EP2437331B1 - Lithium secondary battery with high energy density - Google Patents

Lithium secondary battery with high energy density Download PDF

Info

Publication number
EP2437331B1
EP2437331B1 EP10780773.7A EP10780773A EP2437331B1 EP 2437331 B1 EP2437331 B1 EP 2437331B1 EP 10780773 A EP10780773 A EP 10780773A EP 2437331 B1 EP2437331 B1 EP 2437331B1
Authority
EP
European Patent Office
Prior art keywords
lithium
secondary battery
positive electrode
electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10780773.7A
Other languages
German (de)
French (fr)
Other versions
EP2437331A4 (en
EP2437331A2 (en
Inventor
Geun-Chang Chung
Dong Seok Shin
Sun Kyu Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of EP2437331A2 publication Critical patent/EP2437331A2/en
Publication of EP2437331A4 publication Critical patent/EP2437331A4/en
Application granted granted Critical
Publication of EP2437331B1 publication Critical patent/EP2437331B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a lithium secondary battery with a high energy density and, more particularly, to a lithium secondary battery with metal lithium coated on the electrode surface of a negative electrode or a positive electrode or both, in which the negative electrode includes a material which can be alloyed with lithium and preferably has a capacity per unit weight of 700 mAh/g to 4300 mAh/g, the positive electrode is made of a transition metal oxide capable of reversibly intercalating and deintercalating lithium, the entire reversible lithium storage capacity is included in the positive electrode (i.e., when the battery is fabricated, the entire reversible lithium storage capacity is included in the positive electrode and is greater than the lithium capacity dischargeable in an available voltage range), and lithium of a metal form does not remain in the negative electrode and the positive electrode after an initial activation charge.
  • the negative electrode includes a material which can be alloyed with lithium and preferably has a capacity per unit weight of 700 mAh/g to 4300 mAh/g
  • the positive electrode is made of a transition metal oxide capable
  • an Li(Ni, Co, Al)O 2 material or an Li(Ni, Co, Mn)O 2 material with stabilized LiNiO 2 has an advantage in that they can greatly increase the capacity of the lithium secondary battery because they have a high reversible capacity per unit weight.
  • the material is problematic in that it has a great reaction with an electrolyte in the full charge state because it needs to be charged with a high voltage in order to achieve a high capacity characteristic. Accordingly, the material has a serious aging characteristic in the life span according to a long-term storage or cycle.
  • a battery using the material is insufficient in the safety of a unit cell when the capacity of the unit cell is increased and thus problematic in that thermal runaway and ignition are generated when being overcharged or stored in a hot box of 150°C.
  • WO 2006/112674 provides a lithium secondary battery using an active material, not including lithium, for a positive electrode and a lithium transition metal oxide with a high irreversible lithium capacity.
  • the lithium secondary battery of this patent can be made with a higher capacity because a transition metal oxide, not including lithium, for the positive electrode with a high capacity can be used.
  • the lithium secondary battery is excellent in the safety and long-term durability because voltage when the battery is fully charged is not high.
  • the lithium secondary battery however, has a drawback in that most of the transition metal oxide (i.e., an inactive solid compound) remains within the battery after lithium is used, thereby deteriorating the energy density, because the lithium important to increase the capacity is stored in an initial lithium transition metal oxide.
  • PCT/JP2004/007877 proposes a negative electrode for a lithium metal secondary battery in which metal lithium is deposited on an insulating base and an inorganic solid electrolyte film is formed on the metal lithium.
  • U.S. Patent No. 7,247,408 proposes a lithium metal electrode coated with multiple layers of a single one conductive layer and a polymer layer in order to inhibit the formation of lithium dendrite. Further, in order to further increase the surface processing effect and also effectively form a thin metal lithium film, Korean Patent No.
  • 10-0496306 proposes a method of forming a metaplasia film on a base, forming a current collector on the metaplasia film, and lithium metal is deposited on the current collector, thereby being capable of reducing a spatial loss due to the base film, suppressing deformation resulting from heat, and obtaining a deposition lithium layer with a high degree of purity.
  • the above methods can steadily increase reversibility according to lithium charge and discharge, but is problematic in that it does not fundamentally prevent ignition and explosion resulting from metal lithium when the battery is used in abnormal environments or the battery is overheated upon misuse.
  • a technique for previously doping metal lithium and fully consuming the doped metal lithium through activation has recently been applied to a lithium ion capacitor.
  • the initially inserted lithium is compressed into the surface of an electrode in the form of a lithium metal plate or a lithium metal electrode is inserted into a third electrode and then electrochemically doped on a lithium storage electrode.
  • Japanese Unexamined Patent Application Publication No. Hei8-107048 provides a method of sealing the carbon electrode of an electric dual layer capacitor with a metal foil physically brought into contact with the surface of the carbon electrode and chemically doping lithium on the carbon electrode while raising temperature.
  • this patent is problematic in that lithium metal difficult to mechanically handle must be used in order to dope only a necessary amount of lithium (i.e., very thin within 5 to 20 micron) on a common capacitor or a lithium battery. Further, this patent has a difficulty in that if this patent is applied to a capacitor or battery with a high capacity and a wide electrode area, the thin metal lithium foil must be adhered to the wide area.
  • WO 98/33227 provides a technique for introducing practically applicable metal lithium into a third electrode and doping lithium on a carbon negative electrode by electrochemically dissociating lithium from the third electrode.
  • KR-A-10-2005-0104625 discloses a lithium secondary battery comprising a separator located between positive and negative electrodes, and comprising an alkaline metal powder layer formed by dispersion coating on a surface of at least one of the positive electrode, the negative electrode and the separator.
  • US-A-2005/0147888 discloses a secondary battery comprising a positive electrode capable of occluding and releasing lithium ions and a negative electrode which comprises a layer containing a metal which can form an alloy with lithium and a metal which cannot form an alloy with lithium.
  • the negative electrode may further comprise a lithium metal layer.
  • an object of the present invention to provide a lithium secondary battery which is capable of solving a danger according to the use of metal lithium and also has a high energy density of the same degree as a metal lithium battery.
  • a method of previously doping metal lithium on a lithium secondary battery and then fully consuming the doped metal lithium in a process of activating the battery is used. Accordingly, the capacity of the battery can be increased and at the same time, dangers resulting from metal lithium, such as explosion, can be solved. In other words, the lithium storage and discharge ability of negative electrode and positive electrode materials included in the battery can be utilized to the maximum extent. Accordingly, a reversible capacity after activation can be significantly increased, and metal lithium during the activation can be fully consumed, thereby being capable of avoiding a danger of metal lithium.
  • a non-activated lithium secondary battery comprising:
  • the material which can be alloyed with lithium preferably has a capacity per unit weight of 700 mAh/g to 4300 mAh/g.
  • the lithium layer is preferably formed using a method of compressing a metal foil on the electrode surface, a method of depositing metal lithium on the electrode surface, or a method of dispersing and coating particles, including an excessive amount of metal lithium, together with a specific binder polymer on the electrode surface.
  • the lithium layer preferably has weight per unit area of 0.3 mg/cm 2 to 0.8 mg/cm 2 .
  • the material which can be alloyed with lithium preferably includes one or more selected from a group comprising Si, Sn, and Al; an alloy in which the atomic fraction of the element(s) is 50% or more; or an oxide of them.
  • the initial irreversible capacity of the negative electrode is preferably 40% or less of the reversible capacity.
  • the transition metal oxide preferably includes one or more selected from a group comprising MnO 2 , MoO 3 , VO 2 , V 2 O 5 , V 6 O 13 , Cr 3 O 8 , and CrO 2 .
  • the negative electrode includes materials which permit the formation of a lithium alloy and have a capacity per unit weight of 700 mAh/g to 4300 mAh/g.
  • the positive electrode is made of a transition metal oxide comprising lithium and a transition metal oxide which does not comprise lithium and is capable of reversibly intercalating and deintercalating lithium, the positive electrode having an entire reversible lithium storage capacity greater than the initially included (initially stored, but dischargeable) lithium content.
  • lithium metal in an amount greater than the difference S between the reversible lithium storage capacity and the included lithium content of the positive electrode and equal to or smaller than the sum of the difference S and the initial irreversible capacity loss (initial irreversible consumption capacity) of the negative electrode is coated on a surface of the negative electrode or the positive electrode or both in the form of lithium metal.
  • S the reversible lithium storage capacity of the positive electrode - dischargeable lithium content of the positive electrode
  • L is the amount of lithium within the lithium metal layer
  • I is the initial irreversible consumption capacity of the negative electrode.
