EP2577685B1 - Verbundisolator - Google Patents

Verbundisolator Download PDF

Info

Publication number
EP2577685B1
EP2577685B1 EP11725620.6A EP11725620A EP2577685B1 EP 2577685 B1 EP2577685 B1 EP 2577685B1 EP 11725620 A EP11725620 A EP 11725620A EP 2577685 B1 EP2577685 B1 EP 2577685B1
Authority
EP
European Patent Office
Prior art keywords
field
protective layer
particles
composite insulator
influencing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11725620.6A
Other languages
English (en)
French (fr)
Other versions
EP2577685A2 (de
Inventor
Volker Hinrichsen
Jens Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIW Composite GmbH
Original Assignee
Lapp Insulators GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapp Insulators GmbH filed Critical Lapp Insulators GmbH
Priority to PL11725620T priority Critical patent/PL2577685T3/pl
Publication of EP2577685A2 publication Critical patent/EP2577685A2/de
Application granted granted Critical
Publication of EP2577685B1 publication Critical patent/EP2577685B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/32Single insulators consisting of two or more dissimilar insulating bodies
    • H01B17/325Single insulators consisting of two or more dissimilar insulating bodies comprising a fibre-reinforced insulating core member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating

Definitions

  • the invention relates to a composite insulator according to the preamble of claim 1.
  • a composite insulator comprises a core or trunk for load absorption, which is made in particular from a fiber-reinforced thermoset such as an epoxy resin or a vinyl ester.
  • a protective layer which is made in particular from an electrically insulating elastomer such as a silicone rubber.
  • a major problem with high-voltage insulators is the extreme uneven distribution of the voltage curve along their length. The reason for this is the stray capacitance of the isolator to earth. Another problem is local discharges on dirty insulators, which are caused, for example, by excessive fields during local drying.
  • a composite insulator with a field control layer at least in sections which comprises field-influencing particles.
  • Such particles act, for example, resistively, capacitively or are semiconducting, and contribute to reducing voltage jumps along the insulator by means of a nonlinear connection of a corresponding electrical variable with respect to the voltage.
  • microvaristors made of ZnO are mentioned which show an abrupt reduction in electrical resistance above a threshold voltage.
  • a ceramic high-voltage insulator can be seen, which has shields as an arc barrier. Trunk sections of the insulator lying between the individual screens are provided with a semi-conductive surface layer, in particular made of metal oxides. In addition, it is provided that the bottom and / or top of the first and the last screen are additionally provided with a semiconductive surface layer. This is intended to improve rollover behavior in the presence of moisture.
  • a conductive ring element is arranged on a lowermost screen, which is connected in an electrically conductive manner to an upper part of the fitting.
  • An elastic element is arranged between the ring element and the partial area.
  • an electrically conductive shield element in the manner of a shielding electrode can be arranged in the bottom shield.
  • the object of the invention is to provide a composite insulator of the type mentioned, which is further improved in terms of avoiding local discharges.
  • the composite insulator has a protective layer which comprises, in sections, particles which influence the field of the insulator.
  • the invention is based on the consideration of placing the particles influencing the field along the insulator in a targeted manner on the insulator in such a way that discharges which occur during the service life under the external conditions to be expected and which can lead to destruction of the insulating protective layer are avoided as far as possible .
  • investigations were carried out on long-rod composite insulators designed for a voltage of 420 kV.
  • the long-rod composite insulators used had a creepage distance of 3.91 m in length with a number of 10 shields. The low number of shields was deliberately chosen in order to achieve a greater tendency of the insulators to breakdown in the test.
  • the isolators were artificially irrigated at an angle of 45 ° C in accordance with the IEC 60060-1 standard.
  • the tests were carried out under AC voltage.
  • the voltage applied was gradually increased. Resulting partial discharges were observed visually.
  • a voltage of 600 kV for a conventionally manufactured long-bar composite insulator, the protective layer of which has no field-influencing particles, significant discharges were observed on the underside of the shields facing the high-voltage end of the insulator.
  • the invention is based on the model concept that a sprinkling of the insulators forms a conductive coating on the top of the screens and along the shaft.
  • a sprinkling of the insulators forms a conductive coating on the top of the screens and along the shaft.
  • the invention provides that the field-influencing particles are provided in the area of the aforementioned dry zones of the isolator on the undersides of screens.
  • the field-influencing particles are applied separately in sections, vulcanized, applied with the protective layer, injection molded, molded on or cast in.
  • the field-influencing particles are expediently added to a suitable insulation material, in particular the material of the protective layer. This material is then cast on, glued or vulcanized onto the existing protective layer.
  • the field-influencing particles can also be added to the protective layer in sections in the manufacture of the insulator.
  • the material mixed with the field-influencing particles can also be encapsulated by the protective layer when the insulator is finally shaped.
  • the protective layer and also the material mixed with the field-influencing particles is preferably a silicone rubber, an ethylene-propylene copolymer (EPDM), an ethylene-vinyl acetate (EVA) or an epoxy resin. Accordingly, a section of silicone rubber, EPDM, EVA or epoxy resin mixed with field-influencing particles is applied.
  • Resistive or capacitive particles or semiconductor particles are preferably used as field-influencing particles.
  • Microvaristors made of doped zinc oxide (ZnO) are particularly preferred. ZnO microvaristors show a non-linear current-voltage characteristic. Up to a threshold voltage, zinc oxide can be regarded as a high resistance and has an extremely flat current-voltage characteristic. Above the threshold voltage, the resistance drops abruptly, the current-voltage characteristic suddenly changes its slope.
  • the composite insulator includes a number of shields from the protective layer to extend the creepage distance.
  • the field-influencing particles are encompassed by the screens or arranged on the screens. When the composite insulator is in a standing position, the drying zones connected with high voltage jumps are on the underside of the screens. If the field-influencing particles are added to the protective layer of the screens or arranged on the screens, the discharges which occur there undesirably are avoided.
