed in the system of lateral material projections. The transport of liquid and vapor then takes place through these openings.
  • the lateral material projections may be formed discontinuously in the tube circumferential direction at least two levels and the lateral material projections of these levels to each other in the pipe circumferential direction at least partially offset. Due to the partially staggered arrangement of the material projections, a system of interrupted planes with passages is created. The cross-sectional areas of the passage openings are larger than visible in the radial direction of view. The resulting steam can thus leave the groove without much resistance. At the same time, liquid can not be taken directly from penetrate the environment in the groove base, since the groove bottom is largely covered by the material projections according to the invention. This effectively prevents the flooding of bladder nucleation sites and thus stabilizes the nucleation process. Thus, a structure is formed which brings the liquid supply and Dampfabtransport in a favorable manner into balance.
  • the grooves may be covered so far that in the radial direction of view of the groove bottom is visible only through openings with a maximum area of 0.007 mm 2 . Due to statistical variations in the manufacturing process, individual openings may be larger than 0.007 mm 2 . It will be understood by those skilled in the art that the mean area of the openings should not be greater than 0.007mm 2 , with the variation in aperture size preferably being chosen to be small enough not to adversely affect the performance of the structure. In the case of discontinuously formed, regularly recurring lateral material projections, the pitch and the extension of the material projections in the circumferential direction can be adapted in order to cover the groove base accordingly. The smaller the visible part of the groove bottom in the radial direction of view, the better the evaporation performance.
  • a further advantageous embodiment may be present if, at at least one level, the lateral extension of the material projections is so large that they overlap with the lateral material projections which are formed on the opposite rib edge on at least one other level in the axial direction and that the radial distance this material projections of the pipe wall is chosen so that in the overlap region narrow passages remain between the material projections.
  • the bladder germs are particularly effectively held in the groove.
  • the groove bottom is in many places in multiple ways covered.
  • the narrow passages in the overlap area ensure the exchange of liquid and vapor.
  • the ribs of an integrally rolled finned tube may be provided with notches extending from the fin tip towards the rib foot.
  • the depth of the notch is less than the height of the ribs.
  • material of the rib which has been radially displaced by the notches forms first lateral material projections which partially overlap the groove between two axially adjacent ribs at a first level.
  • second lateral material projections which partially overlap the groove at a second level.
  • the portions of the fin tip that are located between two circumferentially adjacent notches are axial so that the widened portions of the fin tip form third lateral material projections that partially overlap the groove at a third level.
  • the first material projections formed by notching the rib and the third material projections on the fin tip are discontinuously formed in the pipe circumferential direction. To each other, these two material projections are arranged offset.
  • the second lateral material protrusions may be formed by substantially radially displacing rib tip material. They may be discontinuous or nearly continuous.
  • the first, second and third lateral material protrusions are circumferentially arranged in a predetermined correlation with each other.
  • the lateral material protrusions are designed to be suitable if, viewed radially from the outside, the groove bottom is visible on less than 4% of the pipe surface. Ideally, the groove bottom is no longer visible from the outside.
  • the integrally rolled finned tube 1 according to FIGS. 1 to 11 has a pipe wall 2 and on the pipe outer side 21 one or more helically encircling ribs 3.
  • the ribs 3 usually run around like a multi-start thread.
  • the case that only a rib 3 rotates like a catchy thread makes no difference to the invention. Therefore, this case is included in the invention, even though the term 'ribs' is always used in the plural.
  • the ribs 3 are substantially radially from the tube wall 2 from.
  • the ribs 3 have a ribbed foot 31, rib flanks 32 and a ribbed tip 33.
  • the ribs 3 have a curved contour which can be described by means of a radius of curvature.
  • the rib foot 31 extends radially from the tube wall 2 to the point where the curved contour of the rib 3 merges into the rib flank 32.
  • the rib flank 32 extends from the rib foot 31 to the rib tip 33.
  • the rib height H is measured from the tube wall 2 to the rib tip 33. All ribs have the same height H.
  • the rib height H is typically 0.5 to 0.7 mm and thus depending on the pipe diameter between 2% and 5% of the pipe diameter.
  • the grooves 35 are at least twice as wide as the radius of curvature at the rib foot 31.
  • the width W of the groove 35 is measured between the rib flanks 32 above the rib foot 31.
  • Fig. 1 shows a sectional view of a fin tube 1 according to the invention along the tube axis.
  • first lateral material projections 41 On the left side of each rib 3 are located above the fin foot 31 first lateral material projections 41.
  • second lateral material projections 42 On the right side of each rib 3 are second lateral material projections 42 which are spaced from the tube wall 2 further than the first material projections 41.
  • the second material projections 42 are disposed below the rib tip 33 on the rib flank 32.
  • third lateral material projections 43 are third lateral material projections 43. Die The third material protrusions 43 are spaced further from the tube wall 2 than the second material protrusions 42.
  • the first material protrusions 41 and the second material protrusions 42 extend laterally over the groove 35 such that an axial overlap exists between the first 41 and second 42 material protrusions, respectively adjacent ribs 3 is formed. Since the first 41 and second 42 material projections are spaced differently far from the tube wall 2, a narrow passage 62 remains between the first 41 and second 42 material projections.
  • the second material projections 42 and the third material projections 43 laterally extend over the groove 35 such that a Overlap between the second 42 and the third 43 material projections each adjacent ribs 3 is formed in the axial direction. Since the second 42 and third 43 material projections are spaced differently far from the tube wall 2, remains between the two material projections 42 and 43, a narrow passage 66. The in Fig.
  • FIG. 1 shown material projections 41, 42 and 43 may be formed continuously or discontinuously in the tube circumferential direction. If they are continuously trained, the in Fig. 1 shown sectional view to find in each sectional plane in the tube circumferential direction in at most slightly changed form. In this case, the whole of the lateral material projections 41, 42 and 43, the grooves 35 between two axially adjacent ribs 3 completely covered, so that the groove bottom 36 is not visible from the outside.
  • Fig. 2 shows the outside view of an advantageous embodiment of a finned tube according to the invention 1.
  • the ribs 3 extend in the FIG. 2 in the vertical direction, the tube axis runs in a horizontal direction.
  • the ribs 3 are provided with notches 51 which extend from the rib tip 33 in the direction of rib foot.
  • the notches 51 preferably enclose with the ribs 3 an angle of approximately 45 °.
  • material of the rib 3 forms first lateral material projections 41, which form the groove 35 partially overlap between two adjacent ribs 3 in the axial direction.
  • Between the fin tip 33 and the level of the notches 51 are second lateral material projections 42 which partially overlap the groove 35.
  • the portions 54 of the rib tip 33 which are located between two circumferentially adjacent notches 51, are spread unilaterally in the axial direction, so that the expanded portions 54 of the rib tip 33 form third lateral material projections 43 which partially overlap the groove.
  • the first lateral material protrusions 41 formed by the notches of the rib 3 and the third lateral material protrusions 43 on the rib tip 33 are discontinuously formed in the tube circumferential direction. To each other, these material projections 41 and 43 are arranged offset.
  • the second lateral material protrusions 42 may be formed by substantially radially displacing material of the rib tip 33. If, as in Fig.
  • first 41, second 42 and third 43 lateral material projections are arranged in the circumferential direction in a predetermined correlation to each other.
  • material protrusions 53 are formed on the flanks of the notch 51. These material projections 53 connect the first lateral material projections 41 with the second 42 and third 43 lateral material projections. Due to the totality of all lateral material projections 41, 42 and 43 as well as the material projections 53 on the flanks of the notches 51, the grooves between two adjacent ribs 3 in the axial direction are largely covered.
