EP2227571B1 - Material for a gas turbine component, method for producing a gas turbine component and gas turbine component - Google Patents

Material for a gas turbine component, method for producing a gas turbine component and gas turbine component Download PDF

Info

Publication number
EP2227571B1
EP2227571B1 EP08841961.9A EP08841961A EP2227571B1 EP 2227571 B1 EP2227571 B1 EP 2227571B1 EP 08841961 A EP08841961 A EP 08841961A EP 2227571 B1 EP2227571 B1 EP 2227571B1
Authority
EP
European Patent Office
Prior art keywords
phase
gas turbine
turbine component
temperature
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08841961.9A
Other languages
German (de)
French (fr)
Other versions
EP2227571A2 (en
Inventor
Wilfried Smarsly
Helmut Clemens
Volker Guether
Sascha Kremmer
Andreas Otto
Harald Chladil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montanuniversitaet Leoben
Voestalpine Boehler Aerospace GmbH and Co KG
GfE Metalle und Materialien GmbH
MTU Aero Engines AG
Original Assignee
Montanuniversitaet Leoben
Voestalpine Boehler Aerospace GmbH and Co KG
GfE Metalle und Materialien GmbH
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montanuniversitaet Leoben, Voestalpine Boehler Aerospace GmbH and Co KG, GfE Metalle und Materialien GmbH, MTU Aero Engines AG filed Critical Montanuniversitaet Leoben
Priority to PL08841961T priority Critical patent/PL2227571T3/en
Publication of EP2227571A2 publication Critical patent/EP2227571A2/en
Application granted granted Critical
Publication of EP2227571B1 publication Critical patent/EP2227571B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to a method for producing a gas turbine component according to the preamble of claim 1 and to a gas turbine component according to claim 4.
  • the most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • gas turbine components made of titanium alloys nickel alloy or other alloys are known from the prior art primarily investment casting and forging. All highly stressed gas turbine components, such as components for a compressor, are forgings. Components for a turbine, however, are usually designed as precision castings.
  • the DE 10 2004 056 582 A1 discloses a titanium-aluminum base alloy with the components aluminum, niobium, molybdenum, boron and carbon.
  • this document gives no information about microstructures of the material in the range of the room temperature or the eutectoid temperature can be removed. There are only indications of the basic presence of ⁇ 2 , ⁇ and ⁇ phase included.
  • EP005924292 discloses a titanium-aluminum base alloy material comprising 44 at% aluminum, 5 at% niobium, 1 at% molybdenum, 0.2 at% boron and 0.3 at% carbon, balance titanium. Information on the volume fraction of a ⁇ B2-Ti phase At room temperature or at the eutectoid temperature of this document are not removable.
  • the EP 0 592 189 A1 discloses a material comprising at least titanium and aluminum which, both in the region of the room temperature and in the region of the eutectoid temperature, has the phase ⁇ B2, the phase ⁇ 2 and the phase ⁇ with a fraction of the ⁇ B 2 phase of less than 5% by volume ,
  • the present invention based on the problem to provide a novel method for producing a gas turbine component and a novel gas turbine component.
  • the material used which is a ⁇ -TiAl based alloy material, allows forging within a wider temperature range. Forging is used as a starting material, a casting material, so that expensive extruded material can be dispensed with.
  • the gas turbine component according to the invention is defined in claim 4.
  • the present invention uses a material based on a titanium-aluminum alloy.
  • the material comprises several phases both in the region of the room temperature and in the region of the so-called eutectoid temperature.
  • the TiAl-based alloy material In the region of room temperature, the TiAl-based alloy material has the phase ⁇ B2-Ti, the phase ⁇ 2 -Ti 3 Al and the phase ⁇ -TiAl, wherein the proportion of ⁇ / B2-Ti phase at room temperature at most or maximum 5% by volume.
  • the TiAl based alloy material of the invention on the phase ⁇ B2-Ti, the phase of ⁇ 2-Ti 3 Al and the phase ⁇ -TiAl the proportion of the ⁇ / B2-Ti phase in the range of eutectoid temperature at least or minimum 10 vol .-% is.
  • the material is therefore a ⁇ -TiAl-based alloy material. It can be reshaped by conventional forging techniques with a forging temperature within a relatively large temperature interval.
  • the forging temperature of the material is between T e -50K and T ⁇ + 100K, where T e is the eutectoid temperature of the material and T ⁇ is the alpha transus temperature of the material.
  • the forging temperature or forming temperature is below T ⁇ , as well as in the area of the forging temperature or forming temperature and in the area of the eutectoid temperature and the room temperature are the phases ⁇ / B2-Ti, ⁇ 2 Ti 3 Al and ⁇ -TiAl in the thermodynamic equilibrium.
  • the proportion of cubic body-centered ⁇ B2-Ti phase in the thermodynamic equilibrium of the material used is less than 5% by volume in the room temperature range. In the area of the eutectoid temperature, the proportion of cubic body-centered ⁇ B2-Ti phase is greater than 10% by volume.
  • the ⁇ -TiAl-based alloy material used also contains niobium, molybdenum and / or manganese, and also boron and / or carbon and / or silicon.
  • the procedure according to the invention is such that first of all a semifinished product or starting material is provided from the material.
  • the semifinished product is a low-cost, cast semi-finished product
  • the cast semifinished product from the ⁇ -TiAl base alloy material according to the invention is formed by forging, namely at a forming temperature or forging temperature which is between T e -50K and T ⁇ + 100K. This is done with a forming speed of at least 1 s - 1 forged.
  • the semifinished product is thermally coated before forging.
  • the procedure is preferably that in the region of a blade 11 to provide a coarser microstructure with high creep strength simply forged and in the region of a blade root 12 to provide a finer microstructure with high ductility is forged several times, with the simple forging and the multiple forging preferably followed by a heat treatment.
  • Gas turbine components according to the invention are manufactured from the specified material with the aid of the method according to the invention.
  • the gas turbine components according to the invention to compressor components, such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Gasturbinenbauteils nach dem Oberbegriff des Anspruchs 1 sowie ein Gasturbinenbauteil nach Anspruch 4.The invention relates to a method for producing a gas turbine component according to the preamble of claim 1 and to a gas turbine component according to claim 4.

Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.Modern gas turbines, in particular aircraft engines, must meet the highest demands in terms of reliability, weight, performance, economy and service life. In recent decades, aircraft engines have been developed, particularly in the civil sector, which fully meet the above requirements and have achieved a high degree of technical perfection. Among other things, the selection of materials, the search for new, suitable materials and the search for new production processes play a crucial role in the development of aircraft engines.

Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet.The most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels. The high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings. Titanium alloys are typical materials for compressor parts. Nickel alloys are suitable for the hot parts of the aircraft engine.

Als Fertigungsverfahren für Gasturbinenbauteile aus Titanlegierungen, Nickellegierung oder sonstigen Legierungen sind aus dem Stand der Technik in erster Linie das Feingießen sowie Schmieden bekannt. Alle hochbeanspruchten Gasturbinenbauteile, wie zum Beispiel Bauteile für einen Verdichter, sind Schmiedeteile. Bauteile für eine Turbine werden hingegen in der Regel als Feingussteile ausgeführt.As a manufacturing method for gas turbine components made of titanium alloys, nickel alloy or other alloys are known from the prior art primarily investment casting and forging. All highly stressed gas turbine components, such as components for a compressor, are forgings. Components for a turbine, however, are usually designed as precision castings.

Die DE 10 2004 056 582 A1 offenbart eine Titan-Aluminium-Basis-Legierung mit den Bestandteilen Aluminium, Niob, Molybdän, Bor und Kohlenstoff. Dieser Druckschrift sind allerdings keine Hinweise über Mikrostrukturen des Werkstoffs im Bereich der Raumtemperatur bzw. der eutektoiden Temperatur entnehmbar. Es sind lediglich Hinweise auf das grundsätzliche Vorhandensein einer α2-, γ- und β-Phase enthalten.The DE 10 2004 056 582 A1 discloses a titanium-aluminum base alloy with the components aluminum, niobium, molybdenum, boron and carbon. However, this document gives no information about microstructures of the material in the range of the room temperature or the eutectoid temperature can be removed. There are only indications of the basic presence of α 2 , γ and β phase included.

