EP2251091A2 - Buse de rotor - Google Patents

Buse de rotor Download PDF

Info

Publication number
EP2251091A2
EP2251091A2 EP10004818A EP10004818A EP2251091A2 EP 2251091 A2 EP2251091 A2 EP 2251091A2 EP 10004818 A EP10004818 A EP 10004818A EP 10004818 A EP10004818 A EP 10004818A EP 2251091 A2 EP2251091 A2 EP 2251091A2
Authority
EP
European Patent Office
Prior art keywords
rotor
nozzle housing
nozzle
walkeinrichtung
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10004818A
Other languages
German (de)
English (en)
Other versions
EP2251091A3 (fr
EP2251091B1 (fr
Inventor
Anton Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2251091A2 publication Critical patent/EP2251091A2/fr
Publication of EP2251091A3 publication Critical patent/EP2251091A3/fr
Application granted granted Critical
Publication of EP2251091B1 publication Critical patent/EP2251091B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0463Rotor nozzles, i.e. nozzles consisting of an element having an upstream part rotated by the liquid flow, and a downstream part connected to the apparatus by a universal joint

Definitions

  • the invention relates to a rotor nozzle, in particular for high-pressure cleaning devices, with a nozzle housing having at its one end an inlet opening and at the other end an outlet opening for a fluid, in particular water, and arranged with a arranged in a swirl chamber of the nozzle housing, with his to Outlet opening facing the front end of a bearing supported and at least partially flowed through by the fluid rotor, which is displaceable by rotating fluid into the vortex chamber in rotation about a longitudinal axis of the nozzle housing and inclined at least in a rotating state to the longitudinal axis, wherein in the vortex chamber a Walk shark is arranged , which surrounds the rotor and is performed at the given in a given angle of inclination of the rotor Walk state deformation work.
  • Such rotor nozzles are known in principle. For example, reference is made to DE 39 02 478 C1 . DE 40 13 446 C1 . DE 41 33 973 A1 . DE 44 33 646 C2 such as EP 0 891 816 B1 , For example, it is known to provide either the rotor with an elastically deformable rolling ring or the inside of the housing with an elastically deformable annular region, ie to provide a part of the housing interior with eg a rubber coating.
  • the rotor comes into contact with the inner wall of the nozzle housing, whereby either the rolling ring of the rotor or the rolling area of the nozzle housing inner wall is elastically deformed. hereby is done on the Wälzring or on the elastically deformable housing wall deformation work. This has the consequence that the rotational speed of the rotor is reduced about the longitudinal axis of the nozzle housing. In this way, a homogenization of the barrel of the rotor is achieved and achieved a better overall spray pattern.
  • the object of the invention is to further improve a rotor nozzle of the type mentioned in the sense of equalization of the barrel of the rotor and an optimization of the spray pattern.
  • the Walk Hughes occupies a ground state up to the specific inclination angle of the rotor, in which the Walk Hughes is arranged at a distance from an end stop, and that the distance in the Walk state by deforming the Walkong is variable.
  • the work of deformation is brought to the foreground by providing a greater distance than can be provided merely by compressing an elastically deformable material.
  • the invention provides that deviating from the aforementioned prior art, the Walk Hughes is arranged at a distance from an end stop, so that there is a path between the Walk Hughes and the end stop. This spacing makes it possible to deform the rolling device in the flexed state to a much greater extent than is possible merely by compressing the material forming the rolling device.
  • the flexing deformation of the whip means can, to a certain extent, be considered as a "high amplitude" wave propagating through the whip means in accordance with the rotational speed of the rotor, i. in the rolling device about the longitudinal axis of the rotor nozzle or around the central axis of the rotor rotates.
  • the deformation of the rolling device is a local movement of the material forming the rolling device in the direction of End stop includes, wherein the amount of movement is greater than the thickness of the moving material of the Walkong.
  • the rolling device is designed such that the deformation of the rolling device takes place at least substantially without compression or compression of the material of the rolling device due to the distance from the end stop.
  • the end stop can be formed by the inner wall of the nozzle housing or by the rotor, wherein a combination of these two possibilities is conceivable.
  • the Walk Hughes can be arranged stationary with respect to the nozzle housing.
  • a combination of two single Walk Roaden is conceivable, one of which is mounted on the nozzle housing and the other on the rotor.