  • the groove bottom 36 is visible in the radial direction of view from the outside only a few places.
  • Fig. 3 shows a sectional view of the in Fig. 2 illustrated finned tube 1 in the sectional plane AA.
  • first lateral material projections 41 which through the notches of Rib 3 were formed.
  • second lateral material projections 42 which are spaced further from the tube wall 2 than the first material projections 41.
  • the second material projections 42 are arranged below the rib tip 33 on the rib flank 32.
  • the first material projections 41 and the second material projections 42 extend laterally over the groove 35 such that an overlap in the axial direction between the first 41 and the second 42 material projections of adjacent ribs 3 is formed.
  • Fig. 4 shows a sectional view of the in Fig. 2 represented finned tube 1 in the sectional plane BB.
  • the cutting plane is chosen so that it lies approximately centrally in a notch 51.
  • the displaced by the notches of the ribs 3 material on the flanks 52 of the notches 51 forms in the sectional plane BB material projections 53 which are arranged on both sides of the rib 3 Y-like.
  • the material projections 53 connect the level of the notches 51 with the level of the second lateral material projections 42.
  • the material projections 53 on the flanks 52 of the notches 51 extend over the groove 35 in such a way that, together with the second lateral material projections 42, an overlap in the axial direction between the material projections 53 adjacent ribs 3 is formed. Therefore, in the sectional plane BB of the groove base 36 is not visible from the outside in the radial direction of view.
  • Fig. 5 shows a sectional view of the in Fig. 2 illustrated finned tube 1 in the sectional plane CC.
  • the second lateral material projections 42 are visible on the left side of each rib 3.
  • Third lateral ones are located on the rib tip 33 on the left side of each rib 3 Material projections 43, which were formed by widening the rib tip 33.
  • the third lateral material protrusions 43 are spaced further from the tube wall 2 than the second material protrusions 42.
  • the second material protrusions 42 and the third material protrusions 43 extend laterally over the groove 35 so as to axially overlap between the second 42 and third 43 material protrusions each adjacent ribs 3 is formed.
  • Fig. 6 shows a sectional view of the in Fig. 2 illustrated finned tube 1 in the sectional plane DD.
  • second lateral material projections 42 On the right side of each rib 3 are already in the Figures 3 and 5 apparent, second lateral material projections 42.
  • third lateral material projections 43 On the left side of each rib 3 are located at the rib tip 33 already in FIG. 5 apparent, third lateral material projections 43, which were formed by widening the rib tip 33.
  • the third lateral material projections 43 are spaced further from the tube wall 2 than the second material projections 42.
  • the second lateral material projections 42 In contrast to the sectional plane CC, the second lateral material projections 42 extend less far beyond the groove 35 in the sectional plane DD, so that no overlap in the axial direction between the second 42 and the third 43 material projections each adjacent ribs 3 is formed.
  • the groove base 36 is visible from the outside in the radial direction of view. Due to the totality of all lateral material projections 41, 42 and 43 as well as the material projections 53 on the flanks of the notches 51, the grooves 35 are largely covered between two axially adjacent ribs 3, so that in the in Fig. 2 to 6 illustrated embodiment of a finned tube according to the invention the groove bottom 36 is visible from the outside only in a few places.
  • Fig. 7 shows the outside view of an advantageous embodiment of a finned tube according to the invention 1.
  • the ribs 3 extend in the FIG. 7 in the vertical direction, the tube axis runs in a horizontal direction.
  • the ribs 3 are provided with notches 51 which extend from the rib tip 33 in the direction of rib foot.
  • the notches 51 preferably enclose an angle of about 45 ° with the ribs.
  • material of the rib 3 forms first lateral material projections 41, which partially cover the groove between two axially adjacent ribs 3.
  • Between the rib tip 33 and the level of the notches 51 are second lateral material projections 42 which partially overlap the groove.
  • the portions 54 of the rib tip 33 which are located between two circumferentially adjacent notches 51, are spread unilaterally in the axial direction, so that the expanded portions 54 of the rib tip 33 form third lateral material projections 43 which partially overlap the groove.
  • the first lateral material protrusions 41 formed by the notches of the rib 3 and the third lateral material protrusions 43 on the rib tip 33 are discontinuously formed in the tube circumferential direction. To each other, these material projections 41 and 43 are arranged offset.
  • the second lateral material projections 42 may be formed by radially displacing the rib tip 33. By simultaneous, appropriate displacement of the material of the rib tip 33 in the circumferential direction, they can then be formed continuously or almost continuously in the tube circumferential direction.
  • the first 41, second 42 and third 43 lateral material projections are arranged in the circumferential direction in a predetermined correlation to each other. Further, 3 material protrusions 53 are formed on the flanks of the notch 51 by the notches of the rib. These material projections 53 connect the first lateral material projections 41 with the second 42 and third 43 lateral material projections. Through the entirety of all lateral material projections 41, 42 and 43 and the material projections 53 on the flanks of the notches 51, the grooves between two in the axial direction completely overlapping adjacent ribs 3. At the in FIG. 7 illustrated embodiment, the groove bottom is therefore not visible from the outside in the radial direction of view.
  • Fig. 8 shows a sectional view of the in Fig. 7 illustrated finned tube 1 in the sectional plane AA.
  • first lateral material projections 41 which were formed by the notches of the rib 3.
  • second lateral material projections 42 which are spaced further from the tube wall 2 than the first material projections 41.
  • the second material projections 42 are arranged below the rib tip 33 on the rib flank 32.
  • the first material projections 41 and the second material projections 42 extend laterally over the groove 35 such that an overlap in the axial direction between the first 41 and the second 42 material projections of adjacent ribs 3 is formed.
  • Fig. 9 shows a sectional view of the in Fig. 7 represented finned tube 1 in the sectional plane BB.
  • the cutting plane is chosen so that it lies approximately centrally in a notch 51.
  • the displaced by the notches of the ribs 3 material on the flanks 52 of the notches 51 forms in the sectional plane BB material projections 53 which are arranged on both sides of the rib 3 Y-like.
  • the material projections 53 connect the level of the notches 51 with the level of the second lateral material projections 42.
  • the material projections 53 on the flanks 52 of the notches 51 extend over the groove 35 such that, together with the second lateral material projections 42, an overlap in the axial direction between the material projections 53rd adjacent ribs 3 is formed. Therefore, in the sectional plane BB of the groove base 36 is not visible from the outside in the radial direction of view.
  • Fig. 10 shows a sectional view of the in Fig. 7 illustrated finned tube 1 in the sectional plane CC.
  • On the right side of each rib 3 are already in FIG. 8
  • On the left side of each rib 3 are at the rib tip 33 third lateral material projections 43, which were formed by widening the rib tip 33.
  • the third lateral material protrusions 43 are spaced further from the tube wall 2 than the second material protrusions 42.
  • the second material protrusions 42 and the third material protrusions 43 extend laterally over the groove 35 so as to axially overlap between the second 42 and third 43 material protrusions each adjacent ribs 3 is formed. Therefore, in the sectional plane CC of the groove base 36 is not visible in the radial direction from the outside. Since the second 42 and third 43 material projections are spaced differently far from the pipe wall 2, remains between the two material projections 42 and 43, a narrow passage 66th
  • Fig. 11 shows a sectional view of the in Fig. 7 illustrated finned tube 1 in the sectional plane DD.
  • second lateral material projections 42 On the right side of each rib 3 are already in the FIGS. 8 and 10 apparent, second lateral material projections 42.
  • third lateral material projections 43 On the left side of each rib 3 are located at the rib tip 33 already in FIG. 10 apparent, third lateral material projections 43, which were formed by widening the rib tip 33.
  • the third lateral material protrusions 43 are spaced further from the tube wall 2 than the second material protrusions 42.
  • FIG. 6 illustrated embodiment extend in the in FIG.
  • the second material projections 42 and the third material projections 43 laterally via the groove 35, that an overlap in the axial direction between the second 42 and the third 43 material projections each adjacent ribs 3 is formed. Therefore, in the sectional plane DD of the groove base 36 is not visible from the outside in the radial direction of view.
