EP0991850B1 - Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle - Google Patents

Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle Download PDF

Info

Publication number
EP0991850B1
EP0991850B1 EP98936164A EP98936164A EP0991850B1 EP 0991850 B1 EP0991850 B1 EP 0991850B1 EP 98936164 A EP98936164 A EP 98936164A EP 98936164 A EP98936164 A EP 98936164A EP 0991850 B1 EP0991850 B1 EP 0991850B1
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
turbine shaft
cooling
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98936164A
Other languages
English (en)
French (fr)
Other versions
EP0991850A1 (de
Inventor
Andreas FELDMÜLLER
Ralf Kuhn
Stefan Sasse
Andreas Ulma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0991850A1 publication Critical patent/EP0991850A1/de
Application granted granted Critical
Publication of EP0991850B1 publication Critical patent/EP0991850B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • F01D25/125Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Definitions

  • the invention relates to a turbine shaft of a steam turbine, especially for the admission of high pressure and medium pressure blading, and a method for cooling the turbine shaft a steam turbine.
  • the high pressure steam is fed to the turbine shaft and flows through the high-pressure blading to an outlet nozzle.
  • the relaxed and cooled steam can be fed into a boiler and reheated there.
  • the steam condition at the end of the high-pressure sub-turbine is hereinafter referred to as "cold reheating" and the vapor state after leaving the boiler as “hot reheating” designated.
  • the steam emerging from the boiler becomes fed to the medium pressure blading.
  • the steam state can be from 30 bar to 50 bar and 540 ° C, one Increase to a steam state of about 50 bar to 60 bar and 600 ° C is aimed for.
  • In a steam inflow area, especially the medium-pressure turbine can be constructive Measures must be carried out using a shaft shield the turbine shaft from direct contact is protected with the steam.
  • DE 19531290 A1 describes a rotor for thermal turbomachinery, consisting of one arranged on a shaft Compressor part, a middle part and a turbine part.
  • the rotor is mainly made up of individual ones welded rotating bodies assembled, their geometric Form for the formation of axially symmetrical cavities between the adjacent rotating body leads.
  • the Rotor has an axially directed, upstream End of the rotor to the last cavity upstream cylindrical cavity, on.
  • In this cylindrical Cavity are at least two pipes with different from each other Diameters and lengths placed. This is supposed to the rotor of the turbo machine on its very short time Operating state can be brought and easily thermally regulated be, i.e. depending on requirements with relatively little effort be heatable or coolable.
  • the US-PS 5,054,996 relates to a gas turbine rotor with an axial tie rod connected rotor disks. Air is passed through the gas turbine rotor, causing the The rotor and the rotor disks can be heated essentially uniformly and are coolable.
  • a steam turbine plant is known from US Pat. No. 5,498,131 with a system to reduce thermomechanical Stresses that arise when starting up or shutting down the steam turbine system can occur in a turbine shaft.
  • the steam turbine system has a high-pressure partial turbine and a medium pressure turbine with a single turbine shaft, which is a completely continuous central bore having.
  • the central hole can be separated Hot steam supply system outside the housing of the partial turbines during start-up or shutdown of the Steam turbine system hot steam are supplied. Between two sub-turbines, i.e. about in the middle of the turbine shaft, this warm steam comes out of the central bore again dissipated.
  • This system is an improved and controlled one Running through the transient start-up or shutdown state possible in a short time.
  • the object of the invention is a turbine shaft of a steam turbine to specify the high locally occurring in particular withstands long-term operational temperature loads.
  • Another object of the invention is to provide a method for Specify cooling of a turbine shaft of a steam turbine.
  • a turbine shaft of a steam turbine directed task solved in that the turbine shaft is directed along the axis of rotation and a first Blading area of a first partial turbine, one second blading area of a second partial turbine and in between a storage area, a jacket surface and in Inside a cooling line for guiding cooling steam in the direction the axis of rotation, the cooling line on the one hand with at least one discharge line for the discharge of Cooling steam and on the other hand with at least one inflow line is connected to the inflow of cooling steam.
  • cooling steam in the direction of the axis of rotation through the Turbine shaft can be passed and through the discharge line be conducted.
  • This is both a very temperature-stressed Area of the turbine shaft, in particular the steam inflow area, from the inside as well as on the surface of the jacket and in Area of attachments of blades can be cooled.
  • the Cooling line can be inclined or opposite to the axis of rotation run convoluted towards this, being a transport of cooling steam in the direction of the axis of rotation.
  • cooling line can be provided, whereby several cooling lines are interconnected and each with one or more outflow lines or inflow lines can be connected. It is also possible Outflow lines adjacent in the direction of the axis of rotation to be arranged at predetermined intervals and with the cooling line connect to. Cooling heavily exposed to temperature Shaft sections can thus be carried out on pipelines, Housing bushings and an integration into the Turbine control take place. Such a high level of design effort would be, for example, when cooling a turbine shaft by means of cold steam from the outside through the housing and through the guide vanes to the turbine shaft, around the surface of the turbine shaft cool.
  • the turbine shaft is preferably suitable for a single-strand Steam turbine with a high pressure and a medium pressure turbine.
  • the turbine shaft can consist of two in the bearing area interconnected turbine segments exist each turbine shaft segment having a cooling line, and the cooling lines in the storage area pass.
  • Each turbine shaft segment or the entire turbine shaft can be made from a respective forging his. This makes it possible to handle the high temperature loads Steam inflow area of the medium pressure turbine section, which is carried out in particular with two flows Cooling steam from the high pressure sub-turbine. Because in comparison to the high pressure part in the medium pressure part due to lower Vapor pressures significantly higher volume flows and thus larger shaft diameters and longer blades required are the thermomechanical stress on the blade feet and the turbine shaft in the medium pressure part larger than in the high pressure part.
  • the turbine shaft Since also in the high pressure and medium pressure part The material properties are similar temperatures the turbine shaft, such as creep rupture strength and impact strength, also similar, whereby due to the higher thermomechanical load of the Medium pressure part of this as more critical than the high pressure part is to be assessed.
  • This problem is preferably solved, by the turbine shaft in the medium pressure part both in inside, especially the middle of the shaft, as well as on hers Shell surface, especially in the area of the blade feet, can be cooled by cooling steam.
  • the High-pressure partial turbine steam from the exhaust steam area or between two steps through radial drilling into the interior of the Wave directed. This cooling steam flows due to the pressure drop through the hollow drilled high and medium pressure shaft into the medium pressure turbine.
  • the medium pressure partial turbine steam occurs preferably under a cover plate of the turbine shaft (Shaft shielding) of the steam inflow area of the medium-pressure sub-turbine from the turbine shaft and due to from film cooling effects to lowering the temperature the turbine shaft in the steam inflow area and in the area the first turbine stages.
  • the cooling steam also between two axially spaced apart Flow out turbine stages or for cooling rotor blades, which are hollow at least in some areas are used.
  • the pressure difference between the steam outlet area of the high-pressure sub-turbine and the The steam inlet area of the medium-pressure partial turbine can, for example be between 4 bar and 6 bar.
  • the turbine shaft In the storage area where the turbine shaft is on a bearing is preferably heat insulation provided to prevent radial heat flow. By reducing the heat transfer from the cooling steam The material of the turbine shaft becomes excessive heating of the camp avoided.
  • the cooling line is preferably in the storage area with an insulation tube provided which is surrounded by the cavity.
  • the insulation pipe preferably faces the cavity at least an opening. Through the opening, especially a hole, is a pressure equalization between the cavity and the Cooling pipe reached, causing a deformation of the insulation tube due to the stationary operation of the steam turbine occurring high pressure of the cooling steam is prevented.
  • the second blading area is preferably double-flow executed and serves to accommodate a medium pressure blading.
  • a turbine shaft is in a steam turbine with a high pressure turbine and with a double flow Medium pressure turbine used. It is also possible to execute the second blading area with one flow, whereby the turbine shaft in this case preferably in one Steam turbine with a single-flow medium pressure turbine used becomes.
  • the outflow line preferably opens into one Steam inflow area of the medium-pressure blades, in particular in the area of a shaft shield of the turbine shaft.
  • the cooling line is preferably a largely to the axis of rotation parallel bore, in particular a central one Hole is.