  • lithium metal in an amount greater than the difference between the lithium storage capacity and the included lithium content of the positive electrode and equal to or smaller than the sum of this difference and the initial irreversible capacity loss of the negative electrode, is supplied. Accordingly, the storage and discharge capacity of lithium within the active material included in the lithium secondary battery can be exhibited to the maximum extent. Consequently, the capacity of the lithium secondary battery can be significantly increased, and metal lithium is fully absorbed by materials in the form of ions after being activated, thereby being capable of achieving excellent safety.
  • the lithium metal coated on the surface of the negative electrode, the positive electrode or both is fully consumed in an initial activation charge process of the lithium secondary battery. Thereafter, lithium of a metal form does not remain on the electrode surface.
  • the present invention provides a lithium secondary battery which can significantly increase a reversible capacity after activation by utilizing the lithium storage and discharge ability of the negative and positive electrode materials, included in the battery, to the maximum extent and can avoid a danger of metal lithium by fully consuming the metal lithium during activation, and a method of maximizing an effect of introducing lithium into the lithium secondary battery.
  • a method of previously doping the metal lithium can include a method of utilizing a metal foil, a method of depositing the metal lithium, or a method of dispersing and coating particles, including an excessive amount of metal lithium, together with a specific binder polymer.
  • a method of spraying the metal lithium or coating the metal lithium using a continuous roll process, such as rolling, can be used. Accordingly, electrodes can be manufactured by directly forming a metal lithium layer on a surface of an electrode plate coated with the active material.
  • a metallic current collection plate such as copper (Cu) is coated with a negative electrode active material and a mixed layer of a binder and a conductive material.
  • the active material for a negative electrode preferably includes a lithium alloy material having a high lithium storage characteristic of 700 mAh/g or more.
  • a potential in the full charge state is about 0 V to 0.1 V on the basis of the potential of lithium metal, and so the lithium alloy material preferably is included as the active material.
  • the lithium alloy material with an electrochemical activity has a storage ability of 700 mAh/g or more.
  • an alloy material having a capacity lower than the storage ability of 700 mAh/g it may not be easy to implement a high energy density which is intended by the present invention.
  • the negative electrode material has a higher capacity and greater initial irreversible capacity loss than a carbon-based material and it can implement the battery of a high energy density using metal lithium according to the present invention.
  • the initial irreversible capacity of the negative electrode preferably is 40% or less of the reversible capacity. If the irreversible capacity is too high, the amount of additional initial lithium supplied becomes too much and manufacture productivity can be reduced.
  • a metallic current collection plate such as aluminum (Al) is coated with a mixture of a transition metal oxide not including lithium, which can reversibly intercalate and deintercalate lithium, and a transition metal oxide including lithium.
  • a metallic current collection plate such as aluminum (Al)
  • a metallic current collection plate such as aluminum (Al)
  • a transition metal oxide not including lithium can include MnO 2 , MoO 3 , VO 2 , V 2 O 5 , V 6 O 13 , Cr 3 O 8 , and CrO 2 .
  • the transition metal oxide including lithium can include a material, such as a LiMO 2 composition having a layered structure (where M is Co, Ni, Mn, or a mixture of them), LiMn 2 O 4 having a spinel structure, and LiFePO 4 having an olivine structure.
  • the reversible storage ability of the positive electrode is utilized 100%, and a difference between the reversible storage ability and the amount of initially included lithium is fully taken advantage of. Accordingly, a transition metal oxide not including lithium is used as a material for the positive electrode and the capacity thereof be higher.
  • the capacity can be 100 mAh/g to 300 mAh/g or 300 mAh/g or more.
  • the metal lithium layer is formed on the surface of the negative electrode or the positive electrode or both.
  • lithium gas is generated.
  • the electrode surface coated with the active material passes through the lithium gas while the lithium gas continues to be supplied, the lithium layer is deposited on the electrode surface.
  • the lithium layer has a thickness of about 5 to 10 ⁇ m when a total electrode thickness is about 100 ⁇ m. This corresponds to an amount which increases the capacity of 1 to 2 mA/cm 2 .
  • the weight of the lithium layer be 0.3 mg/cm 2 to 0.8 mg/cm 2 per unit area. It is, however, to be noted that the deposition process conditions, the thickness and weight of the lithium layer, and the increment of the current density are only embodiments, and the present invention is not limited thereto.
  • lithium metal powder having a surface coated with a stabilization layer can be used as the particles including an excess of lithium.
  • What fluoro-based polymer, acryl-based polymer, SBR-based rubber, or PAN-based polymer, such as PVDF, is dispersed in a non-aqueous solvent can be used as the binder solution.
  • a continuous coating method, such as spray, roll coating, or dip coating, can be used as the coating method.
  • the formation of the lithium layer can be applied to the negative electrode or the positive electrode or both.
  • Metal lithium formed on the electrode surface is fully ionized through the step of injecting an electrolyte to the activation step and absorbed into the lithium storage materials included in the negative electrode and the positive electrode.
  • metal lithium existing on the electrode surface is consumed in the activation step, and thus the metal lithium does not remain in a battery charge/discharge step.
  • metal lithium is fully consumed in the activation process. Accordingly, a danger of metal lithium can be avoided, and the capacity of the battery can be increased because of doped metal lithium.
  • the present invention provides a lithium secondary battery having a significantly increased reversible capacity after activation by assembling the electrode using a common method of assembling the lithium secondary battery.
  • the electrode according to the present invention in a method of manufacturing the electrode according to the present invention, a metal foil current collector commonly used as the current collector of the electrode can be used. Accordingly, the electrode has an excellent mechanical strength. Further, in the process of fabricating the electrode, a conventional process is used without change, and the process of coating metal lithium on the electrode surface is added. Accordingly, the present invention can be easily implemented. In particular, in the case in which lithium is coated using a deposition method, the electrode of the present invention has a thickness of about 100 ⁇ m and heat can be distributed over the entire thickness. Accordingly, the deposited lithium can be effectively cooled, and metal lithium can be uniformly doped on the entire area of the electrode chemically or electrochemically through deposition.
  • the positive electrode and the negative electrode of the lithium secondary battery were fabricated using the following method.
  • the negative electrode plate including a copper (Cu) current collection plate of 10 ⁇ m in thickness and coating layers on both surfaces.
  • the coating layer was made of SiO having a capacity per unit weight of 1200 mAh/g and an initial irreversible capacity of 800 mAh/g, a carbon-based material having a capacity of about 300 mAh/g and an initial irreversible capacity of 30 mAh/g, a rubber component functioning as a binder, CMS, and conductive carbon acetylene black.
  • SiO was 40%
  • the carbon-based material was 50%
  • the rubber component was 4%
  • CMC was 4%
  • the conductive carbon acetylene black was 2%, of a total percentage of the coating layer.
  • the coating layer was controlled to have a reversible lithium storage and discharge ability of 3 mAh/cm 2 .
  • the negative electrode plate fabricated using continuous processes was rolled, dried, and then put into a vacuum deposition chamber (pressure: 10 torr, temperature: 600°C).
  • metal lithium having a thickness of 12 ⁇ m was deposited on the negative electrode plate at a deposition speed of 0.5 m/min, thereby forming the lithium layer.
  • the positive electrode including an aluminum (Al) current collection plate of 14 ⁇ m in thickness and a coating layer on both surfaces, was fabricated.
  • the coating layer was made of MnO 2 capable of storing lithium at 200 mAh/g per unit weight, LiMn 2 O 4 having an initial discharge capacity of 115 mAh/g and a reversible lithium storage capacity of 110 mAh/g, conductive carbon acetylene black, and PVdF.
  • MnO 2 was 30%
  • LiMn 2 O 4 was 60%
  • conductive carbon acetylene black was 4%
  • PVdF was 6%, of a total percentage of the coating layer.
  • the coating layer was controlled to have a reversible lithium storage and discharge ability of 3 mAh/cm 2 .
  • the negative electrode, the positive electrode, a polyethylene separation layer, and an organic electrolyte including EC/DEC/an additive using LiPF 6 as salt were assembled to form a small-sized aluminum laminate package type cell having an electrode area of about 10 cm 2 .
  • a negative electrode, composed of the same composition as the negative electrode of the present embodiment and not coated with lithium, and the positive electrode of the present embodiment were assembled to form a cell for comparison using the same method as the present embodiment.
  • the batteries fabricated according to the embodiment and the comparison example were activated and then charged and discharged in a range of 4.2 to 1.5 V.
  • the lithium secondary battery of the present invention utilizes the lithium storage and discharge ability of materials for the negative electrode and the positive electrode included in the battery to the maximum extent. Accordingly, a reversible capacity after activation can be significantly increased. Further, since metal lithium is fully consumed during activation, a danger of metal lithium can be avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