  • the grooves 35 are completely covered between two axially adjacent ribs 3, so that in the in Fig. 7 to 11 illustrated embodiment of a finned tube according to the invention the groove base 36 is not visible from the outside.
  • the lateral material protrusions closest to the tube wall at a level which is 40% to 50% of the fin height H spaced from the tube wall.
  • the most distant from the tube wall lateral material projections are preferably located at the level of the rib tip. So they are formed by a lateral broadening of the rib tip.
  • there are further lateral material projections between these two levels which are arranged at a level which is spaced from the tube wall by 50% to 80%, preferably 60% to 70% of the rib height H.
  • the radial distance between each two adjacent levels should be 15% to 30%, preferably 20% to 25% of the rib height H.
  • the lateral extension of the material projections is preferably 35% to 75% of the width W of the groove.
  • the lateral extent together is more than 100% of the groove width W. This ensures that these material projections overlap in the axial direction and at the same time remain in the overlap area narrow passages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite nach dem Oberbegriff des Anspruchs 1.
  • Wärmeübertragung tritt in vielen technischen Prozessen auf, beispielsweise in der Kälte- und Klimatechnik oder in der Chemie- und Energietechnik. In Wärmeaustauschern wird Wärme von einem Medium auf ein anderes Medium übertragen. Die Medien sind üblicherweise durch eine Wand getrennt. Diese Wand dient als Wärmeübertragungsfläche und zur Trennung der Medien.
  • Um den Wärmetransport zwischen den beiden Medien zu ermöglichen, muss die Temperatur des Wärme abgebenden Mediums höher sein als die Temperatur des Wärme aufnehmenden Mediums. Diesen Temperaturunterschied bezeichnet man als treibende Temperaturdifferenz. Je höher die treibende Temperaturdifferenz ist, desto mehr Wärme kann pro Einheit der Wärmeübertragungsfläche übertragen werden. Andererseits ist man oft bestrebt, die treibende Temperaturdifferenz klein zu halten, da dies Vorteile für die Effizienz des Prozesses hat.
  • Es ist bekannt, dass durch die Strukturierung der Wärmeübertragungsfläche die Wärmeübertragung verbessert werden kann. Damit kann erreicht werden, dass pro Einheit der Wärmeübertragungsfläche mehr Wärme übertragen werden kann als bei einer glatten Oberfläche. Ferner ist es möglich, die treibende Temperaturdifferenz zu reduzieren und damit den Prozess effizienter zu gestalten.
  • Eine oft verwendete Ausführungsform von Wärmetauschern sind Rohrbündel-Wärmeaustauscher. In diesen Apparaten werden häufig Rohre eingesetzt, die sowohl auf ihrer Innenseite als auch auf ihrer Außenseite strukturiert sind. Strukturierte Wärmeaustauscherrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.
  • Zur Erhöhung des Wärmeübergangs bei der Verdampfung wird der Vorgang des Blasensiedens intensiviert. Es ist bekannt, dass die Bildung von Blasen an Keimstellen beginnt. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Solche Keimstellen lassen sich bereits durch Aufrauen der Oberfläche erzeugen. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wenn im Zuge der Blasenablösung die Keimstelle durch nachströmende Flüssigkeit geflutet wird, kann der Gas- bzw. Dampfeinschluss durch Flüssigkeit verdrängt werden. In diesem Fall wird die Keimstelle inaktiviert. Dies lässt sich durch eine geeignete Gestaltung der Keimstellen vermeiden. Hierzu ist es notwendig, dass die Öffnung der Keimstelle kleiner ist als der unter der Öffnung liegende Hohlraum.
  • Es ist Stand der Technik, derartig gestaltete Strukturen auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Die Rippen sind also monolithisch mit der Rohrwand verbunden und können somit Wärme optimal übertragen. Solche Rippenrohre weisen über ihre gesamte Länge einen runden Querschnitt auf und die Außenkontur des Rippenrohrs ist koaxial zur Rohrachse. Es sind verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Da die Öffnung der Poren oder Schlitze kleiner ist als die Breite der Kanäle, stellen die Kanäle geeignet geformte Hohlräume dar, die Bildung und Stabilisierung von Blasenkeimstellen begünstigen. Insbesondere werden solche im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippen ( US 3,696,861 , US 5,054,548 , US 7,178,361 , US 7,254,964 ), durch Spalten und Stauchen der Rippen ( DE 27 58 526 A1 , US 4,577,381 ) und durch Kerben und Stauchen der Rippen ( US 4,660,630 , EP 0 713 072 A2 , US 4,216,826 , US 5,697,430 , US 7,789,127 ) erzeugt. Bei Strukturen, die mittels Umbiegen oder Spalten der Rippen hergestellt werden, ist es nachteilhaft, dass schon geringe, durch Fertigungstoleranzen oder Werkzeugverschleiß verursachte Änderungen in der Rippengeometrie zu einer leistungsreduzierenden Veränderung der Porenstruktur führen.
  • Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll ( US 5,669,441 , US 5,697,430 , DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und schnellerem Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner wird mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich werden die Herstellungskosten höher. Es ist bekannt, dass die Leistungsfähigkeit von Verdampferrohren erhöht werden kann, indem im Bereich des Kanalgrunds weitere Strukturen eingebracht werden. In EP 1 223 400 B1 werden hierfür hinterschnittene Sekundärnuten vorgeschlagen. In ähnlicher Weise wirken die in US 7,789,127 vorgeschlagenen, zusätzlichen lateralen Elemente an den Flanken der Rippen. In US 2008/0196876 A1 wird ein Rippenrohr beschrieben, das sowohl zur Verdampfung als auch zur Kondensation von Kältemitteln verwendet werden soll. Zur Intensivierung der Verdampfung sind die Kanäle zwischen den Rippen durch an den Rippenflanken angeordnete, laterale Werkstoffvorsprünge auf lediglich geringfügig unterschiedlichem Niveau bis auf Poren weitgehend verschlossen. Da diese Werkstoffvorsprünge wie eine nahezu geschlossene Barriere für den Austausch von Flüssigkeit und Dampf wirken, stellt die Einhaltung der richtigen Porengröße eine Schwierigkeit dar. Weitere laterale Werkstoffvorsprünge an der Rippenspitze tragen nicht zur Überdeckung der Kanäle bei, sondern sie dienen der Verbesserung der Wärmeübertragung bei Kondensation.
  • Als Aufgabe soll ein gegenüber dem Stand der Technik leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite bei gleichem rohrseitigen Wärmeübergang und Druckabfall sowie gleichen Herstellungskosten angegeben werden.
  • Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
  • Die Erfindung schließt ein metallisches Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite mit einer Rohrachse, mit einer Rohrwand und mit auf der Rohraußenseite umlaufenden, integral ausgeformten Rippen ein. Die Rippen haben einen Rippenfuß, Rippenflanken und eine Rippenspitze, wobei der Rippenfuß im Wesentlichen radial von der Rohrwand absteht. Zwischen zwei in Achsrichtung benachbarten Rippen befindet sich jeweils eine Nut. An den Rippenflanken sind laterale Werkstoffvorsprünge angeordnet, welche aus Material der Rippen gebildet sind. Erfindungsgemäß sind mindestens erste, zweite und dritte laterale Werkstoffvorsprünge derart angeordnet, dass die Nuten durch die Gesamtheit der Werkstoffvorsprünge weitgehend überdeckt sind, wobei die ersten, zweiten und dritten lateralen Werkstoffvorsprünge auf von der Rohrwand in Radialrichtung jeweils unterschiedlich weit beabstandeten Niveaus gebildet sind.
  • Die vorliegende Erfindung bezieht sich auf strukturierte Rohre zur Verwendung in Wärmeaustauschern, bei denen das Wärme aufnehmende Medium verdampft. Als Verdampfer werden häufig Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen.
  • Die Erfindung geht von der Überlegung aus, dass bei Verdampferrohren Leistungssteigerungen erzielt werden können, indem man die Nuten zwischen den Rippen durch Verformung der Rippen in geeigneter Weise verschließt, so dass eine hinterschnittene Struktur entsteht. Während des Blasensiedens befinden sich am Nutengrund im Bereich des Rippenfußes kleine Dampfeinschlüsse in den Nuten. Diese Dampfeinschlüsse sind die Keimstellen der Dampfblasen. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich aus der Nut zwischen den Rippen heraus und von der Rohroberfläche ab. Wird im Zuge der Blasenablösung die Keimstelle mit Flüssigkeit geflutet, dann wird die Keimstelle deaktiviert. Die Struktur auf der Rohroberfläche muss also derart gestaltet sein, dass beim Ablösen der Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient.
  • Untersuchungen haben gezeigt, dass es für den Prozess der Blasenbildung vorteilhaft ist, wenn die Nuten durch an beiden Flanken der Nuten ausgebildete, laterale Werkstoffvorsprünge, welche auf mindestens drei von der Rohrwand in Radialrichtung unterschiedlich weit beabstandeten Niveaus aus Material der Rippenflanke oder der Rippenspitze gebildet sind, weitgehend überdeckt sind. Hierbei tragen die Werkstoffvorsprünge von mindestens drei Niveaus jeweils einen signifikanten Anteil zur Überdeckung der Nuten bei. Durch das weitgehende, nahezu vollständige Überdecken der Nuten mittels der erfindungsgemäßen lateralen Werkstoffvorsprünge wird verhindert, dass die kleinen Dampfeinschlüsse während des Blasensiedens aus den Nuten entweichen können. Somit werden die Blasenkeimstellen besser in den Nuten festgehalten als bei aus dem Stand der Technik bekannten Strukturen. Das Eindringen von Flüssigkeit in die Nuten wird soweit reduziert, dass selbst kleine Blasenkeimstellen nicht geflutet werden. Der gebildete Dampf wird so lange in der Struktur festgehalten, bis die Dampfblase eine ausreichende Größe erreicht hat, um sich von der Blasenkeimstelle abzulösen.