  • This embodiment variant has shown that not all screens have to encompass the field-influencing particles. Only a partial number of the screens are therefore provided with the field-influencing particles. This depends on the voltage curve over the length of the composite insulator. As studies have shown, the highest voltage jumps on the shields, which are arranged at the live end, are obviously to be expected.
  • the part number of the screens provided with field-influencing particles is located at the live end. Accordingly, starting from the live end of the composite insulator, a number of the shields are initially provided with field-influencing particles. The subsequent screens are conventionally made without field-influencing particles.
  • a partial number of shields can be provided with field-influencing particles, then a partial number of shields can be manufactured conventionally and this arrangement can be repeated over the length of the composite insulator.
  • the screens as such do not have to be provided with the field-influencing particles as a whole.
  • To reduce the voltage drop across the drying zone on the underside of the screens it is sufficient to provide only the underside of the screens with field-influencing particles. This is sufficient to reduce the high voltage jumps between the ends of the shields and the core or the shaft of the insulator.
  • the field-influencing particles are vulcanized or glued on from a separate disk, in particular from the material of which, gluing, shrinking or vulcanizing, the separate disk is vulcanized or glued on.
  • the separately manufactured disc containing the field-influencing particles can be cast into the screens during manufacture.
  • the protective layer as such with particles which influence the field is preferably applied to the underside of the screens provided.
  • the material of the protective layer is mixed with the field-influencing particles.
  • the offset material is molded, cast or vulcanized onto the underside of the screens.
  • the shields of the composite insulator are offset on the underside with ribs, which lead to a further extension of the creepage distance.
  • the separate disk or the protective layer mixed with the field-influencing particles is preferably arranged on these ribs as described above. Due to the increased surface area due to the ribs, an improved connection between the shields and the separate pane or the subsequently applied protective layer mixed with field-influencing particles is achieved.
  • the protective layer is provided with the field-influencing particles at least in sections along the core.
  • the core is provided for a partial section in the vicinity of the live end of the composite insulator with the protective layer which comprises the field-influencing particles.
  • the shields and / or the core are surrounded by an outer protective layer which is free of field-influencing particles.
  • an outer protective layer Through such an outer protective layer, reference can be made, if necessary, to the specific external weather conditions to which the composite insulator is exposed during its use by means of a separate choice of material.
  • a long-bar composite insulator 1 which comprises a core 2 made of a glass fiber reinforced plastic, on which ten screens 4 are arranged to extend the creepage distance over the length.
  • the connection fittings 5, 6 are attached to the ends of the core 2.
  • the connection fitting 6 is provided for contacting a high voltage HV, and in this respect has the live end of the insulator 1.
  • the long-rod composite insulator 1 shown with a total of ten shields 4 is designed to isolate a voltage of approximately 400 kV.
  • the core 2 is completely covered with a protective layer 8 made of a silicone rubber.
  • the shields 4 are attached to this shell of the core 2.
  • the screens 4 are also made of silicone rubber.
  • the protective layer 8 of the core 2 is covered over the whole Length of the composite insulator 1 mixed with field-influencing particles 7.
  • the field-influencing particles 7 are microvaristors made of doped ZnO.
  • five of the total of ten shields 4 are made of silicone rubber mixed with field-influencing particles 7 at the live end of the composite insulator 1, ie following the armature 6.
  • a long-rod composite insulator 1 shows accordingly Figure 1 compared to a conventional long-rod composite insulator without field-influencing particles, there is a significantly reduced tendency to discharge on the underside of the screens 4. This is due to the fact that the microvaristors made of ZnO become conductive at high voltages, so that the voltage jumps from the wetted upper side of the screens 4 to the section of the core 2 lying underneath are significantly reduced.
  • Figure 2 is basically a under construction Figure 1 Similar long-rod composite insulator 1 shown. This differs in that the protective layer 8 along the core 2 is now not provided with field-influencing particles 7. Rather, only the five screens 4 adjacent to the live end of the composite insulator 1 are made from a protective layer 8 which is mixed with field-influencing particles.
  • This composite insulator 1 according to Figure 2 shows in a sprinkling test a significantly reduced tendency to roll over on the underside of the screens 4 compared to a conventional long-rod composite insulator without field-influencing particles 7.
  • FIG 3 is a partial section of a long-bar composite insulator 1 according to the Figures 1 or 2 shown.
  • Two screens 4 are shown in the vicinity of the live end, that is, in the vicinity of the armature 6.
  • the long-rod composite insulator 1 accordingly Figure 3 comprises the core 2 made of a glass fiber reinforced plastic.
  • a protective layer 8 is on the core 2 made of silicone rubber.
  • the shields 4 are mounted on this protective layer 8.
  • the separate pane 10 is vulcanized on the underside in accordance with the upper screen 4.
  • the separate disk 10 containing the field-influencing particles is cast into the material of the screen 4, as can be seen on the lower screen 4.
  • the shields 4 of another variant of the long-rod composite insulator 1 comprise a number of circumferential ribs 12 on the underside. These ribs 12 are cast with a protective layer 8 ′ which contains the field-influencing particles 7. According to Figure 5 the long-rod composite insulator 1 has, at least in sections, a further surrounding protective layer 8 'on the core 2, which in turn is mixed with field-influencing particles.
  • the protective layer 8 ′ attached to the underside of the screens 4 is poured into the screens 4 with field-influencing particles.
  • the in Figure 6 Long rod composite insulator 1 shown is encased with an outer protective layer 13 made of silicone rubber, which does not comprise any field-influencing particles 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)
  • Insulating Bodies (AREA)