    Background of the Invention Field of the Invention
  • The present invention relates to a lithium secondary battery with a high energy density and, more particularly, to a lithium secondary battery with metal lithium coated on the electrode surface of a negative electrode or a positive electrode or both, in which the negative electrode includes a material which can be alloyed with lithium and preferably has a capacity per unit weight of 700 mAh/g to 4300 mAh/g, the positive electrode is made of a transition metal oxide capable of reversibly intercalating and deintercalating lithium, the entire reversible lithium storage capacity is included in the positive electrode (i.e., when the battery is fabricated, the entire reversible lithium storage capacity is included in the positive electrode and is greater than the lithium capacity dischargeable in an available voltage range), and lithium of a metal form does not remain in the negative electrode and the positive electrode after an initial activation charge.
  • Discussion of the Related Art
  • In order to spread environment-friendly vehicles, the development of electric power for the vehicles is being accelerated. Important requirements for the spread of the electric vehicles include the price per energy, energy per weight, safety, and durability. Today, development centers on a lithium secondary battery having excellent durability and a long life span, but there is an epoch-making improvement for the price per energy and energy per weight. To this end, a focus is concentrated on a lithium alloy material including a large amount of lithium per unit weight and elements capable of forming an alloy, such as aluminum (Al), tin (Sn), and silicon (Si), in order to form a negative electrode of a high capacity. However, the material is problematic in that the loss of an initial irreversible capacity is great.
  • Meanwhile, in order to improve the energy density of the lithium secondary battery, a technique for increasing the capacity of a positive electrode material is being developed. In particular, an Li(Ni, Co, Al)O2 material or an Li(Ni, Co, Mn)O2 material with stabilized LiNiO2 has an advantage in that they can greatly increase the capacity of the lithium secondary battery because they have a high reversible capacity per unit weight. However, the material is problematic in that it has a great reaction with an electrolyte in the full charge state because it needs to be charged with a high voltage in order to achieve a high capacity characteristic. Accordingly, the material has a serious aging characteristic in the life span according to a long-term storage or cycle. Further, a battery using the material is insufficient in the safety of a unit cell when the capacity of the unit cell is increased and thus problematic in that thermal runaway and ignition are generated when being overcharged or stored in a hot box of 150°C.
  • In order to overcome the above problems and achieve a higher capacity, WO 2006/112674 provides a lithium secondary battery using an active material, not including lithium, for a positive electrode and a lithium transition metal oxide with a high irreversible lithium capacity. The lithium secondary battery of this patent can be made with a higher capacity because a transition metal oxide, not including lithium, for the positive electrode with a high capacity can be used. Further, the lithium secondary battery is excellent in the safety and long-term durability because voltage when the battery is fully charged is not high. The lithium secondary battery, however, has a drawback in that most of the transition metal oxide (i.e., an inactive solid compound) remains within the battery after lithium is used, thereby deteriorating the energy density, because the lithium important to increase the capacity is stored in an initial lithium transition metal oxide.
  • As a scheme for providing sufficient lithium and also significantly increasing the energy density per weight, research becomes active on a battery using metal lithium. For example, in order to improve a dendrite problem according to charge and discharge, PCT/JP2004/007877 proposes a negative electrode for a lithium metal secondary battery in which metal lithium is deposited on an insulating base and an inorganic solid electrolyte film is formed on the metal lithium. Meanwhile, U.S. Patent No. 7,247,408 proposes a lithium metal electrode coated with multiple layers of a single one conductive layer and a polymer layer in order to inhibit the formation of lithium dendrite. Further, in order to further increase the surface processing effect and also effectively form a thin metal lithium film, Korean Patent No. 10-0496306 proposes a method of forming a metaplasia film on a base, forming a current collector on the metaplasia film, and lithium metal is deposited on the current collector, thereby being capable of reducing a spatial loss due to the base film, suppressing deformation resulting from heat, and obtaining a deposition lithium layer with a high degree of purity. However, the above methods can steadily increase reversibility according to lithium charge and discharge, but is problematic in that it does not fundamentally prevent ignition and explosion resulting from metal lithium when the battery is used in abnormal environments or the battery is overheated upon misuse.
  • Meanwhile, a technique for previously doping metal lithium and fully consuming the doped metal lithium through activation has recently been applied to a lithium ion capacitor. In this case, the initially inserted lithium is compressed into the surface of an electrode in the form of a lithium metal plate or a lithium metal electrode is inserted into a third electrode and then electrochemically doped on a lithium storage electrode. For example, Japanese Unexamined Patent Application Publication No. Hei8-107048 provides a method of sealing the carbon electrode of an electric dual layer capacitor with a metal foil physically brought into contact with the surface of the carbon electrode and chemically doping lithium on the carbon electrode while raising temperature. However, this patent is problematic in that lithium metal difficult to mechanically handle must be used in order to dope only a necessary amount of lithium (i.e., very thin within 5 to 20 micron) on a common capacitor or a lithium battery. Further, this patent has a difficulty in that if this patent is applied to a capacitor or battery with a high capacity and a wide electrode area, the thin metal lithium foil must be adhered to the wide area. As yet another example, WO 98/33227 provides a technique for introducing practically applicable metal lithium into a third electrode and doping lithium on a carbon negative electrode by electrochemically dissociating lithium from the third electrode. However, in order to uniformly dope lithium ions on the carbon negative electrode having a wide area, a current collector having holes through which the lithium ions can freely penetrate in forming negative electrode and positive electrode plates must be used. If the current collector having holes is used, there are problems in that the mechanical strength of the electrode is weakened and a process of manufacturing the electrode is complicated as compared with a case in which a uniform metallic foil current collector with no hole is used.
  • KR-A-10-2005-0104625 discloses a lithium secondary battery comprising a separator located between positive and negative electrodes, and comprising an alkaline metal powder layer formed by dispersion coating on a surface of at least one of the positive electrode, the negative electrode and the separator.
  • US-A-2005/0147888 discloses a secondary battery comprising a positive electrode capable of occluding and releasing lithium ions and a negative electrode which comprises a layer containing a metal which can form an alloy with lithium and a metal which cannot form an alloy with lithium. The negative electrode may further comprise a lithium metal layer.
  • Summary of the Invention
  • It is, therefore, an object of the present invention to provide a lithium secondary battery which is capable of solving a danger according to the use of metal lithium and also has a high energy density of the same degree as a metal lithium battery.