  • Als Maß für den Überdeckungsgrad der Nuten kann der bei radialer Blickrichtung sichtbare Anteil des Nutengrunds bezogen auf die äußere Rohroberfläche gewählt werden. Unter äußerer Rohroberfläche wird hier die mit dem äußeren Rohrdurchmesser gebildete Glattrohroberfläche (=Hüllfläche) verstanden. Untersuchungen zeigen, dass die Verdampfungsleistung umso besser ist, je geringer der sichtbare Anteil des Nutengrunds ist. Eine weitgehende Überdeckung der Nuten im Sinne dieser Erfindung liegt dann vor, wenn der bei radialer Blickrichtung sichtbare Anteil des Nutengrunds bezogen auf die äußere Rohroberfläche nicht mehr als 10% beträgt.
  • Die Größe der Dampfeinschlüsse, die als Blasenkeimstelle wirken, ist abhängig von den Eigenschaften des zu verdampfenden Stoffs, dem Druck und den lokalen Temperaturverhältnissen, insbesondere der Übertemperatur der Rohrwand in Bezug auf die Verdampfungstemperatur. Damit die Dampfeinschlüsse eine ausreichende Größe annehmen können, ist es von Vorteil, den auf die Rohrwand bezogenen Abstand der lateralen Werkstoffvorsprünge, die am nächsten zur Rohrwand ausgebildet sind, größer als die halbe Nutbreite zu wählen. Die Breite W der Nut wird zwischen den Rippenflanken oberhalb des Rippenfußes gemessen. Diese Werkstoffvorsprünge sind folglich im Bereich der Rippenflanke oberhalb des Rippenfußes angeordnet.
  • Die lateralen Werkstoffvorsprünge können in Rohrumfangsrichtung kontinuierlich oder diskontinuierlich ausgebildet sein. Kontinuierlich ausgebildete laterale Werkstoffvorsprünge ändern ihren Querschnitt entlang der Rohrumfangsrichtung nur unwesentlich. Diskontinuierlich ausgebildete laterale Werkstoffvorsprünge ändern ihren Querschnitt entlang der Rohrumfangsrichtung wesentlich; sie können sogar an manchen Stellen unterbrochen sein. Es ist ferner möglich, einen Teil der lateralen Werkstoffvorsprünge kontinuierlich und einen anderen Teil der lateralen Werkstoffvorsprünge diskontinuierlich auszubilden.
  • In bevorzugter Ausgestaltung der Erfindung können die Nuten so weit überdeckt sein, dass bei radialer Blickrichtung der Nutengrund auf höchstens 4 % der Rohroberfläche sichtbar ist. Dies kann durch eine geeignete Dimensionierung der Rippen und der lateralen Werkstoffvorsprünge erreicht werden. Die Werkstoffvorsprünge können an beiden Flanken der Nut ausgebildet sein. Insbesondere können die Breite W der Nuten und die laterale Erstreckung der Werkstoffvorsprünge auf einander abgestimmt sein.
  • Vorzugsweise können die Nuten so weit überdeckt sein, dass bei radialer Blickrichtung der Nutengrund höchstens 2 % der Rohroberfläche sichtbar ist. Wiederum können an beiden Flanken der Nut Werkstoffvorsprünge ausgebildet sein.
  • Eine sehr vorteilhafte Ausführungsform der Erfindung kann realisiert werden, wenn die Nuten beispielsweise durch an beiden Flanken der Nut ausgebildete Werkstoffvorsprünge so weit überdeckt sind, dass bei radialer Blickrichtung der Nutengrund nicht sichtbar ist.
  • In bevorzugterAusgestaltung der Erfindung können auf mindestens einem Niveau die lateralen Werkstoffvorsprünge in Rohrumfangsrichtung diskontinuierlich ausgebildet sein. Dadurch werden diskrete Öffnungen bzw. Poren im System der lateralen Werkstoffvorsprünge gebildet. Der Transport von Flüssigkeit und Dampf findet dann durch diese Öffnungen statt.
  • Um den Prozess der Blasenbildung gezielt beeinflussen zu können, ist es günstig, die in Rohrumfangsrichtung diskontinuierlich ausgebildeten, lateralen Werkstoffvorsprünge der unterschiedlichen Niveaus zueinander nicht in zufälliger Weise anzuordnen, sondern diese in Umfangsrichtung des Rohres in vorgegebener Weise und zueinander korreliert zu positionieren. Dadurch kann eine optimale Struktur auf der gesamten Rohroberfläche erzeugt werden.
  • In besonders vorteilhafter Ausführungsform der Erfindung können auf mindestens zwei Niveaus die lateralen Werkstoffvorsprünge in Rohrumfangsrichtung diskontinuierlich ausgebildet sein und die lateralen Werkstoffvorsprünge dieser Niveaus zueinander in Rohrumfangsrichtung zumindest teilweise versetzt angeordnet sein. Durch die teilweise versetzte Anordnung der Werkstoffvorsprünge entsteht ein System von unterbrochenen Ebenen mit Durchgängen. Die Querschnittsflächen der Durchgangsöffnungen sind größer als bei radialer Blickrichtung erkennbar. Der entstehende Dampf kann somit die Nut ohne großen Widerstand verlassen. Gleichzeitig kann Flüssigkeit nicht auf direktem Weg von der Umgebung in den Nutengrund vordringen, da der Nutengrund durch die erfindungsgemäßen Werkstoffvorsprünge weitgehend überdeckt ist. Dies verhindert wirkungsvoll die Flutung von Blasenkeimstellen und stabilisiert so den Vorgang des Blasensiedens. Es wird also eine Struktur gebildet, die Flüssigkeitszufuhr und Dampfabtransport in günstiger Weise ins Gleichgewicht bringt.
  • Bei einer besonders vorteilhaften Ausführungsform können die Nuten so weit überdeckt sein, dass bei radialer Blickrichtung der Nutengrund nur durch Öffnungen mit einer Fläche von maximal 0,007 mm2 sichtbar ist. Aufgrund von statistischen Schwankungen des Fertigungsprozesses kann es sein, dass einzelne Öffnungen größer als 0,007 mm2 sind. Dem Fachmann ist verständlich, dass die mittlere Fläche der Öffnungen nicht größer als 0,007 mm2 sein soll, wobei die Streuung der Öffnungsgröße vorzugsweise so klein gewählt wird, dass die Leistung der Struktur nicht negativ beeinflusst wird. Bei diskontinuierlich ausgebildeten, sich regelmäßig wiederholenden lateralen Werkstoffvorsprüngen können die Teilung und die Erstreckung der Werkstoffvorsprünge in Umfangsrichtung angepasst werden, um den Nutengrund entsprechend zu überdecken. Je geringer der bei radialer Blickrichtung sichtbare Teil des Nutengrunds ist, desto besser ist die Verdampfungsleistung.
  • Ferner kann eine weitere vorteilhafte Ausführungsform vorliegen, wenn auf mindestens einem Niveau die laterale Erstreckung der Werkstoffvorsprünge so groß ist, dass diese mit den lateralen Werkstoffvorsprüngen, die an der gegenüberliegenden Rippenflanke auf mindestens einem anderen Niveau gebildet sind, in Achsrichtung überlappen und dass der radiale Abstand dieser Werkstoffvorsprünge von der Rohrwand so gewählt ist, dass im Überlappungsbereich schmale Durchgänge zwischen den Werkstoffvorsprüngen verbleiben. Dadurch werden die Blasenkeimstellen besonders wirkungsvoll in der Nut festgehalten. Der Nutengrund ist an vielen Stellen in mehrfacher Weise überdeckt. Durch die schmalen Durchgänge im Überlappungsbereich wird der Austausch von Flüssigkeit und Dampf gewährleistet.
  • Bei einer besonders vorteilhaften Ausführungsform können die Rippen eines integral gewalzten Rippenrohrs mit Kerben versehen sein, die sich von der Rippenspitze in Richtung Rippenfuß erstrecken. Die Tiefe der Kerbung ist geringer als die Höhe der Rippen. Auf dem Niveau der Kerben bildet Material der Rippe, welches durch das Kerben radial verlagert wurde, erste laterale Werkstoffvorsprünge, die die Nut zwischen zwei in Achsrichtung benachbarten Rippen auf einem ersten Niveau teilweise überdecken. Zwischen der Rippenspitze und dem Niveau der Kerben befinden sich zweite laterale Werkstoffvorsprünge, die die Nut auf einem zweiten Niveau teilweise überdecken. Die Bereiche der Rippenspitze, die sich zwischen zwei in Rohrumfangsrichtung benachbarten Kerben befinden, sind in Achsrichtung verbreitet, so dass die verbreiteten Bereiche der Rippenspitze dritte laterale Werkstoffvorsprünge bilden, die die Nut auf einem dritten Niveau teilweise überdecken. Durch die Gesamtheit der Werkstoffvorsprünge werden die Nuten weitgehend überdeckt. Die ersten Werkstoffvorsprünge, die durch das Kerben der Rippe gebildet wurden, und die dritten Werkstoffvorsprünge an der Rippenspitze sind in Rohrumfangsrichtung diskontinuierlich ausgebildet. Zueinander sind diese beiden Werkstoffvorsprünge versetzt angeordnet. Die zweiten lateralen Werkstoffvorsprünge können durch im Wesentlichen radiales Verlagern von Material der Rippenspitze gebildet werden. Sie können diskontinuierlich oder nahezu kontinuierlich ausgebildet sein. Bei dieser Ausführungsform sind die ersten, zweiten und dritten lateralen Werkstoffvorsprünge in Umfangsrichtung in einer vorgegebenen Korrelation zueinander angeordnet. Die lateralen Werkstoffvorsprünge sind dann geeignet gestaltet, wenn bei radialer Blickrichtung von außen der Nutengrund auf weniger als 4 % der Rohroberfläche sichtbar ist. Im Idealfall ist der Nutengrund von außen nicht mehr sichtbar.
  • Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.
  • Darin zeigen:
    • Fig. 1 zeigt schematisch eine Schnittansicht eines erfindungsgemäßen Rippenrohrs;
    • Fig. 2 zeigt die Außenansicht eines erfindungsgemäßen Rippenrohrs mit teilweise sichtbarem Nutengrund;
    • Fig. 3 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs in der Schnittebene A-A;
    • Fig. 4 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs in der Schnittebene B-B;
    • Fig. 5 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs in der Schnittebene C-C;
    • Fig. 6 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs in der Schnittebene D-D;
    • Fig. 7 zeigt die Außenansicht eines erfindungsgemäßen Rippenrohrs mit nicht sichtbarem Nutengrund;
    • Fig. 8 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs in der Schnittebene A-A;
