EP2486356B1 - Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen - Google Patents

Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen Download PDF

Info

Publication number
EP2486356B1
EP2486356B1 EP10752757.4A EP10752757A EP2486356B1 EP 2486356 B1 EP2486356 B1 EP 2486356B1 EP 10752757 A EP10752757 A EP 10752757A EP 2486356 B1 EP2486356 B1 EP 2486356B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
inner heat
exchanger according
pipe
individual pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10752757.4A
Other languages
English (en)
French (fr)
Other versions
EP2486356A2 (de
Inventor
Claus Röck
Andreas Gorzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ContiTech Kuehner GmbH and Cie KG
Original Assignee
ContiTech Kuehner GmbH and Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ContiTech Kuehner GmbH and Cie KG filed Critical ContiTech Kuehner GmbH and Cie KG
Publication of EP2486356A2 publication Critical patent/EP2486356A2/de
Application granted granted Critical
Publication of EP2486356B1 publication Critical patent/EP2486356B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels

Definitions

  • the invention relates to an inner heat exchanger according to the preamble of claim 1.
  • a heat exchanger is from document US Pat. No. 6,625,235 known.
  • Internal heat exchangers are used as fuel coolers, as cooling elements for oil pressure pipes and as heat exchangers for stationary cooling systems. They are generally used for cooling fluid or gas transporting media. A major application of the internal heat exchangers is in automotive air conditioning systems.
  • a one-piece heat exchanger tube with a multi-chamber profile which has a central channel, around which a plurality of outer channels are arranged.
  • the outer channels are divided by intermediate walls which extend in the radial direction.
  • projections are provided which extend into the central channel. These projections serve to reduce the cross-sectional area and thus increase the Flow rate.
  • the projections may be helical.
  • the inner channel is used as a high-pressure side
  • the outer channels are used as a low-pressure side.
  • the heat exchange is not optimal in this device, since the outer channels are arranged on a concentric circle around the central channel and lie only with their inclined toes in the vicinity of the high pressure side refrigerant fluid leading to the central channel.
  • the heat transfer between the refrigerant fluid in the central channel and the cooler refrigerant fluid in the outer channels is thus not very efficient.
  • an internal heat exchanger which is constructed from a two-part coaxial tube system.
  • an inner tube is inserted or coextruded together with the outer tube.
  • the annular space between inner tube and outer tube represents an outer tube longitudinal channel, which is divided by webs or corrugated ribs into a plurality of parallel outer longitudinal channels.
  • These outer longitudinal channels can take a helical course to extend the flow path for the refrigerant passed therethrough.
  • From the DE 10 2005 056 651 A1 is designed as a coaxial tube inner heat exchanger known, which is designed for the separate management of the two, different pressure level having refrigerant flows.
  • a turbulence generator is provided in the form of a helix.
  • the helix deflects the refrigerant flowing in the inner tube, so that no laminar flow can form in the wall region. This is intended to produce improved mixing and improved heat exchange.
  • the countercurrent leading outer channels are located in an annular wall of the coaxial tube around the inner tube. An efficient heat transfer is not possible.
  • the invention has the object of providing an inner heat exchanger of the type described above in such a way that the efficiency of heat transfer between the two separated by the inner heat exchanger conducted fluid flows is increased.
  • connection components are provided at both ends of the cylindrical flow body, via which the fluids which flow through the inner heat exchanger mainly in countercurrent, separately from each other or are derived ,
  • the Koaxialrohr principle of an inner heat exchanger with an outer tube and a coaxially disposed therein inner tube to form an outer longitudinal channels having annular space is abandoned.
  • a circular bundle of individual tubes is arranged in a cylinder-shaped flow body representing the housing, which each lead a subset of the fluid flow to be cooled.
  • These individual tubes are each arranged in a separate tube longitudinal channel and are lapped therein over the housing length of the cooling fluid flow in direct contact. This allows a particularly efficient heat transfer, which can not be realized in the indirect contact principle of the known from the prior art designs.
  • annular wall set at a distance from the end of the flow body defines a cavity in which the individual flows of the cooling fluid come together again coming from the longitudinal bores.
  • the outer tube forms at its ends a projection over the flow body, in which the respective connecting parts can be inserted sealingly.
  • outer tube and flow body are integrally formed. This has essentially manufacturing advantages.
  • the individual tubes have a star-shaped cross-section.
  • the cooling surface is increased again due to the larger surface area.
  • connection components advantageous embodiments of the structure of the connection components are disclosed.