  • A method of previously doping metal lithium on a lithium secondary battery and then fully consuming the doped metal lithium in a process of activating the battery is used. Accordingly, the capacity of the battery can be increased and at the same time, dangers resulting from metal lithium, such as explosion, can be solved. In other words, the lithium storage and discharge ability of negative electrode and positive electrode materials included in the battery can be utilized to the maximum extent. Accordingly, a reversible capacity after activation can be significantly increased, and metal lithium during the activation can be fully consumed, thereby being capable of avoiding a danger of metal lithium.
  • In accordance with an aspect of the present invention, there is provided a non-activated lithium secondary battery comprising:
    • a negative electrode comprising a material which can be alloyed with lithium;
    • a positive electrode comprising a metallic current collection plate and a positive electrode active material coated on the current collection plate, the positive electrode active material comprising a mixture of a transition metal oxide comprising lithium and a transition metal oxide which does not comprise lithium and is capable of reversibly intercalating and deintercalating lithium, the positive electrode having an entire reversible lithium storage capacity greater than the dischargeable lithium content of the positive electrode; and
    • a lithium metal layer formed on a surface of the negative electrode, the positive electrode or both electrodes;
    wherein the lithium metal layer satisfies the following equation: S < L S + I
    Figure imgb0001
    wherein S = reversible lithium storage capacity of the positive electrode - dischargeable lithium content of the positive electrode, L is the lithium content of the lithium metal layer, and I is the initial irreversible consumption capacity of the negative electrode; and
    wherein lithium metal does not remain on the electrode surface(s) after the lithium secondary battery has been initially activated and charged.
  • The material which can be alloyed with lithium preferably has a capacity per unit weight of 700 mAh/g to 4300 mAh/g.
  • The lithium layer is preferably formed using a method of compressing a metal foil on the electrode surface, a method of depositing metal lithium on the electrode surface, or a method of dispersing and coating particles, including an excessive amount of metal lithium, together with a specific binder polymer on the electrode surface.
  • The lithium layer preferably has weight per unit area of 0.3 mg/cm2 to 0.8 mg/cm2.
  • The material which can be alloyed with lithium preferably includes one or more selected from a group comprising Si, Sn, and Al; an alloy in which the atomic fraction of the element(s) is 50% or more; or an oxide of them.
  • The initial irreversible capacity of the negative electrode is preferably 40% or less of the reversible capacity.
  • The transition metal oxide preferably includes one or more selected from a group comprising MnO2, MoO3, VO2, V2O5, V6O13, Cr3O8, and CrO2.
  • Brief Description of the Drawings
  • The above and other objects and features of the present invention will become apparent from the following description of an embodiment given in conjunction with the accompanying drawing, in which:
    • FIG. 1 is a diagram showing a comparison of the charge and discharge capacities of batteries, fabricated according to an embodiment and a comparison example, and a theoretical positive electrode capacity (a theoretical initial lithium discharge capacity of a positive electrode).
    Detailed Description of the Embodiments
  • Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawing so that it can be readily implemented by those skilled in the art.
  • In accordance with an embodiment of the present invention, the negative electrode includes materials which permit the formation of a lithium alloy and have a capacity per unit weight of 700 mAh/g to 4300 mAh/g. The positive electrode is made of a transition metal oxide comprising lithium and a transition metal oxide which does not comprise lithium and is capable of reversibly intercalating and deintercalating lithium, the positive electrode having an entire reversible lithium storage capacity greater than the initially included (initially stored, but dischargeable) lithium content. Here, lithium metal in an amount greater than the difference S between the reversible lithium storage capacity and the included lithium content of the positive electrode and equal to or smaller than the sum of the difference S and the initial irreversible capacity loss (initial irreversible consumption capacity) of the negative electrode, is coated on a surface of the negative electrode or the positive electrode or both in the form of lithium metal. S < L S + I
    Figure imgb0002
    where S = the reversible lithium storage capacity of the positive electrode - dischargeable lithium content of the positive electrode, L is the amount of lithium within the lithium metal layer, and I is the initial irreversible consumption capacity of the negative electrode.
  • In other words, lithium metal in an amount greater than the difference between the lithium storage capacity and the included lithium content of the positive electrode and equal to or smaller than the sum of this difference and the initial irreversible capacity loss of the negative electrode, is supplied. Accordingly, the storage and discharge capacity of lithium within the active material included in the lithium secondary battery can be exhibited to the maximum extent. Consequently, the capacity of the lithium secondary battery can be significantly increased, and metal lithium is fully absorbed by materials in the form of ions after being activated, thereby being capable of achieving excellent safety.
  • Further, the lithium metal coated on the surface of the negative electrode, the positive electrode or both is fully consumed in an initial activation charge process of the lithium secondary battery. Thereafter, lithium of a metal form does not remain on the electrode surface.
  • The present invention provides a lithium secondary battery which can significantly increase a reversible capacity after activation by utilizing the lithium storage and discharge ability of the negative and positive electrode materials, included in the battery, to the maximum extent and can avoid a danger of metal lithium by fully consuming the metal lithium during activation, and a method of maximizing an effect of introducing lithium into the lithium secondary battery.
  • A method of previously doping the metal lithium can include a method of utilizing a metal foil, a method of depositing the metal lithium, or a method of dispersing and coating particles, including an excessive amount of metal lithium, together with a specific binder polymer. In particular, a method of spraying the metal lithium or coating the metal lithium using a continuous roll process, such as rolling, can be used. Accordingly, electrodes can be manufactured by directly forming a metal lithium layer on a surface of an electrode plate coated with the active material.
  • In an embodiment, a metallic current collection plate, such as copper (Cu), is coated with a negative electrode active material and a mixed layer of a binder and a conductive material. The active material for a negative electrode preferably includes a lithium alloy material having a high lithium storage characteristic of 700 mAh/g or more. In the case of a common carbon-based negative electrode, a potential in the full charge state is about 0 V to 0.1 V on the basis of the potential of lithium metal, and so the lithium alloy material preferably is included as the active material. In the case in which an alloy with lithium is performed up to a low full charge potential, the lithium alloy material with an electrochemical activity has a storage ability of 700 mAh/g or more. In the case in which an alloy material having a capacity lower than the storage ability of 700 mAh/g is used, it may not be easy to implement a high energy density which is intended by the present invention.
  • For example, one or more selected from the group consisting of Si, Sn, and Al, an alloy in which the atomic fraction of the active element(s) is 50% or more, or an oxide of them preferably is used. The negative electrode material has a higher capacity and greater initial irreversible capacity loss than a carbon-based material and it can implement the battery of a high energy density using metal lithium according to the present invention. Meanwhile, the initial irreversible capacity of the negative electrode preferably is 40% or less of the reversible capacity. If the irreversible capacity is too high, the amount of additional initial lithium supplied becomes too much and manufacture productivity can be reduced.