  • a in the ground state at a distance from the end stop arranged Walk section of the Walk boots can be provided which is projecting with respect to the nozzle housing or the rotor, protruding, projecting, protruding and / or cantilevered.
  • the deformability of the Walk boots can be given in particular by a local buckling, deflection, indentation, denting, bending, bending, kinking and / or kinking takes place.
  • the term "local” here means that due to the fact that the deformation of the whipping device takes place with the rotor revolving around the longitudinal axis of the nozzle housing, the deformation of the whipping device does not take place over its entire circumference, but only locally at the point corresponding to the instantaneous angular position of the rotating rotor.
  • the rolling device may comprise a circumferentially extending support portion from which a deformable walk portion, on which the deformation work is to be performed emanates, wherein the Walk Road with the support portion with the nozzle housing or with the rotor is engaged or in contact.
  • the transition between the support region and the flexing section of the rolling device can be located in the region of a peripheral edge on the inner wall of the nozzle housing, so that upon deformation of the rolling device, the flexing section is locally folded or bent around this edge.
  • the edge of the nozzle housing inner wall can define the beginning of the Walk section.
  • At least one deformable flexing section of the rolling device on which the deformation work is to be performed can be cylindrical, cup-shaped, bell-shaped, funnel-shaped, conical or cup-shaped.
  • the Walk bones may further be arranged such that the Walke device in the ground state, at least with a deformable Walk section on which the deformation work is to be performed at an angle to the longitudinal axis of the nozzle housing or to a central axis of the rotor. This angle can basically be chosen arbitrarily.
  • the Walk Hughes comprises a mounting portion with which the Walk Hughes is mounted on the nozzle housing or on the rotor.
  • the Walk Hughes may be mounted self-holding on the nozzle housing or on the rotor, wherein the Walk Hughes is inserted in particular in the nozzle housing or plugged onto the rotor.
  • the rolling device together with at least one further component can form an assembly which can be handled as a unit.
  • this embodiment makes it possible for the assembly comprising the waling device to be inserted as a unit into the nozzle housing and / or removed from the nozzle housing. If one or more of these components, for example due to wear, must be replaced, this can be done in a particularly simple manner and in no time.
  • This principle of an assembly of a plurality of components of the rotor nozzle which can be handled as a unit and which, in particular, includes the rotor is also claimed regardless of whether or not a wharf or device according to the invention is used or not.
  • the mentioned assembly may comprise, in addition to the rolling device, the rotor, the bearing for the rotor and / or a front closure device of the rotor nozzle.
  • the nozzle housing provided with a front mounting opening, which is closed fluid-tight by means of a closure device - with the exception of the outlet opening. In this way, access to the interior of the rotor nozzle is made possible from the front, which is particularly advantageous with regard to a simple and quick replacement of components arranged within the rotor nozzle.
  • the said closure device can in particular be operated without tools.
  • the closure device comprises a front stopper which can be screwed to the nozzle housing and can be screwed into the nozzle housing in particular.
  • the front plug can be actuated by means of a separate, externally accessible to a user handle.
  • the handle may in particular be a hand wheel or a hand screw.
  • the rolling device holds the closure device and the bearing together.
  • the waling device can be held together with the closure device, the bearing and / or the rotor by means of a latching, snap-in, hook-in or rear-engagement connection.
  • the rotor is held captive on the waling device and at the same time pivotable to change the inclination.
  • the Walk Hughes is additionally formed as a seal. hereby is achieved in an advantageous manner that it can be dispensed with additional sealing measures such as O-rings where the Walk dressed itself can additionally assume a sealing function.
  • the Walk RanS is integrally formed.
  • the Walk beautiful can be formed as a closed ring at least in a Walk section at which the deformation work is to be performed.
  • the walk portion may be provided with openings, openings, slots, recesses and / or cuts.
  • the Walk Rané-A is preferably made of an elastically deformable material, for example made of rubber.
  • the whale device may be made of a material whose hardness is in the range of 30 to 90 Shore-A.