Der Fachartikel von Imayev, R. M. et. al. "Alloy design concepts for refined gamma titanium aluminide based alloys", Intermetallics, 15 (4), 451-460 CODEN: IERME5; ISSN: 0966-9795, 29. Januar 2007 (2007-01-29 ), XP005924292 offenbart einen Titan-Aluminium-Basis-Legierungswerkstoff mit 44 at% Aluminium, 5 at% Niob, 1 at% Molybdän, 0,2 at% Bor und 0,3 at% Kohlenstoff, Rest Titan. Angaben über den Volumenanteil einer βB2-Ti-Phase Bei Raumtemperatur bzw. bei der eutektoiden Temperatur sind dieser Druckschrift nicht entnehmbar.The article from Imayev, RM et. al. "Alloy design concepts for refined gamma titanium aluminide based alloys", Intermetallics, 15 (4), 451-460 CODEN: IERME5; ISSN: 0966-9795, January 29, 2007 (2007-01-29 ), EP005924292 discloses a titanium-aluminum base alloy material comprising 44 at% aluminum, 5 at% niobium, 1 at% molybdenum, 0.2 at% boron and 0.3 at% carbon, balance titanium. Information on the volume fraction of a βB2-Ti phase At room temperature or at the eutectoid temperature of this document are not removable.

Die EP 0 592 189 A1 offenbart einen Werkstoff umfassend zumindest Titan und Aluminium, der sowohl im Bereich der Raumtemperatur als auch im Bereich der eutektoiden Temperatur die Phase βB2, die Phase α2 und die Phase γ mit einem Anteil der βB2-Phase von weniger als 5 Vol.-% aufweist.The EP 0 592 189 A1 discloses a material comprising at least titanium and aluminum which, both in the region of the room temperature and in the region of the eutectoid temperature, has the phase βB2, the phase α 2 and the phase γ with a fraction of the βB 2 phase of less than 5% by volume ,

Auch der Fachartikel von Kobayashi, Satoru et. al.: "Microstructure control using betatitanium phase for wrought gamma TiAl based alloys" Gamma Titanium Aluminides 2003, proceedings of [a] symposium held during the TMS annual meeting, San Diego, CA, United States, Mar. 2-6, 2003, 165-175. Editor(s): Kim, Young-Won; Clemens, Helmut; Rosenberger, Andrew H. Publisher: Minerals, Meta, 2003 , XP009110846 offenbart eine Titan-Aluminium-Legierung mit einem Anteil der Phase βB2 von weniger als 5 Vol.-% im Bereich der eutektoiden Temperatur.Also the article by Kobayashi, Satoru et. al.: "Microstructure control using betatitanium phase for wrought gamma TiAl based alloys" Gamma Titanium Aluminides 2003, proceedings of [a] held during the TMS annual meeting, San Diego, CA, United States, Mar. 2-6, 2003, 165-175. Editor (s): Kim, Young-Won; Clemens, Helmut; Rosenberger, Andrew H. Publisher: Minerals, Meta, 2003 , XP009110846 discloses a titanium-aluminum alloy with a portion of the phase βB2 of less than 5% by volume in the eutectoid temperature range.

Aus der Praxis ist es bereits bekannt, Gasturbinenbauteile aus Titan-Aluminium-Basis-Legierungswerkstoffen zu fertigen. Dabei kommen insbesondere γ-TiAl-Basis-Legierungswerkstoffe zum Einsatz, wobei das Schmieden solcher γ-TiAl-Basis-Legierungswerkstoffe problematisch ist. Schmiedeteile aus solchen Werkstoffen müssen nach der Praxis durch isothermes Schmieden oder Hot-Die-Schmieden von vorgeformten, wie z. B. stranggepressten, Halbzeugen hergestellt werden. Das isotherme Schmieden sowie das Hot-Die-Schmieden erfordert quasi isotherm-stranggepresstes Vormaterial, wodurch sich hohe Herstellkosten ergeben.From practice, it is already known to manufacture gas turbine components made of titanium-aluminum-based alloy materials. In particular, γ-TiAl-based alloy materials are used, whereby the forging of such γ-TiAl-based alloy materials is problematic. Forged parts of such materials must be prepared in practice by isothermal forging or hot die forging of preformed, such. B. extruded, semi-finished products are produced. The isothermal forging and the hot die forging requires quasi-isothermal extruded starting material, resulting in high production costs.

Es besteht daher ein Bedarf für ein adaptives Schmiedeverfahren unter Verwendung eines Titan-Aluminium-Basis-Legierungswerkstoffes zur Herstellung von Gasturbinenbauteilen. Dieses Verfahren soll eine verbesserte Prozesssicherheit und Prozessstabilität unter reduzierten Herstellkosten gewährleisten.Therefore, there is a need for an adaptive forging process using a titanium-aluminum-base alloy material to make gas turbine components. This process is intended to ensure improved process reliability and process stability with reduced production costs.

Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Herstellung eines Gasturbinenbauteils sowie ein neuartiges Gasturbinenbauteil zu schaffen.On this basis, the present invention based on the problem to provide a novel method for producing a gas turbine component and a novel gas turbine component.