  • As regards the positive electrode, a metallic current collection plate, such as aluminum (Al), is coated with a mixture of a transition metal oxide not including lithium, which can reversibly intercalate and deintercalate lithium, and a transition metal oxide including lithium. Unlimited examples of the positive electrode active material not including lithium can include MnO2, MoO3, VO2, V2O5, V6O13, Cr3O8, and CrO2. Further, unlimited examples of the transition metal oxide including lithium can include a material, such as a LiMO2 composition having a layered structure (where M is Co, Ni, Mn, or a mixture of them), LiMn2O4 having a spinel structure, and LiFePO4 having an olivine structure.
  • According to the present invention, the reversible storage ability of the positive electrode is utilized 100%, and a difference between the reversible storage ability and the amount of initially included lithium is fully taken advantage of. Accordingly, a transition metal oxide not including lithium is used as a material for the positive electrode and the capacity thereof be higher. For example, the capacity can be 100 mAh/g to 300 mAh/g or 300 mAh/g or more.
  • In accordance with the present invention, the metal lithium layer is formed on the surface of the negative electrode or the positive electrode or both. In an embodiment, when lithium is heated by supplying heat of 600°C to metal lithium in a vacuum state of about 10 torr, lithium gas is generated. When the electrode surface coated with the active material passes through the lithium gas while the lithium gas continues to be supplied, the lithium layer is deposited on the electrode surface. The lithium layer has a thickness of about 5 to 10 µm when a total electrode thickness is about 100 µm. This corresponds to an amount which increases the capacity of 1 to 2 mA/cm2. Further, it is preferred that the weight of the lithium layer be 0.3 mg/cm2 to 0.8 mg/cm2 per unit area. It is, however, to be noted that the deposition process conditions, the thickness and weight of the lithium layer, and the increment of the current density are only embodiments, and the present invention is not limited thereto.
  • As another example, there is a method of continuously coating particles, including an excess of lithium, on the electrode surface by spraying the particles on a specific binder solution and forming a lithium coating layer by continuously passing the particles through a press. Here, lithium metal powder having a surface coated with a stabilization layer can be used as the particles including an excess of lithium. What fluoro-based polymer, acryl-based polymer, SBR-based rubber, or PAN-based polymer, such as PVDF, is dispersed in a non-aqueous solvent can be used as the binder solution. A continuous coating method, such as spray, roll coating, or dip coating, can be used as the coating method.
  • The formation of the lithium layer can be applied to the negative electrode or the positive electrode or both. Metal lithium formed on the electrode surface is fully ionized through the step of injecting an electrolyte to the activation step and absorbed into the lithium storage materials included in the negative electrode and the positive electrode. In all the cases, metal lithium existing on the electrode surface is consumed in the activation step, and thus the metal lithium does not remain in a battery charge/discharge step. In the lithium secondary battery using the electrode of the present invention, metal lithium is fully consumed in the activation process. Accordingly, a danger of metal lithium can be avoided, and the capacity of the battery can be increased because of doped metal lithium.
  • The present invention provides a lithium secondary battery having a significantly increased reversible capacity after activation by assembling the electrode using a common method of assembling the lithium secondary battery.
  • Further, in a method of manufacturing the electrode according to the present invention, a metal foil current collector commonly used as the current collector of the electrode can be used. Accordingly, the electrode has an excellent mechanical strength. Further, in the process of fabricating the electrode, a conventional process is used without change, and the process of coating metal lithium on the electrode surface is added. Accordingly, the present invention can be easily implemented. In particular, in the case in which lithium is coated using a deposition method, the electrode of the present invention has a thickness of about 100 µm and heat can be distributed over the entire thickness. Accordingly, the deposited lithium can be effectively cooled, and metal lithium can be uniformly doped on the entire area of the electrode chemically or electrochemically through deposition.
  • EMBODIMENT
  • The positive electrode and the negative electrode of the lithium secondary battery were fabricated using the following method.
  • (1) Manufacture of negative electrode
  • The negative electrode plate, including a copper (Cu) current collection plate of 10 µm in thickness and coating layers on both surfaces, was fabricated. Here, the coating layer was made of SiO having a capacity per unit weight of 1200 mAh/g and an initial irreversible capacity of 800 mAh/g, a carbon-based material having a capacity of about 300 mAh/g and an initial irreversible capacity of 30 mAh/g, a rubber component functioning as a binder, CMS, and conductive carbon acetylene black. In this case, SiO was 40%, the carbon-based material was 50%, the rubber component was 4%, CMC was 4%, and the conductive carbon acetylene black was 2%, of a total percentage of the coating layer. Further, the coating layer was controlled to have a reversible lithium storage and discharge ability of 3 mAh/cm2. Next, the negative electrode plate fabricated using continuous processes was rolled, dried, and then put into a vacuum deposition chamber (pressure: 10 torr, temperature: 600°C). Next, metal lithium having a thickness of 12 µm was deposited on the negative electrode plate at a deposition speed of 0.5 m/min, thereby forming the lithium layer.
  • (2) Manufacture of positive electrode
  • The positive electrode, including an aluminum (Al) current collection plate of 14 µm in thickness and a coating layer on both surfaces, was fabricated. Here, the coating layer was made of MnO2 capable of storing lithium at 200 mAh/g per unit weight, LiMn2O4 having an initial discharge capacity of 115 mAh/g and a reversible lithium storage capacity of 110 mAh/g, conductive carbon acetylene black, and PVdF. In this case, MnO2 was 30%, LiMn2O4 was 60%, conductive carbon acetylene black was 4%, and PVdF was 6%, of a total percentage of the coating layer. Further, the coating layer was controlled to have a reversible lithium storage and discharge ability of 3 mAh/cm2.
  • (3) Assembly the battery
  • The negative electrode, the positive electrode, a polyethylene separation layer, and an organic electrolyte including EC/DEC/an additive using LiPF6 as salt were assembled to form a small-sized aluminum laminate package type cell having an electrode area of about 10 cm2.
  • COMPARISON EXAMPLE
  • A negative electrode, composed of the same composition as the negative electrode of the present embodiment and not coated with lithium, and the positive electrode of the present embodiment were assembled to form a cell for comparison using the same method as the present embodiment.
  • EVALUATION OF CAPACITY OF BATTERY
  • The batteries fabricated according to the embodiment and the comparison example were activated and then charged and discharged in a range of 4.2 to 1.5 V.
  • As a result of the charge and discharge, it was found that in the battery including the electrode having the lithium layer deposited thereon according to the present embodiment, the irreversible capacity of the negative electrode was fully offset and an excessive lithium capacity was discharged as low voltage MnO2 materials.
  • The lithium secondary battery of the present invention utilizes the lithium storage and discharge ability of materials for the negative electrode and the positive electrode included in the battery to the maximum extent. Accordingly, a reversible capacity after activation can be significantly increased. Further, since metal lithium is fully consumed during activation, a danger of metal lithium can be avoided.

