EP2504084B1 - Verfahren zum herstellen eines mischproduktes, insbesondere eines mischgetränkes - Google Patents

Verfahren zum herstellen eines mischproduktes, insbesondere eines mischgetränkes Download PDF

Info

Publication number
EP2504084B1
EP2504084B1 EP10754688.9A EP10754688A EP2504084B1 EP 2504084 B1 EP2504084 B1 EP 2504084B1 EP 10754688 A EP10754688 A EP 10754688A EP 2504084 B1 EP2504084 B1 EP 2504084B1
Authority
EP
European Patent Office
Prior art keywords
base component
mixing
chamber
mixed product
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10754688.9A
Other languages
English (en)
French (fr)
Other versions
EP2504084A2 (de
Inventor
Klaus Ehrlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KHS GmbH
Original Assignee
KHS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KHS GmbH filed Critical KHS GmbH
Priority to PL10754688T priority Critical patent/PL2504084T3/pl
Priority to SI201031530T priority patent/SI2504084T1/sl
Publication of EP2504084A2 publication Critical patent/EP2504084A2/de
Application granted granted Critical
Publication of EP2504084B1 publication Critical patent/EP2504084B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • B01F23/2363Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2321Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by moving liquid and gas in counter current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23412Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using liquid falling from orifices in a gaseous atmosphere, the orifices being exits from perforations, tubes or chimneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • B01F23/2362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages for aerating or carbonating within receptacles or tanks, e.g. distribution machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • B01F23/237621Carbon dioxide in beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/703Degassing or de-aerating materials; Replacing one gas within the materials by another gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2202Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2209Controlling the mixing process as a whole, i.e. involving a complete monitoring and controlling of the mixing process during the whole mixing cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2212Level of the material in the mixer