  • the rotor is at its rear end with a plurality of inlet openings, which in particular formed as elongated inlet holes are provided, wherein the inlet openings each extend at least substantially parallel to the central axis of the rotor. It has been found that such a fluid inlet for the rotor has a rectifying effect, which is the Noticeably improved spray pattern. In particular, these inlet openings are provided in addition to a rectifier arranged inside the rotor.
  • the inlet openings are arranged on a circle or outside a circle around the central axis of the rotor, wherein the diameter of the circle is larger than the diameter of a rectifier arranged in the rotor.
  • This positioning of the inlet openings has proved to be particularly advantageous with regard to an improvement of the spray pattern.
  • a propellant set upstream of the swirl chamber, via which the fluid flows at least with a radial or tangential component into the swirl chamber, can be inserted from the front is, in particular via a front mounting opening of the nozzle housing.
  • the invention relates to a rotor nozzle, in particular for high-pressure cleaning devices, with a nozzle housing having an inlet opening at its one axial end and an outlet opening for a fluid, in particular water, at the other end, and with one arranged in a swirl chamber of the nozzle housing , with its front end pointing to the outlet opening on a bearing and at least partially flowed through by the fluid rotor which displaceable by rotating fluid into the vortex chamber in rotation about a longitudinal axis of the nozzle housing displaceable and inclined at least in the rotating state to the longitudinal axis, wherein the nozzle housing a has front mounting opening through which a plurality Components comprehensive assembly as a unit in the nozzle housing can be introduced and removed from the nozzle housing.
  • a Walscheidinraum is arranged, which surrounds the rotor and is performed at the given in a given angle of inclination of the rotor WalkDirect deformation work, wherein the Walk Hughes assumes a ground state up to the specific inclination angle of the rotor, in wherein the Walk Hughes is arranged at a distance from an end stop, and wherein the distance in the Walk state by deforming the Walkong is changeable.
  • the assembly comprises the rotor, a front closure device, by means of which the front mounting opening can be closed in a fluid-tight manner, the bearing, a rolling device and / or a holding element which holds together at least two further components of the assembly.
  • the assembly includes the rotor and at least one further component to which the rotor is held captive and at the same time pivotable to change the inclination, wherein preferably the further component is a Walk Hughes or a holding element.
  • the rotor is held on the further component without additional separate connection means, wherein in particular between the rotor and the further component a latching, snap-in, hook-in or rear-engagement connection is provided.
  • Fig. 1 only the essential components of the rotor nozzle according to the invention are provided with reference numerals. Structure and operation of the rotor nozzle are also based on Fig. 2 explained in more detail.
  • the rotor nozzle according to the invention comprises a nozzle housing 11 made of metal. Within the nozzle housing 11 is a vortex chamber 17, in which an elongated rotor 21 is arranged. With his from a nozzle 49 ( Fig. 2 ) formed front end of the rotor is supported on a cup-shaped bearing 19.
  • the nozzle housing 11 is open at its front end and provided with a mounting opening which is closed during operation of a closure device 35 fluid-tight.
  • the closure device 35 comprises a front stopper 39 screwed into the nozzle housing 11 and a handle 41 in the form of a handwheel which is non-rotatably connected to the front stopper 39 so that the user uses the handwheel 41 to move the front stopper into the nozzle housing 11 and out of the nozzle housing 11 can unscrew.
  • a whipping device 25 which will be discussed in more detail below, is connected to both the front plug 39 and the bearing 19. Furthermore, the rotor 21 is provided with a flange 67 (FIG. Fig. 2 ) at the Walk Hughes 25 captive, but held relative to the Walk liked 25 pivotable.
  • the rotor 21, the whipping device 25, the bearing 19, the front stopper 39 and the handwheel 41 form a unit that can be handled as a unit, which can be screwed as a unit to the nozzle housing 11.
  • a propellant 45 is arranged in the rear, located upstream of the vortex chamber 17 region of the nozzle housing 11, a propellant 45 is arranged.
  • this propellant 45 are driving holes 61 ( Fig. 2 ), via which a fluid, in particular water, which enters the rotor nozzle via an inlet opening 13, flows in a radial or tangential direction into the swirl chamber 17, in order to produce in this way in the swirl chamber 17 a ring flow entraining the rotor 21.