Claims (7)

  1. A non-activated lithium secondary battery comprising:
    a negative electrode comprising a material which can be alloyed with lithium;
    a positive electrode comprising a metallic current collection plate and a positive electrode active material coated on the current collection plate, the positive electrode active material comprising a mixture of a transition metal oxide comprising lithium and a transition metal oxide which does not comprise lithium and is capable of reversibly intercalating and deintercalating lithium, the positive electrode having an entire reversible lithium storage capacity greater than the dischargeable lithium content of the positive electrode; and
    a lithium metal layer formed on a surface of the negative electrode, the positive electrode or both electrodes;
    wherein the lithium metal layer satisfies the following inequality: S < L S + I
    Figure imgb0003
    wherein S = reversible lithium storage capacity of the positive electrode - dischargeable lithium content of the positive electrode, L is the lithium content of the lithium metal layer, and I is the initial irreversible consumption capacity of the negative electrode; and
    wherein lithium metal does not remain on the electrode surface(s) after the lithium secondary battery has been initially activated and charged.
  2. A non-activated lithium secondary battery according to Claim 1, wherein the material which can be alloyed with lithium has a capacity per unit weight of 700-4300 mAh/g.
  3. A non-activated lithium secondary battery according to Claim 1, wherein the lithium layer is formed using a method of compressing a lithium metal foil on the electrode surface; a method of depositing lithium metal on the electrode surface; or a method of dispersing and coating particles, including an excessive amount of lithium metal, together with a specific binder polymer on the electrode surface.
  4. A non-activated lithium secondary battery according to Claim 1, wherein the lithium metal layer has a weight per unit area of 0.3-0.8 mg/cm2.
  5. A non-activated lithium secondary battery according to Claim 1, wherein the material which can be alloyed with lithium includes one or more of Si, Sn, Al, an alloy in which the total atomic fraction of Si, Sn and Al is 50% or more, an oxide of Si, an oxide of Sn, and an oxide of Al.
  6. A non-activated lithium secondary battery according to Claim 1, wherein the initial irreversible capacity of the negative electrode is 40% or less of its reversible capacity.
  7. A non-activated lithium secondary battery according to Claim 1, wherein the transition metal oxide not including lithium is one or more of MnO2, MoO3, VO2, V2O5, V6O13, Cr3O8 and CrO2, and the transition metal oxide including lithium is one or more of LiMO2 having a layered structure, wherein M is one or more of Co, Ni and Mn, LiMn2O4 having a spinel structure, and LiFePO4 having an olivine structure.
EP10780773.7A 2009-05-26 2010-05-26 Lithium secondary battery with high energy density Active EP2437331B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090045776 2009-05-26
PCT/KR2010/003313 WO2010137862A2 (en) 2009-05-26 2010-05-26 Lithium secondary battery with high energy density

