EP3269838B1 - High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy - Google Patents

High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy Download PDF

Info

Publication number
EP3269838B1
EP3269838B1 EP16178936.7A EP16178936A EP3269838B1 EP 3269838 B1 EP3269838 B1 EP 3269838B1 EP 16178936 A EP16178936 A EP 16178936A EP 3269838 B1 EP3269838 B1 EP 3269838B1
Authority
EP
European Patent Office
Prior art keywords
tial alloy
tial
phase
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16178936.7A
Other languages
German (de)
French (fr)
Other versions
EP3269838A1 (en
Inventor
Wilfried Dr. Smarsly
Martin Dr. Schloffer
Helmut Dr. Clemens
Thomas Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP16178936.7A priority Critical patent/EP3269838B1/en
Priority to ES16178936T priority patent/ES2891724T3/en
Priority to US15/644,927 priority patent/US10590520B2/en
Publication of EP3269838A1 publication Critical patent/EP3269838A1/en
Application granted granted Critical
Publication of EP3269838B1 publication Critical patent/EP3269838B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a highly heat-resistant TiAl alloy and a method for producing a component from such a TiAl alloy as well as a corresponding component.
  • TiAl alloys which have titanium and aluminum as the main components - i.e. as chemical elements with the highest proportions in the composition - are used as materials for moving parts in engines and gas turbines, e.g. as Blades, used.
  • This alloy is adjusted during production so that the material has a ⁇ -Ti phase and / or B2-Ti phase at room temperature, both of which will be referred to below as the ⁇ phase for short.
  • the ⁇ - phase serves to avoid coarsening of the ⁇ - Ti grains at high temperatures at which in TiAl alloys with a correspondingly high aluminum part a substantial part of the material can be present as an ⁇ - Ti phase with high aluminum solubility, in order to achieve a homogeneous structure that is favorable for the ductility and creep resistance of the material with uniform, not too coarse microstructures.
  • the ⁇ - phase stabilizes the grain boundaries of the ⁇ - Ti grains and thus counteracts any coarsening.
  • TiAl alloys are from the EP2851445A1 as well as from the article " Silicon distribution and silicide precipitation during annealing in an advanced multiphase ⁇ -TiAl based alloy ", Klein, Thomas et al, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, Vol. 110, March 23, 2016 (2016-03-23), pp 236-245 " known.
  • the invention proposes to essentially dispense with the ⁇ phase to hinder the grain growth of ⁇ -Ti grains at high temperatures and that To hinder the growth of the ⁇ -Ti grains at high temperatures through the precipitation of silicides.
  • the term “essentially without the ⁇ phase” or “essentially no ⁇ phase” means in this context that the ⁇ phase in the finished alloy is less than 5% by volume, preferably less than 2% by volume. -% and more preferably 0% by volume.
  • the invention proposes to select a TiAl alloy which, in addition to the main alloy components titanium and aluminum, has at least niobium, molybdenum, carbon, boron and silicon and also has zirconium and / or tungsten, with silicon being provided for the formation of the silicides which the The aim is to hinder grain growth of the ⁇ -Ti grains at correspondingly high temperatures in order to counteract coarsening of the microstructure.
  • the TiAl alloy should be selected in such a way that, given the chosen chemical composition of the TiAl alloy, there is an ⁇ -phase temperature range in whose temperature range there is essentially an ⁇ -Ti phase with silicides.
  • a corresponding TiAl alloy which is essentially in the form of ⁇ -Ti in a specific temperature interval for the given chemical composition, can be produced by means of simulation calculations with appropriate simulation programs that take into account a large number of thermodynamic data, and / or by producing appropriate Test melts or test alloys and metallographic examination of the test alloys are determined.
  • a corresponding TiAl alloy with a certain chemical composition which has an ⁇ -phase temperature range in which the corresponding TiAl alloy is essentially single-phase as an ⁇ -Ti phase, with only silicides additionally being present in the temperature range
  • such a TiAl alloy with the selected chemical composition is melted and then cast in a further step into a semifinished product or atomized into TiAl powder, the semifinished product already being a near-net-shape intermediate product or a starting product for further forming into a Can be a preliminary product.
  • the cast semi-finished product can be formed into a preliminary product by forging.