    • Fig. 9 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs in der Schnittebene B-B;
    • Fig. 10 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs in der Schnittebene C-C;
    • Fig. 11 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs in der Schnittebene D-D.
  • Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Das integral gewalzte Rippenrohr 1 gemäß den Figuren 1 bis 11 weist eine Rohrwand 2 und auf der Rohraußenseite 21 eine oder mehrere schraubenlinienförmig umlaufende Rippen 3 auf. Um die Herstellkosten gering zu halten, laufen die Rippen 3 üblicherweise wie ein mehrgängiges Gewinde um. Der Fall, dass nur eine Rippe 3 wie ein eingängiges Gewinde umläuft, macht hinsichtlich der Erfindung keinen Unterschied. Deshalb ist dieser Fall in der Erfindung mit eingeschlossen, auch wenn der Begriff 'Rippen' immer im Plural verwendet wird. Die Rippen 3 stehen im Wesentlichen radial von der Rohrwand 2 ab. Die Rippen 3 haben einen Rippenfuß 31, Rippenflanken 32 und eine Rippenspitze 33. Im Bereich des Rippenfußes 31 weisen die Rippen 3 eine gekrümmte Kontur auf, die mittels eines Krümmungsradius beschrieben werden kann. Der Rippenfuß 31 erstreckt sich in Radialrichtung von der Rohrwand 2 bis zu dem Punkt, an dem die gekrümmte Kontur der Rippe 3 in die Rippenflanke 32 übergeht. Die Rippenflanke 32 erstreckt sich vom Rippenfuß 31 bis zur Rippenspitze 33. Die Rippenhöhe H wird von der Rohrwand 2 bis zur Rippenspitze 33 gemessen. Alle Rippen haben die gleiche Höhe H. Die Rippenhöhe H beträgt typischerweise 0,5 bis 0,7 mm und somit je nach Rohrdurchmesser zwischen 2 % und 5 % des Rohrdurchmessers. Zwischen zwei in Achsrichtung benachbarten Rippen 3 befindet sich jeweils eine Nut 35. Die Nuten 35 sind mindestens doppelt so breit wie der Krümmungsradius am Rippenfuß 31. Die Breite W der Nut 35 wird zwischen den Rippenflanken 32 oberhalb des Rippenfußes 31 gemessen.
  • Fig. 1 zeigt eine Schnittansicht eines erfindungsgemäßen Rippenrohres 1 längs zur Rohrachse. An der linken Seite jeder Rippe 3 befinden sich oberhalb des Rippenfußes 31 erste laterale Werkstoffvorsprünge 41. An der rechten Seite jeder Rippe 3 befinden sich zweite laterale Werkstoffvorsprünge 42, die von der Rohrwand 2 weiter beabstandet sind, als die ersten Werkstoffvorsprünge 41. Die zweiten Werkstoffvorsprünge 42 sind unterhalb der Rippenspitze 33 an der Rippenflanke 32 angeordnet. Ferner befinden sich an der linken Seite jeder Rippe 3 auf Höhe der Rippenspitze 33 dritte laterale Werkstoffvorsprünge 43. Die dritten lateralen Werkstoffvorsprünge 43 sind von der Rohrwand 2 weiter beabstandet als die zweiten Werkstoffvorsprünge 42. Die ersten Werkstoffvorsprünge 41 und die zweiten Werkstoffvorsprünge 42 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den ersten 41 und den zweiten 42 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Da die ersten 41 und zweiten 42 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen ersten 41 und zweiten 42 Werkstoffvorsprüngen ein schmaler Durchgang 62. Die zweiten Werkstoffvorsprünge 42 und die dritten Werkstoffvorsprünge 43 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den zweiten 42 und den dritten 43 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Da die zweiten 42 und dritten 43 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen beiden Werkstoffvorsprüngen 42 und 43 ein schmaler Durchgang 66. Die in Fig. 1 dargestellten Werkstoffvorsprünge 41, 42 und 43 können in Rohrumfangsrichtung kontinuierlich oder diskontinuierlich ausgebildet sein. Falls sie kontinuierlich ausgebildet sind, ist die in Fig. 1 dargestellte Schnittansicht in jeder Schnittebene in Rohrumfangsrichtung in höchstens unwesentlich veränderter Form zu finden. In diesem Fall werden durch die Gesamtheit der lateralen Werkstoffvorsprünge 41, 42 und 43 die Nuten 35 zwischen zwei in Achsrichtung benachbarten Rippen 3 vollständig überdeckt, so dass der Nutengrund 36 von außen nicht sichtbar ist.
  • Fig. 2 zeigt die Außenansicht einer vorteilhaften Ausführungsform eines erfindungsgemäßen Rippenrohres 1. Die Rippen 3 verlaufen in der Figur 2 in senkrechter Richtung, die Rohrachse verläuft in waagrechter Richtung. Die Rippen 3 sind mit Kerben 51 versehen, die sich von der Rippenspitze 33 in Richtung Rippenfuß erstrecken. Die Kerben 51 schließen mit den Rippen 3 vorzugsweise einen Winkel von ca. 45° ein. Auf dem Niveau der Kerben 51 bildet Material der Rippe 3 erste laterale Werkstoffvorsprünge 41, die die Nut 35 zwischen zwei in Achsrichtung benachbarten Rippen 3 teilweise überdecken. Zwischen der Rippenspitze 33 und dem Niveau der Kerben 51 befinden sich zweite laterale Werkstoffvorsprünge 42, die die Nut 35 teilweise überdecken. Ferner sind die Bereiche 54 der Rippenspitze 33, die sich zwischen zwei in Rohrumfangsrichtung benachbarten Kerben 51 befinden, in Achsrichtung einseitig verbreitet, so dass die verbreiteten Bereiche 54 der Rippenspitze 33 dritte laterale Werkstoffvorsprünge 43 bilden, die die Nut teilweise überdecken. Die ersten lateralen Werkstoffvorsprünge 41, die durch das Kerben der Rippe 3 gebildet wurden, und die dritten lateralen Werkstoffvorsprünge 43 an der Rippenspitze 33 sind in Rohrumfangsrichtung diskontinuierlich ausgebildet. Zueinander sind diese Werkstoffvorsprünge 41 und 43 versetzt angeordnet. Die zweiten lateralen Werkstoffvorsprünge 42 können durch im Wesentlichen radiales Verlagern von Material der Rippenspitze 33 gebildet werden. Wenn, wie in Fig. 2 dargestellt, zwei in Rohrumfangsrichtung benachbarte zweite Werkstoffvorsprünge 42 nicht aneinander grenzen, dann sind sie diskontinuierlich ausgebildet. Bei dieser Ausführungsform sind die ersten 41, zweiten 42 und dritten 43 lateralen Werkstoffvorsprünge in Umfangsrichtung in einer vorgegebenen Korrelation zueinander angeordnet. Ferner werden durch das Kerben der Rippe Werkstoffvorsprünge 53 an den Flanken der Kerbe 51 gebildet. Diese Werkstoffvorsprünge 53 verbinden die ersten lateralen Werkstoffvorsprünge 41 mit den zweiten 42 und dritten 43 lateralen Werkstoffvorsprüngen. Durch die Gesamtheit aller lateralen Werkstoffvorsprünge 41, 42 und 43 sowie der Werkstoffvorsprünge 53 an den Flanken der Kerben 51 werden die Nuten zwischen zwei in Achsrichtung benachbarten Rippen 3 weitgehend überdeckt. Bei der in Figur 2 dargestellten Ausführungsform ist der Nutengrund 36 bei radialer Blickrichtung von außen nur an wenigen Stellen sichtbar.
  • Fig. 3 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs 1 in der Schnittebene A-A. An der linken Seite jeder Rippe 3 befinden sich oberhalb des Rippenfußes 31 erste laterale Werkstoffvorsprünge 41, die durch das Kerben der Rippe 3 gebildet wurden. An der rechten Seite jeder Rippe 3 befinden sich zweite laterale Werkstoffvorsprünge 42, die von der Rohrwand 2 weiter beabstandet sind, als die ersten Werkstoffvorsprünge 41. Die zweiten Werkstoffvorsprünge 42 sind unterhalb der Rippenspitze 33 an der Rippenflanke 32 angeordnet. Die ersten Werkstoffvorsprünge 41 und die zweiten Werkstoffvorsprünge 42 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den ersten 41 und den zweiten 42 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene A-A der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar. Da die ersten 41 und zweiten 42 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen beiden Werkstoffvorsprüngen 41 und 42 ein schmaler Durchgang 62.
  • Fig. 4 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs 1 in der Schnittebene B-B. Die Schnittebene ist so gewählt, dass sie ungefähr mittig in einer Kerbe 51 liegt. Das durch das Kerben der Rippen 3 verdränget Material an den Flanken 52 der Kerben 51 bildet in der Schnittebene B-B Werkstoffvorsprünge 53, die an beiden Seiten der Rippe 3 Y-artig angeordnet sind. In der Schnittebene B-B verbinden die Werkstoffvorsprünge 53 das Niveau der Kerben 51 mit dem Niveau der zweiten lateralen Werkstoffvorsprünge 42. Die Werkstoffvorsprünge 53 an den Flanken 52 der Kerben 51 erstrecken sich derart über die Nut 35, dass zusammen mit den zweiten lateralen Werkstoffvorsprüngen 42 ein Überlapp in Axialrichtung zwischen den Werkstoffvorsprüngen 53 benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene B-B der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar.
  • Fig. 5 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs 1 in der Schnittebene C-C. An der rechten Seite jeder Rippe 3 befinden sich die bereits in Figur 3 ersichtlichen, zweiten lateralen Werkstoffvorsprünge 42. An der linken Seite jeder Rippe 3 befinden sich an der Rippenspitze 33 dritte laterale Werkstoffvorsprünge 43, die durch Verbreitern der Rippenspitze 33 gebildet wurden. Die dritten lateralen Werkstoffvorsprünge 43 sind von der Rohrwand 2 weiter beabstandet als die zweiten Werkstoffvorsprünge 42. Die zweiten Werkstoffvorsprünge 42 und die dritten Werkstoffvorsprünge 43 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den zweiten 42 und den dritten 43 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene C-C der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar. Da die zweiten 42 und dritten 43 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen beiden Werkstoffvorsprüngen 42 und 43 ein schmaler Durchgang 66.