Definitions

  • the invention relates to a method according to claim 1 for the production of mixed products, for example, as mixed drinks from at least one liquid base or base component and at least one of the base component metered admixed additional component, which latter is a liquid additive component.
  • Mixed products for example, as mixed drinks from at least one liquid base or base component and at least one of the base component metered admixed additional component, which latter is a liquid additive component.
  • Processes and devices for producing mixed products in the form of mixed drinks and in particular also of carbonated or carbonated mixed drinks are known.
  • the liquid base or base component which is formed, for example, by beverage water
  • at least one preferably taste-forming additive component eg syrup
  • the mixed beverage is a carbonated beverage
  • carbonation and buffering of the mixed beverage with CO2 gas are also carried out until it is filled into containers or bottles.
  • the preparation of such mixed products takes place in multi-component mixing plants, which are often referred to as a mixer.
  • the degassing of the at least one base component can be carried out in different ways, for example by a single or multi-stage vacuum degassing and / or by a single or multi-stage pressure degassing.
  • vacuum degassing the partial pressure gradient, which is necessary for the release of foreign gases dissolved in the at least one base component, is achieved by vacuum or pressure reduction.
  • the release of the foreign gases from the respective base component is achieved by diffusion into an oxygen- and / or nitrogen-free carrier gas, for example CO2 gas.
  • the mixing of the base component with the at least one additive component (e.g., syrup) to the finished or mixed product has heretofore been governed by a ratio control, i. by controlling the volume flows of the base component and the additional component to one setpoint in each case. Both setpoints are set in relation to the preselected or desired recipe.
  • a ratio control i. by controlling the volume flows of the base component and the additional component to one setpoint in each case. Both setpoints are set in relation to the preselected or desired recipe.
  • the carbonation or addition of the CO2 gas also takes place in known methods and mixing plants via a ratio metering or via a spray carbonization.
  • the mixed product is sprayed into a container pressurized with CO2 gas.
  • the gas pressure is according to the u.a. set by the dosing rate and the temperature-dependent saturation pressure.
  • the CO2 gas dissolves in the mixed product until a balance between the pressure of the CO2 gas atmosphere and the CO2 gas partial pressure or saturation pressure of the carbonated mixed beverage is achieved.
  • the carbonated mixed product or mixed beverage produced with the mixing plant is usually filled into containers or bottles with the aid of a filler.
  • the latter like the mixing plant, is part of a complete filling line. Due to disturbances in the environment and / or in the system and / or by disruptions of the packaging material (eg bottle breakage, etc.), stops or reduced performance often occur.
  • known systems for decoupling or buffering between mixing plant and filler require a buffer tank or tank which, in known mixing plants, must have a relatively large volume, for example a volume of up to 1000 liters.
  • Such buffer tanks are usually operated with a highly fluctuating level, so that the mixed product in the buffer tank must be superimposed with a CO2 gas cushion, the pressure of which is higher than the CO2 saturation pressure in the mixed product. With changing filling level it is necessary to replenish or discharge the CO2 gas in the buffer tank concerned, which leads to a high consumption of CO2 gas.
  • An apparatus and a method for producing mixed products have been characterized by DE 1 213 212 presented. For this purpose, this document provides that the base component, for example water and the additional component, for example syrup, are simultaneously fed to a dosing device, the components arriving in a pre-set, precisely measured quantitative ratio to one another in a mixing vessel.
  • a disadvantage of this approach is that known dosing for the simultaneous feeding of multiple components are complex and expensive, and also generally have only a limited accuracy. Also known was a system for mixing drinks after the GB 2 404 271 A , This document is concerned with a system for blending soft drinks immediately prior to dispensing of these juice drinks to the end user, which then consumes these drinks usually within a very short time. To this end, this specification provides more detail that a base component, for example, water, and a syrup in a fixed ratio to each other are promoted and mixed exactly when a portion of the mixed beverage to be removed or sold. The disadvantage of this approach is that it is not suitable for systems with large quantities [m 3 / h].
  • the object of the invention is to provide a method for producing mixed products of at least one base component and at least one additional component, which can be carried out while maintaining a high dosing accuracy with a reduced control effort and / or mechanical complexity. To solve this problem, a method according to claim 1 is formed.
  • the metered mixing of the at least one preferably liquid additive component to the at least one liquid base component in the mixing chamber takes place in such a way that the addition or metering of the at least one additional component is controlled or regulated as a function of the amount of the mixed product, the (amount) the mixing chamber is removed.
  • means are preferably provided for a height-level or volume-controlled tracking or refilling of the at least one base component to the mixing space, in such a way that by this tracking or refilling of the at least one base component of the at least one base component and the at least one additional component formed total volume is constant in the mixing room.
  • the metered addition of at least one additional component in the mixing chamber is carried out continuously.
  • the mixing chamber also forms the buffer memory, from which the mixed product is fed to the following in the overall systems filler;
  • the mixing chamber and thus also the buffer tank or buffer tank formed by this mixing chamber can be designed with reduced volume, for example with a volume of only 100 liters at a rated output of the device or mixing plant of 30 m 3 / h.
  • Alone by the reduced volume of serving as a buffer tank mixing chamber results in a significant reduction in the size of a mixing plant or apparatus for producing mixed products.
  • at least two functions of conventional mixing plants are combined in a common functional container 2, for example the functions of degassing and the subsequent carbonizing of the at least one base component.
  • the functional container 2 or a functional space 2.3 formed in it then serves according to the invention as a combined mixing chamber and buffer tank.
  • the height-level or volume-controlled tracking of the at least one base component into the mixing chamber is effected in the simplest case by virtue of the mixing chamber having at least one mixing chamber inlet for the at least one base component a filling level determining element, for example in the form of an overflow, and means being provided, to constantly overflow the mixing chamber inlet during operation of the mixing plant or device with the at least one base component.
  • the mixing plant or device generally designated 1 in the figure is used to produce a carbonated, ie mixed with carbon dioxide or CO2 gas liquid mixed product, mixed beverage by mixing a liquid main or base component, for example water, with at least one liquid additive component, for example with a flavoring additive component, eg syrup.
  • a liquid main or base component for example water
  • at least one liquid additive component for example with a flavoring additive component, eg syrup.
  • the single functional container 2 which usually has a mixing plant, namely the degassing or liberation of the base component (eg water) of unwanted, dissolved in this base component
  • Franntgas possibly influences the metered addition of CO2 gas to the base component, for example, with an amount corresponding to the CO2 saturation pressure of the mixed product, the metered feeding the at least one additional component as well as the function of the buffer memory.
  • the interior of the functional container 2 is divided by two horizontal or substantially horizontal partitions 3 and 4 in three functional spaces 2.1 - 23, which adjoin one another in the direction of the vertical axis of the functional container 2 and of which in the manner described in more detail below, the uppermost functional space 2.1 substantially for pressure degassing and for at least partial carbonation of the base component (eg water), the lowest functional space 2.3 essentially as a mixing space for mixing the base component with the at least one additional component and at the same time as a buffer memory and the functional space between the functional spaces 2.1 and 2.3 2.2 among others for complete carbonization of the base component on the CO2 concentration and also for the controlled feeding of the base component to the functional space 2.3 serve.
  • the base component eg water
  • the lowest functional space 2.3 essentially as a mixing space for mixing the base component with the at least one additional component and at the same time as a buffer memory and the functional space between the functional spaces 2.1 and 2.3 2.2 among others for complete carbonization of the base component on the CO2 concentration and also for the controlled feeding
  • the partition wall 4 is provided in the illustrated embodiment with a central passage 5 which connects the functional spaces 2.2 and 2.3 with each other and in the illustrated embodiment in the manner of extending into the functional space 2.3 and dip tube is executed.
  • the passage 5 is enclosed by an annular overflow weir 6, so that at the bottom of the functional space 2.2, i. on the partition wall 4 two subspaces are formed, namely an outer annular subspace 2.2.1 between the inner surface of the wall of the functional container 2 and the overflow weir 6 and an inner subspace 2.2.2, which communicates via the passage 5 with the functional space 2.3 ,