  • the TiAl powder can be used for further processing in powder metallurgical manufacturing processes, such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP) or the like in order to also create a preliminary product.
  • powder metallurgical manufacturing processes such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP
  • the cast semifinished product or a preliminary product produced from the semifinished product or from the TiAl powder is then cooled from a silicide start temperature in such a way that silicides can separate out in order to carry out precipitation stabilization.
  • the cooling from the silicide start temperature can take place, for example, directly after the casting of the semifinished product when the casting is being cooled, or, if the semifinished product is unshaped after casting by hot forming into a preliminary product, by cooling from the forming temperature.
  • the preliminary product can be heated to a silicide start temperature after its production and the intermediate product is cooled from the silicide start temperature in such a way that the desired silicides are eliminated.
  • the pre-product produced by the powder can also be transferred to a Bred silicide start temperature and cooled by this in such a way that silicides can be excreted.
  • the intermediate product can be cooled from a temperature already present during production, such as the HIP temperature, in such a way that silicide is precipitated.
  • the HIP temperature is the silicide start temperature. In order to enable the silicides to precipitate, the cooling from the silicide start temperature must take place slowly enough to allow the silicides to precipitate.
  • a heat treatment of the precipitation-stabilized semi-finished product or pre-product is carried out in the ⁇ -phase temperature range in which the semi-finished product or pre-product is essentially present as an ⁇ -Ti phase with precipitated silicides, the silicides having a coarsening of the Counteracting ⁇ - Ti grains.
  • the existing ⁇ phase largely or completely dissolves.
  • the heat treatment in the ⁇ -phase temperature range can be carried out for a period of 0.5 to 2 hours, in particular from 0.5 to 1 hour, the cooling being carried out in such a way that globular colonies of lamellae form from the ⁇ -Ti grains from ⁇ 2 - Ti 3 Al and ⁇ - TiAl, the silicide precipitations previously generated during the precipitation stabilization of the material also being present. This results in a microstructure that has an excellent, balanced profile of properties with improved creep resistance.
  • the silicide start temperature to which a semi-finished product after casting or a pre-product formed after casting or a pre-product manufactured by a powder metallurgical process is heated during precipitation stabilization of the TiAl alloy can be at a temperature above a silicide dissolution temperature of the material, so that the Silicide start temperature the silicon is largely in solution in order to then enable a homogeneous precipitation of the silicides when the semi-finished product or intermediate product cools. That This coarser structure can be refined by forging, whereby fine silicides can be excreted by targeted cooling from the forging temperature.
  • the silicide start temperature can also be below a silicide dissolution temperature if the silicide start temperature is the temperature during a deformation or compacting of a semi-finished product or a preliminary product.
  • a temperature can be set well below the silicide dissolution temperature, so that silicides can form.
  • the ⁇ -phase temperature range in which the subsequent heat treatment of the precipitation-stabilized semi-finished product or intermediate product is carried out can be below a silicide dissolution temperature of the TiAl alloy and above a ⁇ -solvus temperature at which the entire ⁇ -TiAl phase in ⁇ - Ti phase goes into solution, so that it is ensured that in the ⁇ phase temperature range, apart from the silicides present, essentially exclusively ⁇ Ti phase is present.
  • the proportion of the ⁇ -Ti phase in the ⁇ -phase temperature range can be in the range of 95% by volume or more, in particular 98% by volume or more.
  • a corresponding TiAl alloy which has a suitable ⁇ -phase temperature range with a sufficiently high silicide dissolution temperature and a ⁇ -solvus temperature at least 15 K, in particular at least 20 K lower, at which ⁇ -TiAl components are no longer present, but exclusively