  • the design and arrangement of a distributor ring on the outer connecting flange serves for uniform distribution of the fluid flow to be cooled.
  • a mushroom-shaped, axially extending spacer is arranged at the opposite end face of the baffle surface, in the collar-shaped periphery semicircular recesses for receiving the ends of the individual tubes are arranged.
  • the mushroom-like shape prevents the cooling fluid flow from tearing off. The individual tubes are safely washed over their entire length and the entire peripheral surface.
  • Extending axially outwardly spaced cams on the spacer form a clearance space in which the partial flows of the cooling fluid flow can flow together again.
  • continuous webs dividing the pipe interior into subchannels are arranged continuously in the individual pipes and the webs have a subdivision of the pipe inside cross section cross-shaped arrangement on.
  • the flow rate of the cooling fluid flow and the heat transfer coefficient are increased by this design.
  • the invention provides a powerful internal heat exchanger in a compact design, which is particularly suitable for applications in motor vehicle air conditioning systems, in particular in CO 2 air conditioning systems of motor vehicles.
  • This inner heat exchanger is also suitable for use as a high-performance fuel cooler in the automotive sector. It is applicable everywhere, where by means of internal heat exchanger two fluid streams with different temperature level heat transfer are passed to each other.
  • the in Fig. 1 shown inner heat exchanger has an outer tube 11 and a suitably inserted into the outer tube 11, cylinder-shaped flow body 20.
  • this flow body 20 lying on a circumference nine individual tubes 12 are arranged axially parallel.
  • a fluid flow to be cooled (hereinafter referred to as "hot” fluid flow) runs in the direction of the arrow A.
  • the cooling countercurrent (hereinafter referred to as "cold” fluid flow) is guided by the flow body 20 and flows through the heat exchanger in the direction of the arrow B.
  • the flow body 20 will be explained in more detail elsewhere.
  • connection components 13, 14 and 15, 16 are respectively provided at both ends of the flow body 20, via which the fluid flows are separated from one another predominantly in countercurrent operation be added or derived.
  • connection component 13, 14 or 15, 16 is essentially constructed in two parts from an outer connection flange 14 or 16 and a respective collector flange 13 or 15.
  • Each collector flange 13 and 15 respectively has nine through-connection openings 17, which receive the ends of the nine individual tubes 12 tightly after assembly of the heat exchanger.
  • the connection openings 17 terminate in an annular collection channel 18 formed by plugging together the connection flange 14 or 16 with the respective header flange 13 or 15, which via a connection bore 19 located outside the central axis in the connection flange 14 or 16 with the corresponding, not shown here Fluid circuit is connected.
  • connection components 13, 14 and 15, 16 are of identical design and each have a continuous, central central opening 21 which is sealed with the flow body 20 and connects the flow body 20 flowing through cold fluid with the corresponding, not shown here fluid circuit.
  • the respective connection component 13, 14 or 15, 16 is mounted as follows with the heat exchanger housing ( Fig. 1 and Fig. 6 to Fig. 8 ).
  • the collector flange 13 and 15 has a central connecting piece 22 with two circumferential grooves 23 and 24, in each of which a sealing ring 25 and 26 is introduced.
  • the collector flange 13 and 15 is inserted with its connecting piece 22 fitting sealingly in a protruding edge region of the outer tube 11 and the front side sealingly connected to the individual tubes 12 of the flow body 20.
  • the outer connecting flanges 14 and 16 each have two mutually coaxially arranged sockets 28 and 29.
  • the connecting piece 28 with the larger diameter has a circumferential groove 31 for receiving a sealing ring 32.
  • the sealing nozzle 29 with a smaller diameter also has a circumferential groove 34 for receiving a further sealing ring 33.
  • the connecting piece 28 is formed as an annular wall which surrounds a circumferential distribution ring 35, which has a central Opening 50 which has a larger inner diameter than the outer diameter of the protruding smaller sealing nozzle 29th
  • the distributor ring 35 is clamped with an outer bent-back collar 51 on the free end of the connecting piece 28. At the other end of the distributor ring 35, this has a radially inwardly projecting bottom 52, whose end 53 extends axially bent back.
  • the bottom 52 of the distributor ring 35 divides the annular space within the connecting piece 28 into two distributor spaces 18 and 54.
  • the connecting flange 14 or 16 is inserted with its connecting piece 28 in the collector flange 13 and 15 respectively.
  • the small sealing nozzle 29 seals the inlet and outlet of the cold fluid flow to the flow body 20 in the connecting piece 22 of the collector flange 13 and 15 from.
  • the bearing lugs 27 in the collector flanges 13, 15 and the connecting flanges 14 and 16 serve to fasten the flanges together and the tight clamping of the flow body 20th
  • Connection component 15, 16 and connection component 13, 14 are constructed identically in this embodiment. But it may also be sufficient to provide the distributor ring 35 only in the connection component 15, 16, which is provided in the inflow direction of the hot fluid flow.