Dieses Problem wird durch ein Verfahren gemäß Anspruch 1 gelöst. Erfindungsgemäß sind folgende Schritte vorgesehen:

  1. a) Bereitstellen eines gegossenen Halbzeugs aus einem Titan-Aluminium-Basis-Legierungswerkstoff, umfassend zumindest Titan und Aluminium, wobei derselbe im Bereich der Raumtemperatur die Phase β/B2-Ti, die Phase α2-Ti3Al und die Phase γ-TiAl mit einem Anteil der β/B2-Ti-Phase von maximal 5 Vol.-%; im Bereich der eutektoiden Temperatur die Phase β/B2-Ti, die Phase α2-Ti3Al und die Phase γ-TiAl mit einem Anteil der β-Ti-Phase von minimal 10 Vol.-% sowie folgende Zusammensetzung aufweist
    • 42 bis 45 At.-% Aluminium,
    • 3 bis 8 At.-% Niob,
    • 0,2 bis 3 At.-% Molybdän und/oder Mangan,
    • 0,1 bis 1 At.-% Bor und/oder Kohlenstoff und / oder Silizium
    • im Rest Titan, sowie
  2. b) Schmieden des Halbzeugs aus dem Werkstoff zum Bauteil bei einer Umformtemperatur zwischen Te-50K und Tα+100K, wobei Te die eutektoide Temperatur des Werkstoffs und Tα die Alpha-Transus-Temperatur des Werkstoffs ist.
This problem is solved by a method according to claim 1. According to the invention the following steps are provided:
  1. a) providing a cast semi-finished product of a titanium-aluminum-base alloy material comprising at least titanium and aluminum, wherein the same in the region of room temperature, the phase β / B2-Ti, the phase α 2 -Ti 3 Al and the phase γ-TiAl with a proportion of the β / B2-Ti phase of not more than 5% by volume; in the region of the eutectoid temperature, the phase β / B2-Ti, the phase α 2 -Ti 3 Al and the phase γ-TiAl with a proportion of the β-Ti phase of at least 10 vol .-% and having the following composition
    • 42 to 45 at.% Aluminum,
    • 3 to 8 at.% Niobium,
    • 0.2 to 3 at.% Molybdenum and / or manganese,
    • 0.1 to 1 at.% Boron and / or carbon and / or silicon
    • in the rest of titanium, as well
  2. b) forging the semifinished product from the material to the component at a forming temperature between T e -50K and T α + 100K, where T e is the eutectoid temperature of the material and T α is the alpha transus temperature of the material.

Der verwendete Werkstoff, bei welchem es sich um einen γ-TiAl-Basis Legierungswerkstoff handelt, erlaubt ein Schmieden innerhalb eines größeren Temperaturintervalls. Zum Schmieden wird als Vormaterial ein Gussmaterial verwendet, sodass auf teures Strangpressmaterial verzichtet werden kann.The material used, which is a γ-TiAl based alloy material, allows forging within a wider temperature range. Forging is used as a starting material, a casting material, so that expensive extruded material can be dispensed with.

Das erfindungsgemäße Gasturbinenbauteil ist in Anspruch 4 definiert.The gas turbine component according to the invention is defined in claim 4.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:

Fig. 1
eine stark schematisierte Darstellung einer aus einem Titan-Aluminium-Basis-Legierungswerkstoff nach dem erfindungsgemäßen Verfahren hergestellten Schaufel einer Gasturbine.
Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Embodiments of the invention will be described, without being limited thereto, with reference to the drawings. Showing:
Fig. 1
a highly schematic representation of a produced from a titanium-aluminum-based alloy material according to the inventive blade of a gas turbine.

Die hier vorliegende Erfindung setzt einen Werkstoff auf Basis einer Titan-Aluminium-Legierung ein. Der Werkstoff umfasst sowohl im Bereich der Raumtemperatur als auch im Bereich der sogenannten eutektoiden Temperatur mehrere Phasen.The present invention uses a material based on a titanium-aluminum alloy. The material comprises several phases both in the region of the room temperature and in the region of the so-called eutectoid temperature.