  • the ⁇ -Ti phase has a chemical composition with 42 to 48 at.% aluminum, preferably 43 to 45 at.% aluminum, 3 to 5 at.% niobium, preferably 3.5 to 4.5 at.% niobium, 0, 05 to 1 at.% Molybdenum, preferably 0.85 to 0.95 at.% Molybdenum, 0.2 to 2.2 at.% Silicon, preferably 0.25 to 0.35 at.% Silicon, 0.2 to 0.4 at.% Carbon, preferably 0.25 to 0.35 at.% Carbon, 0.05 to 0.2 at.% Boron, preferably 0.05 to 0.15 at.% Boron as well as titanium and unavoidable impurities on, wherein titanium is provided in an amount that the sum of the chemical
  • Alternatives according to the invention of the TiAl alloy which are produced in particular by the production method described above or components made from this TiAl alloy, comprise at least one of the elements from a group comprising tungsten, zirconium and hafnium. With such alloys, the structures described can be achieved at room temperature or in the ⁇ -phase temperature range. In addition, the alloy components mentioned can give the alloys or the components produced with them additional properties.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0, 4 to 1 at.% Tungsten, 0.25 to 0.35 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy having precisely this composition may have or may include additional alloy elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.85 to 0.95 at.% Molybdenum, 0 , 1 to 3 at.% Zirconium, 0.25 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy being exactly these May have composition or may comprise additional further alloying elements.
  • the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 46 to 48 at.% Aluminum, 3.5 to 5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0.4 to 1 , 8 at% tungsten, 0.1 to 3 at.% Zirconium, 0.35 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, wherein the alloy can have precisely this composition or can comprise an additional further alloy element, namely hafnium.
  • the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • boron and carbon can both contribute to solid solution strengthening of the alloy and also produce borides and / or carbides, which positively affect the microstructure with regard to a homogeneous microstructure with suitable colony sizes and lamellar thicknesses or spacings of the ⁇ 2 - Ti 3 Al - and ⁇ - TiAl - lamellae can influence.
  • the semi-finished product or intermediate product heat-treated in the ⁇ -phase temperature range can be subjected to a second heat treatment at a temperature below a ⁇ -solvus temperature of Material are subjected to influence the formation of the lamellae from ⁇ 2 - Ti 3 Al and ⁇ - TiAl from the ⁇ - Ti grains and to set the desired lamella thicknesses or spacings.
  • a corresponding TiAl alloy or a component made therefrom can thus have less than 5% by volume ⁇ phase and preferably no ⁇ phase at all in the TiAl alloy at operating temperatures of up to 1000 ° C., so that the creep resistance is improved.
  • the globular colonies with lamellae made of ⁇ 2 - Ti 3 Al and ⁇ - TiAl can form 95% by volume or more, in particular 98% by volume or more, of the TiAl alloy at room temperature.
  • the remainder can be formed by silicides, carbides and / or borides, the TiAl alloy being able to contain up to 5% by weight, preferably up to 2% by weight, of silicides, carbides and / or borides, their mean or maximum grain size can be less than or equal to 5 ⁇ m.
  • the globular colonies of ⁇ 2 - Ti 3 Al and ⁇ - TiAl lamellae can have an average or maximum size of 50 to 300 ⁇ m, in particular 100 to 200 ⁇ m, the average lamellae spacing being in the range from 10 nm to 1 ⁇ m can.
  • the lamella spacing is understood here as the distance between lamellae in the same phase, i.e. the distance from one ⁇ -TiAl lamella to the next ⁇ -TiAl lamella or the distance from one ⁇ 2 -Ti 3 Al lamella to the next ⁇ 2 -Ti 3 Al lamella.
  • the attached drawing shows in a purely schematic manner the structure of a TiAl alloy according to the invention or a component made from a TiAl alloy.
  • a structure can be formed through the corresponding heat treatments in the ⁇ -phase temperature range and a subsequent second heat treatment at a temperature below the ⁇ -solvus temperature of the TiAl alloy, as shown in is shown in the accompanying drawing.
  • the globular colonies 1 made up of ⁇ 2 - Ti 3 Al lamellae 2 and ⁇ - TiAl lamellae 3 are equiaxed with similar sizes and spherical shapes, with silicides 4 and borides 5 and carbides 6 having separated at the borders of the colonies 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft eine hochwarmfeste TiAl - Legierung und ein Verfahren zur Herstellung eines Bauteils aus einer derartigen TiAl - Legierung sowie ein entsprechendes Bauteil.The present invention relates to a highly heat-resistant TiAl alloy and a method for producing a component from such a TiAl alloy as well as a corresponding component.