  • the distributor ring 35 serves to distribute the hot fluid flow supplied via the connection bore 19 located outside the center axis, which is distributed via the two distributor spaces 18 and 54 over the entire annular cross section in the connection flange 14 or 16 and thus uniformly all the connection openings 19 in the respective collector flange 13 or 15 reached.
  • the flow body 20 which is suitably inserted into the outer tube 11 over almost its entire length, has turbulence in the incoming cold fluid flow produce a pointed outward baffle 42 (FIG. Fig. 2 ).
  • the flow body 20 is in each case perforated over its entire length ( Fig. 5 ), wherein for each individual tube 12 a single opening in the form of a longitudinal bore 43 with a larger inner diameter than the outer diameter of the respective individual tube 12 is provided.
  • the introduced cold fluid stream strikes the baffle 42, which has a central, tip-shaped protrusion 44. As a result, the cold fluid flow is deflected radially to the longitudinal bores 43. The cold fluid flow flows through the annular gaps 45, which are located between the outer circumference of the individual tubes 12 and the respective longitudinal bore 43 of the flow body 20 ( Fig. 2 ).
  • Each individual tube 12 is surrounded by a partial flow of the cold fluid flow in the associated longitudinal bore 43, which represents a tube longitudinal channel. This results in a defined cooling with improved heat exchange.
  • annularly covering wall 46 (FIG. Figure 3 and Fig. 5 ) is arranged at an axial distance from the main body of the flow body 20, which has a central opening 47 for the outflow of the cold fluid flow. Due to the axial distance of the wall 46, a cylindrical cavity 48 is formed at the end of the flow body 20.
  • the annular surface of the wall 46 is pierced by lying on a circumference receiving holes 49 through which the ends of the individual tubes 12 of the tube bundle suitably to be connected via the aligned connection openings 17 of the collecting flange 15 with the annular distribution space 18 in the connection member 15, 16 ,
  • the flow body 20 forms with its longitudinal bores 43 inner, axially parallel pipe longitudinal channels, in which the parallel individual tubes 12 are arranged.
  • the cold fluid conducted through the flow body 20 can directly contact and flush around the individual tubes 12 carrying the hot fluid flow, so that efficient cooling of the hot fluid flow flowing in the individual tubes 12 takes place.
  • the guidance of the cold and hot fluids may alternatively be provided in cocurrent or countercurrent.
  • FIG. 9 to 13 an alternative embodiment of the flow body 20 'is shown.
  • connection openings 18 Collecting duct, distribution room 19 connecting holes 20 cylindrical flow body 21 Central openings, inlet and outlet bores 22 spigot 23 circumferential groove 24 circumferential groove 25 seal 26 seal 27 bearing eyes 28 spigot 29 tight fitting 31 groove 32 seal 33 seal 34 circumferential groove 35 distribution ring 42 baffle 43 longitudinal bores 44 Central bulge 45 Annular column 46 Circular wall 47 Central opening 48 cavity 49 mounting holes 50 Opening distribution ring 51 collar 52 ground 53 End distribution ring 54 distribution space 20 ' Flow body 60 spacer 61 recesses 62 spacer lugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen inneren Wärmetauscher nach dem Oberbegriff des Anspruchs 1. So ein Wärmetauscher ist aus Dokument US 6 625 235 bekannt.
  • Innere Wärmetauscher werden als Kraftstoffkühler, als Kühlorgan für Öldruckleitungen und als Wärmetauscher für stationäre Kühlanlagen benutzt. Sie werden generell zur Kühlung von fluid- oder gastransportierenden Medien angewandt. Eine Hauptanwendung der inneren Wärmetauscher ist in Kraftfahrzeugklimaanlagen.
  • Eine Möglichkeit zur Effizienzsteigerung von Klimaanlagen, die in Kraftfahrzeugen zum Einsatz kommen, ist der Einsatz eines inneren Wärmetauschers, in dem niederdruckseitiger Rücklauf und hochdruckseitiger Vorlauf des Kältemittels in voneinander getrennten, aber benachbarten Kanälen realisiert sind. Durch dieses benachbarte, im Gegen- oder Gleichstrom betriebene getrennte Führen der beiden Kältemittelströme wird das Kältemittel im hochdruckseitigen Kanal zusätzlich heruntergekühlt, ohne dass dafür zusätzliche Energie verbraucht wird.
  • Aus der EP 1 202 016 A2 ist ein einstückiges Wärmetauscherrohr mit einem Mehrkammerprofil bekannt, das einen Zentralkanal aufweist, um den mehrere Außenkanäle angeordnet sind. Die Außenkanäle sind durch Zwischenwände, die in radialer Richtung verlaufen, unterteilt. An der Wandung des Zentralkanals sind Vorsprünge vorgesehen, die sich in den Zentralkanal hinein erstrecken. Diese Vorsprünge dienen der Verringerung der Querschnittsfläche und somit der Erhöhung der Strömungsgeschwindigkeit. Die Vorsprünge können wendelförmig ausgebildet sein. Der Innenkanal wird als Hochdruckseite, die Außenkanäle werden als Niederdruckseite verwendet. Der Wärmeaustausch ist bei dieser Vorrichtung nicht optimal, da die Außenkanäle auf einem konzentrischen Kreis um den Zentralkanal angeordnet und nur mit ihren geneigten Fußspitzen in der Nähe des das hochdruckseitige Kältemittelfluid führenden Zentralkanals liegen. Der Wärmeübergang zwischen dem Kältemittelfluid in dem Zentralkanal und dem kühleren Kältemittelfluid in den Außenkanälen ist somit nicht sonderlich effizient.