Im Bereich der Raumtemperatur weist der TiAl-Basis-Legierungswerkstoff die Phase βB2-Ti, die Phase α2-Ti3Al und die Phase γ-TiAl auf, wobei der Anteil der β/B2-Ti-Phase bei Raumtemperatur höchstens bzw. maximal 5 Vol.-% beträgt. Im Bereich der eutektoiden Temperatur weist der erfindungsgemäße TiAI-Basis-Legierungswerkstoff die Phase βB2-Ti, die Phase α2-Ti3Al und die Phase γ-TiAl auf, wobei der Anteil der β/B2-Ti-Phase im Bereich der eutektoiden Temperatur mindestens bzw. minimal 10 Vol.-% beträgt.In the region of room temperature, the TiAl-based alloy material has the phase βB2-Ti, the phase α 2 -Ti 3 Al and the phase γ-TiAl, wherein the proportion of β / B2-Ti phase at room temperature at most or maximum 5% by volume. In the field of eutectoid temperature, the TiAl based alloy material of the invention on the phase βB2-Ti, the phase of α2-Ti 3 Al and the phase γ-TiAl, the proportion of the β / B2-Ti phase in the range of eutectoid temperature at least or minimum 10 vol .-% is.

Bei dem Werkstoff handelt es sich demnach um einen γ-TiAl-Basis-Legierungswerkstoff. Derselbe kann mit konventionellen Schmiedeverfahren umgeformt werden, und zwar mit einer Schmiedetemperatur innerhalb eines relativ großen Temperaturintervalls. Die Schmiedetemperatur des Werkstoffs liegt zwischen Te-50K und Tα+100K, wobei Te die eutektoide Temperatur des Werkstoffs und Tα die Alpha-Transus-Temperatur des Werkstoffs ist.The material is therefore a γ-TiAl-based alloy material. It can be reshaped by conventional forging techniques with a forging temperature within a relatively large temperature interval. The forging temperature of the material is between T e -50K and T α + 100K, where T e is the eutectoid temperature of the material and T α is the alpha transus temperature of the material.

Wenn die Schmiedetemperatur bzw. Umformtemperatur unter Tα liegt, sowie im Bereich der Schmiedetemperatur bzw. Umformtemperatur sowie im Bereich der eutektoiden Temperatur und der Raumtemperatur befinden sich die Phasen β/B2-Ti, α2Ti3Al und γ-TiAl im thermodynamischen Gleichgewicht.If the forging temperature or forming temperature is below T α , as well as in the area of the forging temperature or forming temperature and in the area of the eutectoid temperature and the room temperature are the phases β / B2-Ti, α 2 Ti 3 Al and γ-TiAl in the thermodynamic equilibrium.

Der Anteil der kubisch raumzentrierten βB2-Ti-Phase im thermodynamischen Gleichgewicht des verwendeten Werkstoffs ist im Bereich der Raumtemperatur kleiner als 5 Vol.-%. Im Bereich der eutektoiden Temperatur ist der Anteil der kubisch raumzentrierten βB2-Ti-Phase größer als 10 Vol.-%.The proportion of cubic body-centered βB2-Ti phase in the thermodynamic equilibrium of the material used is less than 5% by volume in the room temperature range. In the area of the eutectoid temperature, the proportion of cubic body-centered βB2-Ti phase is greater than 10% by volume.

Der verwendete γ-TiAl-Basis-Legierungswerkstoff weist neben Titan und Aluminium weiterhin Niob, Molybdän und/oder Mangan sowie Bor und/oder Kohlenstoff und / oder Silizium auf.In addition to titanium and aluminum, the γ-TiAl-based alloy material used also contains niobium, molybdenum and / or manganese, and also boron and / or carbon and / or silicon.

Der Titan-Aluminium-Basis-Legierungswerkstoff weist folgende Zusammensetzung auf:

  • 42 bis 45 At.-% Aluminium,
  • 3 bis 8 At.-% Niob,
  • 0,2 bis 3 At.-% Molybdän und/oder Mangan,
  • 0,1 bis 1 At.-% , bevorzugt 0,1 bis 0,5 At.-%, Bor und/oder Kohlenstoff und / oder Silizium,
  • im Rest Titan.
The titanium-aluminum-based alloy material has the following composition:
  • 42 to 45 at.% Aluminum,
  • 3 to 8 at.% Niobium,
  • 0.2 to 3 at.% Molybdenum and / or manganese,
  • 0.1 to 1 at.%, Preferably 0.1 to 0.5 at.%, Boron and / or carbon and / or silicon,
  • in the rest of titanium.