Description

  • Die Erfindung betrifft einen Verbundisolator gemäß dem Oberbegriff von Patentanspruch 1. Ein derartiger Verbundisolator umfasst zur Lastaufnahme einen Kern oder Strunk, der insbesondere aus einem faserverstärkten Duromer wie einem Epoxidharz oder einem Vinyl-Esther gefertigt ist. Zur Bereitstellung der gewünschten Isoliereigenschaften sowie zum Schutz vor äußeren, insbesondere witterungsbedingten Einflüssen ist der Kern von einer Schutzschicht umgeben, die insbesondere aus einem elektrisch isolierenden Elastomer wie einem Silikonkautschuk hergestellt ist.
  • Grundsätzlich ist bei der Isolierung von elektrischen Hochspannungen die Vermeidung von partiellen Entladungen eine Notwendigkeit. Derartige, z.B. aus lokalen Feldüberhöhungen resultierende Entladungen führen insbesondere bei Verbundisolatoren zu Schäden in der Schutzschicht, wodurch die Standzeit verringert ist. Bei Verbundisolatoren sind dementsprechend Maßnahmen zur Vermeidung von lokalen Feldüberhöhungen von großer Bedeutung. Als eine geeignete Maßnahme für Hochspannungsisolatoren sind beispielsweise Abschirmelektroden bekannt, die an den spannungsführenden Armaturen angebracht sind und dort helfen, Feldüberhöhungen an den Armaturenden zu vermeiden.
  • Ein großes Problem von Hochspannungsisolatoren ist dazu die extreme Ungleichverteilung des Spannungsverlaufs entlang ihrer Länge. Grund hierfür sind Streukapazitäten des Isolators zur Erde. Ein weiteres Problem sind lokale Entladungen auf verschmutzten Isolatoren, die beispielsweise durch Feldüberhöhungen bei lokaler Abtrocknung entstehen.
  • Aus der WO 2009/100904 A1 ist es zur Vermeidung von lokalen Feldüberhöhungen bekannt, einen Verbundisolator zumindest abschnittsweise mit einer Feldsteuerschicht zu versehen, die feldbeeinflussende Partikel umfasst. Solche Partikel wirken beispielsweise resistiv, kapazitiv oder sind halbleitend, und tragen durch einen nichtlinearen Zusammenhang einer entsprechenden elektrischen Größe gegenüber der Spannung zur Verringerung von Spannungssprüngen entlang des Isolators bei. Insbesondere sind Mikrovaristoren aus ZnO genannt, die oberhalb einer Schwellspannung eine abrupte Verringerung des elektrischen Widerstands zeigen.
  • Aus der GB 1 334 164 A ist ein Keramik-Hochspannungsisolator zu entnehmen, welcher Schirme als Lichtbogensperre aufweist. Zwischen den einzelnen Schirmen liegende Strunkabschnitte des Isolators sind mit einer halbleitfähigen Oberflächenschicht, insbesondere aus Metalloxiden versehen. Ergänzend ist vorgesehen, dass zusätzlich die Unter-und/oder Oberseite des ersten und des letzten Schirmes mit einer halbleitfähigen Oberflächenschicht versehen sind. Hierdurch soll ein Überschlagsverhalten bei Feuchtigkeit verbessert werden.
  • Aus der US 2004129449 A1 ist ein Hochspannungsisolator zu entnehmen, bei dem auf einen Kern aus einem faserverstärkten Material Schirme aufgebracht sind, welche aus einem Silikonmaterial mit darin eingebetteten Füllstoffen aus Zinkoxid bestehen.
  • Aus der DE 32 14 141 A1 ist zur Reduzierung eins Spannungsgradienten zwischen einem Endschuh (Armatur) und einem Isolatorbereich die Anordnung eines sogenannten Coronaschirms nach Art einer Abschirmelektrode vorgesehen, welcher ein halbleitendes Polymer aufweist.
  • Bei der GB 1 541 071 A ist zur Reduzierung einer mechanischen Belastung an einem untersten Schirm ein leitfähiges Ringelement angeordnet, welches elektrisch leitend mit einem oberen Teilbereich der Armatur verbunden ist. Zwischen dem Ringelement und dem Teilbereich ist ein elastisches Element angeordnet. Ergänzend kann im untersten Schirm ein elektrisch leitfähiges Schirmelement nach Art einer Abschirmelektrode angeordnet sein.
  • Aufgabe der Erfindung ist es, einen Verbundisolator der eingangs genannten Art anzugeben, der hinsichtlich der Vermeidung lokaler Entladungen weiter verbessert ist.
  • Diese Aufgabe wird erfindungsgemäß durch einen Verbundisolator mit den Merkmalen des Anspruchs 1 gelöst. Der Verbundisolator weist eine Schutzschicht auf, die gezielt abschnittsweise das Feld des Isolators beeinflussende Partikel umfasst.
  • Die Erfindung geht dabei von der Überlegung aus, die das Feld entlang des Isolators beeinflussenden Partikel abschnittsweise am Isolator gezielt so zu platzieren, dass während der Standzeit unter den zu erwartenden äußeren Bedingungen auftretende Entladungen, die zu Zerstörungen der isolierenden Schutzschicht führen können, möglichst vermieden sind. Dazu wurden Untersuchungen an für eine Spannung von 420 kV konzipierten Langstab-Verbundisolatoren durchgeführt. Die verwendeten Langstab-Verbundisolatoren wiesen bei einer Anzahl von 10 Schirmen eine Kriechstrecke mit einer Länge von 3,91 m auf. Die niedrige Anzahl der Schirme wurde bewußt gewählt, um im Versuch eine stärkere Durchschlagsneigung der Isolatoren zu erzielen.