  • Fig. 6 zeigt eine Schnittansicht des in Fig. 2 dargestellten Rippenrohrs 1 in der Schnittebene D-D. An der rechten Seite jeder Rippe 3 befinden sich die bereits in den Figuren 3 und 5 ersichtlichen, zweiten lateralen Werkstoffvorsprünge 42. An der linken Seite jeder Rippe 3 befinden sich an der Rippenspitze 33 die bereits in Figur 5 ersichtlichen, dritten lateralen Werkstoffvorsprünge 43, die durch Verbreitern der Rippenspitze 33 gebildet wurden. Die dritten lateralen Werkstoffvorsprünge 43 sind von der Rohrwand 2 weiter beabstandet als die zweiten Werkstoffvorsprünge 42. Im Unterschied zur Schnittebene C-C erstrecken sich in der Schnittebene D-D die zweiten lateralen Werkstoffvorsprünge 42 weniger weit über die Nut 35, so dass kein Überlapp in Axialrichtung zwischen den zweiten 42 und den dritten 43 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene D-D der Nutengrund 36 bei radialer Blickrichtung von außen sichtbar. Durch die Gesamtheit aller lateralen Werkstoffvorsprünge 41, 42 und 43 sowie der Werkstoffvorsprünge 53 an den Flanken der Kerben 51 werden die Nuten 35 zwischen zwei in Achsrichtung benachbarten Rippen 3 weitgehend überdeckt, so dass bei der in Fig. 2 bis 6 dargestellten Ausführungsform eines erfindungsgemäßen Rippenrohrs der Nutengrund 36 von außen nur an wenigen Stellen sichtbar ist.
  • Fig. 7 zeigt die Außenansicht einer vorteilhaften Ausführungsform eines erfindungsgemäßen Rippenrohres 1. Die Rippen 3 verlaufen in der Figur 7 in senkrechter Richtung, die Rohrachse verläuft in waagrechter Richtung. Die Rippen 3 sind mit Kerben 51 versehen, die sich von der Rippenspitze 33 in Richtung Rippenfuß erstrecken. Die Kerben 51 schließen mit den Rippen vorzugsweise einen Winkel von ca. 45° ein. Auf dem Niveau der Kerben 51 bildet Material der Rippe 3 erste laterale Werkstoffvorsprünge 41, die die Nut zwischen zwei in Achsrichtung benachbarten Rippen 3 teilweise überdecken. Zwischen der Rippenspitze 33 und dem Niveau der Kerben 51 befinden sich zweite laterale Werkstoffvorsprünge 42, die die Nut teilweise überdecken. Ferner sind die Bereiche 54 der Rippenspitze 33, die sich zwischen zwei in Rohrumfangsrichtung benachbarten Kerben 51 befinden, in Achsrichtung einseitig verbreitet, so dass die verbreiteten Bereiche 54 der Rippenspitze 33 dritte laterale Werkstoffvorsprünge 43 bilden, die die Nut teilweise überdecken. Die ersten lateralen Werkstoffvorsprünge 41, die durch das Kerben der Rippe 3 gebildet wurden, und die dritten lateralen Werkstoffvorsprünge 43 an der Rippenspitze 33 sind in Rohrumfangsrichtung diskontinuierlich ausgebildet. Zueinander sind diese Werkstoffvorsprünge 41 und 43 versetzt angeordnet. Die zweiten lateralen Werkstoffvorsprünge 42 können durch radiales Verlagern der Rippenspitze 33 gebildet werden. Durch gleichzeitiges, geeignetes Verlagern des Materials der Rippenspitze 33 in Umfangsrichtung können sie dann in Rohrumfangsrichtung kontinuierlich oder nahezu kontinuierlich ausgebildet sein. Bei dieser Ausführungsform sind die ersten 41, zweiten 42 und dritten 43 lateralen Werkstoffvorsprünge in Umfangsrichtung in einer vorgegebenen Korrelation zueinander angeordnet. Ferner werden durch das Kerben der Rippe 3 Werkstoffvorsprünge 53 an den Flanken der Kerbe 51 gebildet. Diese Werkstoffvorsprünge 53 verbinden die ersten lateralen Werkstoffvorsprünge 41 mit den zweiten 42 und dritten 43 lateralen Werkstoffvorsprüngen. Durch die Gesamtheit aller lateralen Werkstoffvorsprünge 41, 42 und 43 sowie der Werkstoffvorsprünge 53 an den Flanken der Kerben 51 werden die Nuten zwischen zwei in Achsrichtung benachbarten Rippen 3 vollständig überdeckt. Bei der in Figur 7 dargestellten Ausführungsform ist der Nutengrund deshalb bei radialer Blickrichtung von außen nicht sichtbar.
  • Fig. 8 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs 1 in der Schnittebene A-A. An der linken Seite jeder Rippe 3 befinden sich oberhalb des Rippenfußes 31 erste laterale Werkstoffvorsprünge 41, die durch das Kerben der Rippe 3 gebildet wurden. An der rechten Seite jeder Rippe 3 befinden sich zweite laterale Werkstoffvorsprünge 42, die von der Rohrwand 2 weiter beabstandet sind, als die ersten Werkstoffvorsprünge 41. Die zweiten Werkstoffvorsprünge 42 sind unterhalb der Rippenspitze 33 an der Rippenflanke 32 angeordnet. Die ersten Werkstoffvorsprünge 41 und die zweiten Werkstoffvorsprünge 42 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den ersten 41 und den zweiten 42 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene A-A der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar. Da die ersten 41 und zweiten 42 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen beiden Werkstoffvorsprüngen 41 und 42 ein schmaler Durchgang 62.
  • Fig. 9 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs 1 in der Schnittebene B-B. Die Schnittebene ist so gewählt, dass sie ungefähr mittig in einer Kerbe 51 liegt. Das durch das Kerben der Rippen 3 verdränget Material an den Flanken 52 der Kerben 51 bildet in der Schnittebene B-B Werkstoffvorsprünge 53, die an beiden Seiten der Rippe 3 Y-artig angeordnet sind. In der Schnittebene B-B verbinden die Werkstoffvorsprünge 53 das Niveau der Kerben 51 mit dem Niveau der zweiten lateralen Werkstoffvorsprüngen 42. Die Werkstoffvorsprünge 53 an den Flanken 52 der Kerben 51 erstrecken sich derart über die Nut 35, dass zusammen mit den zweiten lateralen Werkstoffvorsprüngen 42 ein Überlapp in Axialrichtung zwischen den Werkstoffvorsprüngen 53 benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene B-B der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar.
  • Fig. 10 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs 1 in der Schnittebene C-C. An der rechten Seite jeder Rippe 3 befinden sich die bereits in Figur 8 ersichtlichen, zweiten lateralen Werkstoffvorsprünge 42. An der linken Seite jeder Rippe 3 befinden sich an der Rippenspitze 33 dritte laterale Werkstoffvorsprünge 43, die durch Verbreitern der Rippenspitze 33 gebildet wurden. Die dritten lateralen Werkstoffvorsprünge 43 sind von der Rohrwand 2 weiter beabstandet als die zweiten Werkstoffvorsprünge 42. Die zweiten Werkstoffvorsprünge 42 und die dritten Werkstoffvorsprünge 43 erstrecken sich lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den zweiten 42 und den dritten 43 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene C-C der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar. Da die zweiten 42 und dritten 43 Werkstoffvorsprünge unterschiedlich weit von der Rohrwand 2 beabstandet sind, verbleibt zwischen beiden Werkstoffvorsprüngen 42 und 43 ein schmaler Durchgang 66.
  • Fig. 11 zeigt eine Schnittansicht des in Fig. 7 dargestellten Rippenrohrs 1 in der Schnittebene D-D. An der rechten Seite jeder Rippe 3 befinden sich die bereits in den Figuren 8 und 10 ersichtlichen, zweiten lateralen Werkstoffvorsprünge 42. An der linken Seite jeder Rippe 3 befinden sich an der Rippenspitze 33 die bereits in Figur 10 ersichtlichen, dritten lateralen Werkstoffvorsprünge 43, die durch Verbreitern der Rippenspitze 33 gebildet wurden. Die dritten lateralen Werkstoffvorsprünge 43 sind von der Rohrwand 2 weiter beabstandet als die zweiten Werkstoffvorsprünge 42. Im Unterschied zu der in Figur 6 dargestellten Ausführungsform erstrecken sich bei der in Figur 11 dargestellten Ausführungsform die zweiten Werkstoffvorsprünge 42 und die dritten Werkstoffvorsprünge 43 lateral derart über die Nut 35, dass ein Überlapp in Axialrichtung zwischen den zweiten 42 und den dritten 43 Werkstoffvorsprüngen jeweils benachbarter Rippen 3 gebildet wird. Deshalb ist in der Schnittebene D-D der Nutengrund 36 bei radialer Blickrichtung von außen nicht sichtbar. Durch die Gesamtheit aller lateralen Werkstoffvorsprünge 41, 42 und 43 sowie der Werkstoffvorsprünge 53 an den Flanken der Kerben 51 werden die Nuten 35 zwischen zwei in Achsrichtung benachbarten Rippen 3 vollständig überdeckt, so dass bei der in Fig. 7 bis 11 dargestellten Ausführungsform eines erfindungsgemäßen Rippenrohrs der Nutengrund 36 von außen nicht sichtbar ist.
  • Es hat sich gezeigt, dass es günstig ist, die am nächsten bei der Rohrwand angeordneten lateralen Werkstoffvorsprünge auf einem Niveau anzuordnen, welches 40 % bis 50 % der Rippenhöhe H von der Rohrwand beabstandet ist. Die am weitesten von der Rohrwand beabstandeten lateralen Werkstoffvorsprünge befinden sich vorzugsweise auf dem Niveau der Rippenspitze. Sie sind also durch eine laterale Verbreiterung der Rippenspitze gebildet. Erfindungsgemäß befinden sich zwischen diesen beiden Niveaus weitere laterale Werkstoffvorsprünge, die auf einem Niveau angeordnet sind, welches 50 % bis 80 %, vorzugsweise 60 % bis 70 % der Rippenhöhe H von der Rohrwand beabstandet ist. Hierbei sollte der radiale Abstand zwischen jeweils zwei benachbarten Niveaus 15 % bis 30 %, vorzugsweise 20 % bis 25 % der Rippenhöhe H betragen.
  • Die laterale Erstreckung der Werkstoffvorsprünge beträgt vorzugsweise 35 % bis 75 % der Breite W der Nut. In besonders bevorzugter Ausführungsform gibt es mindestens zwei an gegenüberliegenden Rippenflanken und auf unterschiedlichem Niveau angeordnete Werkstoffvorsprünge, deren laterale Erstreckung zusammen mehr als 100 % der Nutbreite W beträgt. Dadurch wird gewährleistet, dass diese Werkstoffvorsprünge in Achsrichtung überlappen und gleichzeitig im Überlappungsbereich schmale Durchgänge verbleiben.
  • Bezugszeichenliste
  • 1
    Wärmeaustauscherrohr
    2
    Rohrwand
    21
    Rohraußenseite
    3
    Rippe auf der Rohraußenseite
    31
    Rippenfuß
    32
    Rippenflanke
    33
    Rippenspitze
    35
    Nut
    36
    Nutengrund
    41
    erster Werkstoffvorsprung
    42
    zweiter Werkstoffvorsprung
    43
    dritter Werkstoffvorsprung
    51
    Kerbe
    52
    Flanke der Kerben
    53
    Werkstoffvorsprung an den Flanken der Kerben
    54
    Bereich der Rippenspitze zwischen den Kerben
    62
    Durchgang
    66
    Durchgang
    H
    Rippenhöhe
    W
    Nutbreite