  • a cooling line designed as a bore is particularly simple and precise even afterwards in the turbine shaft produced.
  • With a composite turbine shaft is preferably a central in each turbine shaft Drilled hole of the same diameter, so that at Merging the sub-turbine shafts into a single cooling line is formed with the same diameter.
  • the inflow pipe preferably connects the jacket surface like the outflow line with the cooling line. This is cooling steam, in particular Steam from a high-pressure sub-turbine, from the jacket surface at one end of the turbine shaft through the inside the turbine shaft into the steam inflow area of the second blading area feasible.
  • the inflow pipe and / or the outflow line is or is preferably one essentially radial bore.
  • Such drilling is easy also executable after the turbine shaft has been manufactured, whereby such a hole precisely with an axial hole trained cooling line is connectable. Diameter one Hole and number of several holes for the inflow pipe and the discharge line is based on that for cooling provided amount of steam.
  • the turbine shaft preferably has recesses for receiving of turbine blades, the discharge line preferably opens into one of these recesses. It is here also possible that in a blade cooling line of a turbine blade Cooling steam can be introduced for cooling.
  • a Recess for receiving a turbine blade can slightly larger than the blade root of the respective blade be executed so that between a corresponding Blade base and the turbine shaft forms a space in the Steam can flow in to cool the blade root.
  • This Space can also be formed by channels connected to the discharge line and / or are connected to each other.
  • a recess into which an outflow line leads preferably a spur line to the surface of the turbine shaft.
  • the outflow line between axially spaced apart Recesses on the surface of the jacket open.
  • the outflow line preferably opens into a through one Shaft shield formed cavity, the shaft shield a flow division of the incoming steam into the serves both floods. Cooling preferably takes place first rows of blades of the medium-pressure turbine, in particular their shovel feet and shovel blades.
  • the discharge line leading to the shaft surface and / or Branch line is also a film cooling of the shaft surface, especially in the area closest to the steam inflow area Turbine blades (first turbine stage) achieved.
  • the inflow line preferably connects the steam outlet area the high pressure sub-turbine with the cooling line, whereby Steam from there through the inside of the turbine shaft the medium-pressure turbine part is feasible. It is also possible that the inflow pipe from the jacket surface between two axially spaced rows of blades of the first blading area leads into the cooling line.
  • the on a method of cooling a turbine shaft Steam turbine directed task is solved in that a turbine shaft with a first blading area to accommodate the high-pressure blades and a double-flow one second blading area to accommodate the medium-pressure blades Steam from the steam area of the first blading area through the inside of the turbine shaft a storage area to the second blading area to be led.
  • the steam flow inside the turbine shaft can be a suitable dimensioning corresponding cooling line, which in particular as a bore is designed to be regulated so that even over a wide range Adequate cooling of the turbine shaft is guaranteed. Since also in the partial load range Steam turbine a pressure difference between the high pressure turbine and the medium pressure turbine part is a perfect functioning of the process even in the partial load range guaranteed.
  • executed cooling line may rise the tangential stresses inside the turbine shaft something double compared to a turbine shaft without drilling. This higher one, if any The turbine shaft is stressed by the significantly improved material properties due to the internal cooling the turbine shaft more than compensated.
  • the procedure is also suitable for a turbine shaft that at least two sub-turbine shafts (turbine shaft segments) put together is, the sub-turbine shafts in the bearing area are joined together.
  • Figure 1 is a steam turbine 23, 25 with one along a turbine shaft 1 extending axis of rotation 2 shown.
  • the steam turbine has a high-pressure partial turbine 23 and a medium-pressure turbine section 25, each with one Inner housing 21 and an outer housing enclosing this 22 on.
  • the high-pressure turbine section 23 is designed in a pot design.
  • the medium-pressure turbine section 25 is designed with two passages. It is also possible that the medium pressure turbine 25 is carried out with one flow.
  • the turbine shaft 1 Along the axis of rotation 2 is between the high pressure turbine section 23 and the medium pressure turbine section 25 a bearing 29b arranged, the turbine shaft 1 has a storage area 32 in the bearing 29b.
  • the turbine shaft 1 is located on a further bearing 29a the high-pressure turbine section 23 is supported.
  • the high-pressure turbine section 23 has a shaft seal 24 on.
  • the turbine shaft 1 is opposite the outer casing 22 of the medium-pressure turbine section 25 by two more Sealed shaft seals 24.
  • Between a high pressure steam inflow area 27 and a steam outlet area 16 shows the turbine shaft 1 in the high-pressure turbine section 23 High-pressure barrel blading 11, 13.
  • the medium-pressure turbine section 25 has a central one Steam inflow region 15.
  • the steam inflow area Associated with 15, the turbine shaft 1 has a radial symmetry Shaft shield 9, a cover plate, on the one hand for Division of the steam flow into the two flows of the medium-pressure turbine 25 as well as to prevent a direct Contact of the hot steam with the turbine shaft 1.
  • the Turbine shaft 1 has one in the medium-pressure turbine section 25 second blading area 31 with the medium-pressure blades 11, 14 on. That through the second blading area 31 flowing hot steam flows from the medium-pressure turbine 25 from an outflow nozzle 26 to a fluidic downstream, not shown low pressure turbine.
  • the turbine shaft 1 is composed of two sub-turbine shafts 1a and 1b assembled, which are fixed together in the area of the bearing 29b are connected.
  • Each sub-turbine shaft 1a, 1b has one formed as a central bore 5 along the axis of rotation 2 Cooling line 5 on.
  • the cooling line 5 is with the steam outlet area 16 via a radial bores 8a Inflow line 8 connected.
  • the coolant line 5 is not closer to one shown cavity connected below the shaft shield 9.
  • the inflow lines 8 are radial bores 8a executed, causing "cold" steam from the high pressure turbine 23 can flow into the central bore 5.
  • the discharge line 7 passes the steam through the storage area 32 into the medium-pressure turbine section 25 and there to the jacket surface 3 of the turbine shaft 1 in the steam inflow area 15.
  • the steam flowing through the cooling line 5 6 has a significantly lower temperature than that in the Steam inflow region 15 inflows reheated Steam so that effective cooling of the first rows of blades 14 of the medium-pressure turbine section 25 and the jacket surface 3 guaranteed in the area of these blade rows 14 is.
  • FIG. 2 shows an enlarged section of a Steam inflow region 15 of the medium-pressure turbine section 25.
  • Recesses 10 of the turbine shaft 1 are each corresponding Blades 11, 14 with their respective blade feet 18 arranged.
  • the recesses 10 each point the blade feet 18 around channels 20, the channels 20 on the one hand with the one running radially to the axis of rotation 2
  • Outflow line 7 and on the other hand each with a branch line 12 are connected.
  • the stub 12 leads from the Recess 10 to the jacket surface 3 and is a guide vane 19 opposite the steam turbine.
  • the one from the discharge pipes 7 flowing steam 6 enters the channels 20 of the Recess 10 and thus cools each in a corresponding Recess arranged blade feet 18.
  • the steam 6 flows from the channels 20 through a respective stub 12 to the jacket surface 3 of the turbine shaft 1 and cools thus also the jacket surface 3 between each other in the direction the rotating axis 2 adjacent blades 11.
  • steam 6 also flows through this blade cooling line 38 and cools the blade 11 from the inside. This is shown schematically on a blade 11.
  • FIG. 3 shows a section of the storage area 32 of the Sub-turbine shaft 1b of the high-pressure sub-turbine 23.
  • the cooling line 5 In the storage area 32 is the cooling line 5 to a larger one Diameter extended along a given axial length.
  • the cooling line 5 which is expanded in this way, there is thermal insulation 33 comprising an insulation tube 36.
  • the Insulation tube 36 has an inner diameter that with corresponds to the diameter of the non-expanded cooling line 5.
  • the outer diameter of the insulation tube 36 is smaller than the enlarged diameter of the cooling line 5, so that a cavity 34, in particular an annular gap 34, between the insulation tube 36 and the turbine shaft material 35 remains.
  • the insulation tube 36 has openings 37 to the Cavity 34 on.
  • the invention is characterized by a turbine shaft, which has a cooling line, via the at least one inflow line with a high pressure part turbine and at least via an outflow line with the steam inflow area of the Medium pressure turbine is connected.
  • the inflow line, the cooling line and the outflow line form a line system inside the turbine shaft, through which "cold" Steam from the high pressure part turbine to the thermomechanical highly stressed steam inflow area of the medium pressure turbine is feasible. This is done without high design Effort cooling both the blades, in particular the blade feet, as well as the jacket surface of the Turbine shaft in the particularly heavily used steam inflow area the medium pressure partial turbine, in particular a double-flow version.
  • Thermal insulation is provided inside the turbine shaft, due to excessive heating of a turbine shaft bearing is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