  • the propellant 45 is screwed to the nozzle housing 11, wherein a special feature is that the propellant 45 from the front, so on the above-mentioned mounting opening of the nozzle housing, can be used.
  • All components of the rotor nozzle are thus removable via the front end of the nozzle housing 11 and interchangeable.
  • connection of the rotor nozzle 11 according to the invention to a fluid source via the rear end of the nozzle housing, which can be screwed to a fluid supply port not shown here or a fluid supply line.
  • the fluid passes via the inlet opening 13 and the driving bores 61 of the propellant 45 into the vortex chamber 17, where it forms a ring flow and thereby the rotor 21 about the longitudinal axis 23 (FIGS. Fig. 2 ) of the nozzle housing 11 can be rotated.
  • the fluid passes through the inlet openings 55 formed at the rear end portion of the rotor 21.
  • the fluid flows through the rotor 21 to the nozzle 49 of the rotor 21, from where it exits through the shutter 35 from the rotor nozzle, in Shape of a cone beam due to the rotational movement of the rotor 21 about the longitudinal axis 23 of the nozzle housing eleventh
  • a preferred application of this rotor nozzle is the use in vehicle washing systems. It is desirable to be able to replace defective rotor nozzles as simply and quickly as possible. This is ensured by the explained accessibility of the nozzle housing 11 from the front and the assembly of rotor 21, waling device 25, bearing 19 and closure device 35 that can be handled as one unit. The user merely needs to unscrew this assembly from the nozzle housing 11 and screw in a new assembly by operating the handwheel 41, i. fast and easy as with a bulb replacement, the entire assembly can be replaced.
  • Fig. 2 is in the Walk Healthy 25 is a one-piece, substantially cylindrical component.
  • the whipping device is preferably made of rubber or other elastically deformable material.
  • the Walk Hughes 25 comprises a cylindrical Walk section 27, whose central axis coincides with the longitudinal axis 23 of the nozzle housing 17 and the region abuts against the inner wall of the nozzle housing 11.
  • the Walkabitess 27 Approximately in the middle - viewed in the axial direction - the Walkabitess 27 widens the nozzle housing 11, starting from a circumferential edge 69, rearwardly in the form of a cone, so that the free end of the whipping device 25 forming walk portion 27 to the rear - ie upstream - Is exposed within the vortex chamber 17 and - seen in the radial direction - is arranged at a distance from the inner wall of the nozzle housing 11.
  • the flexed section 27 can be deformed by the rotor 21, namely locally bent at the edge 69 or bent, when the rotor 21 rotates during the rotational operation about the longitudinal axis 23 of the nozzle housing 11 and thereby exceeds a certain angle of inclination to the longitudinal axis 23.
  • This angle of inclination which represents, as it were, the transition between a ground state with undeformed flexing section 27 and a flexing state in which the rotor 21 performs deformation work on the flexing section 27, is shown in FIG Fig. 2 shown.
  • the flexing section 27 can be deflected until it rests against the inner wall of the nozzle housing 11 which extends obliquely to the longitudinal axis 23.
  • the inner wall of the nozzle housing 11 thus forms an end stop for the waling device 25 or its Walk section 27, to which a Verformweg is available. This distance is in particular greater than the thickness of the walk section 27, that is, as the strength of the rolling device 25 forming rubber material.
  • the deformation of the Walk section 27 is thus not or at most to a very small extent by compression or compression of the Walk section 27 forming material. Rather, the deformation work is performed by a local movement of the material of the whipping device 25 as a whole in the direction of the end stop.
  • the mounting portion 33 of the whipping device 25 has a smaller diameter than the Walk portion 27 and is disposed radially inside the front plug 39.
  • the mounting portion 33 performs several functions.
  • the mounting portion 33 defines a pivot space 65 in which the cooperating with the nozzle 49 of the rotor 21 part of the bearing 19 is arranged.
  • a radially projecting flange 67 of the rotor 21 has a diameter larger than the inner diameter of the pivot space 65 at its upstream end. The rotor 21 can thus be pressed with the flange 67 over this bottleneck away in the pivot space 65 and locked in this way with the mounting portion 33 so that the rotor 21 is captively held on the Walk worn 25, at the same time the pivotability of the rotor 21 for the required tilt adjustment is ensured.
  • the pivot wall 65 radially bounding inner wall of the mounting portion 33 is at least approximately a partial spherical surface whose center is located where the nozzle 49 of the rotor 21 is supported with its tip on the bearing 19. As a result, at least to a certain extent a guide for the pivoting of the rotor 21st