  • In einem Hochspannungslabor wurden die Isolatoren gemäß dem Standard IEC 60060-1 unter einem Winkel von 45 °C künstlich beregnet. Die Tests wurden unter Wechselspannung durchgeführt. Der künstliche Regen wies eine Leitfähigkeit von κ = +/-100 µS/cm auf. Die angelegte Spannung wurde stufenweise erhöht. Resultierende partielle Entladungen wurden visuell beobachtet. Als Ergebnis wurden bei einer Spannung von 600 kV für einen herkömmlich gefertigten Langstab-Verbundisolator, dessen Schutzschicht keine feldbeeinflussenden Partikel aufweist, deutliche Entladungen an der Unterseite der dem Hochspannungsende des Isolators zugewandten Schirme beobachtet.
  • Ausgehend von dieser Erkenntnis geht die Erfindung von der Modellvorstellung aus, dass sich durch die Beregnung der Isolatoren auf der Oberseite der Schirme und entlang des Schafts ein leitfähiger Überzug bildet. Als Folge entsteht über einem konventionellen Isolator ein hoher Spannungsabfall über die trockene Unterseite der Schirme. Wird durch die resultierende lokale Feldüberhöhung die Durchschlagsfestigkeit der umgebenden Atmosphäre überschritten, kommt es zu lokalen Entladungen an der Unterseite der Schirme.
  • Die Erfindung sieht vor, dass die feldbeeinflussenden Partikel im Bereich der vorgenannten Trockenzonen des Isolatorsan den Unterseiten von Schirmen vorgesehen sind. Dazu sind die feldbeeinflussenden Partikel abschnittsweise separat aufgebracht, anvulkanisiert, mit der Schutzschicht aufgetragen, angespritzt, an- oder eingegossen. Dazu werden die feldbeeinflussenden Partikel zweckmäßigerweise einem geeigneten Isolationsmaterial, insbesondere dem Material der Schutzschicht, zugesetzt. Anschließend wird dieses Material der vorhandenen Schutzschicht angegossen, angeklebt oder anvulkanisiert. Auch können die feldbeeinflussenden Partikel bei der Herstellung des Isolators der Schutzschicht abschnittsweise beigemengt werden. Alternativ kann das mit den feldbeeinflussenden Partikeln versetzte Material bei der endgültigen Ausformung des Isolators auch von der Schutzschicht umgossen werden.
  • Die Schutzschicht und auch das mit den feldbeeinflussenden Partikeln versetzte Material ist bevorzugt ein Silikonkautschuk, ein Etylen-Propylen-Copolymer (EPDM), ein Ethylen-Vinyl-Acetat (EVA) oder ein Epoxidharz. Abschnittsweise ist dementsprechend ein mit feldbeeinflussenden Partikeln versetztes Silikonkautschuk, EPDM, EVA oder Epoxidharz aufgebracht.
  • Als feldbeeinflussende Partikel sind bevorzugt resistive oder kapazitive Partikel oder Halbleiterpartikel eingesetzt. Besonders bevorzugt sind Mikrovaristoren aus dotiertem Zinkoxid (ZnO). Mikrovaristoren aus ZnO zeigen eine nichtlineare Strom-Spannungs-Kennlinie. Bis zu einer Schwellspannung kann Zinkoxid als ein hochohmiger Widerstand betrachtet werden und weist eine extrem flache Strom-Spannungs-Kennlinie auf. Oberhalb der Schwellspannung nimmt der Widerstand abrupt ab, die Strom-Spannungs-Kennlinie ändert schlagartig ihre Steilheit.
  • Werden derartige feldbeeinflussende Partikel und insbesondere Mikrovaristoren, also spannungsabhängige Widerstände, abschnittsweise dem Isolator bzw. mit der Schutzschicht aufgebracht, so reduziert sich durch die oberhalb der Schwellspannung abrupt erhöhte Leitfähigkeit eine lokale Spannung- bzw. Feldüberhöhung, so dass die unerwünschten und zu Zerstörungen führenden lokalen Entladungen verhindert sind.
  • Der Verbundisolator umfasst zur Verlängerung der Kriechstrecke eine Anzahl von Schirmen aus der Schutzschicht. Die feldbeeinflussenden Partikel sind von den Schirmen umfasst bzw. an den Schirmen angeordnet. Bei einem stehendem Einsatz des Verbundisolators liegen die mit hohen Spannungssprüngen verbundenen Trockenzonen auf der Unterseite der Schirme. Sind die feldbeeinflussenden Partikel der Schutzschicht der Schirme zugesetzt bzw. an den Schirmen angeordnet, so sind die dort unerwünscht auftretenden Entladungen vermieden. Bei dieser Ausgestaltungsvariante hat es sich gezeigt, dass nicht alle Schirme die feldbeeinflussenden Partikel umfassen müssen. Lediglich eine Teilanzahl der Schirme ist daher mit den feldbeeinflussenden Partikeln versehen. Dies ist abhängig von dem Spannungsverlauf über die Länge des Verbundisolators. Dabei sind, wie Untersuchungen gezeigt haben, offensichtlich die höchsten Spannungssprünge an den Schirmen zu erwarten, die am spannungsführenden Ende angeordnet sind.