Zur Herstellung eines Gasturbinenbauteils aus dem erfindungsgemäßen Werkstoff wird im Sinne des erfindungsgemäßen Verfahrens so vorgegangen, dass zuerst ein Halbzeug bzw. Vormaterial aus dem Werkstoff bereitgestellt wird. Bei dem Halbzeug handelt es sich um ein kostengünstiges, gegossenes HalbzeugFor the production of a gas turbine component from the material according to the invention, the procedure according to the invention is such that first of all a semifinished product or starting material is provided from the material. The semifinished product is a low-cost, cast semi-finished product

Anschließend wird im Sinne des erfindungsgemäßen Verfahrens das gegossene Halbzeug aus dem erfindungsgemäßen γ-TiAl-Basis-Legierungswerkstoff durch Schmieden umgeformt, nämlich bei einer Umformtemperatur bzw. Schmiedetemperatur, die zwischen Te-50K und Tα+100K liegt. Dabei wird mit einer Umformgeschwindigkeit von mindestens 1 s- 1 geschmiedet. In zu bevorzugender Weiterbildung wird das Halbzeug dabei vor dem Schmieden wärmedämmend beschichtet.Subsequently, in the context of the method according to the invention, the cast semifinished product from the γ-TiAl base alloy material according to the invention is formed by forging, namely at a forming temperature or forging temperature which is between T e -50K and T α + 100K. This is done with a forming speed of at least 1 s - 1 forged. In a preferred development, the semifinished product is thermally coated before forging.

Im Anschluss an das Schmieden erfolgt vorzugsweise eine Wärmebehandlung des herzustellenden Bauteils.After forging, preferably a heat treatment of the component to be produced takes place.

Dann, wenn gemäß Fig. 1 als Gasturbinenbauteil eine Laufschaufel 10 für einen Verdichter eines Flugtriebwerks hergestellt werden soll, wird beim erfindungsgemäßen Verfahren vorzugsweise so vorgegangen, dass im Bereich eines Schaufelblatts 11 zur Bereitstellung einer gröberen Mikrostruktur mit hoher Kriechfestigkeit einfach geschmiedet und im Bereich eines Schaufelfußes 12 zur Bereitstellung einer feineren Mikrostruktur mit hoher Duktilität mehrfach geschmiedet wird, wobei sich an das einfache Schmieden sowie an das mehrfache Schmieden vorzugsweise eine Wärmebehandlung anschließt.Then, if according to Fig. 1 When a turbine blade 10 for a compressor of an aircraft engine is to be produced as a gas turbine component, in the method according to the invention, the procedure is preferably that in the region of a blade 11 to provide a coarser microstructure with high creep strength simply forged and in the region of a blade root 12 to provide a finer microstructure with high ductility is forged several times, with the simple forging and the multiple forging preferably followed by a heat treatment.

Erfindungsgemäße Gasturbinenbauteile sind mit Hilfe des erfindungsgemäßen Verfahrens aus dem angegebenen Werkstoff gefertigt. Vorzugsweise handelt es sich bei den erfindungsgemäßen Gasturbinenbauteilen um Verdichterbauteile, so z. B. um Laufschaufeln eines Verdichters eines Flugtriebwerks, oder um TurbinenbauteileGas turbine components according to the invention are manufactured from the specified material with the aid of the method according to the invention. Preferably, the gas turbine components according to the invention to compressor components, such. As to blades of a compressor of an aircraft engine, or turbine components

Claims (5)

  1. Method for producing a gas turbine component, the method comprising the following steps:
    a) providing a cast semi-finished product made of a titanium aluminium base alloy material, the material comprising at least titanium and aluminium, wherein
    - in the range of room temperature, said material contains the β/B2-Ti phase, the α2-Ti3Al phase and the γ-TiAl phase, with a proportion of the β/B2-Ti phase amounting to no more than 5 vol%,
    - in the range of the eutectoid temperature, said material contains the β/B2-Ti phase, the α2-Ti3Al phase and the γ-TiAl phase, with a proportion of the β/B2-Ti phase amounting to at least 10 vol%, and
    - the material has the following composition:
    -- 42 to 45 at% of aluminium,
    -- 3 to 8 at% of niobium,
    -- 0.2 to 3 at% of molybdenum and/or manganese,
    -- 0.1 to 1 at% of boron and/or carbon and/or silicon
    -- a rest of titanium, and
    b) forging the semi-finished product made of said material to obtain the component at a forming temperature of between Te-50K and Ta+100K, with Te being the eutectoid temperature of the material and Ta being the alpha transus temperature of the material.
  2. Method according to claim 1,
    characterised in that
    forging is carried out at a forming speed of at least 1s-1.
  3. Method according to claim 1 or 2,
    characterised in that
    a heat treatment is carried out after forging.
  4. Gas turbine component, produced by a method according to one or more of claims 1 to 3.
  5. Gas turbine component according to claim 4,
    characterised in that
    said gas turbine component is a blade which is single-forged in the region of a blade vane to provide a coarser microstructure having a high creep resistance, and which is multi-forged in the region of a blade root to provide a finer microstructure having a high ductility.
EP08841961.9A 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component Active EP2227571B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08841961T PL2227571T3 (en) 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007051499A DE102007051499A1 (en) 2007-10-27 2007-10-27 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
PCT/DE2008/001702 WO2009052792A2 (en) 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component