Die Erfindung betrifft eine Turbinenwelle einer Dampfturbine, insbesondere zur Aufnahme der Hochdruck- und Mitteldruck-Beschaufelung, sowie ein Verfahren zur Kühlung der Turbinenwelle einer Dampfturbine.
Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei. Die Verwendung eines solchen Dampfes stellt erhöhte Anforderungen an die entsprechende Dampfturbine. Bei einer Dampfturbine in einem Leistungsbereich von einigen 100 MW eignet sich eine einsträngige Dampfturbine mit Hochdruck- und Mitteldruckteilturbine sowie nachgeschalteter Niederdruckteilturbine. Von der gegebenenfalls aus mehreren Segmenten zusammengesetzten Turbinenwelle werden sowohl die Hochdruck-Laufschaufeln als auch die Mitteldruck-Laufschaufeln aufgenommen. Jede Teilturbine kann ein Innengehäuse und ein Außengehäuse aufweisen, welche jeweils z.B. horizontal geteilt und miteinander verschraubt sind. Der durch den Hochdruck-Dampf gekennzeichnete Frischdampfzustand kann bei etwa 170 bar und 540 °C liegen. Im Zuge der Steigerung des Wirkungsgrades kann ein Frischdampfzustand bis 270 bar und 600 °C angestrebt werden. Der Hochdruck-Dampf wird der Turbinenwelle zugeführt und durchströmt die Hochdruck-Beschaufelung bis zu einem Austrittsstutzen. Der hierbei entspannte und abgekühlte Dampf kann einem Kessel zugeführt und dort erneut aufgeheizt werden. Der Dampfzustand am Ende der Hochdruck-Teilturbine wird im folgenden als "kalte Zwischenüberhitzung" und der Dampfzustand nach Verlassen des Kessels als "heiße Zwischenüberhitzung" bezeichnet. Der aus dem Kessel austretende Dampf wird der Mitteldruck-Beschaufelung zugeführt. Der Dampfzustand kann bei 30 bar bis 50 bar und 540 °C liegen, wobei eine Steigerung auf einen Dampfzustand von etwa 50 bar bis 60 bar und 600 °C angestrebt wird. In einem Dampfeinströmbereich, insbesondere der Mitteldruck-Teilturbine, können konstruktive Maßnahmen durchgeführt sein, bei denen über eine Wellenabschirmung die Turbinenwelle vor einem unmittelbaren Kontakt mit dem Dampf geschützt ist.
In der DE 19531290 A1 ist ein Rotor für thermische Turbomaschinen, bestehend aus einem auf einer Welle angeordneten Verdichterteil, einem Mittelteil und einem Turbinenteil, angegeben. Der Rotor ist vorwiegend aus einzelnen miteinander verschweißten Rotationskörpern zusammengebaut, deren geometrische Form zur Ausbildung von axialsymmetrischen Hohlräumen zwischen den jeweils benachbarten Rotationskörper führt. Der Rotor weist einen axialgerichteten, sich vom einströmseitigen Ende des Rotors bis zum stromaufwärts letzten Hohlraum reichenden zylinderförmigen Hohlraum, auf. In diesem zylindrischen Hohlraum sind zumindest zwei Rohre mit voneinander verschiedenen Durchmessern und Längen platziert. Hierdurch soll der Rotor der Turbomaschine innerhalb kürzester Zeit auf seinen Betriebszustand bringbar und leicht thermisch regulierbar sein, d.h. je nach Anforderung mit relativ wenig Aufwand heiz- oder kühlbar sein.
Die US-PS 5,054,996 betrifft einen Gasturbinenrotor aus mit einem axialen Zuganker miteinander verbundenen Rotorscheiben. Durch den Gasturbinenrotor wird Luft geleitet, wodurch der Rotor und die Rotorscheiben im wesentlichen gleichmäßig heizbar und kühlbar sind.
In dem Patent Abstract of Japan N-303, June 20, 1984, Vol. 8, No. 132 zur japanischen Patentanmeldung JP-A-59-34402 ist eine Turbinenwelle für eine Dampfturbine beschrieben. Diese Turbinenwelle einer einzigen Dampfturbine weist in ihrem Inneren eine axiale Bohrung auf, in die mittig Kühlfluid eingeleitet wird, welches beidseitig an den Enden der Bohrung wieder hinausströmt.
Aus der US-Patentschrift 5,498,131 geht eine Dampfturbinenanlage mit einem System zur Reduzierung thermomechanischer Spannungen hervor, die beim Anfahren oder Abfahren der Dampfturbinenanlage in einer Turbinenwelle auftreten können. Hierzu weist die Dampfturbinenanlage eine Hochdruckteilturbine und eine Mitteldruckteilturbine auf mit einer einzigen Turbinenwelle, welche eine vollständig durchgehende zentrale Bohrung aufweist. Der zentralen Bohrung kann über ein separates Zuführungssystem für Warmdampf jeweils außerhalb des Gehäuses der Teilturbinen während des Anfahrens oder Abfahrens der Dampfturbinenanlage Warmdampf zugeführt werden. Zwischen den beiden Teilturbinen, d.h. etwa in der Mitte der Turbinenwelle, wird dieser Warmdampf aus der zentralen Bohrung wieder abgeführt. Durch dieses System ist ein verbessertes und kontrolliertes Durchlaufen des transienten Anfahr- oder Abfahrzustands in kurzer Zeit möglich.
Aufgabe der Erfindung ist es, eine Turbinenwelle einer Dampfturbine anzugeben, die insbesondere lokal auftretenden hohen betrieblichen Temperaturbelastungen langzeitstabil standhält. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbine anzugeben.
Erfindungsgemäß wird die auf eine Turbinenwelle einer Dampfturbine gerichtete Aufgabe dadurch gelöst, daß die Turbinenwelle entlang der Rotationsachse gerichtet ist und einen ersten Beschaufelungsbereich einer ersten Teilturbine, einen zweiten Beschaufelungsbereich einer zweiten Teilturbine sowie dazwischen ein Lagerungsbereich, eine Manteloberfläche und im Inneren eine Kühlleitung zur Führung von Kühldampf in Richtung der Rotationsachse aufweist, wobei die Kühlleitung einerseits mit zumindest einer Abströmleitung zur Abführung von Kühldampf und andererseits mit zumindest einer Zuströmleitung zur Zuströmung von Kühldampf verbunden ist.