  • Aus der DE 199 44 950 A1 ist ein innerer Wärmetauscher bekannt, der aus einem zweiteiligen Koaxialrohrsystem aufgebaut ist. In ein Außenrohr des Koaxialrohrsystems ist ein Innenrohr eingeschoben bzw. zusammen mit dem Außenrohr koextrudiert. Der Ringraum zwischen Innenrohr und Außenrohr stellt einen äußeren Rohrlängskanal dar, der durch Stege oder Wellrippen in mehrere parallele Außenlängskanäle aufgeteilt ist. Diese Außenlängskanäle können einen wendelförmigen Verlauf nehmen, um den Strömungsweg für das dort hindurchgeleitete Kältemittel zu verlängern. Dadurch wird zwar der Wärmekontakt zwischen diesem Kältemittelstrom und dem durch das Innenrohr hindurchgeleiteten Kältemittelstrom erhöht, eine weitere signifikante Effizienzerhöhung der Klimaanlage ist aber noch nicht erreicht.
  • Aus der DE 10 2005 056 651 A1 ist ein als Koaxialrohr ausgebildeter innerer Wärmetauscher bekannt, der für die getrennte Führung der beiden, unterschiedliches Druckniveau aufweisenden Kältemittelströme ausgebildet ist. Im Innenraum eines Innenrohres ist ein Turbulenzerzeuger in Form einer Wendel vorgesehen. Die Wendel lenkt das im Innenrohr strömende Kältemittel um, so dass sich keine laminare Strömung im Wandbereich ausbilden kann. Dadurch soll eine verbesserte Vermischung und ein verbesserter Wärmeaustausch hergestellt werden. Die den Gegenstrom führenden Außenkanäle liegen in einer Ringwand des Koaxialrohres um das Innenrohr. Eine effiziente Wärmeübertragung ist nicht möglich.
  • Der Erfindung liegt die Aufgabe zugrunde, einen inneren Wärmetauscher der eingangs beschriebenen Art derart auszugestalten, dass der Wirkungsgrad der Wärmeübertragung zwischen den beiden getrennt durch den inneren Wärmetauscher geleiteten Fluidströmen gesteigert wird.
  • Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 genannten Merkmale gelöst.
  • Um das kühlende und das zu kühlende Fluid in den Wärmetauscher ein- bzw. abzuleiten, sind an beiden Enden des zylinderförmigen Durchflusskörpers Anschlussbauteile vorgesehen, über welche die Fluide, welche durch den inneren Wärmetauscher vorwiegend im Gegenstrombetrieb strömen, getrennt voneinander zu- bzw. abgeleitet werden.
  • Durch die Erfindung wird das Koaxialrohr-Prinzip eines inneren Wärmetauschers mit einem Außenrohr und einem koaxial darin angeordneten Innenrohr unter Bildung eines Außenlängskanäle aufweisenden Ringzwischenraumes aufgegeben. Gemäß der Erfindung ist in einem das Gehäuse darstellenden zylinderförmigen Durchflusskörper ein kreisförmiges Bündel von Einzelrohren angeordnet, die jeweils eine Teilmenge des zu kühlenden Fluidstroms führen. Diese Einzelrohre sind jeweils in einem separaten Rohrlängskanal angeordnet und werden darin über die Gehäuselänge von dem kühlenden Fluidstrom im direkten Kontakt umspült. Hierdurch ist ein besonders effizienter Wärmeübergang ermöglicht, der bei dem indirekten Kontaktprinzip der aus dem Stand der Technik bekannten Ausführungen nicht realisiert werden kann.
  • Eine vorteilhafte Ausgestaltung der Erfindung ist im Kennzeichen des Patentanspruchs 2 offenbart. Die mit Abstand zu dem Ende des Durchflusskörpers angesetzte Ringwand begrenzt einen Hohlraum, in dem die Einzelströme des kühlenden Fluids aus den Längsbohrungen kommend wieder zusammenfließen.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung weist das Gehäuse des Innenwärmetauschers ein Außenrohr auf, in das der Durchflusskörper eingepasst angeordnet ist. Das Außenrohr bildet an seinen Enden einen Überstand über den Durchflusskörper, in den die jeweiligen Anschlussteile dichtend eingeschoben werden können.
  • In weiterer vorteilhafter Ausgestaltung sind Außenrohr und Durchflusskörper einteilig ausgebildet. Dieses hat im Wesentlichen fertigungstechnische Vorteile.
  • In vorteilhafter Ausgestaltung der Erfindung weisen die Einzelrohre einen sternförmigen Querschnitt auf. Dadurch wird die Kühlfläche aufgrund der größeren Oberfläche nochmals erhöht.
  • In den Ansprüchen 6 bis 8 werden vorteilhafte Ausgestaltungen des Aufbaus der Anschlussbauteile offenbart. Die Ausbildung und Anordnung eines Verteilerringes am äußeren Anschlussflansch dient der gleichmäßigen Verteilung des zu kühlenden Fluidstroms.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung ist an dem der Prallfläche gegenüberliegenden stirnseitigen Ende des Durchflusskörpers ein pilzförmiger, sich axial erstreckender Abstandshalter angeordnet, in dessen kragenförmigen Umfang halbkreisförmige Ausnehmungen zur Aufnahme der Enden der Einzelrohre angeordnet sind. Durch die pilzartige Form wird der kühlende Fluidstrom daran gehindert, abzureißen. Die Einzelrohre werden sicher über ihre gesamte Länge und die gesamte Umfangsfläche umspült.
  • Sich axial nach außen erstreckende Abstandsnocken am dem Abstandshalter bilden einen Abstandsraum, in dem die Teilströme des kühlenden Fluidstroms wieder zusammenfließen können.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung sind in die Einzelrohre durchgehende, den Rohrinnenraum in Teilkanäle aufteilende Stege durchgehend angeordnet und die Stege weisen eine den Rohrinnenquerschnitt unterteilende kreuzförmige Anordnung auf. Die Strömungsgeschwindigkeit des kühlenden Fluidstromes und der Wärmeübergangskoeffizient werden durch diese Ausbildung erhöht.