  • the nozzles 7 are arranged and designed that when the control valve 9 is open, the base component from the nozzles 7 exudes fine sprayed upward in the vertical direction and then falls back on the partition wall 3, which in the illustrated embodiment at the edge region 3.1, ie in the vicinity of the wall of the functional container 2 as a perforated plate or bottom is formed with a plurality of openings and in its central region 3.2 as a closed wall or as a closed bottom.
  • a line 10 which is provided in the interior of the functional space 2.2 with at least one nozzle 11, which at a distance above the overflow weir 6 and above the subspace 2.2.2 and at a distance below the formed as a baffle section 3.2 of the partition 3 is located.
  • the nozzle 11 is formed and arranged so that the nozzle jet issuing from this nozzle is directed vertically upwards, i. directed to the baffle serving section 3.2.
  • the line 10 is connected via a control valve 12 to a source, not shown, which provides the CO2 gas under pressure.
  • the control valve 12 is controlled so that the gas pressure within the functional container 2 and in particular also within the functional spaces 2.1 and 2.2 corresponds to the CO2 concentration in the produced mixed product, namely u.a.
  • control valve 12 is u.a. taking into account measurement signals which provide pressure sensors 12.1 provided on the functional spaces 2.1 and 2.2 and / or provided temperature sensors 12.2, controlled such that the CO 2 pressure in the functional tank 2 is set so high that the desired CO 2 content is achieved in the mixed product, It should be remembered that adding the CO2-free syrup will reduce the CO2 content in the finished product.
  • the output or the pressure side of a pump 13 is connected in the flow direction of the CO2 gas to the control valve 12, which is connected to its input via a line 14 to the subspace 2.2.1.
  • the additional component serving as a mixing chamber and at the same time as a buffer memory functional space 2.3 is connected to a line 15, in the ua a, controlled by a suitable meter, for example by a flow meter 16 metering valve 17 and a pump for supplying the additional component under pressure are provided.
  • the flow meter 16 is, for example, a magneto-inductive flow meter (MID).
  • MID magneto-inductive flow meter
  • a density measurement is preferably integrated into the flowmeter 16, so that a dosage is possible which is, inter alia, independent of temperature and / or pressure or at least largely temperature and / or pressure independent.
  • the measuring device may also be, for example, a mass flow meter (MDM), through which, although not directly the volume flow can be measured, but by which the mass flow, the density and the temperature can be determined.
  • MDM mass flow meter
  • vent tank 19 vent lantern
  • the input of the pump 18 is connected via a vent tank 19 (vent lantern) to a source, not shown, for providing the additional component.
  • the vent tank 19 is vented via a vent valve assembly 20, so that this container is then completely filled with the additional component and thus in particular a buffering of the additional component in the vent tank 19 by a pressurized inert gas buffer, such as CO2 gas buffer is not required, which contributes significantly to the reduction of inert gas or CO2 gas consumption.
  • a pressurized inert gas buffer such as CO2 gas buffer
  • a product line 21 with pump 22 and flow meter 23 is connected, via the (product line) the device 1 with a filling machine, not shown, for filling bottles or other containers associated with the mixed product.
  • a return line 24 is connected to the product line 21, so regardless of the current, to the filling machine promoted and detected by the flow meter 23 amount of the mixed product, the pump 22 can be operated, for example, with a constant flow rate.
  • the flow meter 23 is, for example, a magneto-inductive flow meter (MID) and, of course, is also designed so that phases with stop / go operation and / or with a reduced power of the filler are detected without errors.
  • MID magneto-inductive flow meter
  • the operation of the device 1 can be described as follows:
  • the functional space 2.1 takes place, as already stated, the degassing and at the same time at least partially carbonizing the base component with, for example, 80-90% of the CO2 concentration of the mixed product.
  • the functional space 2.1 is charged with the required CO2 gas pressure for this purpose, specifically controlled by the control valve 12.
  • the base component Via the nozzles 7, the base component is sprayed upwards in the direction of the ceiling or in the direction of the upper boundary of the functional container 2 and then rains back onto the bottom of the functional space 2.1 formed by the partition wall 3.
  • a pressure degassing of the base component takes place by diffusion and at the same time also the carbonization of the base component. This is in equilibrium with the CO2-gas pressure in the function room 2.1 (CO2 pressure equal to saturation pressure).
  • the height of the functional space 2.1 is used twice, resulting in an extension of the residence time of the sprayed base component in the functional space 2.1 and also to an increase in the exchange surface between the base component and the CO2 gas in the function room 2.1 leads.
  • the foreign gas content in the base component is still about 10% or less after the treatment.
  • the degassed and carbonized base component builds up on the partition wall 3 and then passes through the openings partition wall section 3.1 in the functional space 2.2, in the local there below the partition wall section 3.1 arranged subspace 2.2.1.
  • this subspace 2.2.1 at least one control valve 9 controlling filling level sensor 9.1 is provided, for example, is formed by a min / max probe and controls the liquid level in the subspace 2.2.1 such that the level of this liquid level is constantly well below the upper edge of the overflow weir 6 is located.
  • the base component from the subspace 2.2.1 is constantly conveyed via the line 10 to the nozzle 11 arranged above the subspace 2.2, ie the subspace 2.2. 2 and thus the inlet to the functional space 2.3 are constantly overflowed with the base component.
  • the base component in the line 10 is mixed with the CO2 gas supplied via the control valve 12 in such a way that the base component discharged from the at least one nozzle 11 upwards into the functional space 2.2 and against the partition wall section 3.2 serving as the baffle wall CO2 levels far above CO2 saturation, for example a CO2 concentration of 210% of the CO2 saturation concentration.
  • the greater part of the CO2 gas which has passed into the functional space 2.1 via the dividing wall section 3.1 is used in the manner described above for degassing and simultaneous carbonization of the base components discharged from the nozzles 7.
  • a smaller proportion, for example 10% of this CO 2 gas is discharged via a valve arrangement provided on the upper side of the functional container 2 or the functional space 2.1 - which is also referred to in practice as Fremdgasabschnüffelung 25, namely for discharging the removed from the base component lack gases.
  • the functional space 2.3 is always completely filled with the mixed product, in such a way that the liquid from the functional space 2.3 through the passage 5 in the subspace 2.2.2 up to the upper edge of the overflow weir 6.
  • the additional component is supplied via the metering valve 17 controlled by the flow meter 16 continuously, in response to the functional space 2.3 removed and fed to the filler via the product line 21 amount of the mixed product, i. as a function of the measuring signal of the flow meter 23 and as a function of the required dosage of the additional component in the mixed product.
  • the dosage of the additional component is thus ultimately in response to the amount of mixed product taken from the device 1 via the product line 21.
  • serving as a mixing chamber and buffer memory function space 2.3 is constantly filled with the base component, and in fact that at least the greater part of emerging from the at least one nozzle 11 base component reaches the top of the subspace 2.2.2.
  • the base component that has reached the subspace 2.2.2 passes via the passage 5 into the functional space 2.3.
  • the base component discharged from the nozzle 11 flows back over the edge of the overflow weir 6 into the subspace 2.1.1.
  • a direct mixing of the recorded in the subspace 2.2.1 base component with the component in the subspace 2.2.2 or with the mixed product in the functional space 2.3 is avoided by the partition wall 4 with the overflow weir 6.
  • the pump 13 has a delivery rate V13 which is greater than the delivery rate V22 of the pump 22. Regardless of the respective operating state of the pump 22nd the delivery rate V13 of the pump 13 is in any case greater than the maximum delivery rate V22 of the pump 22. This ensures the constant overflow of the subspace 2.2.2 or overflow weir 6 and also ensures that the subspace 2.3 constantly has a constant level and the base component removed with the finished mix via the product line 21 is constantly replaced immediately.
  • the entire mixing plant is summarized, for example, in a single functional container 2.
  • the functional space 2.3 forms both the mixing container and the buffer memory.
  • the inventive type of control or regulation of the dosage is within the apparatus 1 for the correct function of the mixing plant - in contrast to the prior art - a continuous flow is not required, so that in contrast to known mixing plants, a large volume buffer tank to ensure a continuous operation of the mixing plant is not required even in a stop / go operation of the filling machine.
  • Be a nominal capacity of the device 1 of 30 m 3 / h is a volume of only 100 I for the serving as a buffer memory function space 2.3 fully sufficient.
  • a further advantage of the invention consists in the fact that the functional space 2.3 serving as mixing vessel and buffer storage is constantly filled to the brim by the described design and control of the device 1 and thus a superimposition of the mixed product in the functional space 2.3 with a CO2 cushion and resulting CO2. Losses and any unwanted Nachkarbonmaschine are avoided.