STAND DER TECHNIKSTATE OF THE ART

TiAl - Legierungen, die als Hauptbestandteile - also als chemische Elemente mit den höchsten Anteilen in der Zusammensetzung - Titan und Aluminium aufweisen, werden aufgrund ihres niedrigen spezifischen Gewichts und ihren guten Festigkeitseigenschaften, insbesondere Hochtemperaturfestigkeitseigenschaften als Werkstoffe für bewegte Teile in Motoren und Gasturbinen, z.B. als Laufschaufeln, eingesetzt. Ein Beispiel für eine TiAl - Legierung und ihren Einsatz in Strömungsmaschinen, wie Flugtriebwerken, ist in der WO 2009/052792 A2 gegeben, die einen TiAl - Werkstoff für ein Gasturbinenabbauteil beschreibt, welcher 42 bis 45 at.% Aluminium, 3bis 8 at.% Niob, 0,2 bis 0,3 at.% Molybdän und/oder Mangan, 0,1 bis 1 at.% Bor und/oder Kohlenstoff und/oder Silizium sowie Rest Titan umfasst. Diese Legierung wird bei der Herstellung so eingestellt, dass der Werkstoff bei Raumtemperatur β - Ti - Phase und/oder B2 - Ti - Phase aufweist, die beide nachfolgend kurz als β - Phase bezeichnet werden sollen. Die β - Phase dient hierbei dazu, bei hohen Temperaturen, bei denen in TiAl - Legierungen mit entsprechend hohem Aluminiumteil ein wesentlicher Teil des Werkstoffs als α - Ti - Phase mit hoher Aluminiumlöslichkeit vorliegen kann, eine Vergröberung der α - Ti - Körner zu vermeiden, um ein für die Duktilität und Kriechfestigkeit des Werkstoffs günstiges homogenes Gefüge mit geleichmäßigen, nicht zu groben Gefügestrukturen zu erreichen. Die β - Phase stabilisiert hierbei die Korngrenzen der α - Ti - Körner und wirkt so einer Vergröberung entgegen.TiAl alloys, which have titanium and aluminum as the main components - i.e. as chemical elements with the highest proportions in the composition - are used as materials for moving parts in engines and gas turbines, e.g. as Blades, used. An example of a TiAl alloy and its use in turbomachines, such as aircraft engines, is shown in WO 2009/052792 A2 which describes a TiAl material for a gas turbine component, which contains 42 to 45 at.% aluminum, 3 to 8 at.% niobium, 0.2 to 0.3 at.% molybdenum and / or manganese, 0.1 to 1 at .% Boron and / or carbon and / or silicon and the remainder titanium. This alloy is adjusted during production so that the material has a β-Ti phase and / or B2-Ti phase at room temperature, both of which will be referred to below as the β phase for short. The β - phase serves to avoid coarsening of the α - Ti grains at high temperatures at which in TiAl alloys with a correspondingly high aluminum part a substantial part of the material can be present as an α - Ti phase with high aluminum solubility, in order to achieve a homogeneous structure that is favorable for the ductility and creep resistance of the material with uniform, not too coarse microstructures. The β - phase stabilizes the grain boundaries of the α - Ti grains and thus counteracts any coarsening.

Allerdings weisen derartige TiAl - Legierungen immer noch Defizite hinsichtlich der Kriechbeständigkeit auf, so dass insbesondere in dieser Hinsicht Verbesserungsbedarf besteht.However, such TiAl alloys still have deficits in terms of creep resistance, so that there is a need for improvement in this respect in particular.

Weitere TiAl - Legierungen sind aus der EP2851445A1 sowie aus dem Artikel " Silicon distribution and silicide precipitation during annealing in an advanced multiphase γ-TiAl based alloy", Klein, Thomas et al, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, Bd. 110, 23. März 2016 (2016-03-23), Seiten 236-245 " bekannt.Other TiAl alloys are from the EP2851445A1 as well as from the article " Silicon distribution and silicide precipitation during annealing in an advanced multiphase γ-TiAl based alloy ", Klein, Thomas et al, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, Vol. 110, March 23, 2016 (2016-03-23), pp 236-245 " known.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist deshalb Aufgabe der vorliegenden Erfindung eine TiAl - Legierung sowie ein Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung und ein entsprechendes Bauteil bereitzustellen, wobei die TiAl - Legierung und die daraus hergestellten Bauteile ein ausgewogenes Eigenschaftsprofil mit ausreichender Festigkeit, Duktilität und insbesondere Kriechbeständigkeit aufweisen sollen.It is therefore the object of the present invention to provide a TiAl alloy and a method for producing a component from a TiAl alloy and a corresponding component, the TiAl alloy and the components made from it having a balanced profile of properties with sufficient strength, ductility and, in particular, creep resistance should have.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst mit einer TiAl - Legierung mit den Merkmalen des Anspruchs 1, einem Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung mit den Merkmalen des Anspruchs 2 sowie einem Bauteil aus einer TiAl - Legierung mit den Merkmalen des Anspruchs 8. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved with a TiAl alloy with the features of claim 1, a method for producing a component made of a TiAl alloy with the features of claim 2 and a component made of a TiAl alloy with the features of claim 8 are the subject of the dependent claims.