  • Durch die Erfindung wird ein leistungsstarker innerer Wärmetauscher in kompakter Bauweise geschaffen, der sich besonders für Anwendungen in Kraftfahrzeugklimaanlagen, insbesondere in CO2-Klimaanlagen von Kraftfahrzeugen, eignet. Dieser innere Wärmetauscher ist aber auch zum Einsatz als leistungsstarker Kraftstoffkühler im Automobilbereich geeignet. Er ist überall dort anwendbar, wo mittels inneren Wärmetauschers zwei Fluidströme mit unterschiedlichem Temperaturniveau wärmeübergangsmäßig aneinander vorbeigeführt werden.
  • Anhand der Zeichnung werden nachstehend zwei Ausführungsbeispiele der Erfindung näher erläutert. Es zeigt
  • Fig. 1
    einen inneren Wärmetauscher mit einem ein Gehäuse bildenden zylinderförmigen Durchflusskörper, der in ein Außenrohr eingesetzt ist, in explosionsartiger, perspektivischer, schematischer Darstellung;
    Fig. 2
    den im Außenrohr eingesetzten Durchflusskörper des Innenwärmetauschers in Stirnansicht;
    Fig. 3
    den im Außenrohr eingesetzten Durchflusskörper des Innenwärmetauschers im Längsschnitt gemäß Linie II - II in Fig. 2;
    Fig. 4
    den in das Außenrohr einzusetzenden, ein Rohrbündel führenden zylinderförmigen Durchflusskörper in Detaildarstellung in Stirnansicht;
    Fig. 5
    den in Fig. 4 dargestellten Durchflusskörper im Halbschnitt;
    Fig. 6
    einen Sammelflansch eines der beiden Anschlussbauteile im Längsschnitt;
    Fig. 7
    einen äußeren Anschlussflansch eines der beiden Anschlussbauteile mit auf seinen Anschlussstutzen aufgesetztem Verteilerring;
    Fig. 8
    das aus Sammlerflansch und Anschlussflansch sowie aufgesteckten Verteilerring bestehende Anschlussbauteil im zusammengesteckten Zustand;
    Fig. 9
    eine modifizierte Ausführung des zylinderförmigen Durchflusskörpers;
    Fig. 10 + 11
    die stirnseitigen Ansichten des in Fig. 9 gezeigten Durchflusskörpers;
    Fig. 12
    eine perspektivische Darstellung des in Fig. 9 bis 11 gezeigten DurchFlusskörpers;
    Fig. 13
    den in den Fig. 9 bis 12 gezeigten Durchflusskörper, eingesetzt in einem Außenrohr im Längsschnitt.
  • Der in Fig. 1 gezeigte innere Wärmetauscher weist ein Außenrohr 11 und einen in das Außenrohr 11 passend eingesetzten, zylinderförmig ausgebildeten Durchflusskörper 20 auf. In diesem Durchflusskörper 20 sind auf einem Kreisumfang liegend neun Einzelrohre 12 achsparallel angeordnet. In den Einzelrohren 12 läuft ein zu kühlender Fluidstrom (nachfolgend "heißer" Fluidstrom genannt) in Richtung des Pfeils A. Der kühlende Gegenstrom (nachfolgend "kalter" Fluidstrom genannt) wird von dem Durchflusskörper 20 geführt und durchströmt den Wärmetauscher in Richtung des Pfeils B. Der Durchflusskörper 20 wird nachfolgend an anderer Stelle noch näher erläutert.
  • Um den kalten und den heißen Fluidstrom in den das Wärmetauschergehäuse bildenden zylinderförmigen Durchflusskörper 20 ein- bzw. abzuleiten, sind an beiden Enden des Durchflusskörpers 20 jeweils zweiteilige Anschlussbauteile 13,14 bzw. 15,16 vorgesehen, über welche die Fluidströme vorwiegend im Gegenstrombetrieb getrennt voneinander zu- bzw. abgeleitet werden.
  • Jedes Anschlussbauteil 13, 14 bzw. 15,16 ist im Wesentlichen zweiteilig aus je einem äußeren Anschlussflansch 14 bzw. 16 und je einem Sammlerflansch 13 bzw. 15 aufgebaut. Jeder Sammlerflansch 13 bzw. 15 weist jeweils neun durchgehende Anschlussöffnungen 17 auf, die nach der Montage des Wärmetauschers die Enden der neun Einzelrohre 12 dicht aufnehmen. Die Anschlussöffnungen 17 enden in einem durch das Zusammenstecken des Anschlussflansches 14 bzw. 16 mit dem jeweiligen Sammlerflansch 13 bzw. 15 gebildeten ringförmigen Sammelkanal 18, der über eine außerhalb der Mittelachse liegende Anschlussbohrung 19 im Anschlussflansch 14 bzw. 16 mit dem entsprechenden, hier nicht dargestellten Fluidkreislauf verbunden ist.
  • Beide Anschlussbauteile 13, 14 bzw. 15, 16 sind baugleich ausgeführt und weisen jeweils eine durchgehende, mittige Zentralöffnung 21 auf, die abgedichtet mit dem Durchflusskörper 20 fluchtet und das den Durchflusskörper 20 durchströmende kalte Fluid mit dem entsprechenden, hier nicht dargestellten Fluidkreislauf verbindet.
  • Das jeweilige Anschlussbauteil 13, 14 bzw. 15, 16 wird wie folgt mit dem Wärmetauschergehäuse montiert (Fig. 1 und Fig. 6 bis Fig. 8). Der Sammlerflansch 13 bzw. 15 weist einen zentrischen Anschlussstutzen 22 mit zwei Umfangsnuten 23 und 24 auf, in die jeweils ein Dichtring 25 bzw. 26 eingebracht wird. Der Sammlerflansch 13 bzw. 15 wird mit seinem Anschlussstutzen 22 passend in einen überstehenden Randbereich des Außenrohres 11 dichtend eingeschoben und stirnseitig mit den Einzelrohren 12 des Durchflusskörpers 20 dicht verbunden.
  • Die äußeren Anschlussflansche 14 und 16 weisen jeweils zwei zueinander koaxial angeordnete Stutzen 28 und 29 auf. Der Anschlussstutzen 28 mit dem größeren Durchmesser weist eine umfangsmäßige Nut 31 zur Aufnahme eines Dichtringes 32 auf. Der Dichtstutzen 29 mit kleinerem Durchmesser weist ebenfalls eine Umfangsnut 34 zur Aufnahme eines weiteren Dichtringes 33 auf. Der Anschlussstutzen 28 ist als Ringwand ausgebildet, die umfangsmäßig einen Verteilerring 35 umschließt, der eine zentrale Öffnung 50 aufweist, die einen größeren Innendurchmesser aufweist, als der Außendurchmesser des hindurchragenden kleineren Dichtstutzens 29.
  • Der Verteilerring 35 ist mit einem äußeren zurückgebogenen Kragen 51 auf das freie Ende des Anschlussstutzens 28 aufgeklemmt. Am anderen Ende des Verteilerringes 35 weist dieser einen radial nach innen ragenden Boden 52 auf, dessen Ende 53 axial zurückgebogen verläuft. Der Boden 52 des Verteilerringes 35 teilt den ringförmigen Raum innerhalb des Anschlussstutzens 28 in zwei Verteilerräume 18 und 54 auf.