  • the whipping device 25 is further dimensioned such that it is tightly inserted into the nozzle housing 11 with a snug fit, so that the whipping device 25 itself ensures a sealing of the nozzle housing 11.
  • a flange 63 having a radially inwardly projecting flange portion which is engaged with a circumferential outer groove of the bearing 19 and a radially outward protruding portion Flange portion which is in engagement with a circumferential groove of the front plug 39.
  • the rotor 21 comprises the previously mentioned nozzle 49, which is attached to the front end of a so-called stilt 51, which has an axially extending flow channel for the fluid, which opens into the nozzle 49.
  • the stilt 51 is surrounded by a sleeve 57, at the front end of which the already mentioned flange 67 is formed, with which the sleeve 57 and thus the rotor 21 as a whole is held captive on the mounting portion 33 of the rolling device 25.
  • a spring 53 is arranged between the stilt 51 and the sleeve 57. This is designed so that it seeks to push apart the stilt 51 and the sleeve 57 in the axial direction. If no fluid flow is present, so before the start of the rotor nozzle, thereby the rotor 21 between bearing 19 and inner rear wall of the nozzle housing 11 and the vortex chamber 17 facing end side of the propellant 45 is clamped, which ensures that when starting the rotor nozzle of the Rotor 21 with its nozzle 49 securely abuts the bearing 19.
  • a special feature is provided in the illustrated rotor nozzle at the rear end of the sleeve 57.
  • a fluid inlet is a plurality of elongated Inlet holes 55, which extend substantially parallel to the central axis of the rotor 21 and open into an antechamber, which is provided between the sleeve 57 and the rear end of the stilt 51 and in which the spring 53 is arranged.
  • the fluid flowing in via the inlet openings 55 passes through this antechamber into the axial flow channel of the stilt 51, in which a rectifier 59 is arranged.
  • the inlet openings 55 are arranged in a circle around the central axis of the rotor 21, the diameter of this circle being larger than the diameter of the rectifier 59. It has been found that this configuration and arrangement of the fluid inlet formed by the inlet bores 55 improves the calming of the Fluid flow in the rotor 21 and leads to a corresponding, noticeable improvement of the spray pattern.
  • Fig. 3 shows the mentioned assembly of rotor 21, Walk Tooth 25, bearing 19, front plug 49 and handwheel 41 without nozzle housing and propellant.
  • This assembly can be unscrewed as a whole from the nozzle housing 11 for replacement or repair and also screwed as a whole in the nozzle housing 11.
  • the user rotates the screwed with the front end of the nozzle housing front plug 39 via the handwheel 41.
  • the Walktinraum 25 is held on the front stopper 39, wherein the Walk liked 25 in turn holds the bearing 19 and the rotor 21 captive.
  • Fig. 4 and 5 show a further embodiment of a rotor nozzle according to the invention, which differs from the embodiment according to the Fig. 1 to 3 in particular by the configuration of the Walktinoplasty 25 differs, so that essentially only this difference should be discussed here.
  • the Walk Hughes 25 is cup-shaped and attached to the sleeve 57 of the rotor 21.
  • a shoulder 73 of the sleeve 57 defines the seat for the whipping device 25.
  • the cup-shaped waling device 25 is arranged such that its open end faces forward. In the region of its opening, the wall of this "walking shell" extends approximately parallel to the central axis of the rotor 21st
  • Fig. 4 and 5 the position of the rotor 21 is shown, in which the rotor 21 is inclined so far that a transition between the ground state and the Walk state marking inclination angle with respect to the longitudinal axis 23 of the nozzle housing 11 is given.
  • the walking shell 25 is therefore not deformed.
  • the available for a deformation of the Walk shell 25 distance so the distance from the inside of the Walk shell 25 and here formed by the outer surface of the sleeve 57 of the rotor 21 end stop, so in this position is still fully available.
  • a holding element 43 is additionally provided, which, with regard to its shape, at least essentially the mounting section 33 of the whipping device 25 according to the embodiment of the Fig. 1 to 3 equivalent.
  • this holding element 43 which forms a part of the unit can be handled as a unit and in connection with the embodiment of Fig. 1 to 3 described manner is held on the front plug 39 and in turn holds the bearing 19 and the rotor 21 via the front flange 67 of the sleeve 57.
  • the shape and size of the rolling devices 25 can in principle be varied as desired in order to be able in this way to specifically specify the running behavior of the rotor 21 and thus the spray pattern of the rotor nozzle. Accordingly, this applies to the choice of the material of the Walk Hughes 25 and in particular its deformability determining properties, such as the hardness.