Die Erfindung schlägt zur Verbesserung der Kriechbeständigkeit von TiAl - Legierungen bzw. daraus hergestellter Bauteile insbesondere für Strömungsmaschinen, wie Gastrubinen und Flugtriebwerke vor, auf die β - Phase zur Behinderung des Kornwachstums von α - Ti - Körnern bei hohen Temperaturen im Wesentlichen zu verzichten und das Wachstum der α - Ti - Körner bei hohen Temperaturen durch die Ausscheidung von Siliziden zu behindern. Der Begriff "im Wesentlichen auf die β - Phase verzichten" bzw. "im Wesentlichen keine β - Phase" bedeutet in diesem Zusammenhang, dass die β - Phase in der fertigen Legierung weniger als 5 Vol.-%, vorzugsweise weniger als 2 Vol.-% und weiter bevorzugt 0 Vol.-% ausmacht. Durch die Vermeidung der β - Phase bzw. die Beschränkung der β - Phase auf minimale Anteile im Gefüge kann die Kriechbeständigkeit verbessert werden, wobei gleichzeitig weiterhin ein homogenes Gefüge mit feinen Strukturen erzielt werden kann. Hierzu schlägt die Erfindung vor, eine TiAl - Legierung auszuwählen, die neben den Hauptlegierungsbestandteilen Titan und Aluminium wenigstens Niob, Molybdän, Kohlenstoff, Bor und Silizium aufweist und zudem Zirkon und/oder Wolfram aufweist, wobei Silizium zur Bildung der Silizide vorgesehen ist, die das Kornwachstum der α - Ti - Körner bei entsprechend hohen Temperaturen behindern sollen, um eine Vergröberung der Mikrostruktur entgegenzuwirken. Die TiAl - Legierung soll so ausgewählt werden, dass bei der gewählten chemischen Zusammensetzung der TiAl - Legierung ein α - Phasen - Temperaturbereich gegeben ist, in dessen Temperaturbereich im Wesentlichen α - Ti - Phase mit Siliziden vorliegt. Eine entsprechende TiAl - Legierung, die in einem bestimmten Temperaturintervall für die gegebene chemische Zusammensetzung im Wesentlichen in der Form des α - Ti vorliegt, kann durch Simulationserrechnungen mit entsprechenden Simulationsprogrammen, die eine Vielzahl von thermodynamischen Daten berücksichtigen, und/oder durch die Herstellung von entsprechenden Testschmelzen bzw. Testlegierungen und metallographische Untersuchung der Testlegierungen ermittelt werden.In order to improve the creep resistance of TiAl alloys and / or components made therefrom, in particular for turbo engines, such as gas turbines and aircraft engines, the invention proposes to essentially dispense with the β phase to hinder the grain growth of α-Ti grains at high temperatures and that To hinder the growth of the α-Ti grains at high temperatures through the precipitation of silicides. The term “essentially without the β phase” or “essentially no β phase” means in this context that the β phase in the finished alloy is less than 5% by volume, preferably less than 2% by volume. -% and more preferably 0% by volume. By avoiding the β phase or restricting the β phase to minimal proportions in the structure, the creep resistance can be improved, while at the same time maintaining a homogeneous structure can be achieved with fine structures. For this purpose, the invention proposes to select a TiAl alloy which, in addition to the main alloy components titanium and aluminum, has at least niobium, molybdenum, carbon, boron and silicon and also has zirconium and / or tungsten, with silicon being provided for the formation of the silicides which the The aim is to hinder grain growth of the α-Ti grains at correspondingly high temperatures in order to counteract coarsening of the microstructure. The TiAl alloy should be selected in such a way that, given the chosen chemical composition of the TiAl alloy, there is an α-phase temperature range in whose temperature range there is essentially an α-Ti phase with silicides. A corresponding TiAl alloy, which is essentially in the form of α-Ti in a specific temperature interval for the given chemical composition, can be produced by means of simulation calculations with appropriate simulation programs that take into account a large number of thermodynamic data, and / or by producing appropriate Test melts or test alloys and metallographic examination of the test alloys are determined.