Claims (9)

  1. Metallisches Wärmeaustauscherrohr (1) zur Verdampfung von Flüssigkeiten auf der Rohraußenseite (21) mit einer Rohrachse, mit einer Rohrwand (2) und mit auf der Rohraußenseite (21) umlaufenden, integral ausgeformten Rippen (3), welche einen Rippenfuß (31), Rippenflanken (32) und eine Rippenspitze (33) haben, wobei der Rippenfuß (31) im Wesentlichen radial von der Rohrwand (2) absteht, zwischen zwei in Achsrichtung benachbarten Rippen (3) sich jeweils eine Nut (35) befindet, und wobei an den Rippenflanken (32) laterale Werkstoffvorsprünge angeordnet sind, welche aus Material der Rippen (3) gebildet sind,
    wobei
    mindestens erste (41), zweite (42) und dritte (43) laterale
    Werkstoffvorsprünge derart angeordnet sind, dass die Nuten (35) durch die Gesamtheit der Werkstoffvorsprünge (41, 42, 43) weitgehend überdeckt sind, dadurch gekennzeichnet, dass die ersten (41), zweiten (42) und dritten (43) lateralen Werkstoffvorsprünge auf von der Rohrwand (2) in Radialrichtung jeweils unterschiedlich weit beabstandeten Niveaus gebildet sind.
  2. Wärmeaustauscherrohr (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Nuten (35) so weit überdeckt sind, dass bei radialer Blickrichtung der Nutengrund (36) auf höchstens 4 % der Rohroberfläche sichtbar ist.
  3. Wärmeaustauscherrohr (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Nuten (35) so weit überdeckt sind, dass bei radialer Blickrichtung der Nutengrund (36) auf höchstens 2 % der Rohroberfläche sichtbar ist.
  4. Wärmeaustauscherrohr (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Nuten (35) so weit überdeckt sind, dass bei radialer Blickrichtung der Nutengrund (36) nicht sichtbar ist.
  5. Wärmeaustauscherrohr (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass auf mindestens einem Niveau die lateralen Werkstoffvorsprünge (41, 42, 43) in Rohrumfangsrichtung diskontinuierlich ausgebildet sind.
  6. Wärmeaustauscherrohr (1) nach Anspruch 5, dadurch gekennzeichnet, dass auf mindestens zwei Niveaus die lateralen Werkstoffvorsprünge (41, 42, 43) in Rohrumfangsrichtung diskontinuierlich ausgebildet sind und die lateralen Werkstoffvorsprünge (41, 42, 43) dieser Niveaus zueinander in Rohrumfangsrichtung zumindest teilweise versetzt angeordnet sind.
  7. Wärmeaustauscherrohr (1) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Nuten (35) so weit überdeckt sind, dass bei radialer Blickrichtung der Nutengrund (36) nur durch Öffnungen mit einer Fläche von maximal 0,007 mm2 sichtbar ist.
  8. Wärmeaustauscherrohr (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass auf mindestens einem Niveau die laterale Erstreckung der Werkstoffvorsprünge (41, 42, 43) so groß ist, dass diese mit den lateralen Werkstoffvorsprünge (41, 42, 43), die an der gegenüberliegenden Rippenflanke (32) auf mindestens einem anderen Niveau gebildet sind, in Achsrichtung überlappen und dass der radiale Abstand dieser Werkstoffvorsprünge (41, 42, 43) von der Rohrwand (2) so gewählt ist, dass im Überlappungsbereich schmale Durchgänge zwischen den Werkstoffvorsprünge (41, 42, 43) verbleiben.
  9. Wärmeaustauscherrohr (1) nach einem der Ansprüche 1 bis 8, wobei die Rippen (3) mit Kerben (51) versehen sind, die sich von der Rippenspitze (33) in Richtung Rippenfuß (31) erstrecken, wobei die Tiefe der Kerbung geringer als die Höhe (H) der Rippen (3) ist, auf dem Niveau der Kerben (51) bildet Material der Rippe (3) erste laterale Werkstoffvorsprünge (41), die die Nut (35) zwischen zwei in Achsrichtung benachbarten Rippen (3) auf einem ersten Niveau teilweise überdecken, zwischen der Rippenspitze (33) und dem Niveau der Kerben (51) befinden sich zweite laterale Werkstoffvorsprünge (42), die die Nut (35) zwischen zwei in Achsrichtung benachbarten Rippen (3) auf einem zweiten Niveau teilweise überdecken, und die Bereiche (54) der Rippenspitze (33), die sich zwischen zwei in Rohrumfangsrichtung benachbarten Kerben (51) befinden, sind in Achsrichtung verbreitet, so dass die verbreiteten Bereiche (54) der Rippenspitze (33) dritte laterale Werkstoffvorsprünge (43) bilden, die die Nut (35) zwischen zwei in Achsrichtung benachbarten Rippen (3) auf einem dritten Niveau teilweise überdecken, dadurch gekennzeichnet,
    dass durch die Gesamtheit der Werkstoffvorsprünge (41, 42, 43) die Nuten (35) zwischen zwei in Achsrichtung benachbarten Rippen (3) weitgehend überdeckt sind.
EP12794195.3A 2011-12-21 2012-11-21 VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR Active EP2795233B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011121733A DE102011121733A1 (de) 2011-12-21 2011-12-21 Verdampferrohr mit optimierter Außenstruktur
PCT/EP2012/004811 WO2013091759A1 (de) 2011-12-21 2012-11-21 VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR

Publications (2)

Publication Number Publication Date
EP2795233A1 EP2795233A1 (de) 2014-10-29
EP2795233B1 true EP2795233B1 (de) 2016-04-06

Family

ID=47263238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12794195.3A Active EP2795233B1 (de) 2011-12-21 2012-11-21 VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR

Country Status (9)

Country Link
US (2) US9618279B2 (de)
EP (1) EP2795233B1 (de)
JP (1) JP5766366B2 (de)
DE (1) DE102011121733A1 (de)
MX (1) MX355056B (de)
PL (1) PL2795233T3 (de)
PT (1) PT2795233T (de)
TW (1) TWI583912B (de)
WO (1) WO2013091759A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121436A1 (de) * 2011-12-16 2013-06-20 Wieland-Werke Ag Verflüssigerrohre mit zusätzlicher Flankenstruktur
US20150211807A1 (en) * 2014-01-29 2015-07-30 Trane International Inc. Heat Exchanger with Fluted Fin
DE102014002829A1 (de) * 2014-02-27 2015-08-27 Wieland-Werke Ag Metallisches Wärmeaustauscherrohr
CN105757923B (zh) * 2016-03-20 2019-01-08 孙伯康 环保节能吸热器
DE102016006914B4 (de) * 2016-06-01 2019-01-24 Wieland-Werke Ag Wärmeübertragerrohr
DE102016006967B4 (de) * 2016-06-01 2018-12-13 Wieland-Werke Ag Wärmeübertragerrohr
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface
CN111503945B (zh) * 2020-05-14 2021-05-25 珠海格力电器股份有限公司 蒸发器及其蒸发管
US20220146214A1 (en) * 2020-11-09 2022-05-12 Carrier Corporation Heat Transfer Tube

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
GB1292767A (en) * 1971-05-20 1972-10-11 Grund Aebi S N C Dei Geometra A combined space-heating radiator and convection air heater
JPS5325379B2 (de) * 1974-10-21 1978-07-26
JPS5289854A (en) * 1976-01-23 1977-07-28 Ishikawajima Harima Heavy Ind Co Ltd Forming method for wall face of heat conduction tube
DE2808080C2 (de) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Wärmeübertragungs-Rohr für Siedewärmetauscher und Verfahren zu seiner Herstellung
DE2758526C2 (de) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Verfahren und Vorrichtung zur Herstellung eines Rippenrohres
US4179911A (en) 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
US4438807A (en) * 1981-07-02 1984-03-27 Carrier Corporation High performance heat transfer tube
JPS5946490A (ja) * 1982-09-08 1984-03-15 Kobe Steel Ltd 沸騰型熱交換器用伝熱管
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
JPS6064194A (ja) * 1983-09-19 1985-04-12 Sumitomo Light Metal Ind Ltd 伝熱管
JPS60238698A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 熱交換壁
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
JP2788793B2 (ja) * 1991-01-14 1998-08-20 古河電気工業株式会社 伝熱管
KR0134557B1 (ko) * 1993-07-07 1998-04-28 가메다카 소키치 유하액막식 증발기용 전열관
ES2171519T3 (es) 1994-11-17 2002-09-16 Carrier Corp Tubo de transferencia de calor.
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (de) 1997-12-23 1999-04-29 Wieland Werke Ag Verfahren zur Herstellung eines Wärmeaustauschrohres, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite
DE10024682C2 (de) * 2000-05-18 2003-02-20 Wieland Werke Ag Wärmeaustauscherrohr zur Verdampfung mit unterschiedlichen Porengrößen
DE10101589C1 (de) 2001-01-16 2002-08-08 Wieland Werke Ag Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
US20040010913A1 (en) * 2002-04-19 2004-01-22 Petur Thors Heat transfer tubes, including methods of fabrication and use thereof
JP2005121238A (ja) * 2003-10-14 2005-05-12 Hitachi Cable Ltd 沸騰用伝熱管
US7254964B2 (en) 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
CN100365369C (zh) 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 蒸发器热交换管
CN100437011C (zh) * 2005-12-13 2008-11-26 金龙精密铜管集团股份有限公司 一种电制冷机组用满液式铜蒸发换热管
CN100458344C (zh) * 2005-12-13 2009-02-04 金龙精密铜管集团股份有限公司 一种电制冷满液式机组用铜冷凝换热管
CN100498187C (zh) 2007-01-15 2009-06-10 高克联管件(上海)有限公司 一种蒸发冷凝兼备型传热管
US20090071624A1 (en) * 2007-09-18 2009-03-19 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink
JP2011127784A (ja) * 2009-12-15 2011-06-30 Hitachi Cable Ltd 沸騰用伝熱管及びその製造方法

Also Published As

Publication number Publication date
WO2013091759A1 (de) 2013-06-27
US9909819B2 (en) 2018-03-06
US20170146301A1 (en) 2017-05-25
MX2014006741A (es) 2014-10-15
PT2795233T (pt) 2016-07-13
MX355056B (es) 2018-04-03
JP2015500456A (ja) 2015-01-05
PL2795233T3 (pl) 2016-10-31
US20140352939A1 (en) 2014-12-04
JP5766366B2 (ja) 2015-08-19
US9618279B2 (en) 2017-04-11
EP2795233A1 (de) 2014-10-29
DE102011121733A1 (de) 2013-06-27
TW201341747A (zh) 2013-10-16
TWI583912B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
EP2795233B1 (de) VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR
EP1223400B1 (de) Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
DE69401731T2 (de) Wärmetauscherrohr
DE102009007446B4 (de) Wärmeübertragerrohr und Verfahren zu dessen Herstellung
EP2101136B1 (de) Metallisches Wärmeaustauscherrohr
EP1711772B1 (de) Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage
EP2253922B1 (de) Metallisches Wärmeaustauscherrohr
DE102015104180B4 (de) Vorrichtung für einen Wärmeübertrager zum Sammeln und Verteilen eines Wärmeträgerfluids
EP3111153B1 (de) Metallisches wärmeaustauscherrohr
WO2004065882A1 (de) Wärmeübertrager, insbesondere gaskühler
EP3465057B1 (de) Wärmeübertragerrohr
EP2791609B1 (de) Verflüssigerrohre mit zusätzlicher flankenstruktur
EP3465056B1 (de) Wärmeübertragerrohr
EP3581871B1 (de) Metallisches wärmeaustauscherrohr
EP3465055B1 (de) Wärmeübertragerrohr
WO2022089773A1 (de) Metallisches wärmeaustauscherrohr
WO2022089772A1 (de) Metallisches wärmeaustauscherrohr
DE202020005628U1 (de) Metallisches Wärmeaustauscherrohr
DE202020005625U1 (de) Metallisches Wärmeaustauscherrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REVERMANN, MARKUS

Inventor name: SCHWITALLA, ANDREAS

Inventor name: RETTICH, CHRISTIAN

Inventor name: BEUTLER, ANDREAS

Inventor name: LUTZ, RONALD

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 788289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006648

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2795233

Country of ref document: PT

Date of ref document: 20160713

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

26N No opposition filed

Effective date: 20170110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161121

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20170912

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20171120

Year of fee payment: 6

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 788289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231121

Year of fee payment: 12

Ref country code: IT

Payment date: 20231010

Year of fee payment: 12

Ref country code: DE

Payment date: 20231130

Year of fee payment: 12