  • Der Anschlussflansch 14 bzw. 16 wird mit seinem Anschlussstutzen 28 in den Sammlerflansch 13 bzw. 15 eingeschoben. Der kleine Dichtstutzen 29 dichtet den Zu- und Ablauf des kalten Fluidstroms zum Durchflusskörper 20 im Anschlussstutzen 22 des Sammlerflansches 13 bzw. 15 ab.
  • Die Lageraugen 27 in den Sammlerflanschen 13, 15 und den Anschlussflanschen 14 und 16 dienen zum Befestigen der Flansche miteinander und dem dichten Einspannen des Durchflusskörpers 20.
  • Anschlussbauteil 15, 16 und Anschlussbauteil 13, 14 sind in diesem Ausführungsbeispiel identisch aufgebaut. Es kann aber auch ausreichend sein, den Verteilerring 35 nur im Anschlussbauteil 15, 16 vorzusehen, das in Zuflussrichtung des heißen Fluidstroms vorgesehen ist.
  • Der Verteilerring 35 dient zur Verteilung des über die außerhalb der Mittelachse liegende Anschlussbohrung 19 zugeführten heißen Fluidstroms, der über die beiden Verteilerräume 18 und 54 über den gesamten kreisringförmigen Querschnitt im Anschlussflansch 14 bzw. 16 verteilt wird und somit gleichmäßig alle Anschlussöffnungen 19 im jeweiligen Sammlerflansch 13 bzw. 15 erreicht.
  • Der in das Außenrohr 11 nahezu über seine gesamte Länge passend eingesetzte Durchflusskörper 20 weist, um eine Turbulenz im zulaufenden kalten Fluidstrom zu erzeugen, eine spitz nach außen zulaufende Prallfläche 42 auf (Fig. 2). Im Bereich der Einzelrohre 12 ist der Durchflusskörper 20 über seine gesamte Länge jeweils durchbrochen (Fig. 5), wobei für jedes Einzelrohr 12 eine einzelne Durchbrechung in Form einer Längsbohrung 43 mit größerem Innendurchmesser als der Außendurchmesser des jeweiligen Einzelrohres 12 vorgesehen ist.
  • Der eingeleitete kalte Fluidstrom trifft auf die Prallfläche 42, die eine zentrale, spitzenförmige Vorwölbung 44 aufweist. Dadurch wird der kalte Fluidstrom radial zu den Längsbohrungen 43 umgelenkt. Der kalte Fluidstrom fließt durch die kreisringförmigen Spalte 45, die sich zwischen dem Außenumfang der Einzelrohre 12 und der jeweiligen Längsbohrung 43 des Durchflusskörpers 20 darstellen (Fig. 2).
  • Jedes Einzelrohr 12 wird in der zugeordneten, einen Rohrlängskanal darstellenden Längsbohrung 43 von einem Teilstrom des kalten Fluidstroms umspült. Es ergibt sich eine definierte Kühlung bei verbessertem Wärmeaustausch.
  • Am anderen Ende des Durchflusskörpers 20 ist eine den Querschnitt des Durchflusskörpers 20 ringförmig abdeckende Wand 46 (Fig.3 und Fig. 5) mit axialem Abstand zum Hauptkörper des Durchflusskörpers 20 angeordnet, die eine zentrale Öffnung 47 zum Abfluss des kalten Fluidstroms aufweist. Durch den axialen Abstand der Wand 46 wird ein zylinderförmiger Hohlraum 48 am Ende des Durchflusskörpers 20 gebildet. Die Ringfläche der Wand 46 ist durch auf einem Kreisumfang liegende Aufnahmebohrungen 49 durchbrochen, durch die die Enden der Einzelrohre 12 des Rohrbündels passend ragen, um über die fluchtenden Anschlussöffnungen 17 des Sammelflansches 15 mit dem ringförmigen Verteilerraum 18 in dem Anschlussbauteil 15, 16 verbunden zu werden.
  • Der Durchflusskörper 20 bildet mit seinen Längsbohrungen 43 innere, achsparallel verlaufende Rohrlängskanäle, in denen die parallelen Einzelrohre 12 angeordnet sind. Das durch den Durchflusskörper 20 hindurch geleitete kalte Fluid kann direkt die den heißen Fluidstrom führenden Einzelrohre 12 kontaktieren und umspülen, so dass eine effiziente Kühlung des in den Einzelrohren 12 fließenden heißen Fluidstroms erfolgt.
  • Die Führung des kalten und des heißen Fluids kann alternativ im Gleichstrom oder im Gegenstrom vorgesehen werden.
  • In den Fig. 9 bis 13 wird eine alternative Ausführungsform des Durchflusskörpers 20' dargestellt. Der Aufbau dieses Durchflusskörpers 20' unterscheidet sich dadurch, dass er auf der Zuflussseite für den heißen Fluidstrom einen über das Ende des Durchflusskörpers 20' hinausragenden, zentralen, pilzartigen Abstandshalter 60 aufweist, auf dessen kreisförmigen Kragenumfang halbkreisförmige Ausnehmungen 61 enthalten sind, in die die Enden der Einzelrohre 12 einklippsbar sind (Fig. 13).
  • Stirnseitig sind an diesen Abstandshalter 60 vier in axialer Richtung verlaufende Abstandsnocken 62 angeordnet, durch die im zusammengebauten Zustand des Wärmetauschers ein axialer Hohlraum zum Sammlerflansch 15 gebildet wird, in dem der aus den Längsbohrungen 43 fließende kalte Fluidstrom zusammengeführt und in die zentrale Abflussbohrung 21 des Anschlussbauteils 15, 16 geführt werden kann. Bezugszeichenliste (Teil der Beschreibung)
    11 Außenrohr
    12 Einzelrohre
    13 Sammlerflansch
    14 Anschlussflansch
    15 Sammlerflansch
    16 Anschlussflansch
    13,14 Anschlussbauteil
    15,16 Anschlussbauteil
    17 Anschlussöffnungen
    18 Sammelkanal, Verteilerraum
    19 Anschlussbohrungen
    20 zylinderförmiger Durchflusskörper
    21 Zentralöffungen, Zu-, Abflussbohrungen
    22 Anschlussstutzen
    23 Umfangsnut
    24 Umfangsnut
    25 Dichtring
    26 Dichtring
    27 Lageraugen
    28 Anschlussstutzen
    29 Dichtstutzen
    31 Nut
    32 Dichtring
    33 Dichtring
    34 Umfangsnut
    35 Verteilerring
    42 Prallfläche
    43 Längsbohrungen
    44 Zentrale Vorwölbung
    45 Kreisringförmige Spalte
    46 Kreisringförmige Wand
    47 Zentrale Öffnung
    48 Hohlraum
    49 Aufnahmebohrungen
    50 Öffnung Verteilerring
    51 Kragen
    52 Boden
    53 Ende Verteilerring
    54 Verteilerraum
    20' Durchflusskörper
    60 Abstandshalter
    61 Ausnehmungen
    62 Abstandsnocken