  • In einer bevorzugten Ausgestaltung befindet sich insofern die Teilanzahl der mit feldbeeinflussenden Partikeln versehenen Schirme am spannungsführenden Ende. Demnach sind ausgehend vom spannungsführenden Ende des Verbundisolators zunächst eine Teilanzahl der Schirme mit feldbeeinflussenden Partikeln versehen. Die sich anschließenden Schirme sind herkömmlich ohne feldbeeinflussende Partikel gefertigt.
  • Alternativ kann ausgehend vom spannungsführenden Ende des Verbundisolators zunächst eine Teilanzahl der Schirme mit feldbeeinflussenden Partikeln versehen sein, anschließend eine Teilanzahl von Schirmen herkömmlich gefertigt sein und sich diese Anordnung über die Länge des Verbundisolators wiederholen.
  • Weiter hat es sich gezeigt, dass die Schirme als solche nicht im Ganzen mit den feldbeeinflussenden Partikeln versehen sein müssen. Zur Verringerung des Spannungsabfalls über die Trockenzone an der Unterseite der Schirme genügt es vielmehr, lediglich die Unterseite der Schirme mit feldbeeinflussenden Partikeln zu versehen. Dies reicht aus, um die hohen Spannungssprünge zwischen den Enden der Schirme und dem Kern bzw. dem Schaft des Isolators zu verringern.
  • In einer ersten diesbezüglichen Ausgestaltungsvariante sind die feldbeeinflussenden Partikel von einer separaten Scheibe, insbesondere aus dem Material derßen, Aufkleben, Aufschrumpfen oder Anvulkanisieren wird die separate Scheibe der Unterseite der hierfür vorgesehenen Schirme anvulkanisiert oder aufgeklebt. Alternativ kann die separat gefertigte, die feldbeeinflussenden Partikel enthaltende Scheibe bei der Fertigung in die Schirme eingegossen werden. Schließlich ist es auch möglich, die an der Unterseite mit der separaten Scheibe versehenen Schirme in einem abschließenden Fertigungsprozess von der Schutzschicht insbesondere durch Umspritzen oder Umgießen einzuhüllen.
  • Gemäß einer anderen auch kombinierbaren Ausgestaltung der Erfindung ist bevorzugt auf der Unterseite der vorgesehenen Schirme die Schutzschicht als solche mit feldbeeinflussenden Partikeln aufgebracht. Hierzu wird das Material der Schutzschicht mit den feldbeeinflussenden Partikeln versetzt. Anschließend wird das versetzte Material den Schirmen auf der Unterseite angespritzt, angegossen oder anvulkanisiert.
  • In einer weiter bevorzugten Ausgestaltung sind die Schirme des Verbundisolators auf der Unterseite mit Rippen versetzt, die zu einer weiteren Kriechwegverlängerung führen. Bevorzugt ist die separate Scheibe oder die mit den feldbeeinflussenden Partikeln versetzte Schutzschicht an diesen Rippen wie vorbeschrieben angeordnet. Aufgrund der durch die Rippen vergrößerten Oberfläche wird eine verbesserte Anbindung zwischen den Schirmen und der separaten Scheibe oder der nachträglich aufgebrachten, mit feldbeeinflussenden Partikeln versetzten Schutzschicht erreicht.
  • Weiter hat es sich gezeigt, dass, insbesondere in Kombination mit auf der Unterseite mit feldbeeinflussenden Partikeln versehenen Schirmen, eine weitere Verbesserung des Verbundisolators hinsichtlich der Vermeidung von lokalen Entladungen erzeitl wird, wenn die Schutzschicht zumindest abschnittsweise entlang des Kerns mit den feldbeeinflussenden Partikeln versehen ist. Insbesondere ist der Kern für einen Teilabschnitt in der Nähe des spannungsführenden Endes des Verbundisolators mit der Schutzschicht versehen, die die feldbeeinflussenden Partikel umfasst.
  • In einer weiteren bevorzugten Ausgestaltung des Verbundisolators sind die Schirme und / oder der Kern von einer äußeren Schutzschicht umgeben, die frei von feldbeeinflussenden Partikeln ist. Durch eine derartige äußere Schutzschicht kann gegebenenfalls durch separate Materialwahl Bezug auf die spezifischen äußeren Witterungsbedingungen genommen werden, denen der Verbundisolators während seines Einsatzes ausgesetzt ist.
  • Ausführungsbeispiele der Erfindung werden an Hand einer Zeichnung näher erläutert. Dabei zeigen:
  • Fig. 1:
    einen Langstab-Verbundisolator gemäß einer ersten Ausführungsvariante,
    Fig. 2:
    einen Langstab-Verbundisolator gemäß einer zweiten Ausführungsvariante,
    Fig. 3:
    einen Ausschnitt eines Langstab-Verbundisolators, wobei die Schirme auf der Unterseite mit einer feldbeeinflussende Partikel enthaltenden Scheibe versehen sind,
    Fig. 4:
    einen Ausschnitt aus einem Langstab-Verbundisolator, wobei die Schirme auf der Unterseite mit einer Schutzschicht versehen sind, die feldbeeinflussende Partikel umfasst,
    Fig. 5:
    einen Ausschnitt aus einem Langstab-Verbundisolator, dessen Kern gegenüber dem Verbundisolator nach Figur 4 zusätzlich mit einer Schutzschicht versehen ist, die feldbeeinflussende Partikel umfasst, und
    Fig. 6:
    einen Langstab-Verbundisolator gemäß Figur 5, wobei die Schirme einschließlich der mit feldbeeinflussenden Partikeln versetzten Schutzschicht von einer äußeren Schutzschicht umhüllt sind.