Publications (3)

Publication Number Publication Date
EP2437331A2 EP2437331A2 (en) 2012-04-04
EP2437331A4 EP2437331A4 (en) 2013-11-27
EP2437331B1 true EP2437331B1 (en) 2016-10-12

Family

ID=43223235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10780773.7A Active EP2437331B1 (en) 2009-05-26 2010-05-26 Lithium secondary battery with high energy density

Country Status (7)

Country Link
US (2) US20100330430A1 (en)
EP (1) EP2437331B1 (en)
JP (1) JP5509475B2 (en)
KR (1) KR101156608B1 (en)
CN (1) CN102449811A (en)
TW (1) TWI425703B (en)
WO (1) WO2010137862A2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056847A2 (en) 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
JP5625848B2 (en) * 2010-12-09 2014-11-19 日本電気株式会社 Lithium ion secondary battery and manufacturing method thereof
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US9362560B2 (en) * 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
KR101386156B1 (en) * 2012-05-08 2014-04-21 한국전기연구원 Tin Compound Based Negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
CN104756303A (en) 2012-11-12 2015-07-01 松下知识产权经营株式会社 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US20150000118A1 (en) * 2013-06-26 2015-01-01 Xin Zhao Method for manufacturing graphene-incorporated rechargeable li-ion battery
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
US10002718B2 (en) * 2013-11-29 2018-06-19 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
KR101788232B1 (en) * 2014-10-06 2017-10-19 주식회사 엘지화학 Electrode with Improved Adhesion Property for Lithium Secondary Battery
KR102363963B1 (en) 2016-10-19 2022-02-17 주식회사 엘지에너지솔루션 Lithium secondary battery
KR101984727B1 (en) * 2016-11-21 2019-05-31 주식회사 엘지화학 Electrode and lithium secondary battery comprising the same
WO2018093088A2 (en) 2016-11-21 2018-05-24 주식회사 엘지화학 Electrode and lithium secondary battery comprising same
KR102172070B1 (en) * 2017-01-09 2020-10-30 주식회사 엘지화학 Patterning of Lithium metal and electrochemical device prepared thereby
KR102254353B1 (en) * 2017-03-10 2021-05-21 주식회사 엘지화학 Charging Method of Secondary Battery
US11322736B2 (en) 2017-06-08 2022-05-03 Lg Energy Solution, Ltd. Negative electrode, secondary battery including the same, and method of preparing the negative electrode
KR102140128B1 (en) * 2017-06-20 2020-07-31 주식회사 엘지화학 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
EP3584860A4 (en) * 2017-07-12 2020-04-29 LG Chem, Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
KR102264691B1 (en) 2017-08-11 2021-06-15 (주)엘지에너지솔루션 Pre-lithiation Method using lithium metal and inorganic compound
CN111201645B (en) * 2017-10-16 2023-07-25 株式会社Lg新能源 Lithium electrode and lithium secondary battery comprising same
KR20190044450A (en) * 2017-10-20 2019-04-30 주식회사 엘지화학 Lithium secondary battery with improved cycle life and ultra-high energy density
KR102358448B1 (en) 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and preparing method thereof
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
CN111326717B (en) * 2018-12-13 2021-11-16 深圳先进技术研究院 Aluminum negative electrode material, preparation method and secondary battery
KR20210063129A (en) * 2019-11-22 2021-06-01 주식회사 엘지에너지솔루션 Cable type secondary battery
KR20210112908A (en) * 2020-03-06 2021-09-15 주식회사 엘지에너지솔루션 New method for preparing secondary battery
CN114068871B (en) * 2020-07-31 2023-04-28 天津中能锂业有限公司 Double-sided ultrathin lithium layer composite belt and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147888A1 (en) * 2002-01-23 2005-07-07 Hironori Yamamoto Secondary battery-use negative electrode and secondary battery using it

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414881A (en) * 1987-07-08 1989-01-19 Mitsubishi Gas Chemical Co Secondary battery
JP3010685B2 (en) * 1990-05-28 2000-02-21 ソニー株式会社 Organic electrolyte battery
US5130211A (en) * 1990-10-24 1992-07-14 Her Majesty The Queen In Right Of The Provence Of British Columbia Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
JP3368918B2 (en) 1992-07-17 2003-01-20 エフ・ディ−・ケイ株式会社 Lithium secondary battery
JPH08107048A (en) 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JP4893495B2 (en) 1995-03-06 2012-03-07 宇部興産株式会社 Non-aqueous secondary battery
CN100380726C (en) 1997-01-27 2008-04-09 富士重工业株式会社 Organic electrolytic battery
ID20483A (en) 1997-04-24 1998-12-31 Matsushita Electric Ind Co Ltd SECONDARY BATTERIES WITH ELECTROLITE NOT LIQUID
JPH11111271A (en) * 1997-10-07 1999-04-23 Hitachi Maxell Ltd Organic electrolyte secondary battery and manufacture thereof
JP2000228196A (en) 1998-11-30 2000-08-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100609862B1 (en) 1998-12-03 2006-08-09 카오 코퍼레이션 Lithium secondary cell and method for manufacturing the same
JP2000182602A (en) 1998-12-14 2000-06-30 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US6761744B1 (en) * 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
JP4196398B2 (en) * 2002-08-26 2008-12-17 日本電気株式会社 Non-aqueous electrolyte secondary battery
US20040048157A1 (en) * 2002-09-11 2004-03-11 Neudecker Bernd J. Lithium vanadium oxide thin-film battery
JP2004200003A (en) * 2002-12-18 2004-07-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4366101B2 (en) 2003-03-31 2009-11-18 キヤノン株式会社 Lithium secondary battery
JP2005038720A (en) * 2003-07-15 2005-02-10 Sony Corp Method of manufacturing negative electrode and method of manufacturing battery
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
KR100496306B1 (en) 2003-08-19 2005-06-17 삼성에스디아이 주식회사 Method for preparing of lithium metal anode
WO2005024980A1 (en) * 2003-09-05 2005-03-17 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
TWI263369B (en) 2003-09-26 2006-10-01 Lg Chemical Ltd Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
JP2005190982A (en) 2003-12-04 2005-07-14 Nichia Chem Ind Ltd Active material, manufacturing method of same, nonaqueous electrolyte secondary battery, and lithium primary battery
KR20040040411A (en) 2004-03-26 2004-05-12 (주)에너렉스 Lithium electrode of lithium battery
KR100590096B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20060080454A (en) 2005-01-05 2006-07-10 동아전기부품 주식회사 Anode for a lithium secondary battery using lithium niobate and method of preparing polycrystalline powder used therefor
WO2006112674A1 (en) 2005-04-22 2006-10-26 Lg Chem, Ltd. New system of lithium ion battery containing material with high irreversible capacity
JP4876531B2 (en) * 2005-10-27 2012-02-15 パナソニック株式会社 Negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP5061458B2 (en) * 2005-12-19 2012-10-31 パナソニック株式会社 Anode material for non-aqueous electrolyte secondary battery and method for producing the same
US8216719B2 (en) * 2006-02-13 2012-07-10 Hitachi Maxell Energy, Ltd. Non-aqueous secondary battery and method for producing the same
JP2007280926A (en) * 2006-03-14 2007-10-25 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
JP5094230B2 (en) * 2006-08-29 2012-12-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20080070120A1 (en) * 2006-09-14 2008-03-20 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery and making method
JP2009016310A (en) * 2007-07-09 2009-01-22 Panasonic Corp Current collector, electrode, and nonaqueous electrolyte secondary battery
KR101440884B1 (en) 2007-12-18 2014-09-18 삼성에스디아이 주식회사 Anode comprising surface treated anode active material and lithium battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147888A1 (en) * 2002-01-23 2005-07-07 Hironori Yamamoto Secondary battery-use negative electrode and secondary battery using it

Also Published As

Publication number Publication date
WO2010137862A2 (en) 2010-12-02
JP2012528450A (en) 2012-11-12
KR101156608B1 (en) 2012-06-15
US8497040B2 (en) 2013-07-30
KR20100127730A (en) 2010-12-06
EP2437331A4 (en) 2013-11-27
CN102449811A (en) 2012-05-09
US20120070742A1 (en) 2012-03-22
TW201106521A (en) 2011-02-16
EP2437331A2 (en) 2012-04-04
US20100330430A1 (en) 2010-12-30
TWI425703B (en) 2014-02-01
JP5509475B2 (en) 2014-06-04
WO2010137862A3 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP2437331B1 (en) Lithium secondary battery with high energy density
KR102417200B1 (en) Negative electrode for lithium secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
EP1195826B1 (en) Solid electrolyte cell
US9531033B2 (en) Lithium secondary battery and manufacturing method therefor
JP5527176B2 (en) Non-aqueous electrolyte battery
EP3605670B1 (en) Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same
US8003243B2 (en) Spirally wound secondary battery with uneven termination end portions
EP3570349B1 (en) Pre-lithiation using lithium metal and inorganic material composite layer
EP2197069A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
TW200810182A (en) Non-aqueous electrolyte secondary battery
US9343736B2 (en) Lithium compensation for full cell operation
JP2002063938A (en) Secondary battery and its manufacturing method
Yamano et al. High-capacity Li-ion batteries using SiO-Si composite anode and Li-rich layered oxide cathode: cell design and its safety evaluation
JP2023527842A (en) Lithium-ion battery with high energy density
US20070072062A1 (en) Lithium secondary battery and method of manufacturing the same
EP0718902B1 (en) Organic electrolyte secondary cell
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
EP4246625A1 (en) Electrochemical apparatus and electronic apparatus
JP2023542123A (en) Lithium-ion battery with high specific energy density
JP3511489B2 (en) Method for producing wound electrode body for lithium secondary battery
KR20210021777A (en) Lithium Anode-free All Solid State Battery Using Sacrificial Cathode Materials
KR20190110348A (en) Method for Preparing Anode and Anode Prepared Therefrom
KR20240074795A (en) Energy storage elements and manufacturing processes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131028

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/62 20060101ALI20131022BHEP

Ipc: H01M 4/1395 20100101ALI20131022BHEP

Ipc: H01M 4/46 20060101ALI20131022BHEP

Ipc: H01M 4/40 20060101ALI20131022BHEP

Ipc: H01M 4/1391 20100101ALI20131022BHEP

Ipc: H01M 10/44 20060101ALN20131022BHEP

Ipc: H01M 4/36 20060101ALI20131022BHEP

Ipc: H01M 10/052 20100101ALI20131022BHEP

Ipc: H01M 4/134 20100101ALI20131022BHEP

Ipc: H01M 4/38 20060101ALI20131022BHEP

Ipc: H01M 4/131 20100101AFI20131022BHEP

17Q First examination report despatched

Effective date: 20140918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010037171

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0004020000

Ipc: H01M0004131000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/62 20060101ALI20160518BHEP

Ipc: H01M 4/1391 20100101ALI20160518BHEP

Ipc: H01M 4/134 20100101ALI20160518BHEP

Ipc: H01M 10/052 20100101ALI20160518BHEP

Ipc: H01M 4/1395 20100101ALI20160518BHEP

Ipc: H01M 4/131 20100101AFI20160518BHEP

Ipc: H01M 4/40 20060101ALI20160518BHEP

Ipc: H01M 10/44 20060101ALN20160518BHEP

Ipc: H01M 4/36 20060101ALI20160518BHEP

Ipc: H01M 4/38 20060101ALI20160518BHEP

Ipc: H01M 4/46 20060101ALI20160518BHEP

INTG Intention to grant announced

Effective date: 20160617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 837207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010037171

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 837207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161012

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010037171

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010037171

Country of ref document: DE

Owner name: LG ENERGY SOLUTION LTD., KR

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010037171

Country of ref document: DE

Owner name: LG ENERGY SOLUTION, LTD., KR

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 14

Ref country code: DE

Payment date: 20230420

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230824 AND 20230831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010037171

Country of ref document: DE

Owner name: LG ENERGY SOLUTION, LTD., KR

Free format text: FORMER OWNER: LG ENERGY SOLUTION LTD., SEOUL, KR