  • a quality measurement (Brix or CO2 measurement, etc.) in the return line 24.
  • the degassing of the base component takes place by means of a one-stage or multistage pressure degassing.
  • a vacuum degassing is possible.
  • only one additional component is added to the base component.
  • the device according to the invention can also be designed for admixing two or more than two, also different additional components to at least one base component, but all versions have in common that the dosage of at least one additional liquid component to the at least one base component depending on the removed Amount of the mixed product is done.
  • the mixed product after its preparation does not have to be stored in a buffer tank, since it is now possible by the application of the teaching according to the invention to produce the mixed product continuously with varying amount per unit time.
  • Another essential advantage of the method according to the invention is that it is no longer necessary to pressurize the mixed product after its production with a CO2 gas cushion, the pressure of which is higher than the CO2 saturation pressure in the mixed product. This is due to the now made possible, continuously producing the mixed product even with fluctuating amount per unit time, whereby a buffering in a buffer tank is unnecessary. By this procedure according to the invention, the consumption of CO2 gas is significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Apparatus For Making Beverages (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren gemäß Patentanspruch 1 und zwar zum Herstellen von Mischprodukten, die z.B. als Mischgetränke aus wenigstens einer flüssigen Grund- oder Basiskomponente und aus wenigstens einer der Basiskomponente dosiert beigemischten Zusatzkomponente bestehen, welche letztere eine flüssige Zusatzkomponente ist. Verfahren sowie Vorrichtungen zum Herstellen von Mischprodukten in Form von Mischgetränken und dabei insbesondere auch von karbonisierten bzw. kohlesäurehaltigen Mischgetränken sind bekannt.
    Generell ist es bei der Herstellung von Mischgetränken erforderlich, zunächst die flüssige Grund- oder Basiskomponente, die z.B. von Getränkewasser gebildet ist, zu entgasen und dann mit wenigstens einer vorzugsweise geschmacksbildenden Zusatzkomponente (z.B. Sirup) auf die erforderliche Endkonzentration auszumischen. Handelt es sich bei dem Mischgetränk um ein kohlensäurehaltiges Getränk, so erfolgen auch eine Karbonisierung und eine Pufferung des Mischgetränks mit CO2-Gas bis zum Abfüllen in Behälter oder Flaschen. Die Aufbereitung derartiger Mischprodukte erfolgt in aus mehreren Komponenten bestehenden Mischanlagen, die vielfach auch als Mixer bezeichnet werden.
    Die Entgasung der wenigstens einen Basiskomponente kann auf unterschiedliche Weise erfolgen, beispielsweise durch eine ein- oder mehrstufige Vakuumentgasung und/oder aber durch eine ein- oder mehrstufige Druckentgasung. Bei der Vakuumentgasung wird das Partialdruckgefälle, welches zur Entbindung von in der wenigstens einen Basiskomponente gelösten Fremdgasen notwendig ist, durch Vakuum oder Druckabsenkung erreicht. Bei der Druckentgasung wird die Entbindung der Fremdgase aus der jeweiligen Basiskomponente durch Diffusion in ein sauerstoff- und/oder stickstofffreies Trägergas, z.B. CO2-Gas erzielt.
  • Das Mischen der Basiskomponente mit der wenigstens einen Zusatzkomponente (z.B. Sirup) zu dem Fertig- oder Mischprodukt erfolgt bisher über eine Verhältnisregelung, d.h. durch Regelung der Volumenströme der Basiskomponente und der Zusatzkomponente auf jeweils einen Sollwert. Beide Sollwerte werden entsprechend der vorgewählten oder gewünschten Rezeptur ins Verhältnis gesetzt. Um die geforderten Dosiergenauigkeiten zu erreichen sind eine kontinuierliche Regelung der Volumenströme, insbesondere aber kontinuierliche Volumenströme durch den jeweiligen Mischraum erforderlich.
  • Die Karbonisierung oder Zudosierung des CO2-Gases erfolgt bei bekannten Verfahren und Mischanlagen ebenfalls über eine Verhältnisdosierung oder über eine Sprühkarbonisierung. Im letzten Fall wird das Mischprodukt in einen mit CO2-Gas unter Druck stehenden Behälter eingesprüht. Der Gasdruck ist entsprechend dem u.a. von der Dosierrate und der Temperaturabhängigen Sättigungsdruck eingestellt. Das CO2-Gas löst sich im Mischprodukt, bis ein Gleichgewicht zwischen dem Druck der CO2-Gas-Atmosphäre und dem CO2-Gas-Partialdruck oder -Sättigungsdruck des karbonisierten Mischgetränks erreicht ist.
  • Das mit der Mischanlage hergestellte karbonisierte Mischprodukt oder Mischgetränk wird in der Regel mit Hilfe eines Füllers in Behälter oder Flaschen abgefüllt. Letzterer ist ebenso wie die Mischanlage Bestandteil einer kompletten Abfülllinie. Durch Störungen im Umfeld und/oder in der Anlage und/oder durch Störungen des Vespackungsmaterials (z.B. Flaschenbruch usw.) kommt es häufig zu Stopps oder Minderleistung. Da aber für die Dosiergenauigkeit von Mischung und Karbonisierung ein kontinuierlicher Betrieb erforderlich ist, benötigen bekannte Anlagen zur Abkupplung oder Pufferung zwischen Mischanlage und Füller einen Pufferspeicher oder - tank, der bei bekannten Mischanlagen ein relativ großes Volumen, beispielsweise ein Volumen bis 1000 Liter aufweisen muss. Derartige Puffertanks werden in der Regel mit einem stark schwankenden Füllstand betrieben, sodass das Mischprodukt im Puffertank mit einem CO2-Gaspolster überlagert werden muss, dessen Druck höher ist als der CO2-Sättigungsdruck im Mischprodukt. Bei wechselndem Füllstand ist es erforderlich, das CO2-Gas in dem betreffenden Puffertank nachzuspeisen oder abzulassen, was zu einem hohen Verbrauch an CO2-Gas führt.
    Eine Vorrichtung und ein Verfahren zur Herstellung von Mischprodukten wurden durch die DE 1 213 212 vorgestellt. Dazu sieht diese Schrift vor, dass die Basiskomponente, beispielsweise Wasser und die Zusatzkomponente, beispielsweise Sirup, gleichzeitig einem Dosiergerät zugeführt werden, wobei die Komponenten in einem voreingestellten, genau abgemessenen Mengenverhältnis zueinander in ein Mischgefäß gelangen. Nachteilig an dieser Vorgehensweise ist, dass bekannte Dosiergeräte für die gleichzeitige Zuführung mehrerer Komponenten aufwändig und teuer sind, und darüber hinaus in der Regel lediglich über eine eingeschränkte Genauigkeit verfügen.
    Ebenfalls bekannt wurde ein System zum Ausmischen von Getränken nach der GB 2 404 271 A . Diese Schrift befasst sich mit einem System zum Ausmischen von Softdrinks unmittelbar vor der Abgabe dieser Saftdrinks an den Endverbraucher, welche diese Getränke dann in der Regel innerhalb kürzester Zeit verkonsumiert. Dazu sieht diese Schrift mehr im Detail vor, dass eine Basiskomponente, beispielsweise Wasser, und ein Sirup in einem festen Verhältnis zueinander genau dann gefördert und vermischt werden, wenn eine Portion des Mischgetränkes abgenommen oder verkauft werden soll. Nachteilig an dieser Vorgehensweise ist, dass sie sich nicht für Anlagen mit großer Mengenleistung [m3/h] eignet. Ebenfalls bekannt wurde ein Verfahren gemäß der EP 1 356 742 A1 . Diese Schrift betrifft eine Vorrichtung zur Herstellung von gekühlten Getränken oder von "Slush", d.h. einer Mischung aus einem Getränk und Crush-Speiseeis. Zur Herstellung des Getränks aus Wasser und einer Zusatzkomponente sieht diese Schrift mehr im Detail vor, dass die Zusatzkomponente dann zugegeben wird, wenn der Pegel innerhalb des vorgesehenen Mischbehälters einen bestimmten Pegelstand unterschreitet. Diese Vorgehensweise hat u.a. die Nachteile, dass das vorgestellte Verfahren nicht für große Mengenleistungen und/oder eine kontinuierliche Arbeitsweise geeignet ist.
  • Eine weiteres, durch die DE 30 24 493 A1 vorgestelltes Verfahren weist im hier interessierenden Rahmen dieselbe Vorgehensweise und somit auch dieselben Nachteile auf.
  • Ebenfalls bekannt wurde ein Verfahren entsprechend der DE 32 24 706 A1 . Diese Schrift sieht vor, dass das fertig ausgemischte Mischprodukt einem Vorratsbehälter zugeführt wird und aus diesem zu einem späteren Zeitpunkt wieder entnommen wird. Diese Vorgehensweise erfordert zwingend einen Mischbehälter, was hohe Kosten verursacht.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von Mischprodukten aus wenigstens einer Basiskomponente und aus wenigstens einer Zusatzkomponente aufzuzeigen, welches unter Einhaltung einer hohen Dosiergenauigkeit mit einem reduzierten Steuerungsaufwand und/oder maschinentechnischen Aufwand durchführbar ist. Zur Lösung dieser Aufgabe ist ein Verfahren entsprechend dem Patentanspruch 1 ausgebildet.
  • Das dosierte Zumischen der wenigstens einen vorzugsweise flüssigen Zusatzkomponente zu der wenigstens einen flüssigen Basiskomponente im Mischraum erfolgt in der Weise, dass die Zugabe bzw. Dosierung der wenigstens einen Zusatzkomponente in Abhängigkeit von der Menge des Mischproduktes gesteuert oder geregelt wird, die (Menge) dem Mischraum entnommen wird. Hierbei sind dann bevorzugt Mittel für ein höhenniveau- oder volumengesteuertes Nachführen oder Nachfüllen der wenigstens einen Basiskomponente an den Mischraum vorgesehen, und zwar derart, dass durch dieses Nachführen oder Nachfüllen der wenigstens einen Basiskomponente das von der wenigstens einen Basiskomponente und der wenigstens einen Zusatzkomponente gebildete Gesamtvolumen im Mischraum konstant ist.
    Die dosierte Zugabe der wenigstens einen Zusatzkomponente in den Mischraum erfolgt kontinuierlich. Der Mischraum bildet zugleich den Pufferspeicher, aus dem das Mischprodukt dem in der Gesamtanlagen nachfolgenden Füller zugeführt wird; dadurch können der Mischraum und damit auch der von diesem Mischraum gebildete Pufferspeicher oder Puffertank mit reduziertem Volumen ausgeführt werden, beispielsweise mit einem Volumen von lediglich 100 Litern bei einer Nennleistung der Vorrichtung bzw. Mischanlage von 30 m3/h. Allein schon durch das reduzierte Volumen des auch als Puffertank dienenden Mischraumes ergibt sich eine erhebliche Reduzierung der Baugröße einer Mischanlage bzw. Vorrichtung zum Herstellen von Mischprodukten. Somit sind wenigstens zwei Funktionen herkömmlicher Mischanlagen in einem gemeinsamen Funktionsbehälter 2 zusammengefasst, beispielsweise die Funktionen des Entgasens und des anschließenden Karbonisierens der wenigstens einen Basiskomponente. Der Funktionsbehälter 2 bzw. ein in diesem gebildeter Funktionsraum 2.3 dient dann erfindungsgemäss als kombinierter Mischraum und Puffertank.
  • Das höhenniveau- oder volumengesteuerte Nachführen der wenigstens einen Basiskomponente in den Mischraum erfolgt im einfachsten Fall dadurch, dass der Mischraum an wenigstens einem Mischraumeinlass für die wenigstens eine Basiskomponente ein füllhöhen-bestimmendes Element aufweist, beispielsweise in Form eines Überlaufs, und dass Mittel vorgesehen sind, um den Mischraumeinlass während des Betriebes der Mischanlage oder Vorrichtung ständig mit der wenigstens einen Basiskomponente zu überströmen.
  • Die Erfindung wird im Folgenden anhand der Figur, die in einer schematischen Funktionsdarstellung eine Mischanlage gemäß der Erfindung zeigt, näher erläutert.
    Die in der Figur allgemein mit 1 bezeichnete Mischanlage oder Vorrichtung dient zum Herstellen eines karbonisierten, d.h. mit Kohlensäure oder CO2-Gas versetzten flüssigen Mischproduktes, Mischgetränks durch Mischen einer flüssigen Haupt- oder Basiskomponente, beispielsweise Wasser, mit wenigstens einer flüssigen Zusatzkomponente, beispielsweise mit einer geschmacksgebenden Zusatzkomponente, z.B. Sirup.
    Bei der Vorrichtung 1 sind in dem einzigen Funktionsbehälter 2 sämtliche Funktionen und Komponenten zusammengefasst, die eine Mischanlage üblicherweise aufweist, nämlich die Entgasung bzw. Befreiung der Basiskomponente (z.B. Wasser) von unerwünschten, in dieser Basiskomponente gelösten Frerndgasbestandteilen, die dosierte Zugabe von CO2-Gas an die Basiskomponente, beispielsweise mit einem dem CO2-Sättigungsdruck des Mischproduktes entsprechenden Menge, das dosierte Zuführen der wenigstens einen Zusatzkomponente sowie die Funktion des Pufferspeichers.
  • Hierfür ist der Innenraum des Funktionsbehälters 2 durch zwei horizontale oder im Wesentlichen horizontale Trennwände 3 und 4 in drei Funktionsräume 2.1 - 23 unterteilt, die in Richtung der vertikalen Achse des Funktionsbehälters 2 aneinander anschließen und von denen in der nachstehend noch näher beschriebenen Weise der oberste Funktionsraum 2.1 im Wesentlichen zur Druckentgasung und zur zumindest teilweisen Karbonisierung der Basiskomponente (z.B. Wasser), der unterste Funktionsraum 2.3 im Wesentlichen als Mischraum zum Mischen der Basiskomponente mit der wenigstens einen Zusatzkomponente sowie zugleich auch als Pufferspeicher und der zwischen den Funktionsräumen 2.1 und 2.3 angeordnete Funktionsraum 2.2 u.a. zur vollständigen Karbonisierung der Basiskomponente auf die CO2-Entkonzentration sowie auch zum gesteuerten Zuführen der Basiskomponente an den Funktionsraum 2.3 dienen.
  • Die Trennwand 4 ist bei der dargestellten Ausführungsform mit einem mittigen Durchlass 5 versehen, der die Funktionsräume 2.2 und 2.3 mit einander verbindet und bei der dargestellten Ausführungsform nach Art eines in den Funktionsraum 2.3 hineinreichenden und Tauchrohres ausgeführt ist. Im Bereich des Funktionsraumes 2.2 ist der Durchlass 5 von einem ringförmigen Überlaufwehr 6 umschlossen, sodass an der Unterseite des Funktionsraumes 2.2, d.h. an der Trennwand 4 zwei Teilräume gebildet sind, und zwar ein äußere ringförmiger Teilraum 2.2.1 zwischen der Innenfläche der Wandung des Funktionsbehälters 2 und dem Überlaufwehr 6 und ein innerer Teilraum 2.2.2, der über den Durchlass 5 mit dem Funktionsraum 2.3 in Verbindung steht.
  • Im Funktionsraum 2.1 sind mit Abstand sowohl von der diesen Funktionsraum 2.1 unten begrenzenden Trennwand 3 als auch mit Abstand von der Oberseite des Funktionsbehälters 2 mehrere Düsen 7 angeordnet, die über eine Leitung 8 mit Steuerventil 9 an eine nicht dargestellte Quelle zum Bereitstellen der flüssigen Basiskomponente angeschlossen sind. Die Düsen 7 sind so angeordnet und ausgebildet, dass bei geöffnetem Steuerventil 9 die Basiskomponente aus den Düsen 7 fein versprüht in vertikaler Richtung nach oben austritt und dann auf die Trennwand 3 zurückfällt, die bei der dargestellten Ausführungsform am Randbereich 3.1, d.h. in der Nähe der Wandung des Funktionsbehälters 2 als Lochblech oder -boden mit einer Vielzahl von Öffnungen und in ihrem mittleren Bereich 3.2 als geschlossene Wandung bzw. als geschlossener Boden ausgebildet ist.
  • In den Funktionsraum 2.2 mündet eine Leitung 10, die im Inneren des Funktionsraumes 2.2 mit wenigstens einer Düse 11 versehen ist, welche sich mit Abstand Oberhalb des Überlaufwehres 6 und oberhalb des Teilraumes 2.2.2 sowie mit Abstand unterhalb des als Prallblech ausgebildeten Abschnittes 3.2 der Trennwand 3 befindet. Die Düse 11 ist so ausgebildet und angeordnet, dass der aus dieser Düse austretenden Düsenstrahl in vertikaler Richtung nach oben, d.h. auf den als Prallwand dienenden Abschnitt 3.2 gerichtet ist. Die Leitung 10 ist über ein Steuerventil 12 mit einer nicht dargestellten Quelle verbunden, die das CO2-Gas unter Druck bereitstellt. Das Steuerventil 12 wird so gesteuert, dass der Gasdruck innerhalb des Funktionsbehälters 2 und dabei insbesondere auch innerhalb der Funktionsräume 2.1 und 2.2 der CO2-Konzentration im hergestellten Mischprodukt entspricht und zwar u.a. auch unter Berücksichtigung weiterer Parameter, wie z.B. der Temperatur des Mischproduktes, Dosierung oder Rezeptur des Mischproduktes usw. Bevorzugt wird das Steuerventil 12 u.a. unter Berücksichtigung von Messsignalen, die an den Funktionsräumen 2.1 und 2.2 vorgesehene Drucksensoren 12.1 und/oder vorgesehene Temperatursensoren 12.2 liefern, so gesteuert, dass der CO2-Druck im Funktionsbehälter 2 so hoch eingestellt ist, dass der gewünschte CO2-Gehalt im Mischprodukt erreicht wird, wobei zu berücksichtigen ist, dass durch das hinzufügen des CO2-freien Sirups eine Reduzierung des CO2-Gehaltes im Fertigprodukt erfolgt.
  • An die Leitung 10 ist in Strömungsrichtung des CO2-Gases auf das Steuerventil 12 folgend der Ausgang bzw. die Druckseite einer Pumpe 13 angeschlossen, die mit ihrem Eingang über eine Leitung 14 mit dem Teilraum 2.2.1 verbunden ist.
  • Zur dosierten Zugabe der Zusatzkomponente ist der als Mischerraum und zugleich auch als Pufferspeicher dienende Funktionsraum 2.3 an eine Leitung 15 angeschlossen, in der u.a. ein, von einem geeigneten Messgerät, beispielsweise von einem Durchflussmesser 16 gesteuertes Dosierventil 17 und eine Pumpe zum Zuführen der Zusatzkomponente unter Druck vorgesehen sind. Der Durchflussmesser 16 ist beispielsweise ein magnetisch induktiver Durchflussmesser (MID). Zur Vereinfachung der Dosierung bzw. der Steuerung des Dosierventils 17 ist in den Durchflussmesser 16 bevorzugt eine Dichte-Messung integriert, sodass hierdurch eine Dosierung möglich ist, die u.a. temperatur- und/oder druckunabhängig oder zumindest weitestgehend temperatur- und/oder druckunabhängig ist.
    Bei dem Messgerät kann es sich aber beispielsweise auch um einen Massedurchflussmesser (MDM) handeln, durch welchen zwar nicht direkt der Volumenstrom gemessen werden kann, doch durch welchen der Massedurchfluss, die Dichte und auch die Temperatur ermittelt werden können.
  • Der Eingang der Pumpe 18 ist über einen Entlüftungsbehälter 19 (Entlüftungslaterne) mit einer nicht dargestellten Quelle zur Bereitstellung der Zusatzkomponente verbunden. Am Beginn einer jeden Produktionsphase wird der Entlüftungsbehälter 19 über eine Entlüftungsventilanordnung 20 entlüftet, sodass dieser Behälter dann vollständig mit der Zusatzkomponente gefüllt ist und damit insbesondere auch eine Pufferung der Zusatzkomponente in dem Entlüftungsbehälter 19 durch ein unter Druck stehendes Inertgas-Gaspuffer, beispielsweise CO2-Gaspuffer nicht erforderlich ist, was wesentlich zur Reduzierung des Inertgas- oder CO2-Gasverbrauchs beiträgt.
  • An den Boden des Funktionsraumes 2.3, in welchem auch wenigstens ein nicht dargestelltes Mischelement vorgesehen ist, ist eine Produktleitung 21 mit Pumpe 22 und Durchflussmesser 23 angeschlossen, über die (Produktleitung) die Vorrichtung 1 mit einer nicht dargestellten Füllmaschine zum Füllen von Flaschen oder anderen Behältern mit dem Mischprodukt verbunden ist. Zwischen dem Ausgang der Pumpe 22 und dem Durchflussmesser 23 ist an die Produktleitung 21 eine Rückführleitung 24 angeschlossen, sodass unabhängig von der jeweils aktuellen, an die Füllmaschine geförderten und von dem Durchflussmesser 23 erfassten Menge des Mischproduktes die Pumpe 22 beispielsweise mit konstanter Förderleistung betrieben werden kann. Der Durchflussmesser 23 ist beispielsweise ein magnetisch induktiver Durchflussmesser (MID) und ist selbstverständlich auch so ausgebildet, dass mit ihm Phasen mit Stop/Go-Betrieb und/oder mit einer Minderleistung des Füllers fehlerfrei erfasst werden.
  • Die Arbeitsweise der Vorrichtung 1 lässt sich wie folgt beschreiben:
  • In dem Funktionsraum 2.1 erfolgt, wie bereits ausgeführt, das Entgasen sowie gleichzeitig das zumindest teilweise Karbonisieren der Basiskomponente mit beispielsweise 80 - 90 % der CO2-Entkonzentration des Mischproduktes. Ebenso wie der restliche Innenraum des Funktionsbehälters 2 ist hierfür auch der Funktionsraum 2.1 mit dem erforderlichen CO2-Gas-Druck beaufschlagt, und zwar gesteuert durch das Steuerventil 12.
  • Über die Düsen 7 wird die Basiskomponente nach oben in Richtung zur Decke bzw. in Richtung zur oberen Begrenzung des Funktionsbehälters 2 hin ausgesprüht und regnet dann zurück auf den von der Trennwand 3 gebildeten Boden des Funktionsraumes 2.1. Hierbei erfolgt eine Druckentgasung der Basiskomponente durch Diffusion sowie zugleich auch die Karbonisierung der Basiskomponente. Diese steht dabei im Gleichgewicht mit dem CO2-Gas-Druck im Funktionsraum 2.1 (CO2-Druck gleich Sättigungsdruck). Durch das Versprühen der Basiskomponente aus den Düsen 7 nach oben und durch das Zuruckregnen der versprühten Basiskomponente von oben nach unten wird die Höhe des Funktionsraumes 2.1 doppelt genutzt, was zu einer Verlängerung der Verweilzeit der versprühten Basiskomponente im Funktionsraum 2.1 und auch zu einer Vergrößerung der Austauschoberfläche zwischen der Basiskomponente und dem CO2-Gas im Funktionsraum 2.1 führt. Der Fremdgasanteil in der Basiskomponente beträgt nach der Behandlung noch etwa 10 % oder weniger.
  • Die entgaste und karbonisierte Basiskomponente staut sich auf der Trennwand 3 auf und gelangt dann durch die Öffnungen Trennwandabschnitts 3.1 in den Funktionsraum 2.2, und zwar in den dortigen unterhalb des Trennwandabschnitts 3.1 angeordneten Teilraum 2.2.1. In diesem Teilraum 2.2.1 ist wenigstens ein das Steuerventil 9 steuernder Füllhöhensensor 9.1 vorgesehen, der beispielsweise von einer Min/Max-Sonde gebildet ist und der den Flüssigkeitsspiegel im Teilraum 2.2.1 derart steuert, dass das Niveau dieses Flüssigkeitsspiegels sich ständig deutlich unterhalb des oberen Randes des Überlaufwehres 6 befindet.