Durch eine im Inneren der Turbinenwelle verlaufende Kühlleitung ist Kühldampf in Richtung der Rotationsachse durch die Turbinenwelle hindurchführbar und durch die Abströmleitung leitbar. Hierdurch ist sowohl ein stark temperaturbelasteter Bereich der Turbinenwelle, insbesondere der Dampfeinströmbereich, von innen heraus sowie an der Manteloberfläche und im Bereich von Befestigungen von Laufschaufeln kühlbar. Die Kühlleitung kann gegenüber der Rotationsachse geneigt oder gegenüber dieser gewunden verlaufen, wobei sie einen Transport von Kühldampf in Richtung der Rotationsachse ermöglicht. Weiterhin ist auch eine Kühlung der in der Turbinenwelle verankerbaren Laufschaufeln, insbesondere deren Schaufelfüße, durchführbar. Es versteht sich, daß je nach Herstellung der Kühlleitung die Abströmleitung und die Zuströmleitung einen Teil der Kühlleitung darstellen können. Weiterhin versteht es sich, daß mehr als eine Kühlleitung vorgesehen sein kann, wobei mehrere Kühlleitungen untereinander in Verbindung stehen und jeweils mit einer oder mehreren Abströmleitungen bzw. Zuströmleitungen verbunden sein können. Es ist ebenfalls möglich, in Richtung der Rotationsachse benachbarte Abströmleitungen in vorgebbaren Abständen anzuordnen und mit der Kühlleitung zu verbinden. Eine Kühlung stark temperaturbelasteter Wellenabschnitte kann somit ohne erheblichen Aufwand an Rohrleitungen, Gehäuse-Durchführungen und einer Einbindung in die Turbinenregelung erfolgen. Ein solch hoher konstruktiver Aufwand wäre beispielsweise bei einer Kühlung einer Turbinenwelle mittels kaltem Dampf von außen durch das Gehäuse und die Leitschaufeln hindurch bis zur Turbinenwelle erforderlich, um die Manteloberfläche der Turbinenwelle direkt zu kühlen.
Vorzugsweise eignet sich die Turbinenwelle für eine einsträngige Dampfturbine mit einer Hochdruck- und einer Mitteldruck-Teilturbine. Die Turbinenwelle kann hierbei aus zwei im Lagerbereich miteinander verbundenen Turbinensegmenten bestehen, wobei jedes Turbinenwellensegment eine Kühlleitung aufweist, und die Kühlleitungen in dem Lagerbereich ineinander übergehen. Jedes Turbinenwellensegment oder die ganze Turbinenwelle kann hierbei aus einem jeweiligen Schmiedestück hergestellt sein. Es ist hierdurch möglich, den stark temperaturbelasteten Dampfeinströmbereich der Mitteldruck-Teilturbine, welche insbesondere zweiflutig ausgeführt ist, mit Dampf aus der Hochdruck-Teilturbine zu kühlen. Da im Vergleich zum Hochdruck-Teil im Mitteldruck-Teil infolge niedrigerer Dampfdrücke deutlich höhere Volumenströme und damit größere Wellendurchmesser und längere Schaufeln erforderlich sind, ist die thermomechanische Beanspruchung der Laufschaufelfüße und der Turbinenwelle im Mitteldruck-Teil größer als im Hochdruck-Teil. Da zudem im Hochdruck- und Mitteldruck-Teil jeweils ähnliche Temperaturen herrschen, sind die Werkstoffkennwerte der Turbinenwelle, wie beispielsweise Zeitstandfestigkeit und Kerbschlagzähigkeit, ebenfalls ähnlich, wodurch aufgrund der höheren thermomechanischen Belastung des Mitteldruck-Teils dieser als kritischer als der Hochdruck-Teil zu bewerten ist. Diese Problematik ist vorzugsweise gelöst, indem die Turbinenwelle im Mitteldruck-Teil sowohl in ihrem Inneren, besonders der Wellenmitte, als auch an ihrer Manteloberfläche, insbesondere im Bereich der Laufschaufelfüße, durch Kühldampf kühlbar ist. Vorzugsweise wird aus der Hochdruck-Teilturbine Dampf aus dem Abdampfbereich oder zwischen zwei Stufen durch radiale Bohrung in das Innere der Welle geleitet. Dieser Kühldampf strömt aufgrund des Druckgefälles durch die hohlgebohrte Hochdruck- und Mitteldruckwelle in die Mitteldruck-Teilturbine. Insbesondere bei einer zweiflutigen Ausführung der Mitteldruck-Teilturbine tritt Dampf vorzugsweise unter einer Abdeckplatte der Turbinenwelle (Wellenabschirmung) des Dampfeinströmbereichs der Mitteldruck-Teilturbine aus der Turbinenwelle aus und führt aufgrund von Filmkühlungseffekten zu einer Absenkung der Temperatur der Turbinenwelle im Dampfeinströmbereich und im Bereich der ersten Turbinenstufen. Je nach Anwendungsfall kann der Kühldampf auch zwischen zwei axial voneinander beabstandeten Turbinenstufen ausströmen oder zur Kühlung von Laufschaufeln, die insbesondere zumindest bereichsweise hohl ausgeführt sind, verwendet werden. Der Druckunterschied zwischen dem Dampfaustrittsbereich der Hochdruck-Teilturbine und dem Dampfeintrittsbereich der Mitteldruck-Teilturbine kann beispielsweise zwischen 4 bar und 6 bar betragen. Durch eine entsprechende Bemessung des Querschnittes der Kühlleitung ist die Dampfströmung so regulierbar, daß auch über einen weiten Leitungsbereich der Dampfturbine eine ausreichende Kühlleistung gewährleistet ist.
In dem Lagerungsbereich, in dem die Turbinenwelle auf ein Lager auflagerbar ist, ist vorzugsweise eine Wärmeisolierung zur Verhinderung eines radialen Wärmeflusses vorgesehen. Durch eine Herabsetzung des Wärmeübergangs vom Kühldampf zu dem Werkstoff der Turbinenwelle wird eine übermäßige Aufheizung des Lagers vermieden. Vorzugsweise ist hierbei ein Zwischenraum zwischen der Kühlleitung und dem Turbinenwellen-werkstoff vorgesehen, welcher als Ringspalt ausgeführt sein kann. In diesem Zwischenraum ist ein Fluid, vorzugsweise Kühldampf, vorhanden, welches zu einer Isolierung und damit zu einer Verhinderung eines intensiven Wärmeübergangs durch erzwungene Konvektion vom durch die Kühlleitung strömenden Kühldampf an die Turbinenwelle führt. Die Kühlleitung ist hierbei im Lagerbereich vorzugsweise mit einem Isolierungsrohr versehen, welches von dem Hohlraum umgeben ist. Das Isolierungsrohr weist vorzugsweise zu dem Hohlraum zumindest eine Öffnung auf. Durch die Öffnung, insbesondere eine Bohrung, wird ein Druckausgleich zwischen dem Hohlraum und der Kühlleitung erreicht, wodurch eine Verformung des Isolierungsrohres durch den im stationären Betrieb der Dampfturbine auftretenden hohen Druck des Kühldampfes verhindert wird.
Der zweite Beschaufelungsbereich ist vorzugsweise zweiflutig ausgeführt und dient der Aufnahme einer Mitteldruck-Beschaufelung. Eine solche Turbinenwelle wird in einer Dampfturbine mit einer Hochdruckteilturbine und mit einer zweiflutigen Mitteldruckteilturbine eingesetzt. Es ist ebenfalls möglich, den zweiten Beschaufelungsbereich einflutig auszuführen, wobei die Turbinenwelle in diesem Fall vorzugsweise in einer Dampfturbine mit einflutiger Mitteldruckteilturbine eingesetzt wird. Die Abströmleitung mündet vorzugsweise in einem Dampfeinströmbereich der Mitteldruck-Laufschaufeln, insbesondere im Bereich einer Wellenabschirmung der Turbinenwelle.