  • In Figur 1 ist ein Langstab-Verbundisolator 1 dargestellt, der einen Kern 2 aus einem glasfaserverstärkten Kunststoff umfasst, auf dem zur Verlängerung der Kriechstrecke über die Länge verteilt zehn Schirme 4 angeordnet ist. An den Enden des Kerns 2 sind die Anschlussarmaturen 5, 6 befestigt. Die Anschlussarmatur 6 ist zur Kontaktierung mit einer Hochspannung HV vorgesehen, und weist insofern das spannungsführende Ende des Isolators 1 aus.
  • Der dargestellte Langstab-Verbundisolator 1 mit insgesamt zehn Schirmen 4 ist zur Isolierung einer Spannung von etwa 400 kV ausgelegt. Der Kern 2 ist durchgängig mit einer Schutzschicht 8 aus einem Silikon-Kautschuk umhüllt. Auf dieser Hülle des Kerns 2 sind die Schirme 4 befestigt. Auch die Schirme 4 sind aus Silikon-Kautschuk gefertigt.
  • Zur Vermeidung von lokalen Entladungen durch Feldüberhöhungen bzw. durch große Spannungssprünge ist die Schutzschicht 8 des Kerns 2 über die gesamte Länge des Verbundisolators 1 mit feldbeeinflussenden Partikeln 7 versetzt. Die feldbeeinflussenden Partikel 7 sind Mikrovaristoren aus dotiertem ZnO. Weiter sind am spannungsführenden Ende des Verbundisolators 1, also sich der Armatur 6 anschließend, fünf der insgesamt zehn Schirme 4 aus mit feldbeeinflussenden Partikeln 7 versetztem Silikon-Kautschuk gefertigt.
  • In einem Beregnungsversuch zeigt ein Langstab-Verbundisolator 1 entsprechend Figur 1 gegenüber einem konventionellen Langstab-Verbundisolator ohne feldbeeinflussende Partikel eine deutlich verringerte Entladungsneigung an der Unterseite der Schirme 4 auf. Dies liegt darin begründet, dass die Mikrovaristoren aus ZnO bei hohen Spannungen leitfähig werden, so dass die Spannungssprünge von der benetzten Oberseite der Schirme 4 zu dem darunter liegenden Abschnitt des Kerns 2 deutlich verringert werden.
  • In Figur 2 ist ein im Aufbau grundsätzlich zu Figur 1 ähnlicher Langstab-Verbund-isolator 1 dargestellt. Dieser unterscheidet sich dadurch, dass nunmehr die Schutzschicht 8 entlang des Kerns 2 nicht mit feldbeeinflussenden Partikeln 7 versehen ist. Vielmehr sind lediglich die dem spannungsführenden Ende des Verbundisolators 1 benachbarten fünf Schirme 4 aus einer Schutzschicht 8 gefertigt, die mit feldbeeinflussenden Partikeln versetzt ist.
  • Auch dieser Verbund-Isolator 1 gemäß Figur 2 zeigt in einem Beregnungsversuch eine deutlich verringerte Überschlagsneigung an der Unterseite der Schirme 4 gegenüber einem herkömmlichen Langstab-Verbundisolator ohne feldbeeinflussende Partikel 7.
  • In Figur 3 ist ein Teilausschnitt eines Langstab-Verbundisolators 1 entsprechend den Figuren 1 oder 2 dargestellt. Dabei sind zwei Schirme 4 in der Nähe des spannungsführenden Endes, also in der Nähe der Armatur 6 gezeigt.
  • Der Langstab-Verbundisolator 1 entsprechend Figur 3 umfasst den Kern 2 aus einem glasfaserverstärkten Kunststoff. Auf dem Kern 2 ist eine Schutzschicht 8 aus Silikon-Kautschuk aufgebracht. Auf dieser Schutzschicht 8 sind die Schirme 4 montiert.
  • Auf der Unterseite der Schirme 4 ist zur Feldbeeinflussung bzw. zum Abbau von hohen Spannungssprüngen eine separate Scheibe 10 aus vorgefertigtem EPM befestigt, die feldbeeinflussende Partikel 7 enthält.
  • Entsprechend einer ersten Ausführungsvariante ist die separate Scheibe 10 entsprechend dem oberen Schirm 4 an der Unterseite anvulkanisiert. Entsprechend einer zweiten Ausführungsvariante ist die separate, die feldbeeinflussenden Partikel enthaltende Scheibe 10 in das Material des Schirms 4 eingegossen, wie dies am unteren Schirm 4 ersichtlich ist.
  • Gemäß Figur 4 umfassen die Schirme 4 einer anderen Variante des Langstab-Verbundisolators 1 auf der Unterseite eine Anzahl von umlaufenden Rippen 12. Diesen Rippen 12 ist eine Schutzschicht 8' angegoßen, die die feldbeeinflussenden Partikel 7 enthält. Gemäß Figur 5 weist der Langstab-Verbundisolator 1 am Kern 2 zumindest abschnittsweise eine weitere umgebende Schutzschicht 8' auf, die wiederum mit feldbeeinflussenden Partikeln versetzt ist.
  • Gemäß Figur 6 ist die an der Unterseite der Schirme 4 angebrachte Schutzschicht 8' mit feldbeeinflussenden Partikeln in die Schirme 4 eingegossen. Dazu ist insbesondere gemäß einem abschließenden Herstellungsschritt der in Figur 6 gezeigte Langstab-Verbundisolator 1 mit einer äußeren Schutzschicht 13 aus Silikon-Kautschuk umhüllt, die keine feldbeeinflussenden Partikel 7 umfasst.
  • Bezugszeichen
  • 1
    Verbundisolator
    2
    Kern
    4
    Schirm
    5
    Anschlussarmatur
    6
    Anschlussarmatur
    7
    Feldbeeinflussende Partikel
    8
    Schutzschicht
    8'
    Schutzschicht mit feldbeeinflussenden Partikeln
    10
    Scheibe
    12
    Rippen
    13
    äußere Schutzschicht
    HV
    Hochspannungsende

Claims (8)

  1. Verbundisolator (1) mit einem Kern (2), insbesondere aus einem faserverstärkten Duromer, und mit einer diesen Kern (2) umgebenden Schutzschicht (8, 8'), insbesondere aus einem isolierenden Elastomer, wobei die Schutzschicht (8, 8') abschnittsweise das Feld des Isolators (1) beeinflussende Partikel (7) umfasst, und wobei die Schutzschicht (8, 8') zur Verlängerung der Kriechstrecke eine Anzahl von Schirmen (4) aufweist,
    dadurch gekennzeichnet,
    dass eine Teilanzahl der Schirme (4), also mehrere Schirme (4) aber nicht alle Schirme (4) die Schutzschicht (8,8') mit den feldbeeinflussenden Partikel (7) umfasst, dass die Schutzschicht (8,8') auf der Unterseite dieser Teilanzahl der Schirme (4) die feldbeeinflussenden Partikel (7) umfasst und dass die Oberseite dieser Teilanzahl der Schirme (4) frei von feldbeeinflussenden Partikeln (7) ist.
  2. Verbundisolator (1) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass sich die Teilanzahl der Schirme (4) am spannungsführenden Ende (HV) befindet.
  3. Verbundisolator (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass auf der Unterseite zumindest einer Teilanzahl der Schirme (4) eine die feldbeeinflussenden Partikel (7) enthaltende Scheibe (10) anvulkanisiert oder eingegossen ist.
  4. Verbundisolator (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Schutzschicht (8, 8') zumindest abschnittsweise entlang des Kerns (2) mit den feldbeeinflussenden Partikeln (7) versetzt ist.
  5. Verbundisolator (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Schirme (4) und/oder der Kern (2) von einer äußeren Schutzschicht (13) umgeben sind, die frei von feldbeeinflussenden Partikeln (7) ist.
  6. Verbundisolator (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Schutzschicht (8, 8') ein Silikonkautschuk, ein Ethylen-Propylen-Copolymer (EPDM), ein Ethylen-Vinyl-Acetat (EVA) oder ein Epoxidharz ist, wobei abschnittsweise ein mit feldbeeinflussenden Partikeln (7) versetztes Silikonkautschuk, EPDM, EVA oder Epoxidharz aufgebracht ist.
  7. Verbundisolator (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die feldbeeinflussenden Partikel (7) an den Unterseiten der Schirme (4) aufgebracht, anvulkanisiert, mit der Schutzschicht (8, 8') aufgetragen oder eingegossen sind.
  8. Verbundisolator (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die feldbeeinflussenden Partikel (7) ressistive oder kapazitive Partikel oder Halbleiterpartikel, insbesondere Mikrovaristoren aus dotiertem ZnO), sind.
EP11725620.6A 2010-05-28 2011-05-27 Verbundisolator Active EP2577685B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11725620T PL2577685T3 (pl) 2010-05-28 2011-05-27 Izolator kompozytowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010021882 2010-05-28
PCT/EP2011/002627 WO2011147583A2 (de) 2010-05-28 2011-05-27 Verbundisolator

Publications (2)

Publication Number Publication Date
EP2577685A2 EP2577685A2 (de) 2013-04-10
EP2577685B1 true EP2577685B1 (de) 2020-03-04

Family

ID=44582812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725620.6A Active EP2577685B1 (de) 2010-05-28 2011-05-27 Verbundisolator

Country Status (12)

Country Link
US (1) US9312053B2 (de)
EP (1) EP2577685B1 (de)
JP (1) JP5663085B2 (de)
KR (1) KR101616113B1 (de)
CN (1) CN102906825B (de)
CA (1) CA2800273C (de)
ES (1) ES2787511T3 (de)
PL (1) PL2577685T3 (de)
PT (1) PT2577685T (de)
RU (1) RU2548897C2 (de)
WO (1) WO2011147583A2 (de)
ZA (1) ZA201208313B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245196B1 (ko) * 2011-01-25 2013-03-19 주식회사 아앤시티 자이로스코프
CN102511065B (zh) * 2011-10-08 2013-07-17 清华大学深圳研究生院 绝缘子及输电线设备
JP5999560B2 (ja) * 2013-03-22 2016-09-28 日本碍子株式会社 懸垂がいし
EP3591672B1 (de) * 2018-07-02 2023-03-29 Hitachi Energy Switzerland AG Isolator mit widerstandsgradient
US11581111B2 (en) 2020-08-20 2023-02-14 Te Connectivity Solutions Gmbh Composite polymer insulators and methods for forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1451071A (en) * 1973-02-17 1976-09-29 Trans Dev Ltd High voltage electric insulator termination constructions
US20040129449A1 (en) * 2001-02-09 2004-07-08 Bodo Boettcher Electrical insulators, materials and equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066180A (en) 1957-04-06 1962-11-27 Asea Ab Coating for equalizing the potential gradient along the surface of an electric insulation
DE2006247A1 (de) * 1970-02-12 1971-10-07 Jenaer Glaswerk Schott & Gen Hochspannungsisolator
JPS5135096A (ja) * 1974-09-20 1976-03-25 Hitachi Ltd Denryokugaikan
DE3214141A1 (de) 1982-04-14 1983-10-20 Interpace Corp., Parsippany, N.J. Polymer-stabisolator mit verbesserten stoerfeld- und corona-charakteristiken
FR2545259B1 (fr) * 1983-04-29 1985-12-27 Ceraver Isolateur electrique presentant une insensibilite amelioree a la pollution
US5406033A (en) * 1992-09-02 1995-04-11 Maclean-Fogg Company Insulator structure and method of construction
US6831232B2 (en) * 2002-06-16 2004-12-14 Scott Henricks Composite insulator
KR20050045771A (ko) * 2003-11-12 2005-05-17 조규삼 열 경화성 수지 애자의 성형 방법
EP1736998A1 (de) * 2005-06-21 2006-12-27 Abb Research Ltd. Band mit Varistor-Verhalten zur Steuerung eines elektischen Feldes
DE102008009333A1 (de) * 2008-02-14 2009-08-20 Lapp Insulator Gmbh & Co. Kg Feldgesteuerter Verbundisolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1451071A (en) * 1973-02-17 1976-09-29 Trans Dev Ltd High voltage electric insulator termination constructions
US20040129449A1 (en) * 2001-02-09 2004-07-08 Bodo Boettcher Electrical insulators, materials and equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V T KONTARGYRI ET AL: "Simulation of the Electric Field on Composite Insulators Using the Finite Elements Method", 8 November 2004 (2004-11-08), National Technical University of Athens, pages 1 - 5, XP055244076, Retrieved from the Internet <URL:http://www.wseas.us/e-library/conferences/athens2004/papers/487-726.pdf> [retrieved on 20160122] *

Also Published As

Publication number Publication date
CN102906825B (zh) 2016-09-21
KR20130091666A (ko) 2013-08-19
RU2012147464A (ru) 2014-07-10
US9312053B2 (en) 2016-04-12
WO2011147583A2 (de) 2011-12-01
ZA201208313B (en) 2013-07-31
ES2787511T3 (es) 2020-10-16
RU2548897C2 (ru) 2015-04-20
CN102906825A (zh) 2013-01-30
KR101616113B1 (ko) 2016-04-27
JP2013531339A (ja) 2013-08-01
PL2577685T3 (pl) 2020-07-13
WO2011147583A3 (de) 2012-03-29
JP5663085B2 (ja) 2015-02-04
CA2800273C (en) 2017-10-03
US20130101846A1 (en) 2013-04-25
EP2577685A2 (de) 2013-04-10
CA2800273A1 (en) 2011-12-01
PT2577685T (pt) 2020-05-07

Similar Documents

Publication Publication Date Title
EP2243145B1 (de) Feldgesteuerter verbundisolator
EP2577685B1 (de) Verbundisolator
EP1577904B1 (de) Hochspannungsdurchführung mit Feldsteuermaterial
EP1903650B1 (de) Freiluftendverschluss
DE19842654B4 (de) Verbesserter Verbundisolator
EP1760855B1 (de) Blitzstromableitvorrichtung
EP4058815B1 (de) Spannungssensor und spannungsteilungsvorrichtung
AT518664A4 (de) HGÜ-Luftdrosselspule und Verfahren zur Herstellung
WO2019034439A1 (de) Überspannungsableiter und herstellungsverfahren für einen überspannungsableiter
EP2715743A1 (de) Elektrische komponente für eine hochspannungsanlage
DE10020129C1 (de) Baugruppe mit Überspannungsableiter für eine Hochspannungsanlage
DE3910435C2 (de)
CH669062A5 (de) Messwandler fuer hochspannung.
EP3410451B1 (de) Schirmring für eine transformatorspule
EP3639282B1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit steckbarer hochspannungsdurchführung
CH698181B1 (de) Kabelendverschluss.
AT375220B (de) Elektrode zur herabminderung elektrischer belastungen an den enden der verbindung eines abgeschirmten elektrischen leiters
EP3266085B1 (de) Feldsteuerelement für endverschlüsse von kabeln zu energieübertragung
DE102017212026A1 (de) Schirmring und/oder Steigungsausgleich für eine Transformatorspule
DE3214141A1 (de) Polymer-stabisolator mit verbesserten stoerfeld- und corona-charakteristiken
DE1690059B1 (de) Giessharzgarnitur fuer kabel
DE1538405A1 (de) UEberspannungsableiter
DD267831A1 (de) Elektrischer leiter fuer hochspannungsanlagen
DE4411861A1 (de) Verbundisolator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121023

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20190911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LAPP INSULATORS GMBH

INTG Intention to grant announced

Effective date: 20191016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1241317

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016522

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2577685

Country of ref document: PT

Date of ref document: 20200507

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200429

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2787511

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016522

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230516

Year of fee payment: 13

Ref country code: NL

Payment date: 20230519

Year of fee payment: 13

Ref country code: IT

Payment date: 20230531

Year of fee payment: 13

Ref country code: IE

Payment date: 20230516

Year of fee payment: 13

Ref country code: FR

Payment date: 20230517

Year of fee payment: 13

Ref country code: ES

Payment date: 20230621

Year of fee payment: 13

Ref country code: DE

Payment date: 20230526

Year of fee payment: 13

Ref country code: CH

Payment date: 20230605

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230522

Year of fee payment: 13

Ref country code: PL

Payment date: 20230512

Year of fee payment: 13

Ref country code: AT

Payment date: 20230516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 13