Publications (2)

Publication Number Publication Date
EP2227571A2 EP2227571A2 (en) 2010-09-15
EP2227571B1 true EP2227571B1 (en) 2015-09-02

Family

ID=40227637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08841961.9A Active EP2227571B1 (en) 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component

Country Status (8)

Country Link
US (1) US8888461B2 (en)
EP (1) EP2227571B1 (en)
JP (1) JP5926886B2 (en)
CA (1) CA2703906C (en)
DE (1) DE102007051499A1 (en)
ES (1) ES2548243T3 (en)
PL (1) PL2227571T3 (en)
WO (1) WO2009052792A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509768B1 (en) * 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY
US8876992B2 (en) * 2010-08-30 2014-11-04 United Technologies Corporation Process and system for fabricating gamma TiAl turbine engine components
WO2012041276A2 (en) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy
EP2505780B1 (en) * 2011-04-01 2016-05-11 MTU Aero Engines GmbH Blade assembly for a turbo engine
DE102011110740B4 (en) * 2011-08-11 2017-01-19 MTU Aero Engines AG Process for producing forged TiAl components
US20130084190A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
EP2620517A1 (en) * 2012-01-25 2013-07-31 MTU Aero Engines GmbH Heat-resistant TiAl alloy
ES2532582T3 (en) * 2012-08-09 2015-03-30 Mtu Aero Engines Gmbh Method for manufacturing a TiAl blade crown segment for a gas turbine, as well as a corresponding blade crown segment
FR2997884B3 (en) * 2012-11-09 2015-06-26 Mecachrome France METHOD AND DEVICE FOR MANUFACTURING TURBINE BLADES
ES2861125T3 (en) * 2013-01-30 2021-10-05 MTU Aero Engines AG Titanium aluminide gasket support for a turbomachine
US10179377B2 (en) 2013-03-15 2019-01-15 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
EP2851445B1 (en) 2013-09-20 2019-09-04 MTU Aero Engines GmbH Creep-resistant TiAl alloy
DE102013020460A1 (en) 2013-12-06 2015-06-11 Hanseatische Waren Handelsgesellschaft Mbh & Co. Kg Process for the production of TiAl components
WO2015119927A1 (en) * 2014-02-05 2015-08-13 Borgwarner Inc. TiAl ALLOY, IN PARTICULAR FOR TURBOCHARGER APPLICATIONS, TURBOCHARGER COMPONENT, TURBOCHARGER AND METHOD FOR PRODUCING THE TiAl ALLOY
US9963977B2 (en) 2014-09-29 2018-05-08 United Technologies Corporation Advanced gamma TiAl components
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
DE102015115683A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
RU2614294C1 (en) * 2016-04-04 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Method of blades forgings manufacturing from titanium alloys
EP3249064A1 (en) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Additive manufacture of high temperature components from tial
EP3269838B1 (en) 2016-07-12 2021-09-01 MTU Aero Engines AG High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP3326746A1 (en) * 2016-11-25 2018-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining and/or repairing substrates of titanium aluminide alloys
CN112410698B (en) * 2020-11-03 2021-11-02 中国航发北京航空材料研究院 Three-phase Ti2AlNb alloy multilayer structure uniformity control method
EP4299776A1 (en) 2021-04-16 2024-01-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial alloy for forging, tial alloy material, and method for producing tial alloy material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546551B2 (en) * 1991-01-31 1996-10-23 新日本製鐵株式会社 γ and β two-phase TiAl-based intermetallic alloy and method for producing the same
JPH06116692A (en) 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production
WO1996012827A1 (en) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
USH1659H (en) 1995-05-08 1997-07-01 The United States Of America As Represented By The Secretary Of The Air Force Method for heat treating titanium aluminide alloys
JP3388970B2 (en) * 1995-12-26 2003-03-24 三菱重工業株式会社 TiAl intermetallic compound based alloy
JP3492118B2 (en) * 1996-10-28 2004-02-03 三菱重工業株式会社 TiAl intermetallic compound based alloy
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
DE102004056582B4 (en) 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. F. CHLADIL ET AL: "Characterization of a [beta]-Solidified [gamma]-TiAl alloy", BHM BERG- UND HÜTTENMÄNNISCHE MONATSHEFTE, vol. 151, no. 9, 1 September 2006 (2006-09-01), pages 356 - 361, XP055008248, ISSN: 0005-8912, DOI: 10.1007/BF03165196 *