Die Kühlleitung ist vorzugsweise eine weitgehend zur Rotationsachse parallele Bohrung, die insbesondere eine zentrale Bohrung ist. Eine als Bohrung ausgebildete Kühlleitung ist besonders einfach und exakt auch nachträglich in der Turbinenwelle herstellbar. Bei einer zusammengesetzten Turbinenwelle wird vorzugsweise in jede Teilturbinenwelle eine zentrale Bohrung gleichen Durchmessers eingebracht, so daß bei Zusammenfügen der Teilturbinenwellen eine einzige Kühlleitung mit gleichem Durchmesser gebildet ist. Die Zuströmleitung verbindet vorzugsweise wie die Abströmleitung die Manteloberfläche mit der Kühlleitung. Hierdurch ist Kühldampf, insbesondere Dampf einer Hochdruck-Teilturbine, von der Manteloberfläche an einem Ende der Turbinenwelle durch das Innere der Turbinenwelle hindurch in den Dampfeinströmbereich des zweiten Beschaufelungsbereiches führbar. Dies ist besonders bei einer einsträngigen Hochdruck- und Mitteldruck-Turbinenwelle vorteilhaft, da somit Dampf aus dem Dampfaustrittsbereich der Hochdruck-Teilturbinen in den Dampfeinströmbereich der Mitteldruck-Teilturbine führbar ist. Die Zuströmleitung und/oder die Abströmleitung sind bzw. ist vorzugsweise eine im wesentlichen radiale Bohrung. Eine solche Bohrung ist einfach auch nach Herstellung der Turbinenwelle ausführbar, wobei eine solche Bohrung präzise mit einer als axiale Bohrung ausgebildeten Kühlleitung verbindbar ist. Durchmesser einer Bohrung sowie Anzahl mehrerer Bohrungen für die Zuströmleitung und die Abströmleitung richten sich nach der zur Kühlung vorgesehenen Dampfmenge.
Die Turbinenwelle weist vorzugsweise Ausnehmungen zur Aufnahme von Turbinenlaufschaufeln auf, wobei die Abströmleitung vorzugsweise in eine dieser Ausnehmungen mündet. Es ist hierbei auch möglich, daß in eine Schaufelkühlleitung einer Turbinenlaufschaufel Kühldampf zur Kühlung einführbar ist. Eine Ausnehmung zur Aufnahme einer Turbinenlaufschaufel kann dabei etwas größer als der Schaufelfuß der jeweiligen Laufschaufel ausgeführt sein, so daß sich zwischen einem entsprechenden Schaufelfuß und der Turbinenwelle ein Raum ausbildet, in den Dampf zur Kühlung des Schaufelfußes einströmen kann. Dieser Raum kann auch durch Kanäle gebildet sein, die mit der Abströmleitung und/oder untereinander in Verbindung stehen. Von einer Ausnehmung, in die eine Abströmleitung mündet, führt vorzugsweise eine Stichleitung zur Manteloberfläche der Turbinenwelle. Dadurch wird neben der Kühlung der Schaufelfüße zusätzlich eine Kühlung der Manteloberfläche und damit der Turbinenwelle von außen erreicht. Es ist ebenfalls möglich, daß die Abströmleitung zwischen axial voneinander beabstandeten Ausnehmungen an der Manteloberfläche mündet. Bei einer zweiflutigen Ausführung des zweiten Beschaufelungsbereiches mündet die Abströmleitung vorzugsweise in einem durch eine Wellenabschirmung gebildeten Hohlraum, wobei die Wellenabschirmung einer Stromteilung des einströmenden Dampfes in die beiden Fluten dient. Vorzugsweise erfolgt eine Kühlung der ersten Laufschaufelreihen der Mitteldruck-Teilturbine, insbesondere deren Schaufelfüße sowie deren Schaufelblätter. Durch die an die Wellenoberfläche mündende Abströmleitung und/oder Stichleitung ist auch eine Filmkühlung der Wellenoberfläche, insbesondere im Bereich der dem Dampfeinströmbereich nächstliegenden Turbinenschaufeln (erste Turbinenstufe) erzielt.
Die Zuströmleitung verbindet vorzugsweise den Dampfaustrittsbereich der Hochdruck-Teilturbine mit der Kühlleitung, wodurch Dampf von dort durch das Innere der Turbinenwelle in die Mitteldruck-Teilturbine führbar ist. Es ist ebenfalls möglich, daß die Zuströmleitung von der Manteloberfläche zwischen zwei axial voneinander beabstandeten Laufschaufelreihen des ersten Beschaufelungsbereiches in die Kühlleitung führt.
Die auf ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbine gerichtete Aufgabe wird dadurch gelöst, daß bei einer Turbinenwelle mit einem ersten Beschaufelungsbereich zur Aufnahme der Hochdruck-Laufschaufeln und einem zweiflutigen zweiten Beschaufelungsbereich zur Aufnahme der Mitteldruck-Laufschaufeln Dampf aus dem Dampfbereich des ersten Beschaufelungsbereiches durch das Innere der Turbinenwelle über einen Lagerungsbereich hinweg zum zweiten Beschaufelungsbereich geführt wird. Die Dampfströmung im Inneren der Turbinenwelle kann hierbei durch geeignete Dimensionierung einer entsprechenden Kühlleitung, welche insbesondere als Bohrung ausgeführt ist, so reguliert werden, daß auch über einen weiten Leistungsbereich eine ausreichende Kühlung der Turbinenwelle gewährleistet ist. Da auch im Teillastbereich der Dampfturbine eine Druckdifferenz zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine gegeben ist, ist ein einwandfreies Funktionieren des Verfahrens auch im Teillastbereich gewährleistet. Durch eine als axiale, vorzugsweise zentrale Bohrung, ausgeführte Kühlleitung steigen gegebenenfalls die tangentialen Spannungen im Inneren der Turbinenwelle auf etwas das Doppelte im Vergleich zu einer Turbinenwelle ohne Bohrung an. Diese gegebenenfalls vorhandene höhere Beanspruchung der Turbinenwelle wird allerdings durch die deutlich verbesserten Materialeigenschaften aufgrund der Innenkühlung der Turbinenwelle mehr als kompensiert. Das Verfahren eignet sich auch bei einer Turbinenwelle, die aus zumindest zwei Teilturbinenwellen (Turbinenwellensegmenten) zusammengesetzt ist, wobei die Teilturbinenwellen im Lagerbereich aneinandergefügt sind.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele werden die Turbinenwellen sowie das Verfahren zur Kühlung der Turbinenwelle näher beschrieben. Es zeigen:
FIG 1
einen Längsschnitt durch eine Dampfturbine mit einer Hochdruck- und einer Mitteldruck-Teilturbine mit einer Turbinenwelle;
FIG 2
einen Ausschnitt einer Turbinenwelle im Dampfeinströmbereich einer Mitteldruck-Teilturbine; und
FIG 3
einen Ausschnitt der Turbinenwelle im Lagerbereich.