Landscapes

  • Nozzles (AREA)
EP10004818.0A 2009-05-08 2010-05-06 Buse de rotor Not-in-force EP2251091B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009020409A DE102009020409A1 (de) 2009-05-08 2009-05-08 Rotordüse

Publications (3)

Publication Number Publication Date
EP2251091A2 true EP2251091A2 (fr) 2010-11-17
EP2251091A3 EP2251091A3 (fr) 2011-01-12
EP2251091B1 EP2251091B1 (fr) 2016-05-04

Family

ID=42357543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10004818.0A Not-in-force EP2251091B1 (fr) 2009-05-08 2010-05-06 Buse de rotor

Country Status (3)

Country Link
US (1) US8540170B2 (fr)
EP (1) EP2251091B1 (fr)
DE (2) DE102009020409A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160243564A1 (en) * 2015-02-23 2016-08-25 Stoneage, Inc. Internally adjustable spray angle rotary nozzle
WO2018148781A1 (fr) * 2017-02-14 2018-08-23 Paris Jim Ensemble pour siège de buse haute pression renforcé
CN206881955U (zh) * 2017-04-17 2018-01-16 福建西河卫浴科技有限公司 一种离心散水结构及花洒
ES2890531T3 (es) * 2018-11-05 2022-01-20 P A S P A Conjunto de boquilla de chorro giratorio para dispositivos de limpieza a presión
CN114932112B (zh) * 2022-06-01 2023-04-14 开封金鼎上一环保科技发展有限公司 一种齿轮箱不拆卸在线冲洗设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902478C1 (fr) 1989-01-27 1990-07-19 Josef 7918 Illertissen De Kraenzle
DE4013446C1 (fr) 1990-04-27 1991-05-08 Alfred Kaercher Gmbh & Co, 7057 Winnenden, De
DE4133973A1 (de) 1990-10-18 1992-04-23 Interpump Spa Vorrichtung zum verspruehen eines fluessigkeitsstrahls mit rotierender achse auf einer konischen flaeche
DE4433646C2 (de) 1993-09-29 1996-10-10 Anton Jaeger Rotordüse, insbesondere für ein Hochdruckreinigungsgerät
EP0891816B1 (fr) 1997-07-15 2004-02-11 Anton Jäger Buse à rotor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393689A1 (fr) * 1989-04-20 1990-10-24 Ingo R. Dipl.-Ing. Friedrichs Méthode de perfectionnement d'effet d'une tuyère engendrant un jet fluide mobile et dispositif de mise en oeuvre de cette méthode
DE4129026C1 (fr) * 1991-08-31 1993-03-04 Alfred Kaercher Gmbh & Co, 7057 Winnenden, De
JPH05123613A (ja) * 1991-10-31 1993-05-21 Maruyama Mfg Co Ltd ノズル装置
DE4239542A1 (de) * 1992-03-28 1993-09-30 Anton Jaeger Rotordüse für ein Hochdruckreinigungsgerät
DE19742420A1 (de) * 1997-09-25 1999-04-01 Anton Jaeger Rotordüsenkopf
DE19803035A1 (de) * 1998-01-27 1999-07-29 Anton Jaeger Rotordüse
DE19820238A1 (de) * 1998-05-06 1999-11-11 Anton Jaeger Rotordüse
DE10046351A1 (de) * 2000-09-19 2002-03-28 Anton Jaeger Rotordüse für Hochdruckreinigungsgeräte
DE10047049A1 (de) * 2000-09-22 2002-04-25 Kaercher Gmbh & Co Alfred Rotordüse, insbesondere für ein Hochdruckreinigungsgerät
US7118051B1 (en) * 2005-08-11 2006-10-10 Anton Jager Rotor nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902478C1 (fr) 1989-01-27 1990-07-19 Josef 7918 Illertissen De Kraenzle
DE4013446C1 (fr) 1990-04-27 1991-05-08 Alfred Kaercher Gmbh & Co, 7057 Winnenden, De
DE4133973A1 (de) 1990-10-18 1992-04-23 Interpump Spa Vorrichtung zum verspruehen eines fluessigkeitsstrahls mit rotierender achse auf einer konischen flaeche
DE4433646C2 (de) 1993-09-29 1996-10-10 Anton Jaeger Rotordüse, insbesondere für ein Hochdruckreinigungsgerät
EP0891816B1 (fr) 1997-07-15 2004-02-11 Anton Jäger Buse à rotor

Also Published As

Publication number Publication date
US8540170B2 (en) 2013-09-24
EP2251091A3 (fr) 2011-01-12
EP2251091B1 (fr) 2016-05-04
DE102009020409A1 (de) 2010-11-18
DE202010018423U1 (de) 2016-09-19
US20100282864A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
EP0526508B1 (fr) Buse rotative pour un appareil de nettoyage a haute pression
EP2435190B1 (fr) Rotabuse pour nettoyeur haute pression
EP2099570B1 (fr) Anneau pour guider l'air comprenant une cavité annulaire et cloche correspondante
EP2587082B1 (fr) Composant de buse de pulvérisation pour appareils de nettoyage fonctionnant à air comprimé
DE3419964C2 (de) Spritzkopf eines Hochdruckreinigungsgerätes
EP2251091B1 (fr) Buse de rotor
EP0855223A2 (fr) Tête de buse rotative
DE102006053625A1 (de) Rotordüse
DE4411438A1 (de) Schwenkbare Sprühdüsenanordnung
EP3271078A1 (fr) Nettoyeur rotatif
EP1569755B1 (fr) Ensemble buse concu pour un appareil de nettoyage haute pression
EP3200928B1 (fr) Ensemble de buses pour liquide
EP2707629B1 (fr) Dispositif d'étanchéification d'une chambre de pompage d'une pompe à piston tournant, et pompe à piston tournant dotée de ce dispositif
EP2882538B1 (fr) Buse de rotor destinée à un appareil de nettoyage haute pression
DE4419404C2 (de) Rotordüse
DE202007006088U1 (de) Rotordüse für ein Reinigungsgerät
EP3513877A1 (fr) Dispositif de buse destiné à la distribution des fluides
DE4220561A1 (de) Punktstrahl-rotationsduese fuer hochdruckreinigungsgeraete
WO2013092071A1 (fr) Turbine pelton
EP3638424B1 (fr) Buse de pulverisation
EP3265247B1 (fr) Rotabuse pour nettoyeur haute pression
DE102005037858A1 (de) Rotationsdüse
EP0762941A1 (fr) Ajutage rotatif pour appareils de nettoyage a haute pression
EP1502653B1 (fr) Buse de pulvérisation d'un fluide sur une suface
EP2390006B1 (fr) Buse de rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110712

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 3/04 20060101AFI20150831BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 796422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011575

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160504

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011575

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170306

26N No opposition filed

Effective date: 20170207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 796422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170728

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160506

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011575

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180506