Also Published As

Publication number Publication date
CA2703906C (en) 2016-07-19
US8888461B2 (en) 2014-11-18
JP5926886B2 (en) 2016-05-25
PL2227571T3 (en) 2016-02-29
JP2011502213A (en) 2011-01-20
US20110189026A1 (en) 2011-08-04
WO2009052792A2 (en) 2009-04-30
CA2703906A1 (en) 2009-04-30
WO2009052792A3 (en) 2009-09-03
ES2548243T3 (en) 2015-10-15
WO2009052792A9 (en) 2009-11-05
EP2227571A2 (en) 2010-09-15
WO2009052792A8 (en) 2009-07-30
DE102007051499A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2227571B1 (en) Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
CN104946933B (en) Nickel based super alloy and the component being made from it
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
EP2281907A1 (en) Nickel-Base Superalloys and Components Formed Thereof
DE3823140C2 (en)
EP2851445B1 (en) Creep-resistant TiAl alloy
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP2402473B1 (en) Process for producing a single-crystal component made of a nickel-based superalloy
DE102010037046A1 (en) Nickel base superalloys and articles
DE3030962A1 (en) SINGLE AND POLYCRYSTALLINE ALLOY ON NICKEL OR COBALT BASE.
CN105492639A (en) Superalloys and components formed thereof
EP3530763B1 (en) Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component
EP3581668B1 (en) Method for producing a component from gamma tial and correspondingly manufactured component
EP2894234A1 (en) A nickel based alloy composition
EP2905350A1 (en) High temperature TiAl alloy
DE60008116T2 (en) Superalloy with optimized high-temperature performance in high-pressure turbine disks
CH709882B1 (en) Process for the metallurgical solid state bonding of various high temperature materials and articles produced therewith.
WO2010000238A1 (en) Process for producing gas turbine blades or vanes
CH699930A1 (en) High temperature and oxidation resistant material.
WO2003040419A1 (en) Method for developing a nickel-base super alloy
EP2927336A1 (en) Nickel base alloy with optimised matrix properties
DE4318424C2 (en) Process for the production of moldings from alloys based on titanium-aluminum
EP3584334A1 (en) Method for producing a forged component from a tial alloy and correspondingly manufactured component
DE10355892B4 (en) Process for producing Ti, Zr, Hf-containing drop forgings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100526

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER SCHMIEDETECHNIK GMBH & CO KG

Owner name: GFE METALLE UND MATERIALIEN GMBH

Owner name: MONTANUNIVERSITAET LEOBEN

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20150123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 746680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013339

Country of ref document: DE

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2548243

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013339

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

26N No opposition filed

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151018

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 746680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151018

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013339

Country of ref document: DE

Owner name: MONTANUNIVERSITAET LEOBEN, AT

Free format text: FORMER OWNERS: BOEHLER SCHMIEDETECHNIK GMBH & CO. KG, KAPFENBERG, AT; GFE METALLE UND MATERIALIEN GMBH, 90431 NUERNBERG, DE; MONTANUNIVERSITAET LEOBEN, LEOBEN, AT; MTU AERO ENGINES AG, 80995 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013339

Country of ref document: DE

Owner name: GFE METALLE UND MATERIALIEN GMBH, DE

Free format text: FORMER OWNERS: BOEHLER SCHMIEDETECHNIK GMBH & CO. KG, KAPFENBERG, AT; GFE METALLE UND MATERIALIEN GMBH, 90431 NUERNBERG, DE; MONTANUNIVERSITAET LEOBEN, LEOBEN, AT; MTU AERO ENGINES AG, 80995 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220331 AND 20220406

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220526 AND 20220601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220922

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221020

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221020

Year of fee payment: 15

Ref country code: IT

Payment date: 20221031

Year of fee payment: 15

Ref country code: GB

Payment date: 20221024

Year of fee payment: 15

Ref country code: ES

Payment date: 20221118

Year of fee payment: 15

Ref country code: DE

Payment date: 20221220

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013339

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG