EP2340229A1 - Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung - Google Patents

Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung

Info

Publication number
EP2340229A1
EP2340229A1 EP09743836A EP09743836A EP2340229A1 EP 2340229 A1 EP2340229 A1 EP 2340229A1 EP 09743836 A EP09743836 A EP 09743836A EP 09743836 A EP09743836 A EP 09743836A EP 2340229 A1 EP2340229 A1 EP 2340229A1
Authority
EP
European Patent Office
Prior art keywords
coating
carbon nanotubes
fullerenes
graphene
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09743836A
Other languages
English (en)
French (fr)
Inventor
Helge Schmidt
Isabell Buresch
Udo Adler
Dirk Rode
Sonja Priggemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
TE Connectivity Germany GmbH
KME Special Products GmbH and Co KG
Original Assignee
Tyco Electronics AMP GmbH
KME Germany GmbH
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics AMP GmbH, KME Germany GmbH, Wieland Werke AG filed Critical Tyco Electronics AMP GmbH
Publication of EP2340229A1 publication Critical patent/EP2340229A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/06Compressing powdered coating material, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component

Definitions

  • the invention relates to a method for producing a coating comprising carbon nanotubes, fullerenes and / or graphenes on a substrate, comprising applying carbon nanotubes, fullerenes and / or graphenes to a tin-containing coating and introducing the carbon nanotubes, fullerenes and / or or graphene in the coating by mechanical or thermal treatment.
  • the invention further relates to the coated substrate produced by the method according to the invention and to the use of the coated substrate as an electromechanical component.
  • Carbon nanotubes were discovered by Sumio lijama in 1991 (see S. lijama, Nature, 1991, 354, 56). lijama found in the soot of a fullerene generator under certain reaction conditions tubular structures of only a few 10 nm diameter, but up to several micrometers in length. The compounds he found consisted of several concentric graphite tubes, which got the name multi-walled carbon nanotubes (MWCNTs). Shortly thereafter, lijama and Ichihashi became single-walled CNTs of about 1 nm diameter, which were correspondingly called single-wall carbon nanotubes (SWCNTs) (see S. lijama, T. Ichihashi, Nature, 1993, 363, 6430).
  • MWCNTs multi-walled carbon nanotubes
  • CNTs are e.g. their mechanical tensile strength and stiffness of about 40 GPa and 1 TPa, respectively (20 and 5 times higher than steel).
  • the carbon nanotubes belong to the family of fullerenes and have a diameter of 1 nm to several 100 nm.
  • Carbon nanotubes are microscopic tubular structures (molecular nanotubes) made of carbon. Their walls, like the fullerenes or, like the planes of the graphite, consist only of carbon, the carbon atoms occupying a honeycomb-like structure with six corners and three binding partners each (dictated by SP 2 hybridization).
  • the diameter of the tubes is usually in the range of 1 to 50 nm, but also tubes were made with only 0.4 nm diameter. Lengths of several millimeters for single tubes and up to 20 cm for tube bundles have already been achieved.
  • the synthesis of the carbon nanotubes usually takes place by deposition of carbon from the gas phase or a plasma.
  • the current carrying capacity is estimated to be 1000 times higher than copper wires, the thermal conductivity is at room temperature with 6000 W / m * K almost twice as high as that of Diamant, the best natural occurring thermal conductor.
  • the carbon nanotubes belong to the group of fullerenes.
  • Fullerenes are spherical molecules of high symmetry carbon atoms, which represent the third elemental modification of carbon (besides diamond and graphite).
  • the preparation of the fullerenes usually takes place by evaporating graphite under reduced pressure and under a protective gas atmosphere (eg argon) with resistance heating or in the arc.
  • a protective gas atmosphere eg argon
  • Graphenes are monatomic layers of sp 2 -hybridized carbon atoms. Graphenes show very good electrical and thermal conductivity along their plane. Graphs are represented by splitting graphite into its basal planes. Initially, oxygen is intercalated. The oxygen reacts partially with the carbon and leads to a mutual repulsion of the layers. Subsequently, the graphenes are suspended and, depending on the intended use, embedded in polymers, for example.
  • Another way of displaying individual graphene layers is to heat hexagonal silicon carbide surfaces to temperatures in excess of 1400 ° C. Because of the higher vapor pressure of silicon, the silicon atoms evaporate faster than the carbon atoms. Thin layers of monocrystalline graphite, consisting of a few graphene monolayers, then form on the surface.
  • Tin or tin alloys are commonly used to solder electrical contacts, for example to bond together copper wires.
  • tin or tin alloys are often applied to connectors to improve the coefficient of friction, protect against corrosion and also contribute to improving the conductivity.
  • the problem with tin or tin alloys is in particular the softness of the metal or of the alloy, so that in particular in the case of frequent dissolution and Connecting connectors and vibrations the tin-containing coating is worn and thus lost the benefits of the tin-containing coating.
  • the object of the present invention was thus to provide a coating of a tin-containing material which ensures a lower tendency to wear and / or an improved friction corrosion behavior with constant or improved properties relating to the coefficient of friction, conductivity and the like.