Wenn eine entsprechende TiAl - Legierung mit einer bestimmten chemischen Zusammensetzung ausgewählt worden ist, die einen α - Phasen - Temperaturbereich aufweist, in dem die entsprechende TiAl - Legierung im Wesentlichen einphasig als α - Ti - Phase vorliegt, wobei lediglich Silizide zusätzlich in dem Temperaturbereich vorliegen, wird bei dem erfindungsgemäßen Verfahren eine derartige TiAl - Legierung mit der gewählten chemischen Zusammensetzung erschmolzen und anschießend in einem weiteren Schritt zu einem Halbzeug gegossen oder zu TiAl - Pulver verdüst, wobei das Halbzeug bereits ein endkonturnahes Zwischenprodukt oder ein Ausgangsprodukt für eine weitere Umformung zu einem Vorprodukt sein kann. Beispielsweise kann das gegossene Halbzeug durch Schmieden zu einem Vorprodukt umgeformt werden. Das TiAl - Pulver kann zur weiteren Verarbeitung in pulvermetallurgischen Herstellungsverfahren, wie generativen Fertigungsverfahren eingesetzt oder durch heißisostatisches Pressen (HIP) oder dergleichen verdichtet, zusammengefügt und/oder verformt werden, um ebenfalls ein Vorprodukt zu schaffen.If a corresponding TiAl alloy with a certain chemical composition has been selected, which has an α-phase temperature range in which the corresponding TiAl alloy is essentially single-phase as an α-Ti phase, with only silicides additionally being present in the temperature range , in the process according to the invention, such a TiAl alloy with the selected chemical composition is melted and then cast in a further step into a semifinished product or atomized into TiAl powder, the semifinished product already being a near-net-shape intermediate product or a starting product for further forming into a Can be a preliminary product. For example, the cast semi-finished product can be formed into a preliminary product by forging. The TiAl powder can be used for further processing in powder metallurgical manufacturing processes, such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP) or the like in order to also create a preliminary product.

Nachfolgend wird das gegossene Halbzeug oder ein aus dem Halbzeug oder aus dem TiAl - Pulver hergestelltes Vorprodukt so von einer Silizidstarttemperatur abgekühlt, sodass sich Silizide ausscheiden können, um eine Ausscheidungsstabilisierung vorzunehmen. Die Abkühlung von der Silizidstarttemperatur kann beispielsweise direkt nach dem Gießen des Halbzeugs beim Abkühlen des Gussstücks erfolgen oder, falls das Halbzeug nach dem Gießen durch Warmumformen zu einem Vorprodukt ungeformt wird, durch Abkühlen von der Umformungstemperatur. Weiterhin kann das Vorprodukt nach seiner Herstellung auf eine Silizidstarttemperatur erwärmt werden und das Vorprodukt von der Silizidstarttemperatur in der Weise abgekühlt werden, dass sich die gewünschten Silizide ausscheiden. Wird die TiAl - Legierung als Pulver zur pulvermetallurgischen Herstellung eines Bauteils verwendet, beispielsweise zur additiven Fertigung eines Bauteils durch lageweises Abscheiden der Pulverpartikel oder durch vakuumdichtes Verkapseln und Fügen des Pulvers durch heißisostatisches Pressen zu einem Vorprodukt, kann das durch das Pulver erzeugte Vorprodukt ebenfalls auf eine Silizidstarttemperatur gebracht und von dieser in der Weise abgekühlt werden, dass Silizide ausgeschieden werden können. Auch bei der pulvermetallurgischen Herstellung kann das Vorprodukt von einer bei der Herstellung bereits vorliegenden Temperatur, wie beispielsweise der HIP - Temperatur so abgekühlt werden, dass eine Silizidausscheidung erfolgt. In diesem Fall ist also die HIP - Temperatur die Silizidstarttemperatur. Um eine Ausscheidung der Silizide zu ermöglichen, muss die Abkühlung von der Silizidstarttemperatur ausreichend langsam erfolgen, um die Möglichkeit zur Ausscheidung der Silizide zu geben.The cast semifinished product or a preliminary product produced from the semifinished product or from the TiAl powder is then cooled from a silicide start temperature in such a way that silicides can separate out in order to carry out precipitation stabilization. The cooling from the silicide start temperature can take place, for example, directly after the casting of the semifinished product when the casting is being cooled, or, if the semifinished product is unshaped after casting by hot forming into a preliminary product, by cooling from the forming temperature. Furthermore, the preliminary product can be heated to a silicide start temperature after its production and the intermediate product is cooled from the silicide start temperature in such a way that the desired silicides are eliminated. If the TiAl alloy is used as a powder for the powder-metallurgical production of a component, for example for the additive production of a component by layer-by-layer deposition of the powder particles or by vacuum-tight encapsulation and joining of the powder by hot isostatic pressing to form a pre-product, the pre-product produced by the powder can also be transferred to a Bred silicide start temperature and cooled by this in such a way that silicides can be excreted. In powder metallurgical production, too, the intermediate product can be cooled from a temperature already present during production, such as the HIP temperature, in such a way that silicide is precipitated. In this case, the HIP temperature is the silicide start temperature. In order to enable the silicides to precipitate, the cooling from the silicide start temperature must take place slowly enough to allow the silicides to precipitate.

Anschließend wird in einem weiteren Schritt des erfindungsgemäßen Verfahrens eine Wärmebehandlung des ausscheidungsstabilisierten Halbzeugs oder Vorprodukts in dem α - Phasen - Temperaturbereich durchgeführt, in dem das Halbzeug oder Vorprodukt im Wesentlichen als α - Ti - Phase mit ausgeschiedenen Siliziden vorliegt, wobei die Silizide einer Vergröberung der α - Ti - Körner entgegenwirken. Während dieses Schrittes löst sich vorhandene β - Phase weitgehend oder vollständig auf. Die Wärmebehandlung in dem α - Phasen - Temperaturbereich kann für eine Zeitdauer von 0,5 bis 2 Stunden, insbesondere von 0,5 bis 1 Stunde erfolgen, wobei das Abkühlen so erfolgt, dass sich aus den α - Ti - Körnern globulare Kolonien aus Lamellen aus α2 - Ti3Al und γ - TiAl bilden, wobei die zuvor bei der Ausscheidungsstabilisierung des Werkstoffs erzeugten Silizidausscheidungen zusätzlich vorliegen. Damit ist eine Mikrostruktur gegeben, die ein hervorragendes, ausgewogenes Eigenschaftsprofil mit einer verbesserten Kriechbeständigkeit aufweist.Subsequently, in a further step of the method according to the invention, a heat treatment of the precipitation-stabilized semi-finished product or pre-product is carried out in the α-phase temperature range in which the semi-finished product or pre-product is essentially present as an α-Ti phase with precipitated silicides, the silicides having a coarsening of the Counteracting α - Ti grains. During this step, the existing β phase largely or completely dissolves. The heat treatment in the α-phase temperature range can be carried out for a period of 0.5 to 2 hours, in particular from 0.5 to 1 hour, the cooling being carried out in such a way that globular colonies of lamellae form from the α-Ti grains from α 2 - Ti 3 Al and γ - TiAl, the silicide precipitations previously generated during the precipitation stabilization of the material also being present. This results in a microstructure that has an excellent, balanced profile of properties with improved creep resistance.

Die Silizidstarttemperatur, auf die ein Halbzeug nach dem Gießen oder ein nach dem Gießen umgeformtes Vorprodukt oder ein durch ein pulvermetallurgisches Verfahren hergestelltes Vorprodukt während der Ausscheidungsstabilisierung der TiAl - Legierung erwärmt wird, kann bei einer Temperatur über einer Silizidauflösungstemperatur des Werkstoffs liegen, so dass bei der Silizidstarttemperatur das Silizium weitgehend in Lösung ist, um dann beim Abkühlen des Halbzeugs oder Vorproduktes eine homogene Ausscheidung der Silizide zu ermöglichen.-Liegen beispielsweise grobe Silizide durch den Gussprozess vor, können diese durch die Lösungsglühung bei der Silizidstarttemperatur oberhalb einer Silzidauflösungstemperatur aufgelöst werden. Das dadurch vergröberte Gefüge kann durch Schmieden gefeint werden, wobei durch gezieltes Abkühlen von der Schmiedetemperatur feine Silizide ausgeschieden werden können. Allerdings kann die Silizidstarttemperatur auch unterhalb einer Silizidauflösungstemperatur liegen, wenn die Silizidstarttemperatur die Temperatur bei einer Umformung oder Kompaktierung eines Halbzeugs oder eines Vorprodukts ist. Beispielsweise kann beim Konsolidieren des Pulvers durch HIPen oder beim Nachverdichten eines pulvermetallurgisch aufgebauten Vorprodukts durch HIPen eine Temperatur deutlich unterhalb der Silizidauflösungstemperatur eingestellt werden, so dass sich Silizide bilden können.The silicide start temperature to which a semi-finished product after casting or a pre-product formed after casting or a pre-product manufactured by a powder metallurgical process is heated during precipitation stabilization of the TiAl alloy can be at a temperature above a silicide dissolution temperature of the material, so that the Silicide start temperature the silicon is largely in solution in order to then enable a homogeneous precipitation of the silicides when the semi-finished product or intermediate product cools. That This coarser structure can be refined by forging, whereby fine silicides can be excreted by targeted cooling from the forging temperature. However, the silicide start temperature can also be below a silicide dissolution temperature if the silicide start temperature is the temperature during a deformation or compacting of a semi-finished product or a preliminary product. For example, when consolidating the powder by HIPing or when re-compacting a pre-product built up using powder metallurgy by HIPing, a temperature can be set well below the silicide dissolution temperature, so that silicides can form.