Claims (12)

  1. Innerer Wärmetauscher, insbesondere für Kraftfahrzeugklimaanlagen, mit einem Gehäuse zur getrennten Führung eines kühlenden und eines zu kühlenden Fluidstroms, die über an den Gehäuseenden angeordnete Anschlussbauteile zu- bzw. abgeführt werden,
    das Gehäuse des inneren Wärmetauschers einen zylinderförmigen Durchflusskörper (20) aufweist,
    nahe des Umfangs des Durchflusskörpers (20) mehrere, ein paralleles Rohrbündel bildende Einzelrohre (12) auf einem Kreisumfang angeordnet sind, die den zu kühlenden Fluidstrom führen,
    die Einzelrohre (12) durch sich achsparallel erstreckende Längsbohrungen (43) des Durchflusskörpers (20) ragen, die jeweils unter Bildung eines Ringspaltes (45) einen größeren Durchmesser als der Außendurchmesser des jeweiligen Einzelrohres (12) aufweisen, dadurch gekennzeichnet, dass der Durchflusskörper (20) an einem stirnseitigen Ende eine über seinen Querschnitt reichende, sich nach außen entgegen der Einströmrichtung des kühlenden Fluidstroms vorwölbende Prallfläche (42) aufweist.
  2. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet,
    dass die Einzelrohre (12) am anderen stirnseitigen Ende des Durchflusskörpers (20) durch Aufnahmebohrungen (49) einer eine Zentralöffnung (47) aufweisenden, an das Ende des Durchflusskörpers (20) mit Abstand zu diesem angesetzten Ringwand (46) ragen, wobei die Durchmesser der Aufnahmebohrungen (49) dem jeweiligen Außendurchmesser der Einzelrohre (12) entsprechen.
  3. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet,
    dass das Gehäuse des inneren Wärmetauschers ein Außenrohr (11) aufweist, in das der Durchflusskörper (20) eingepasst angeordnet ist.
  4. Innerer Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet,
    dass das Außenrohr (11) und der Durchflusskörper (20) einteilig ausgebildet sind.
  5. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet,
    dass die Einzelrohre (12) einen sternförmigen Querschnitt aufweisen.
  6. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet,
    dass die Anschlussbauteile (13,14 bzw. 15,16) im Wesentlichen zweiteilig ausgebildet sind und dabei jeweils aus einem äußeren Anschlussflansch (14 bzw. 16) und einem inneren Sammlerflansch (13 bzw. 15) bestehen, die ineinandergeschoben jeweils an den Enden des Durchflusskörpers (20) dicht angeordnet sind.
  7. Innerer Wärmetauscher nach Anspruch 6, dadurch gekennzeichnet,
    dass der äußere Anschlussflansch (14 bzw. 16) zwei koaxial zueinander angeordnete Stutzen (22 und 29) aufweist, wobei auf dem Anschlussstutzen (22) mit dem größeren Durchmesser ein den Innenraum des Anschlussstutzens (22) in zwei Verteilerräume (18 und 54) aufteilender Verteilerring (35) angeordnet ist, wobei der Verteilerring (35) eine zentrale Öffnung (50) aufweist, deren Durchmesser größer ist als der Außendurchmesser des Dichtstutzens (29).
  8. Innerer Wärmetauscher nach Anspruch 6, dadurch gekennzeichnet,
    dass der Sammlerflansch (13 bzw. 15) auf der einen Seite durchgehende Aufnahmeöffnungen (17) für die Einzelrohre (12) und auf der anderen Seite einen Aufnahmeraum (18) für den mit dem Verteilerring (35) versehenen Anschlussstutzen (22) des Anschlussflansches (16) aufweist.
  9. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet,
    dass an dem der Prallfläche (42) gegenüberliegenden stirnseitigen Ende des Durchflusskörpers (20') ein pilzförmiger, sich axial erstreckender Abstandshalter (60) angeordnet ist, in dessen kragenförmigem Umfang halbkreisförmige Ausnehmungen (61) zur Aufnahme der Enden der Einzelrohre (12) angeordnet sind.
  10. Innerer Wärmetauscher nach Anspruch 9, dadurch gekennzeichnet,
    dass an dem Abstandshalter (60) sich axial nach außen erstreckende Abstandsnocken (62) angeordnet sind.
  11. Innerer Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass in die Einzelrohre (12) durchgehende, den Rohrinnenraum in Teilkanäle aufteilende Stege angeordnet sind.
  12. Innerer Wärmetauscher nach Anspruch 11, dadurch gekennzeichnet, dass die Stege eine den Rohrinnenquerschnitt unterteilende kreuzförmige Anordnung aufweisen.
EP10752757.4A 2009-09-28 2010-09-02 Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen Active EP2486356B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910044119 DE102009044119A1 (de) 2009-09-28 2009-09-28 Innerer Wärmetauscher, insbesondere für Kraftfahrzeugklimaanlagen
PCT/EP2010/062845 WO2011036044A2 (de) 2009-09-28 2010-09-02 Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen

Publications (2)

Publication Number Publication Date
EP2486356A2 EP2486356A2 (de) 2012-08-15
EP2486356B1 true EP2486356B1 (de) 2013-07-03

Family

ID=43662552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752757.4A Active EP2486356B1 (de) 2009-09-28 2010-09-02 Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen

Country Status (4)

Country Link
EP (1) EP2486356B1 (de)
CN (1) CN102667389B (de)
DE (1) DE102009044119A1 (de)
WO (1) WO2011036044A2 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1134397B (de) * 1961-03-25 1962-08-09 Balcke Ag Maschbau Stehender Doppelrohrwaermeaustauscher mit innenliegenden Verbindungsrohren zwischen Mantelraum und Deckelraeumen
FR2507759A1 (fr) * 1981-06-15 1982-12-17 Walter Jean Jacques Echangeur de chaleur constitue d'un bloc de matiere conductrice fore de canaux pour le passage des fluides
DE19719256B4 (de) * 1997-05-07 2005-08-18 Valeo Klimatechnik Gmbh & Co. Kg Mehr als zweiflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstelungsverfahren
DE19944950B4 (de) 1999-09-20 2008-01-31 Behr Gmbh & Co. Kg Klimaanlage mit innerem Wärmeübertrager
DE10053000A1 (de) 2000-10-25 2002-05-08 Eaton Fluid Power Gmbh Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen
US6626235B1 (en) * 2001-09-28 2003-09-30 Ignas S. Christie Multi-tube heat exchanger with annular spaces
JP4331611B2 (ja) * 2001-12-21 2009-09-16 ベール ゲーエムベーハー ウント コー カーゲー 熱交換装置
DE102005056651A1 (de) 2005-11-25 2007-05-31 Behr Gmbh & Co. Kg Koaxialrohr oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher
DE102008038140A1 (de) * 2008-08-18 2010-02-25 Krones Ag Röhrenwärmeüberträger, Doppelumlenkbogen für Röhrenwärmeüberträger, Adapter für Röhrenwärmeüberträger sowie System und Verfahren zur Wärmeübertragung zwischen wenigstens zwei Lebensmittelströmen

Also Published As

Publication number Publication date
WO2011036044A3 (de) 2011-07-21
WO2011036044A2 (de) 2011-03-31
DE102009044119A1 (de) 2011-03-31
EP2486356A2 (de) 2012-08-15
CN102667389B (zh) 2014-04-30
CN102667389A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
EP1996892A2 (de) Wärmetauscher, verfahren zur herstellung eines wärmetauschers
DE102006051000A1 (de) Wärmetauscher, Verfahren zur Herstellung eines Wärmetauschers
DE10303595B4 (de) Mehrkanal-Wärmeübertrager- und Anschlusseinheit
EP2708708A1 (de) Abgaswärmeübertrager
EP1202016A2 (de) Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen
DE102006042936A1 (de) Wärmeaustauscher, insbesondere Abgaswärmeaustauscher
WO2005052346A1 (de) Wärmetauscher
DE102013100886B4 (de) Wärmetauscher für ein Kraftfahrzeug mit einem doppelwandigen Wärmetauscherrohr
DE102007043992B4 (de) Ladeluftmodul für eine Verbrennungskraftmaschine
DE10143458B4 (de) Zusatzheizgerät mit einem Wärmeübertrager
EP2715086B1 (de) Wärmeübertrager
WO2018154063A1 (de) Wärmeübertrager und reaktor
WO2005085737A1 (de) Vorrichtung zum austausch von wärme und verfahren zur herstellung einer solchen vorrichtung
DE10348141B3 (de) Innerer Wärmeübertrager für Hochdruckkältemittel mit Akkumulator
DE102008056810B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
EP1815204B1 (de) Rohrbündelhochdruckwärmetauscher
EP2486356B1 (de) Innerer wärmetauscher, insbesondere für kraftfahrzeugklimaanlagen
DE102009041773A1 (de) Wärmetauscherrohr, Wärmetauscher und raumlufttechnische Anlage
DE3100021C2 (de) Kraftstoffkühler für eine Brennkraftmaschine
DE102006031406A1 (de) Heizkörper, insbesondere Röhrenradiator
DE102011088635A1 (de) Wärmeübertrager
DE102007027639A1 (de) Wärmetauscher für eine Fluggasturbine
DE102010054644B4 (de) Abgasrückführvorrichtung für eine Verbrennungskraftmaschine
WO2019072853A1 (de) Abgaswärmeübertrager
DE102012017404A1 (de) Interner Wärmetauscher für eine Kraftfahrzeug-Klimaanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120502

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 620018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003907

Country of ref document: DE

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131004

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

BERE Be: lapsed

Owner name: CONTITECH KUHNER G.M.B.H. & CIE. KG

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

26N No opposition filed

Effective date: 20140404

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003907

Country of ref document: DE

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100902

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 620018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010003907

Country of ref document: DE

Owner name: CONTITECH TECHNO-CHEMIE GMBH, DE

Free format text: FORMER OWNER: CONTITECH KUEHNER GMBH & CIE. KG, 71570 OPPENWEILER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 14