  • the object is achieved by a method for producing a carbon nanotube, fullerene and / or graphene-containing coating, comprising the application of carbon nanotubes, fullerenes and / or graphene on a tin-containing coating and introducing the carbon nanotubes, fullerenes and / or Graphene in the coating by mechanical or thermal treatment.
  • the substrate on which the tin-containing coating is located is preferably a metal, more preferably copper and its alloys. Between the tin-containing coating and the substrate, at least one further intermediate layer can advantageously also be applied.
  • tin-containing coating on the substrate tin or a tin alloy is preferably used.
  • the carbon nanotubes, fullerenes and / or graphene are applied or introduced, wherein the coating metal in the application or incorporation of the carbon nanotubes, fullerenes and / or graphene solid, liquid or doughy may be present.
  • the carbon nanotubes, fullerenes and / or graphenes are introduced into the tin-containing coating, which can be done by mechanical or thermal treatment.
  • the mechanical treatment comprises exerting mechanical pressure on the carbon nanotubes, fullerenes and / or graphenes. This is preferably done by applying to the carbon nanotubes, fullerenes and / or graphene by means of a roller, a punch, mechanical brushes, by spraying or by blowing the mechanical pressure.
  • the spraying and blowing should be understood as exerting mechanical pressure.
  • the tin-containing coating can be solid in the application of the carbon nanotubes, fullerenes and / or graphenes (ie in solid state) and the introduction of the carbon nanotubes, fullerenes and / or graphene in the coating by applying mechanical pressure to the carbon -Nanorschreiben, fullerenes and / or graphene by means of a roller, a stamp or mechanical brushing done.
  • the coating may be liquid or doughy, with the introduction of the carbon nanotubes, fullerenes and / or graphenes into the coating / the coating metal by applying mechanical pressure to the carbon nanotubes. Nanotubes, fullerenes and / or graphene by means of a roller, a stamp, mechanical brushes, by spraying or by blowing. If the coating is liquid, the melting temperature of the coating can be undershot when introducing the carbon nanotubes, fullerenes and / or graphenes so that the carbon nanotubes, fullerenes and / or graphenes are fixed in the layer.
  • the introduction of the carbon nanotubes, fullerenes and / or graphenes into the coating can also be effected thermally.
  • the thermal treatment comprises heating the coating to a temperature below or above the melting point of the coating. Heating to a temperature below the melting point of the coating leads here to a doughy state and heating to a temperature above the melting point of the coating thus leads to a liquid state of the coating.
  • the coating is solid upon application of the carbon nanotubes, fullerenes and / or graphenes and is then heated to a temperature above the melting point of the coating.
  • the carbon nanotubes, fullerenes and / or graphene melt into the coating material and can be fixed by cooling the coating material below the melting point.
  • the coating is liquid in the application of the carbon nanotubes, fullerenes and / or graphene and is then brought to a temperature below the melting point of the coating, whereby the penetrated into the liquid coating carbon nanotubes, fullerenes and / or graphene are fixed.
  • the coating is solid in the application of the carbon nanotubes, fullerenes and / or graphenes and is then heated to a temperature below the melting point of the coating. This process is equivalent to tempering, whereby the carbon nanotubes, fullerenes and / or graphene slowly migrate into the coating material as a result of the doughy state of the coating achieved as a result.
  • the application of the carbon nanotubes, fullerenes and / or graphenes to the coating and / or the introduction of the carbon nanotubes, fullerenes and / or graphene into the coating takes place under a normal atmosphere or under protective gas.
  • a normal atmosphere in the context of this invention, the normal ambient air is understood.
  • Any gas known in the art that provides an oxygen-free atmosphere can be used as the shielding gas.
  • nitrogen or argon can be used.
  • single-walled or multi-walled carbon nanotubes can be used as powder or dispersed in a suspension as carbon nanotubes.
  • the carbon nanotubes, fullerenes and / or graphenes can be provided with a metal coating before being applied to the coating.
  • the application of the jacket can be carried out by means of mechanical kneading with a metal.
  • a ball mill or an extruder can be used for the mechanical kneading.
  • the application of the cladding to the carbon nanotubes, fullerenes and / or graphenes can also be done chemically, for example by applying a metal salt solution, which is subsequently reduced or by applying a metal oxide, which is subsequently reduced.
  • Another preferred embodiment is to ultrasonically disperse the carbon nanotubes, fullerenes and / or graphenes in an Sn (alloy) melt to the metal strip and apply them in a shaft with subsequent mechanical stripping.
  • the carbon nanotubes, fullerenes and / or graphenes form a composite with one another, ie they are interconnected.
  • a graphene on a carbon nanotube is particularly preferably arranged orthogonally at its axial end.
  • the invention also provides a coated substrate which has been produced by the process according to the invention.
  • the substrate is preferably copper or a copper-containing alloy or comprises copper or a copper-containing alloy or Al or an Al alloy or Fe or a Fe alloy. Alloy. It may also be advantageous that intermediate layers are applied between the tin-containing coating and the substrate.
  • coated substrate according to the invention is very well suited as an electromechanical component or stamped grid, for example as a switching element, plug connection and the like.

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene enthaltenden Beschichtung auf einem Substrat, umfassend das Aufbringen von Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene auf eine zinnhaltige Beschichtung und Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch mechanische und/oder thermische Behandlung. Die Erfindung betrifft ferner das durch das erfindungsgemäße Verfahren hergestellte beschichtete Substrat sowie die Verwendung des beschichteten Substrats als elektromechanisches Bauteil oder Stanzgitter.

Description

Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene enthaltenden Beschichtunq
Die Erfindung betrifft ein Verfahren zum Herstellen einer Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene enthaltenden Beschichtung auf einem Substrat, umfassend das Aufbringen von Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene auf eine zinnhaltige Beschichtung und Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch mechanische oder thermische Behandlung. Die Erfindung betrifft ferner das durch das erfindungsgemäße Verfahren hergestellte beschichtete Substrat sowie die Verwendung des beschichteten Substrats als elektromechanisches Bauteil.
Kohlenstoff-Nanoröhren (CNTs) wurden von Sumio lijama im Jahre 1991 entdeckt (siehe S. lijama, Nature, 1991 , 354, 56). lijama fand im Ruß eines Fullerengenerators unter bestimmten Reaktionsbedingungen röhrenartige Gebilde von nur wenigen 10 nm Durchmesser, aber bis zu einigen Mikrometern Länge. Die von ihm gefundenen Verbindungen bestanden aus mehreren konzentrischen Graphitröhren, welche die Bezeichnung mehrwandige Kohlenstoff-Nanoröhren (multi-wall carbon nanotubes, MWCNTs) bekamen. Kurz darauf wurden von lijama und Ichihashi einwandige CNTs von etwa nur 1 nm Durchmesser gefunden, welche entsprechend als single-wall carbon nanotubes (SWCNTs) bezeichnet wurden (s. S. lijama, T. Ichihashi, Nature, 1993, 363, 6430).
Zu den herausragenden Eigenschaften der CNTs zählen z.B. ihre mechanische Zugfestigkeit und Steifheit von etwa 40 GPa bzw. 1 TPa (20- bzw. 5-mal höher als die von Stahl).
Bei den CNTs existieren sowohl leitende als auch halbleitende Materialien. Die Kohlenstoff-Nanoröhren gehören zu der Familie der Fullerene und besitzen einen Durchmesser von 1 nm bis einigen 100 nm. Kohlenstoff-Nanoröhren sind mikroskopisch kleine röhrenförmige Gebilde (molekulare Nanoröhren) aus Kohlenstoff. Ihre Wände bestehen wie die der Fullerene oder wie die Ebenen des Graphits nur aus Kohlenstoff, wobei die Kohlenstoffatome eine wabenartige Struktur mit sechs Ecken und jeweils drei Bindungspartnern einnehmen (vorgegeben durch die SP2-Hybridisierung). Der Durchmesser der Röhren liegt meist im Bereich von 1 bis 50 nm, wobei aber auch Röhren mit nur 0,4 nm Durchmesser hergestellt wurden. Längen von mehreren Millimetern für einzelne Röhren und bis zu 20 cm für Röhrenbündel wurden bereits erreicht.
Die Synthese der Kohlenstoff-Nanoröhren erfolgt gewöhnlich durch Abscheidung von Kohlenstoff aus der Gasphase oder einem Plasma. Für die Elektronikindustrie sind vor allem die Strombelastbarkeit und die Wärmeleitfähigkeit interessant. Die Strombelastbarkeit liegt schätzungsweise 1000-mal höher als bei Kupferdrähten, die Wärmeleitfähigkeit ist bei Raumtemperatur mit 6000 W/m * K beinahe doppelt so hoch wie die von Diamant, dem besten natürliche vorkommenden Wärmeleiter.
Im Stand der Technik ist bekannt, dass Nanoröhren mit herkömmlichem Kunststoff gemischt werden. Dadurch werden die mechanischen Eigenschaften der Kunststoffe stark verbessert. Außerdem ist es möglich, elektrisch leitende Kunststoffe herzustellen, beispielsweise wurden Nanoröhren bereits zur Leitfähigmachung von Antistatikfolien verwendet. Wie oben bereits ausgeführt gehören die Kohlenstoff-Nanoröhren zur Gruppe der Fullerene. Als Fullerene werden sphärische Moleküle aus Kohlenstoffatomen mit hoher Symmetrie bezeichnet, welche die dritte Element- Modifikation des Kohlenstoffs (neben Diamant und Graphit) darstellen. Die Herstellung der Fullerene erfolgt gewöhnlich durch verdampfen von Graphit unter reduziertem Druck und unter einer Schutgasatmosphäre (z.B. Argon) mit einer Widerstandsheizung oder im Lichtbogen. Als Nebenprodukt entstehen häufig die bereits oben besprochenen Kohlenstoff-Nanoröhren. Fullerene haben halbleitende bis supraleitende Eigenschaften.
Als Graphene bezeichnet man monoatomare Lagen von sp2-hybridisierten Kohlenstoffatomen. Graphene zeigen eine sehr gute elektrische und thermische Leitfähigkeit entlang ihrer Ebene. Die Darstellung von Graphen erfolgt durch Aufspalten von Graphit in seine Basalebenen. Dabei wird zunächst Sauerstoff interkaliert. Der Sauerstoff reagiert partiell mit dem Kohlenstoff und führt zu einer gegenseitigen Abstoßung der Schichten. Anschließend werden die Graphene suspendiert und je nach Verwendungszweck zum Beispiel in Polymere eingebettet.
Eine weitere Möglichkeit der Darstellung einzelner Graphen-Lagen ist das Erhitzen hexagonaler Siliziumcarbid-Oberflächen auf Temperaturen oberhalb 1400 0C. Aufgrund des höheren Dampfdruckes des Siliciums evaporieren die Silicium-Atome schneller als die Kohlenstoff-Atome. Auf der Oberfläche bilden sich dann dünne Schichten einkristallinen Graphits, die aus wenigen Graphen- Monolagen bestehen.
Zinn oder Zinnlegierungen werden gewöhnlich zur Verlötung von elektrischen Kontakten verwendet, beispielsweise um Kupferdrähte miteinander zu verbinden. Ebenso werden Zinn oder Zinnlegierungen häufig auf Steckverbindungen aufgebracht, um den Reibwert zu verbessern, vor Korrosion zu schützen und ebenfalls zur Verbesserung der Leitfähigkeit beizutragen. Problematisch bei Zinn oder Zinnlegierungen ist insbesondere die Weichheit des Metalls bzw. der Legierung, so dass insbesondere bei häufigem Lösen und Verbinden von Steckverbindern und bei Vibrationen die zinnhaltige Beschichtung abgenutzt wird und somit die Vorteile der zinnhaltigen Beschichtung verloren gehen.
Die Aufgabe der vorliegenden Erfindung bestand somit in der Bereitstellung einer Beschichtung aus einem zinnhaltigen Material, das eine geringere Neigung zur Abnutzung und/oder ein verbessertes Reibkorrosionsverhalten bei gleichbleibenden oder verbesserten Eigenschaften betreffend den Reibwert, die Leitfähigkeit und dergleichen gewährleistet.
Die Aufgabe wird gelöst durch ein Verfahren zum Herstellen einer Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene enthaltenden Beschichtung, umfassend das Aufbringen von Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene auf eine zinnhaltige Beschichtung und Einbringen der Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch mechanische oder thermische Behandlung.
Das Substrat, auf dem sich die zinnhaltige Beschichtung befindet, ist bevorzugt ein Metall, besonders bevorzugt Kupfer und dessen Legierungen. Zwischen der zinnhaltigen Beschichtung und dem Substrat kann vorteilhafterweise auch nochwenigstens eine weitere Zwischenschicht aufgebracht sein.
Als zinnhaltige Beschichtung auf dem Substrat wird bevorzugt Zinn oder eine Zinnlegierung verwendet. Auf/In die Zinnlegierung werden die Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene aufgebracht bzw. eingebracht, wobei das Beschichtungsmetall bei der Aufbringung bzw. Einbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest, flüssig oder teigig vorliegen kann.
Wie oben bereits ausgeführt, sind die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die zinnhaltige Beschichtung eingebracht, wobei dies durch mechanische oder thermische Behandlung erfolgen kann. Die mechanische Behandlung umfasst dabei das Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene. Vorzugsweise geschieht dies, indem auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels, mechanischen Bürsten, durch Aufsprühen oder durch Einblasen der mechanische Druck ausgeübt wird. Im Sinne dieser Erfindung soll auch das Aufsprühen und Einblasen als Ausüben von mechanischem Druck verstanden werden.
Die zinnhaltige Beschichtung kann bei der Aufbringung der Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene fest vorliegen (also in festem Aggregatzustand) und das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung kann durch Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels oder mechanischen Bürsten erfolgen.
Ebenso kann die Beschichtung bei der Aufbringung der Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene flüssig oder teigig vorliegen, wobei das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung/das Beschichtungsmetall durch Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels, mechanischen Bürsten, durch Aufsprühen oder durch Einblasen erfolgt. Falls die Beschichtung flüssig vorliegt, kann beim Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene die Schmelztemperatur der Beschichtung unterschritten werden, so dass die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in der Schicht fixiert werden.
Wie oben bereits ausgeführt, kann das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung auch thermisch erfolgen. Die thermische Behandlung umfasst dabei das Erhitzen der Beschichtung auf eine Temperatur unterhalb oder oberhalb des Schmelzpunktes der Beschichtung. Erhitzen auf eine Temperatur unterhalb des Schmelzpunktes der Beschichtung führt hier zu einem teigigen Zustand und ein Erhitzen auf eine Temperatur oberhalb des Schmelzpunktes der Beschichtung führt folglich zu einem flüssigen Zustand der Beschichtung.
In einer Ausführungsform ist die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest und wird dann auf eine Temperatur oberhalb des Schmelzpunktes der Beschichtung erhitzt. Dadurch schmelzen die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in das Beschichtungsmaterial ein und können durch Abkühlen des Beschichtungsmaterials unterhalb des Schmelzpunktes fixiert werden.
In einer weiteren Ausführungsform der vorliegenden Erfindung liegt die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene flüssig vor und wird dann auf eine Temperatur unterhalb des Schmelzpunktes der Beschichtung gebracht, wodurch die in die flüssige Beschichtung eingedrungenen Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fixiert werden.
In einer weiteren Ausführungsform liegt die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest vor und wird dann auf eine Temperatur unterhalb des Schmelzpunktes der Beschichtung erhitzt. Dieser Vorgang ist mit einem Tempern gleichzusetzen, wobei durch den dadurch erreichten teigigen Zustand der Beschichtung die Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene langsam in das Beschichtungsmaterial hineinwandern.
In allen Ausführungsformen ist bevorzugt, dass das Aufbringen der Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene auf die Beschichtung und/oder das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung unter einer Normalatmosphäre oder unter Schutzgas erfolgt. Unter Normalatmosphäre im Sinne dieser Erfindung wird die normale Umgebungsluft verstanden. Als Schutzgas kann jedes im Stand der Technik bekannte Gas verwendet werden, das eine sauerstofffreie Atmosphäre bereitstellt. Bekanntermaßen können beispielsweise Stickstoff oder Argon eingesetzt werden. In dem erfindungsgemäßen Verfahren können als Kohlenstoff-Nanoröhren einwandige oder mehrwandige Kohlenstoff-Nanoröhren als Pulver oder dispergiert in einer Suspension eingesetzt werden.
In einer weiteren bevorzugten Ausführungsform können die Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene vor der Aufbringung auf die Beschichtung mit einer Ummantelung aus Metall versehen werden. Die Aufbringung der Ummantelung kann mittels mechanischer Verknetung mit einem Metall durchgeführt werden. Für die mechanische Verknetung kann beispielsweise eine Kugelmühle oder ein Extruder verwendet werden. Die Aufbringung der Ummantelung auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene kann ferner auf chemischem Wege erfolgen, beispielsweise durch Aufbringung einer Metallsalz-Lösung, welche anschließend reduziert wird oder durch Aufbringung eines Metalloxids, welches anschließend reduziert wird.
Eine weitere bevorzugte Ausführungsform ist, die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in einer Sn(-Legierungs)-Schmelze mittels Ultraschall dispergiert dem Metallband zuzuführen und in einer Welle mit anschließendem mechanischen Abstreifen aufzubringen.
Im Sinne dieser Erfindung ist es ferner bevorzugt, wenn die Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene miteinander ein Komposit bilden, also miteinander verbunden sind. Besonders bevorzugt ist dabei ein Graphen auf einer Kohlenstoff-Nanoröhre an deren axialen Ende orthogonal angeordnet. Dadurch kann eine elektrische und thermische Leitfähigkeit in horizontaler und vertikaler Richtung erreicht werden. Auch die mechanische Belastbarkeit steigt in horizontaler und vertikaler Richtung.
Gegenstand der Erfindung ist auch ein beschichtetes Substrat, das nach dem erfindungsgemäßen Verfahren hergestellt wurde. Bevorzugt ist das Substrat Kupfer oder eine kupferhaltige Legierung bzw. umfasst Kupfer oder eine kupferhaltige Legierung bzw. AI oder eine AI-Legierung bzw. Fe oder eine Fe- Legierung. Es kann ferner vorteilhaft sein, dass zwischen der zinnhaltigen Beschichtung und dem Substrat Zwischenschichten aufgebracht werden.