In Figur 1 ist eine Dampfturbine 23, 25 mit einer sich entlang einer Rotationsachse 2 erstreckenden Turbinenwelle 1 dargestellt. Die Dampfturbine weist eine Hochdruck-Teilturbine 23 und eine Mitteldruck-Teilturbine 25 mit jeweils einem Innengehäuse 21 und einem dieses umschließende Außengehäuse 22 auf. Die Hochdruck-Teilturbine 23 ist in Topfbauart ausgeführt. Die Mitteldruck-Teilturbine 25 ist zweiflutig ausgeführt. Es ist ebenfalls möglich, daß die Mitteldruck-Teilturbine 25 einflutig ausgeführt ist. Entlang der Rotationsachse 2 ist zwischen der Hochdruck-Teilturbine 23 und der Mitteldruck-Teilturbine 25 ein Lager 29b angeordnet, wobei die Turbinenwelle 1 in dem Lager 29b einen Lagerbereich 32 aufweist. Die Turbinenwelle 1 ist auf einem weiteren Lager 29a neben der Hochdruck-Teilturbine 23 aufgelagert. Im Bereich dieses Lagers 29a weist die Hochdruck-Teilturbine 23 eine Wellendichtung 24 auf. Die Turbinenwelle 1 ist gegenüber dem Außengehäuse 22 der Mitteldruck-Teilturbine 25 durch zwei weitere Wellendichtungen 24 abgedichtet. Zwischen einem Hochdruck-Dampfeinströmbereich 27 und einem Dampfaustrittsbereich 16 weist die Turbinenwelle 1 in der Hochdruck-Teilturbine 23 die Hochdruck-Laufbeschaufelung 11, 13 auf. Diese Hochdruck-Laufbeschaufelung 11, 13 stellt mit den zugehörigen, nicht näher dargestellten Laufschaufeln einen ersten Beschaufelungsbereich 30 dar. Die Mitteldruck-Teilturbine 25 weist einen zentralen Dampfeinströmbereich 15 auf. Dem Dampfeinströmbereich 15 zugeordnet weist die Turbinenwelle 1 eine radialsymmetrische Wellenabschirmung 9, eine Abdeckplatte, einerseits zur Teilung des Dampfstromes in die beiden Fluten der Mitteldruck-Teilturbine 25 sowie zur Verhinderung eines direkten Kontaktes des heißen Dampfes mit der Turbinenwelle 1 auf. Die Turbinenwelle 1 weist in der Mitteldruck-Teilturbine 25 einen zweiten Beschaufelungsbereich 31 mit den Mitteldruck-Laufschaufeln 11, 14 auf. Der durch den zweiten Beschaufelungsbereich 31 strömende heiße Dampf strömt aus der Mitteldruck-Teilturbine 25 aus einem Abströmstutzen 26 zu einer strömungstechnisch nachgeschalteten, nicht dargestellten Niederdruck-Teilturbine.
Die Turbinenwelle 1 ist aus zwei Teilturbinenwellen 1a und 1b zusammengesetzt, die im Bereich des Lagers 29b fest miteinander verbunden sind. Jede Teilturbinenwelle 1a, 1b weist eine als zentrale Bohrung 5 entlang der Rotationsachse 2 ausgebildete Kühlleitung 5 auf. Die Kühlleitung 5 ist mit dem Dampfaustrittsbereich 16 über eine radiale Bohrungen 8a aufweisende Zuströmleitung 8 verbunden. In der Mitteldruck-Teilturbine 25 ist die Kühlmittelleitung 5 mit einem nicht näher dargestellten Hohlraum unterhalb der Wellenabschirmung 9 verbunden. Die Zuströmleitungen 8 sind als radiale Bohrungen 8a ausgeführt, wodurch "kalter" Dampf aus der Hochdruck-Teilturbine 23 in die zentrale Bohrung 5 einströmen kann. Über die insbesondere auch als radial gerichtete Bohrung 7a ausgebildete Abströmleitung 7 gelangt der Dampf durch den Lagerbereich 32 hindurch in die Mitteldruck-Teilturbine 25 und dort an die Manteloberfläche 3 der Turbinenwelle 1 im Dampfeinströmbereich 15. Der durch die Kühlleitung 5 strömende Dampf 6 hat eine deutlich niedrigere Temperatur als der in den Dampfeinströmbereich 15 einströmende zwischenüberhitzte Dampf, so daß eine wirksame Kühlung der ersten Laufschaufelreihen 14 der Mitteldruck-Teilturbine 25 sowie der Manteloberfläche 3 im Bereich dieser Laufschaufelreihen 14 gewährleistet ist.
Figur 2 zeigt in vergrößertem Maßstab einen Ausschnitt des Dampfeinströmbereiches 15 der Mitteldruck-Teilturbine 25. In Ausnehmungen 10 der Turbinenwelle 1 sind jeweils entsprechende Laufschaufeln 11, 14 mit ihren jeweiligen Schaufelfüßen 18 angeordnet. Die Ausnehmungen 10 weisen jeweils um die Schaufelfüße 18 herum Kanäle 20 auf, wobei die Kanäle 20 einerseits mit der radial zur Rotationsachse 2 verlaufenden Abströmleitung 7 und andererseits mit jeweils einer Stichleitung 12 verbunden sind. Die Stichleitung 12 führt von der Ausnehmung 10 zur Manteloberfläche 3 und liegt einer Leitschaufel 19 der Dampfturbine gegenüber. Der aus den Abströmleitungen 7 strömende Dampf 6 gelangt in die Kanäle 20 der Ausnehmung 10 und kühlt somit die jeweils in einer entsprechenden Ausnehmung angeordneten Schaufelfüße 18. Der Dampf 6 strömt von den Kanälen 20 durch eine jeweilige Stichleitung 12 an die Manteloberfläche 3 der Turbinenwelle 1 und kühlt somit auch die Manteloberfläche 3 zwischen einander in Richtung der Rotationsachse 2 benachbarten Laufschaufeln 11. Bei einer Laufschaufel 11, die eine Schaufelkühlleitung 38 aufweist, strömt Dampf 6 ebenfalls durch diese Schaufelkühlleitung 38 und kühlt die Laufschaufel 11 von innen heraus. Dies ist schematisch an einer Laufschaufel 11 dargestellt.
Figur 3 zeigt einen Ausschnitt des Lagerbereiches 32 der Teilturbinenwelle 1b der Hochdruck-Teilturbine 23. In dem Lagerungsbereich 32 ist die Kühlleitung 5 auf einen größeren Durchmesser entlang einer vorgegebenen axialen Länge erweitert. In die so erweiterte Kühlleitung 5 ist eine Wärmeisolierung 33 umfassend ein Isolierungsrohr 36 eingebracht. Das Isolierungsrohr 36 weist einen Innendurchmesser auf, der mit dem Durchmesser der nicht erweiterten Kühlleitung 5 übereinstimmt. Der Außendurchmesser des Isolierungsrohres 36 ist geringer als der vergrößerte Durchmesser der Kühlleitung 5, so daß ein Hohlraum 34, insbesondere ein Ringspalt 34, zwischen dem Isolierungsrohr 36 und dem Turbinenwellen-Werkstoff 35 verbleibt. Das Isolierungsrohr 36 weist Öffnungen 37 zu dem Hohlraum 34 auf. Bei einem Betrieb der Turbinenwelle 1 ist der Hohlraum 34 mit Kühldampf 6 gefüllt, welcher eine Wärmeisolierung zwischen dem Turbinenwellenwerkstoff 35 und dem permanent durch die Kühlleitung 5 strömenden Kühldampf 6 bewirkt. Hierdurch ist gewährleistet, daß eine Aufheizung des Lagers 29b während des Betriebes der Turbinenwelle 1 gering gehalten wird.
Die Erfindung zeichnet sich durch eine Turbinenwelle aus, welche eine Kühlleitung aufweist, über die zumindest eine Zuströmleitung mit einer Hochdruck-Teilturbine und zumindest über eine Abströmleitung mit dem Dampfeinströmungsbereich der Mitteldruck-Teilturbine verbunden ist. Die Zuströmleitung, die Kühlleitung sowie die Abströmleitung bilden ein Leitungssystem im Inneren der Turbinenwelle, durch welches "kalter" Dampf aus der Hochdruck-Teilturbine zu dem thermomechanisch hoch beanspruchten Dampfeinströmbereich der Mitteldruck-Teilturbine führbar ist. Hierdurch erfolgt ohne hohen konstruktiven Aufwand eine Kühlung sowohl der Laufschaufeln, insbesondere der Laufschaufelfüße, als auch der Manteloberfläche der Turbinenwelle in dem besonders stark beanspruchten Dampfeinströmbereich der insbesondere zweiflutig ausgeführten, Mitteldruck-Teilturbine. In einem Lagerbereich zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine ist im Inneren der Turbinenwelle eine Wärmeisolierung vorgesehen, durch die eine übermäßige Aufheizung eines Lagers der Turbinenwelle vermieden wird.