  • Mit der Pumpe 13, die vorzugsweise während des Betriebes der Vorrichtung 1 mit konstanter Förderleistung V13 betrieben wird, wird ständig die Basiskomponente aus dem Teilraum 2.2.1 über die Leitung 10 an die über dem Teilraum 2.2 angeordnete Düse 11 gefördert, d.h. der Teilraum 2.2.2 und damit der Einlass zu dem Funktionsraum 2.3 werden ständig mit der Basiskomponente überströmt. Gleichzeitig wird die Basiskomponente in der Leitung 10 mit dem über das Steuerventil 12 zugeführten CO2-Gas vermischt, und zwar in der Weise, dass die aus der wenigstens einen Düse 11 nach oben in den Funktionsraum 2.2 und gegen den als Prallwand dienenden Trennwandabschnitt 3.2 ausgebrachte Basiskomponente einen weit über der CO2-Sättigung liegenden CO2-Anteile aufweist, beispielsweise eine CO2-Konzentration von 210 % der CO2-Sättigungskanzentration. Nach dem Austritt der Basiskomponente aus der wenigstens einen Düse 11 wird innerhalb des Funktionsraumes 2.2 überschüssiges CO2-Gas freigesetzt. Dieses freigesetzte bzw. durch "Flashen" frei werdende CO2-Gas des Funktionsraumes 2.2 strömt im Gegenstrom durch den als Lochboden ausgebildeten Trennwandabschnitt 3.1 in den Funktionsraum 2.1. Mit dem fremdgasfreien CO2-Gas-Strom wird also die durch den Trennwandabschnitt 3.1 hindurchtretende und im freien Fall nach unten in den Teilraum 2.2.1 fließende Basiskomponente durchperlt, was u.a. zu einer vollständigen Karbonisierung der Basiskomponente führt, sodass diese dann die gewünschte CO2-Entkonzentration, beispielsweise in Form einer 100%igen CO2-Sättigung aufweist. Weiterhin dient das im Funktionsraum 2.2 durch "Flashen" freigesetzte und den Trennwandabschnitt 3.1 durchströmende CO2-Gas selbstverständlich auch dazu, den Funktionsraum 2.1 mit dem erforderlichen CO2-Gas-Druck zu beaufschlagen.
  • Hierbei wird der größere Teil des CO2-Gases, welches über den Trennwandabschnitt 3.1 in den Funktionsraum 2.1 gelangt ist, in der vorstehend beschriebenen Weise zur Entgasung und gleichzeitigen Karbonisierung der aus den Düsen 7 ausgebrachten Basiskomponenten verwendet. Ein kleinerer Anteil, beispielsweise 10% dieses CO2-Gases wird über eine an der Oberseite des Funktionsbehälters 2 bzw. des Funktionsraumes 2.1 vorgesehene Ventilanordnung - welche in der Praxis auch als Fremdgasabschnüffelung 25 bezeichnet wird - abgelassen, und zwar zum Abführen der aus der Basiskomponente entfernten Fehlgase.
  • Während des gesamten Betriebes der Vorrichtung 1 ist der Funktionsraum 2.3 immer vollständig mit dem Mischprodukt gefüllt, und zwar derart, dass die Flüssigkeit aus dem Funktionsraum 2.3 durch den Durchlass 5 in den Teilraum 2.2.2 bis an den oberen Rand des Überlaufwehres 6 ansteht. Die Zusatzkomponente wird über das Dosierventil 17 gesteuert durch den Durchflussmesser 16 kontinuierlich zugeführt, und zwar in Abhängigkeit von der dem Funktionsraum 2.3 entnommenen und dem Füller über die Produktleitung 21 zugeführten Menge des Mischproduktes, d.h. in Abhängigkeit von dem Messsignal des Durchflussmessers 23 und in Abhängigkeit von der erforderlichen Dosierung der Zusatzkomponente im Mischprodukt.
  • Bei gleichbleibender Rezeptur erfolgt die Dosierung der Zusatzkomponente somit letztlich in Abhängig von der der Vorrichtung 1 über die Produktleitung 21 entnommenen Menge an Mischprodukt.
    Dabei wird der als Mischraum und Pufferspeicher dienende Funktionsraum 2.3 ständig mit der Basiskomponente aufgefüllt, und zwar dadurch, dass zumindest der größere Teil der aus der wenigstens einen Düse 11 austretenden Basiskomponente auf die Oberseite des Teilraumes 2.2.2 gelangt.
  • Ist der Flüssigkeitsspiegel im Teilraum 2.2.2 unter das Niveau des oberen Randes des Überlaufwehres 6 abgesunken und damit ein Nachfüllen des Funktionsraumes 2.3 mit der Basiskomponente notwendig, gelangt die in den Teilraum 2.2.2 gelangte Basiskomponente über den Durchlass 5 in den Funktionsraum 2.3.
  • Ist hingegen der Teilraum 2.2.2 vollständig mit Basiskomponente gefüllt, so strömt die aus der Düse 11 ausgebrachte Basiskomponente über den Rand des Überlaufwehres 6 in den Teilraum 2.1.1 zurück. Ein direktes Vermischen der in den Teilraum 2.2.1 aufgenommenen Basiskomponente mit der Komponente im Teilraum 2.2.2 oder mit dem Mischprodukt im Funktionsraum 2.3 ist durch die Trennwand 4 mit dem Überlaufwehr 6 vermieden.
  • Im normalen Betriebszustand jedenfalls wird ein Teil der in den Teilraum 2.2.2 gelangenden Basiskomponente durch den Durchlass 5 in den Funktionsraum 2.3 gelangen, wobei der andere Teil der aus dem Teilraum 2.2.2 in den Teilraum 2.2.1 überströmen wird.
  • Um diese Dosierung der Zusatzkomponente allein durch die Steuerung der Zusatzkomponente in Abhängigkeit von der entnommenen Menge des fertigen Mischproduktes zu ermöglichen, weist die Pumpe 13 eine Förderleistung V13 auf, die größer ist als die Förderleistung V22 der Pumpe 22. Unabhängig vom jeweiligen Betriebszustand der Pumpe 22 ist die Förderleistung V13 der Pumpe 13 auf jeden Fall größer als die maximale Förderleistung V22 der Pumpe 22. Hierdurch ist das ständige Überströmen des Teilraumes 2.2.2 bzw. des Überlaufwehres 6 gewährleistet und auch sichergestellt, dass der Teilraum 2.3 ständig einen konstanten Füllstand aufweist und die mit dem fertigen Mischgut über die Produktleitung 21 entnommene Basiskomponente ständig sofort wieder ersetzt wird.
  • Die gesamte Mischanlage ist beispielsweise in einem einzigen Funktionsbehälter 2 zusammengefasst. Der Funktionsraum 2.3 bildet sowohl den Mischbehälter als auch den Pufferspeicher.
  • Durch die erfindungsgemäße Art der Steuerung oder Regelung der Dosierung ist innerhalb der Vorrichtung 1 für die fehlerfreie Funktion der Mischanlage - im Gegensatz zum Stand der Technik - ein kontinuierlicher Volumenstrom nicht erforderlich, sodass im Gegensatz zu bekannten Mischanlagen ein großvolumiger Puffertank zur Sicherstellung eines kontinuierlichen Betriebes der Mischanlage auch bei einem Stop/Go-Betrieb der Füllmaschine nicht erforderlich ist.
  • Be einer Nennleistung der Vorrichtung 1 von 30 m3/h ist ein Volumen von nur 100 I für den auch als Pufferspeicher dienenden Funktionsraum 2.3 voll ausreichend.
    Ein weiterer Vorteil der Erfindung besteht auch darin, dass durch die beschriebene Ausbildung und Steuerung der Vorrichtung 1 der als Mischbehälter und Pufferspeicher dienende Funktionsraum 2.3 ständig randvoll gefüllt ist und somit eine Überlagerung des Mischprodukts im Funktionsraum 2.3 mit einem CO2-Polster und hieraus resultierende CO2-Verluste und eine eventuell unerwünschte Nachkarbonisierung vermieden sind. Weiterhin besteht die Möglichkeit einer Nachdosierung des im Funktionsraum 2.3 aufgenommenen Mischproduktes durch zusätzliches Einbringen wenigstens einer Zusatzkomponente in diesen Funktionsraum 2.3, um z.B. Fehldosierungen, beispielsweise bedingt durch eine fehlerhafte Konzentration der Zusatzkomponente usw. auszugleichen.
  • Die Erfindung wurde voranstehend an einem Ausführungsbeispiel beschrieben. Es versteht sich, dass zahlreiche Änderungen sowie Abwandlungen möglich sind, ohne dass dadurch der der Erfindung zugrunde liegende Erfindungsgedanke verlassen wird.
  • So ist es beispielsweise möglich, in der Rückführleitung 24 eine Qualitätsmessung (Brix- oder CO2-Messung usw.) zu integrieren. Weiterhin ist es möglich, die Entgasung und Karbonisierung der Basiskomponente in mehr als einer Stufe durchzuführen, beispielsweise auch in der Form, dass in dem gemeinsamen Funktionsbehälter 2 mehrere dem Funktionsraum 2.1 entsprechende Funktionsräume vorgesehen sind, und zwar hinsichtlich ihrer Funktion kaskadenartig aufeinander folgend derart, dass die in einem ersten Funktionsraum entgaste und zumindest teilkarbonisierte Basiskomponente in einem weiteren Funktionsraum nochmals entgast und nachkarbonisiert wird usw. Weiterhin ist es selbstverständlich auch möglich, zumindest die Entgasung, ggf. auch die Entgasung und Vorkarbonisierung der Basiskomponente in einer zusätzlichen Anlage vorzunehmen.
  • Vorstehend wurde davon ausgegangen, dass die Entgasung der Basiskomponente durch eine ein- oder mehrstufige Druckentgasung erfolgt. Selbstverständlich ist bei der erfindungsgemäßen Vorrichtung oder Mischanlage auch eine Vakuumentgasung möglich.
    Vorstehend wurde weiterhin davon ausgegangen, dass der Basiskomponente nur eine Zusatzkomponente beigemischt wird. Selbstverständlich kann die erfindungsgemäße Vorrichtung auch zur Beimischung von zwei oder mehr als zwei, auch unterschiedlichen Zusatzkomponenten zu wenigstens einer Basiskomponente ausgebildet sein, wobei aber allen Ausführungen gemeinsam ist, dass die Dosierung der wenigstens einen flüssigen Zusatzkomponente zu der wenigstens einen Basiskomponente in Abhängigkeit von der entnommenen Menge des Mischproduktes erfolgt.
  • Es stellt einen wesentlichen Vorteil des erfindungsgemäßen Verfahrens dar, dass das Mischprodukt nach seiner Herstellung nicht in einem Puffertank zwischen gespeichert werden muss, da es durch die Anwendung der Erfindungsgemäßen Lehre nunmehr ermöglicht wird, das Mischprodukt kontinuierlich auch mit schwankender Menge je Zeiteinheit herzustellen.
    Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass es nunmehr nicht mehr notwendig ist, das Mischprodukt nach dessen Herstellung mit einem CO2-Gaspolster zu beaufschlagen, dessen Druck höher ist als der CO2-Sättigungsdruck im Mischprodukt. Dieses ist bedingt durch die nunmehr ermöglichte, kontinuierlich Herstellung des Mischproduktes auch mit schwankender Menge je Zeiteinheit, wodurch ein Puffern in einem Puffertank erübrigt wird. Durch diese erfindungsgemäße Vorgehensweise ergibt wird der Verbrauch an CO2-Gas erheblich gesenkt.
  • Bezugszeichenliste
  • 1
    Mischanlagen oder Vorrichtung
    2
    Funktionsbahälter
    2.1 - 2.3
    Funktionsraum
    2.2.1, 2.2.2
    Teilraum
    3, 4
    Trennwand
    3.1, 3.2
    Trennwandabschnitt
    5
    Durchlass
    6
    Überlaufwehr
    7
    Düse
    8
    Leitung
    9
    Steuerventil
    9.1
    Füllstandsensor
    10
    Leitung
    11
    Düse
    12
    Steuerventil
    12.1
    Drucksensor
    12.2
    Temperatursensor
    13
    Pumpe
    14
    Leitung
    15
    Leitung
    16
    Durchflussmesser
    17
    Dosierventil
    18
    Pumpe
    19
    Entlüftungsbehälter oder -laterne
    20
    Entlüftungseinrichtung
    21
    Produktleitung
    22
    Pumpe
    23
    Durchflussmesser
    24
    Druckleitung
    25
    Fremdgasabschnüffelung

Claims (4)

  1. Verfahren zum kontinuierlichen Herstellen eines flüssigen Mischproduktes aus wenigstens einer flüssigen Basiskomponente und wenigstens einer flüssigen Zusatzkomponente, die der Basiskomponente dosiert beigemischt wird, mittels einer Mischanlage, wobei das Mischprodukt über eine, an den Boden des Funktionsraumes (2.3), in welchem wenigstens ein Mischelement vorgesehen ist, angeschlossene Produktleitung (21) mit einer Pumpe (22) und einem Durchflussmesser (23) einer Füllmaschine zum Füllen von Flaschen oder anderer Behälter mit diesem Mischprodukt zugeführt wird, wobei der Funktionsraum (2.3) als Mischraum und zugleich auch als Pufferspeicher dient, wobei die Füllmaschine und die Mischanlage Bestandteil einer kompletten Abfülllinie sind, wobei die dosierte Zugabe der wenigstens einen flüssigen Zusatzkomponente in die Basiskomponente in Abhängigkeit von der dem Mischraum des Funktionsraumes (2.3) entnommenen Menge des Mischproduktes erfolgt, und wobei die dosierte Zugabe der wenigstens einen flüssigen Zusatzkomponente in den Mischraum des Funktionsraumes (2.3) kontinuierlich erfolgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Basiskomponente dem Mischraum des Funktionsraumes (2.3) volumen- und/oder höhenniveaugesteuert derart zugeführt wird, dass das von der Basiskomponente und der wenigstens einen Zusatzkomponente eingenommene Volumen des Mischraumes des Funktionsraumes (2.3) konstant ist und/oder die in den Mischraum des Funktionsraumes (2.3) nachgefüllte Menge der wenigstens einen Basiskomponente gleich dem Anteil der wenigstens einen Basiskomponente in dem, dem Mischraum des Funktionsraumes (2.3) entnommenen Mischprodukt ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nachfüllen der wenigstens einen Basiskomponente über einen, einen Überlauf (6) aufweisenden Mischraumeinlass (2.2.2, 5) des Mischraumes des Funktionsraumes (2.3) erfolgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mischprodukt nach seiner Herstellung nicht mit einem CO2-Gaspolster beaufschlagt wird, dessen Druck höher ist als der CO2-Sättigungsdruck im Mischprodukt.
EP10754688.9A 2009-11-24 2010-09-07 Verfahren zum herstellen eines mischproduktes, insbesondere eines mischgetränkes Active EP2504084B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL10754688T PL2504084T3 (pl) 2009-11-24 2010-09-07 Sposób wytwarzania produktu mieszanego, zwłaszcza napoju mieszanego
SI201031530T SI2504084T1 (sl) 2009-11-24 2010-09-07 Postopek za izdelavo mešanega izdelka zlasti pijače

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009054313A DE102009054313A1 (de) 2009-11-24 2009-11-24 Verfahren sowie Vorrichtung zum Herstellen eines Mischproduktes, insbesondere Mischgetränkes
PCT/EP2010/005477 WO2011063867A2 (de) 2009-11-24 2010-09-07 Verfahren sowie vorrichtung zum herstellen eines mischproduktes, insbesondere mischgetränkes

Publications (2)

Publication Number Publication Date
EP2504084A2 EP2504084A2 (de) 2012-10-03
EP2504084B1 true EP2504084B1 (de) 2017-08-23

Family

ID=43216220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10754688.9A Active EP2504084B1 (de) 2009-11-24 2010-09-07 Verfahren zum herstellen eines mischproduktes, insbesondere eines mischgetränkes

Country Status (6)

Country Link
US (1) US8968812B2 (de)
EP (1) EP2504084B1 (de)
DE (1) DE102009054313A1 (de)
PL (1) PL2504084T3 (de)
SI (1) SI2504084T1 (de)
WO (1) WO2011063867A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2537793T3 (en) 2011-06-22 2017-09-11 Skånemejerier Ab New method of filling and apparatus therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024493A1 (de) * 1980-06-28 1982-02-04 Füllpack Dipl.Brauerei-Ing. Dieter Wieland, 4000 Düsseldorf Verfahren zur regelung der dosierung der komponenten bei der einleitung eines gases und/oder mindestens einer fluessigkeit in eine fluessigkeit, insbesondere zur herstellung eines getraenkes sowie einrichtung zur durchfuehrung des verfahrens
DE3224706A1 (de) * 1982-07-02 1984-01-05 Füllpack Dipl.Brauerei-Ing. Dieter Wieland, 4000 Düsseldorf Verfahren zur herstellung alkoholfreier, insbesondere kohlensaeurehaltiger erfrischungsgetraenke, sowie einrichtung zur durchfuehrung des verfahrens
US5624182A (en) * 1989-08-02 1997-04-29 Stewart & Stevenson Services, Inc. Automatic cementing system with improved density control
EP1356742A1 (de) * 2002-04-24 2003-10-29 ALI S.p.A. Divisione GBG Automatische Fülleinrichtung für Mischbehälter eines Spenders für Eis-wassermischungen oder gekühlte Getränke
US7250464B2 (en) * 2000-02-18 2007-07-31 Rohm And Haas Company Distributed paint manufacturing system
US20090236007A1 (en) * 2006-09-27 2009-09-24 Ludwig Clusserath Method and apparatus for filling beverage bottles, in a beverage bottling plant, with a beverage material comprising a carbonated water component and a liquid flavoring component, and method and apparatus for filling containers, in a container filling plant, with a material comprising a first ingredient and a second ingredient

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1373817A (en) * 1918-07-24 1921-04-05 Humphrey David Apparatus for bottling carbonated liquids
US2747782A (en) * 1951-06-09 1956-05-29 Jack J Booth Machine for vending beverage in cups
US2698701A (en) * 1951-11-05 1955-01-04 Dole Valve Co Constant flow beverage dispenser
DE1213212B (de) * 1960-06-09 1966-03-24 Enzinger Union Werke Ag Verfahren und Vorrichtung zum kontinuierlichen Herstellen kohlensaeurehaltiger Getraenke
US4076145A (en) * 1976-08-09 1978-02-28 The Cornelius Company Method and apparatus for dispensing a beverage
DE9115831U1 (de) * 1991-12-17 1992-03-19 Mette, Manfred, Dr.-Ing., 2000 Hamburg Behälter für Entlüftungs- und Karbonisierungsanlagen
US5564601A (en) * 1994-12-05 1996-10-15 Cleland; Robert K. Beverage dispensing machine with improved liquid chiller
IL119044A (en) * 1996-08-08 2004-09-27 Shemuel Amitai Water carbonating device
US6374845B1 (en) * 1999-05-03 2002-04-23 Texas Instruments Incorporated System and method for sensing and controlling beverage quality
GB0314651D0 (en) * 2003-06-24 2003-07-30 Britvic Soft Drinks Ltd Beverage dispense
US20100031825A1 (en) * 2008-08-05 2010-02-11 Kemp David M Blending System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024493A1 (de) * 1980-06-28 1982-02-04 Füllpack Dipl.Brauerei-Ing. Dieter Wieland, 4000 Düsseldorf Verfahren zur regelung der dosierung der komponenten bei der einleitung eines gases und/oder mindestens einer fluessigkeit in eine fluessigkeit, insbesondere zur herstellung eines getraenkes sowie einrichtung zur durchfuehrung des verfahrens
DE3224706A1 (de) * 1982-07-02 1984-01-05 Füllpack Dipl.Brauerei-Ing. Dieter Wieland, 4000 Düsseldorf Verfahren zur herstellung alkoholfreier, insbesondere kohlensaeurehaltiger erfrischungsgetraenke, sowie einrichtung zur durchfuehrung des verfahrens
US5624182A (en) * 1989-08-02 1997-04-29 Stewart & Stevenson Services, Inc. Automatic cementing system with improved density control
US7250464B2 (en) * 2000-02-18 2007-07-31 Rohm And Haas Company Distributed paint manufacturing system
EP1356742A1 (de) * 2002-04-24 2003-10-29 ALI S.p.A. Divisione GBG Automatische Fülleinrichtung für Mischbehälter eines Spenders für Eis-wassermischungen oder gekühlte Getränke
US20090236007A1 (en) * 2006-09-27 2009-09-24 Ludwig Clusserath Method and apparatus for filling beverage bottles, in a beverage bottling plant, with a beverage material comprising a carbonated water component and a liquid flavoring component, and method and apparatus for filling containers, in a container filling plant, with a material comprising a first ingredient and a second ingredient

Also Published As

Publication number Publication date
DE102009054313A1 (de) 2011-05-26
US20120174796A1 (en) 2012-07-12
SI2504084T1 (sl) 2017-10-30
PL2504084T3 (pl) 2018-02-28
WO2011063867A3 (de) 2011-07-21
EP2504084A2 (de) 2012-10-03
WO2011063867A2 (de) 2011-06-03
US8968812B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
EP2279149B1 (de) Verfahren sowie füllsystem zum füllen von flaschen oder dergleichen behältern mit einem flüssigen füllgut
DE69112667T2 (de) Verfahren und Vorrichtung zum Mischen und Dosieren von Getränken.
EP2424812B1 (de) Füllsystem zum füllen von flaschen
EP0098389B1 (de) Verfahren zur Herstellung alkoholfreier, insbesondere kohlensäurehaltiger Erfrischungsgetränke, sowie Einrichtung zur Durchführung des Verfahrens
DE2226307A1 (de) Verfahren und Einrichtung zum Herstellen von mit Kohlensäure versetzten Getränken
DE3234957C2 (de)
DE3132706C2 (de) Vorrichtung zum Dosieren, Entlüften und Karbonisieren von Mehrkomponentengetränken
DE4031534A1 (de) Vorrichtung zum herstellen von getraenken
EP0512393A1 (de) Verfahren und Vorrichtung zum Mischen von Getränkekomponenten
WO2019043240A1 (de) Vorrichtung zum befüllen eines behälters mit einem füllprodukt
EP3760577B1 (de) Verfahren und vorrichtung zum befüllen eines behälters mit einem karbonisierten füllprodukt
EP2504084B1 (de) Verfahren zum herstellen eines mischproduktes, insbesondere eines mischgetränkes
EP2934729B1 (de) Verfahren sowie anlage zum herstellen eines mischproduktes aus wenigstens einer flüssigen hauptkomponente und wenigstens einer zusatzkomponente
DE4315234C2 (de) Verfahren und Vorrichtung zur Herstellung von Flüssigkeitsgemischen aus verschiedenen Einzelkomponenten
DE3508350C2 (de) Mischvorrichtung zum Mischen wenigstens zweier Flüssigkeiten
EP0664086A1 (de) Verfahren und Vorrichtung zum Herstellen von Getränken aus mehreren fliessfähigen Komponenten
EP0679429A1 (de) Verfahren und Vorrichtung zum Herstellen von Getränken aus fliessfähigen Komponenten
DE4428617A1 (de) Vorrichtung zum Herstellen von karbonisierten und CO¶2¶-freien Getränken
EP3895547A1 (de) Herstellung karbonisierter getränke
WO2012000581A1 (de) Verfahren und anlage zur herstellung von fluidgemischen, z.b. getränken
WO2011101011A1 (de) Vorrichtung zum ausmischen der, einer grund- oder hauptkomponente beizumischenden zusatzkomponenten eines mischproduktes
DE4130413A1 (de) Anlage und verfahren zum mischen und/oder homogenisieren fluessiger komponenten
DE2112852A1 (de) Verfahren zur Herstellung eines Gemisches von Fluessigkeiten aus mehreren Komponenten und Einrichtung zur Durchfuehrung des Verfahrens
DE2330876A1 (de) Verfahren und vorrichtung zum herstellen eines unter einem bestimmten gasdruck stehenden gemisches
DE102004028688A1 (de) Verfahren und Anordnung zur An- oder Abreicherung von zum unmittelbaren Verzehr oder zur Lebensmittelherstellung bestimmten Flüssigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120625

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130515

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 3/04 20060101AFI20170315BHEP

Ipc: B01F 3/20 20060101ALI20170315BHEP

Ipc: B01F 15/00 20060101ALI20170315BHEP

INTG Intention to grant announced

Effective date: 20170403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 920740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014052

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014052

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

26N No opposition filed

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010014052

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003040000

Ipc: B01F0023200000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

Ref country code: AT

Payment date: 20230921

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230824

Year of fee payment: 14

Ref country code: PL

Payment date: 20230824

Year of fee payment: 14

Ref country code: FR

Payment date: 20230928

Year of fee payment: 14

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 14