Das erfindungsgemäße beschichtete Substrat eignet sehr gut als elektromechanisches Bauteil oder Stanzgitter, beispielsweise als Schaltelement, Steckverbindung und dergleichen.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene enthaltenden Beschichtung auf einem Substrat, umfassend das Aufbringen von Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene auf eine zinnhaltige Beschichtung und Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch mechanische und/oder thermische Behandlung.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als zinnhaltige Beschichtung Zinn oder eine Zinnlegierung verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest, flüssig oder teigig vorliegt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mechanische Behandlung das Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene umfasst.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels, mechanischen Bürsten, durch Aufsprühen oder durch Einblasen erfolgt.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest vorliegt und das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels oder mechanischen Bürsten erfolgt.
7. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene flüssig oder teigig vorliegt und das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung durch Ausüben von mechanischem Druck auf die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene mittels einer Walze, eines Stempels, mechanischen Bürsten, durch Aufsprühen oder durch Einblasen erfolgt.
8. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die thermische Behandlung das Erhitzen der Beschichtung auf eine Temperatur unterhalb oder oberhalb des Schmelzpunktes der Beschichtung umfasst.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest vorliegt und dann auf eine Temperatur oberhalb des Schmelzpunktes der Beschichtung erhitzt wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene flüssig vorliegt und dann auf eine Temperatur unterhalb des Schmelzpunktes der Beschichtung gebracht wird.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung bei der Aufbringung der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene fest vorliegt und dann auf eine Temperatur unterhalb des Schmelzpunktes der Beschichtung erhitzt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Aufbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene auf die Beschichtung und/oder das Einbringen der Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene in die Beschichtung unter einer Normalatmosphäre oder unter Schutzgas erfolgt.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kohlenstoff-Nanoröhren einwandige oder mehrwandige Kohlenstoff-Nanoröhren eingesetzt werden.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene vor der Aufbringung auf die Beschichtung mit einer Ummantelung aus Metall versehen werden.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Ummantelung mittels mechanischer Verknetung der Kohlenstoff- Nanoröhren, Fullerene und/oder Graphene mit dem Metall oder auf chemischem Weg erfolgt.
16. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren, Fullerene und/oder Graphene vor der Aufbringung auf das Metallband in einer Zinn enthaltenden Metallschmelze mit Ultraschall dispergiert werden und in einer Welle mit anschließendem mechanischen Abstreifen zur Einstellung einer definierten Schichtdicke aufgebracht werden.
17. Beschichtetes Substrat, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 16.
18. Beschichtetes Substrat, dadurch gekennzeichnet, dass das Substrat aus Kupfer oder einer kupferhaltigen Legierung, Aluminium oder einer aluminiumhaltigen Legierung oder Eisen oder einer eisenhaltigen Legierung besteht.
19. Beschichtetes Substrat nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das Substrat ferner wenigstens eine Zwischenschicht umfasst, wobei die Zwischenschicht zwischen dem Substrat und der zinnhaltigen Beschichtung angeordnet ist.
20. Verwendung des beschichteten Substrats nach einem der Ansprüche 17 bis 19 oder hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 16 als elektromechanisches Bauteil oder Stanzgitter.
EP09743836A 2008-10-24 2009-09-03 Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung Withdrawn EP2340229A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008053027A DE102008053027A1 (de) 2008-10-24 2008-10-24 Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren,Fullerene und/oder Graphene enthaltenden Beschichtung
PCT/DE2009/001237 WO2010045905A1 (de) 2008-10-24 2009-09-03 Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung

Publications (1)

Publication Number Publication Date
EP2340229A1 true EP2340229A1 (de) 2011-07-06

Family

ID=41615829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09743836A Withdrawn EP2340229A1 (de) 2008-10-24 2009-09-03 Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung

Country Status (11)

Country Link
US (1) US20110206946A1 (de)
EP (1) EP2340229A1 (de)
JP (1) JP5542829B2 (de)
KR (1) KR101283275B1 (de)
CN (1) CN102105396A (de)
BR (1) BRPI0920915A2 (de)
CA (1) CA2731963C (de)
DE (1) DE102008053027A1 (de)
MX (1) MX2011003398A (de)
RU (1) RU2483021C2 (de)
WO (1) WO2010045905A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017117A1 (es) * 2010-07-23 2012-02-09 Baolab Microsystems Sl Antenas vibrantes de mems cmos y aplicaciones de las mismas
DE102011009469B4 (de) 2011-01-21 2013-04-18 Innovent E.V. Verfahren zur Herstellung von polymerfunktionalisierten Kohlenstoffnanoröhren
DE102011000395A1 (de) * 2011-01-28 2012-08-02 Hydro Aluminium Rolled Products Gmbh Thermisch und elektrisch hochleitfähiges Aluminiumband
US20120273255A1 (en) * 2011-04-26 2012-11-01 Tyco Electronics Corporation Electrical Conductors Having Organic Compound Coatings
CN102324497A (zh) * 2011-09-21 2012-01-18 上海大学 一种石墨烯负载碳包覆锡锑的锂电池负极材料的制备方法
CN102646575A (zh) * 2012-04-17 2012-08-22 北京大学 一种二氧化硅图形加工的方法
US8889997B2 (en) * 2012-05-01 2014-11-18 Tyco Electronics Corporation Methods for improving corrosion resistance and applications in electrical connectors
CN104037393B (zh) * 2013-03-06 2019-03-26 佛山市顺德宇红纳米科技有限公司 一种锡/石墨烯/碳纤维复合锂电池负极材料制备方法
EP3014630B1 (de) 2013-06-24 2017-08-09 ABB Schweiz AG Material mit reduziertem graphenoxid, vorrichtung mit dem material und verfahren zur herstellung des materials
KR101561968B1 (ko) 2014-05-12 2015-10-20 이성식 그래핀과 희생금속을 포함하는 강관용 코팅물질 제조방법,이 방법을 이용하는 코팅강관 제조방법 및 이 방법으로 제조된 코팅강관
EP2958110B1 (de) * 2014-06-16 2018-09-26 Siemens Aktiengesellschaft Messwandlerwicklung und Messwandler
GB201604341D0 (en) * 2016-03-14 2016-04-27 Aurubis Belgium Nv Sa Composition
CN106048285B (zh) * 2016-06-20 2017-10-13 山东建筑大学 一种制备碳纳米管‑石墨烯粉末复合增强锡铅合金的方法
WO2018067814A1 (en) 2016-10-06 2018-04-12 Lyten, Inc. Microwave reactor system with gas-solids separation
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
CN110418816B (zh) 2017-03-16 2022-05-31 利腾股份有限公司 碳和弹性体整合
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US10465128B2 (en) 2017-09-20 2019-11-05 Lyten, Inc. Cracking of a process gas
WO2019126196A1 (en) 2017-12-22 2019-06-27 Lyten, Inc. Structured composite materials
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
US11352481B2 (en) 2018-02-28 2022-06-07 Lyten, Inc. Composite materials systems
RU2693733C1 (ru) * 2018-12-28 2019-07-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ получения тонких слоёв оксида графена с формированием подслоя из углеродных нанотрубок
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11342561B2 (en) 2019-10-25 2022-05-24 Lyten, Inc. Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US11398622B2 (en) 2019-10-25 2022-07-26 Lyten, Inc. Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
DE102019219184A1 (de) * 2019-12-09 2021-06-10 Robert Bosch Gmbh Elektrischer Leiter aus Graphen und/oder Kohlenstoffnanoröhren mit beschichteten Fügestellen
CN112289487B (zh) * 2020-09-25 2022-08-16 无锡光美新能源科技有限公司 一种新型耐高温阻燃高导电的电动车线束及其制备方法
CN115196626A (zh) * 2021-04-01 2022-10-18 格拉弗尔工业有限责任公司 柱状碳和石墨烯板晶格复合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989579A2 (de) * 1998-09-21 2000-03-29 Lucent Technologies Inc. Anordnung mit einem Kohlenstoffnanoröhre-Feldemissionsstruktur und Herstellungsverfahren
US20030102222A1 (en) * 2001-11-30 2003-06-05 Zhou Otto Z. Deposition method for nanostructure materials
US20060174932A1 (en) * 2003-07-14 2006-08-10 Hiroki Usui Electrolyte compositon, photoelectric converter and dye-sensitized solar cell using same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858538A (en) * 1996-01-08 1999-01-12 Director-General Of Agency Of Industrial Science & Technology Composite luminescent material
RU2200092C1 (ru) * 2001-09-04 2003-03-10 Петрик Виктор Иванович Нанопористый металлуглеродный композит и способ его изготовления
US6975063B2 (en) * 2002-04-12 2005-12-13 Si Diamond Technology, Inc. Metallization of carbon nanotubes for field emission applications
RU2237316C2 (ru) * 2002-06-10 2004-09-27 Закрытое акционерное общество "Астрин-Холдинг" Паста для положительного электрода свинцового аккумулятора и способ ее приготовления
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
US20080131722A1 (en) * 2006-03-21 2008-06-05 Ephraim Suhir Single Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
EP1900025B1 (de) * 2005-06-09 2010-02-10 Lester E. Burgess Hybrides leitfähiges Beschichtungsverfahren zur elektrischen Brückenverbindung von RFID-Einzelchips mit einer Verbundantenne
RU2305065C2 (ru) * 2005-07-07 2007-08-27 Институт теплофизики экстремальных состояний объединенного института высоких температур Российской Академии наук (ИТЭС ОИВТ РАН) Способ получения углеродных, металлических и металлоуглеродных наночастиц
KR100911370B1 (ko) * 2005-12-06 2009-08-10 한국전자통신연구원 고 신뢰성 cnt 페이스트의 제조 방법 및 cnt 에미터제조 방법
JP2007207568A (ja) * 2006-02-01 2007-08-16 Sumitomo Osaka Cement Co Ltd カーボンナノチューブ含有ペーストとカーボンナノチューブ膜の製造方法及びカーボンナノチューブ膜並びに電界電子放出素子
JP4593502B2 (ja) 2006-03-27 2010-12-08 古河電気工業株式会社 金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法
KR100915394B1 (ko) * 2007-10-12 2009-09-03 (주)태광테크 전기전도도 및 내마모성이 우수한 소재 및 그 제조방법
KR100974092B1 (ko) * 2008-05-30 2010-08-04 삼성전기주식회사 탄소나노튜브를 포함하는 도전성 페이스트 및 이를 이용한인쇄회로기판

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989579A2 (de) * 1998-09-21 2000-03-29 Lucent Technologies Inc. Anordnung mit einem Kohlenstoffnanoröhre-Feldemissionsstruktur und Herstellungsverfahren
US20030102222A1 (en) * 2001-11-30 2003-06-05 Zhou Otto Z. Deposition method for nanostructure materials
US20060174932A1 (en) * 2003-07-14 2006-08-10 Hiroki Usui Electrolyte compositon, photoelectric converter and dye-sensitized solar cell using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. KIM ET AL: "Carbon nanotube-incorporated direct-patternable SnO2 thin film is formed by photochemical metal-organic deposition", THIN SOLID FILMS, vol. 517, 1 December 2008 (2008-12-01), pages 1072 - 1076, XP025712283 *
W. ZHAO ET AL.: "Absorption and Luminescence Properties of C60 Films on Tin Substrate", SOLID STATE COMMUNICATIONS, vol. 84, no. 3, 1 October 1992 (1992-10-01), pages 323 - 326, XP025738669 *

Also Published As

Publication number Publication date
BRPI0920915A2 (pt) 2015-12-29
KR20110055653A (ko) 2011-05-25
KR101283275B1 (ko) 2013-07-11
CA2731963C (en) 2013-11-05
MX2011003398A (es) 2012-09-07
WO2010045905A1 (de) 2010-04-29
CN102105396A (zh) 2011-06-22
RU2011120826A (ru) 2012-11-27
JP5542829B2 (ja) 2014-07-09
JP2012506357A (ja) 2012-03-15
RU2483021C2 (ru) 2013-05-27
DE102008053027A1 (de) 2010-04-29
CA2731963A1 (en) 2010-04-29
US20110206946A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
EP2340229A1 (de) Verfahren zum herstellen einer kohlenstoff-nanoröhren, fullerene und/oder graphene enthaltenden beschichtung
DE102009054427B4 (de) Verfahren zum Aufbringen von Gemengen aus Kohlenstoff und Metallpartikeln auf ein Substrat, nach dem Verfahren erhältliches Substrat und dessen Verwendung
EP2342366B1 (de) Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen
Janas et al. Copper matrix nanocomposites based on carbon nanotubes or graphene
DE102009026655B3 (de) Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung
CN102714073A (zh) 复合电线及其制造方法
Lai et al. Flexible conductive copper/reduced graphene oxide coated PBO fibers modified with poly (dopamine)
EP2990380B1 (de) Verbundstoff und formkörper
DE2556679A1 (de) Verbundwerkstoff und verfahren zu seiner herstellung
Mendoza et al. Mechanical and electrical characterization of Cu-2 wt.% SWCNT nanocomposites synthesized by in situ reduction
KR20180005972A (ko) 복합 재료 송전 케이블의 제조방법
Uriza-Vega et al. Mechanical behavior of multiwalled carbon nanotube reinforced 7075 aluminum alloy composites prepared by mechanical milling and hot extrusion
EP3112497B1 (de) Graphenbesschichtung auf einem magnesiumlegierungssubstrat
KR100915394B1 (ko) 전기전도도 및 내마모성이 우수한 소재 및 그 제조방법
US10364486B2 (en) Carbon-based nanotube/metal composite and methods of making the same
CN114481606B (zh) 含镍碳纳米管/铜复合纤维及其制备方法
DE102009002178A1 (de) Strangförmiges Kompositleitermaterial
WO2022109585A1 (en) Aluminum-carbon metal matrix composites for busbars
Fakhrabadi et al. Investigation of mechanical properties and thermal conductivities of nitrogen doped carbon nanotubes
Touzain et al. Electrical conductivity, mechanical properties and stability of intercalated graphite fibers
WO2008006688A1 (de) Hochstromleiter, insbesondere für einen lichtbogenofen, sowie verfahren zur ausbildung eines hochstromleiters
Kondoh et al. Powder Metallurgy Processes for Composite–Materials Integration
WO2022112377A1 (de) Vielzahl von partikeln mit beschichtung und verfahren zu deren herstellung
CN114472579A (zh) 一种金属基复合材料及其制备方法
WO2009006663A2 (de) Karbidschicht enthaltender verbundwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140416

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TE CONNECTIVITY GERMANY GMBH

Owner name: WIELAND-WERKE AKTIENGESELLSCHAFT

Owner name: KME GERMANY AG & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KME GERMANY GMBH & CO. KG

Owner name: WIELAND-WERKE AKTIENGESELLSCHAFT

Owner name: TE CONNECTIVITY GERMANY GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 26/00 20060101ALI20180628BHEP

Ipc: C23C 2/26 20060101AFI20180628BHEP

Ipc: C01G 19/00 20060101ALI20180628BHEP

Ipc: H01B 1/00 20060101ALI20180628BHEP

Ipc: H01B 1/04 20060101ALI20180628BHEP

Ipc: C23C 24/04 20060101ALI20180628BHEP

Ipc: C23C 8/02 20060101ALI20180628BHEP

Ipc: C01G 3/00 20060101ALI20180628BHEP

Ipc: H01B 1/02 20060101ALI20180628BHEP

Ipc: C23C 24/06 20060101ALI20180628BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180815

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103