Claims (15)

  1. Turbinenwelle (1) für eine Dampfturbine, welche entlang einer Rotationsachse (2) gerichtet ist, entlang der Rotationsachse (2) einen ersten Beschaufelungsbereich (30) einer ersten Teilturbine (24), einen zweiten Beschaufelungsbereich (31) einer zweiten Teilturbine (25) und dazwischen einen Lagerungsbereich (32), eine Manteloberfläche (3) und in ihrem Inneren (4) eine Kühlleitung (5) zur Führung von Kühldampf (6) in Richtung der Rotationsachse (2) aufweist, wobei die Kühlleitung (5) einerseits mit zumindest einer Abströmleitung (7) zur Abführung von Kühldampf (6) und andererseits mit zumindest einer Zuströmleitung (8) zur Zuströmung von Kühldampf (6) verbunden ist, und wobei ein stark temperaturbelasteter Bereich der Turbinenwelle kühlbar ist.
  2. Turbinenwelle (1) nach Anspruch 1, bei der die Kühlleitung (5) in dem Lagerungsbereich (32) eine Wärmeisolierung (33) zur Verminderung eines radialen wärmeflusses aufweist.
  3. Turbinenwelle (1) nach Anspruch 2, bei der die Wärmeisolierung (33) einen Hohlraum (34), insbesondere einen Ringspalt (34), zwischen Kühlleitung (5) und Turbinenwellenwerkstoff (35) aufweist.
  4. Turbinenwelle (1) nach Anspruch 3, bei der die Wärmeisolierung (33) ein Isolierungsrohr (36) umfaßt.
  5. Turbinenwelle (1) nach Anspruch 4, bei der das Isolierungsrohr (36) zumindest eine Öffnung (37) zum Hohlraum (34) aufweist.
  6. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, welche der Aufnahme von Hochdruck-Laufschaufeln (13) sowie von Mitteldruck-Laufschaufeln (14) einer kombinierten Hochdruck-Mitteldruck-Dampfturbine dient, wobei die Abströmleitung (7) in einem Dampfeinströmbereich (15) der Mitteldruck-Laufschaufeln (14) mündet.
  7. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der der zweite Beschaufelungsbereich (31) zweiflutig ausgeführt ist.
  8. Turbinenwelle (1) nach Anspruch 6 in einer Dampfturbine, wobei der zweite Beschaufelungsbereich (31) einflutig ausgeführt ist.
  9. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der sich die Zuströmleitung (8) von der Manteloberfläche (3) zur Kühlleitung (5) erstreckt.
  10. Turbinenwelle (1) nach Anspruch 9, wobei die Zuströmleitung (8) in einem Dampfaustrittsbereich (15) des ersten Beschaufelungsbereiches (30) und/oder im ersten Beschaufelungsbereich (30) zwischen zwei axial beabstandeten. Ausnehmungen (10) zur Aufnahme von Turbinenlaufschaufeln (11) mündet.
  11. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der die Kühileitung (5) eine weitgehend zur Rotationsachse (2) parallele, insbesondere zentrale, Bohrung (5) ist.
  12. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der die Zuströmleitung (8) und/oder die Abströmleitung (7) eine im wesentlichen radiale Bohrung (8a, 7a) sind bzw. ist.
  13. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, die im zweiten Beschaufelungsbereich (31) Ausnehmungen (10) zur Aufnahme von Turbinenlaufschaufeln (11) aufweist, wobei die Abströmleitung (8) an der Manteloberfläche (3) zwischen zwei axial beabstandeten Ausnehmungen (10) oder in einer Ausnehmung (10) mündet und/oder mit einer Schaufelkühlleitung (38) einer Turbinenlaufschaufel (11) verbunden ist.
  14. Turbinenwelle (1) nach Anspruch 13, bei der die eine Abströmleitung (8) aufweisende Ausnehmung (10) zusätzlich über eine Stichleitung (12) mit der Manteloberfläche (3) verbunden ist.
  15. Verfahren zur Kühlung einer Turbinenwelle (1) in einer Dampfturbine, wobei die Turbinenwelle (1) in einem ersten Beschaufelungsbereich (30) die Hochdruck-Laufschaufeln (13) der Hochdruck-Teilturbine (24) und in einem zweiflutigen zweiten Beschaufelungsbereich (31) die Mitteldruck-Laufschaufeln (14) der Mitteldruck-Teilturbine (25) trägt und Dampf (6) aus dem Dampfbereich (17) des ersten Beschaufelungsbereichs (30) durch das Innere (4) der Turbinenwelle (1) über einen Lagerungsbereich (32) hinweg zum zweiten Beschaufelungsbereich (31) geführt wird.
EP98936164A 1997-06-27 1998-06-15 Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle Expired - Lifetime EP0991850B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19727406 1997-06-27
DE19727406 1997-06-27
PCT/DE1998/001618 WO1999000583A1 (de) 1997-06-27 1998-06-15 Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle

Publications (2)

Publication Number Publication Date
EP0991850A1 EP0991850A1 (de) 2000-04-12
EP0991850B1 true EP0991850B1 (de) 2002-02-13

Family

ID=7833863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98936164A Expired - Lifetime EP0991850B1 (de) 1997-06-27 1998-06-15 Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle

Country Status (9)

Country Link
US (1) US6227799B1 (de)
EP (1) EP0991850B1 (de)
JP (1) JP4162724B2 (de)
CN (1) CN1143945C (de)
AT (1) ATE213305T1 (de)
DE (1) DE59803075D1 (de)
ES (1) ES2172905T3 (de)
PT (1) PT991850E (de)
WO (1) WO1999000583A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905949A1 (de) * 2006-09-20 2008-04-02 Siemens Aktiengesellschaft Kühlung eines Dampfturbinenbauteils
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
US8128341B2 (en) 2005-10-31 2012-03-06 Siemens Aktiengesellschaft Steam turbine

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567065B2 (ja) * 1997-07-31 2004-09-15 株式会社東芝 ガスタービン
EP1242729B1 (de) * 1999-12-21 2005-02-16 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine sowie turbinenanlage mit einer danach arbeitenden dampfturbine
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
DE10355738A1 (de) 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1707739A1 (de) * 2005-03-24 2006-10-04 Siemens Aktiengesellschaft Dampfturbine mit gekühlter Hohlwelle sowie entsprechendes Kühlverfahren
JP4745129B2 (ja) * 2006-05-25 2011-08-10 株式会社東芝 蒸気タービンおよび蒸気タービンプラント
JP4908137B2 (ja) * 2006-10-04 2012-04-04 株式会社東芝 タービンロータおよび蒸気タービン
US7934901B2 (en) * 2006-12-20 2011-05-03 General Electric Company Air directing assembly and method of assembling the same
US7891945B2 (en) * 2008-01-10 2011-02-22 General Electric Company Methods for plugging turbine wheel holes
US8047786B2 (en) * 2008-01-10 2011-11-01 General Electric Company Apparatus for plugging turbine wheel holes
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
US8267649B2 (en) * 2009-05-15 2012-09-18 General Electric Company Coupling for rotary components
JP5193960B2 (ja) 2009-06-30 2013-05-08 株式会社日立製作所 タービンロータ
US8251643B2 (en) * 2009-09-23 2012-08-28 General Electric Company Steam turbine having rotor with cavities
US8591180B2 (en) * 2010-10-12 2013-11-26 General Electric Company Steam turbine nozzle assembly having flush apertures
US20120134782A1 (en) * 2010-11-30 2012-05-31 Creston Lewis Dempsey Purge systems for rotary machines and methods of assembling same
JP5615150B2 (ja) 2010-12-06 2014-10-29 三菱重工業株式会社 原子力発電プラントおよび原子力発電プラントの運転方法
US9297277B2 (en) 2011-09-30 2016-03-29 General Electric Company Power plant
CN103174464B (zh) * 2011-12-22 2015-02-11 北京全四维动力科技有限公司 一种中部进汽双向流动结构的汽轮机转子冷却***
US9316117B2 (en) 2012-01-30 2016-04-19 United Technologies Corporation Internally cooled spoke
JP6004947B2 (ja) * 2013-01-08 2016-10-12 三菱日立パワーシステムズ株式会社 蒸気タービン
WO2014175766A1 (en) 2013-04-25 2014-10-30 Siemens Aktiengesellschaft Rotor element for a turbo-machine and turbo-machine
JP6221545B2 (ja) * 2013-09-18 2017-11-01 株式会社Ihi ジェットエンジンのための導電構造
DE102014011042A1 (de) 2014-07-26 2016-01-28 Man Diesel & Turbo Se Strömungsmaschine
EP3130748A1 (de) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Rotorkühlung für eine dampfturbine
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
JP7242597B2 (ja) * 2020-03-12 2023-03-20 東芝エネルギーシステムズ株式会社 タービンロータ
CN111550292A (zh) * 2020-04-24 2020-08-18 上海交通大学 中压缸涡流冷却优化方法及其冷却结构
CN112943685B (zh) * 2021-03-10 2022-09-13 哈电发电设备国家工程研究中心有限公司 一种拉杆式叶根连接结构

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1820725A (en) * 1926-12-17 1931-08-25 Ass Elect Ind Elastic fluid turbine
US2470780A (en) * 1944-08-23 1949-05-24 United Aircraft Corp Diaphragm seal for gas turbines
US2469732A (en) * 1944-08-23 1949-05-10 United Aircraft Corp Turbine cooling
US2434901A (en) * 1944-08-23 1948-01-27 United Aircraft Corp Turbine cooling
BE488010A (de) * 1947-03-11 1900-01-01
US2672013A (en) * 1950-06-30 1954-03-16 Curtiss Wright Corp Gas turbine cooling system
US2680001A (en) * 1950-11-13 1954-06-01 United Aircraft Corp Arrangement for cooling turbine bearings
US2788951A (en) * 1951-02-15 1957-04-16 Power Jets Res & Dev Ltd Cooling of turbine rotors
US2883151A (en) * 1954-01-26 1959-04-21 Curtiss Wright Corp Turbine cooling system
US3844110A (en) * 1973-02-26 1974-10-29 Gen Electric Gas turbine engine internal lubricant sump venting and pressurization system
US4086759A (en) * 1976-10-01 1978-05-02 Caterpillar Tractor Co. Gas turbine shaft and bearing assembly
JPS60168917A (ja) * 1984-02-10 1985-09-02 Nissan Motor Co Ltd 気体軸受装置
US4786238A (en) * 1984-12-20 1988-11-22 Allied-Signal Inc. Thermal isolation system for turbochargers and like machines
US5144794A (en) * 1989-08-25 1992-09-08 Hitachi, Ltd. Gas turbine engine with cooling of turbine blades
US5088890A (en) * 1989-12-11 1992-02-18 Sundstrand Corporation Seal construction for use in a turbine engine
US5054996A (en) 1990-07-27 1991-10-08 General Electric Company Thermal linear actuator for rotor air flow control in a gas turbine
FR2690482B1 (fr) * 1992-04-23 1994-06-03 Snecma Circuit de ventilation des disques de compresseurs et de turbines.
US5279111A (en) * 1992-08-27 1994-01-18 Inco Limited Gas turbine cooling
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor
US5555721A (en) * 1994-09-28 1996-09-17 General Electric Company Gas turbine engine cooling supply circuit
US5498131A (en) * 1995-03-02 1996-03-12 General Electric Company Steam turbine with thermal stress reduction system
KR100389990B1 (ko) * 1995-04-06 2003-11-17 가부시끼가이샤 히다치 세이사꾸쇼 가스터빈
DE19531290A1 (de) 1995-08-25 1997-02-27 Abb Management Ag Rotor für thermische Turbomaschinen
US5605045A (en) * 1995-09-18 1997-02-25 Turbodyne Systems, Inc. Turbocharging system with integral assisting electric motor and cooling system therefor
US5611197A (en) * 1995-10-23 1997-03-18 General Electric Company Closed-circuit air cooled turbine
ATE228202T1 (de) * 1996-01-11 2002-12-15 Siemens Ag Turbinenwelle einer dampfturbine mit interner kühlung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128341B2 (en) 2005-10-31 2012-03-06 Siemens Aktiengesellschaft Steam turbine
EP1905949A1 (de) * 2006-09-20 2008-04-02 Siemens Aktiengesellschaft Kühlung eines Dampfturbinenbauteils
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
WO2008043663A1 (de) * 2006-10-09 2008-04-17 Siemens Aktiengesellschaft Rotor für eine strömungsmaschine

Also Published As

Publication number Publication date
US6227799B1 (en) 2001-05-08
CN1143945C (zh) 2004-03-31
CN1261420A (zh) 2000-07-26
WO1999000583A1 (de) 1999-01-07
JP4162724B2 (ja) 2008-10-08
JP2002508044A (ja) 2002-03-12
PT991850E (pt) 2002-07-31
DE59803075D1 (de) 2002-03-21
EP0991850A1 (de) 2000-04-12
ATE213305T1 (de) 2002-02-15
ES2172905T3 (es) 2002-10-01

Similar Documents

Publication Publication Date Title
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP1945911B1 (de) Dampfturbine
DE60203959T2 (de) Luftgekühltes Abgasgehäuse für eine Gasturbine
EP0900322B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP2078137B1 (de) Rotor für eine strömungsmaschine
EP0873466B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung
EP2148045A1 (de) Gehäuseabschnitt für eine Gasturbine
EP0838595B1 (de) Schaufelträger für einen Verdichter
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2098688A1 (de) Gasturbine
EP2347100B1 (de) Gasturbine mit kühleinsatz
EP2324208B1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
DE19757945B4 (de) Rotor für thermische Turbomaschine
EP1892376B1 (de) Gekühlter Dampfturbinenrotor mit Innenrohr
DE112014006619T5 (de) Gasturbinenbrennkammer und mit selbiger versehene Gasturbine
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
DE1076445B (de) Gasturbine mit luftgekuehlten Schaufeln
EP2274504B1 (de) Dampfturbine mit kühlvorrichtung
EP2194236A1 (de) Turbinengehäuse
WO2010023036A1 (de) Leitschaufelträger für eine gasturbine
EP2119878A1 (de) Dampfturbine mit geteiltem Innengehäuse
EP1905949A1 (de) Kühlung eines Dampfturbinenbauteils
EP1895094A1 (de) Drallgekühlte Rotor-Schweissnaht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000718

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI PT SE

REF Corresponds to:

Ref document number: 213305

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59803075

Country of ref document: DE

Date of ref document: 20020321

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020529

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020606

Year of fee payment: 5

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020510

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2172905

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160610

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160615

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160902

Year of fee payment: 19

Ref country code: DE

Payment date: 20160819

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160726

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803075

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170615

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616