Entsprechend kann der α - Phasen - Temperaturbereich, in dem die anschließende Wärmebehandlung des auscheidungsstabilisierten Halbzeugs oder Vorprodukts durchgeführt wird, unterhalb einer Silizidauflösungstemperatur der TiAl - Legierung und oberhalb einer γ - Solvus - Temperatur, bei der die gesamte γ - TiAl - Phase in α - Ti - Phase in Lösung geht, liegen, so dass sichergestellt ist, dass im α - Phasen - Temperaturbereich bis auf die vorhandenen Silizide im Wesentlichen ausschließlich α - Ti - Phase vorliegt. Insbesondere kann der Anteil der α - Ti - Phase im α - Phasen - Temperaturbereich im Bereich von 95 vol.% oder mehr, insbesondere 98 vol.% oder mehr liegen.Correspondingly, the α-phase temperature range in which the subsequent heat treatment of the precipitation-stabilized semi-finished product or intermediate product is carried out can be below a silicide dissolution temperature of the TiAl alloy and above a γ-solvus temperature at which the entire γ-TiAl phase in α- Ti phase goes into solution, so that it is ensured that in the α phase temperature range, apart from the silicides present, essentially exclusively α Ti phase is present. In particular, the proportion of the α-Ti phase in the α-phase temperature range can be in the range of 95% by volume or more, in particular 98% by volume or more.

Eine entsprechende TiAl - Legierung, die einen geeigneten α - Phasen - Temperaturbereich mit einer ausreichend hohen Silizidauflösungstemperatur und einer wenigstens 15 K, insbesondere wenigsten 20 K niedrigeren γ - Solvus - Temperatur aufweist, bei der keine γ - TiAl - Anteile mehr vorliegen, sondern ausschließlich α - Ti - Phase weist eine chemische Zusammensetzung mit 42 bis 48 at.% Aluminium, vorzugsweise 43 bis 45 at.% Aluminium, 3 bis 5 at.% Niob, vorzugsweise 3,5 bis 4,5 at.% Niob, 0,05 bis 1 at.% Molybdän, vorzugsweise 0,85 bis 0,95 at.% Molybdän, 0,2 bis 2,2 at.% Silizium, vorzugsweise 0,25 bis 0,35 at.% Silizium, 0,2 bis 0,4 at.% Kohlenstoff, vorzugsweise 0,25 bis 0,35 at.% Kohlenstoff, 0, 05 bis 0,2 at.% Bor, vorzugsweise 0,05 bis 0,15 at.% Bor sowie Titan und unvermeidbare Verunreinigungen auf, wobei Titan in einer Menge vorgesehen ist, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.A corresponding TiAl alloy which has a suitable α-phase temperature range with a sufficiently high silicide dissolution temperature and a γ-solvus temperature at least 15 K, in particular at least 20 K lower, at which γ-TiAl components are no longer present, but exclusively The α-Ti phase has a chemical composition with 42 to 48 at.% aluminum, preferably 43 to 45 at.% aluminum, 3 to 5 at.% niobium, preferably 3.5 to 4.5 at.% niobium, 0, 05 to 1 at.% Molybdenum, preferably 0.85 to 0.95 at.% Molybdenum, 0.2 to 2.2 at.% Silicon, preferably 0.25 to 0.35 at.% Silicon, 0.2 to 0.4 at.% Carbon, preferably 0.25 to 0.35 at.% Carbon, 0.05 to 0.2 at.% Boron, preferably 0.05 to 0.15 at.% Boron as well as titanium and unavoidable impurities on, wherein titanium is provided in an amount that the sum of the chemical elements of the alloy is 100 at.%.

Erfindungsgemäße Alternativen der TiAl - Legierung, die insbesondere durch das oben beschriebene Herstellungsverfahren erzeugt werden bzw. Bauteile aus dieser TiAl - Legierung, umfassen wenigstens eines der Elemente aus einer Gruppe, die Wolfram, Zirkon und Hafnium umfasst. Mit derartigen Legierungen können die beschriebenen Gefüge bei Raumtemperatur bzw. im α - Phasen - Temperaturbereich eingestellt werden. Zudem können die genannten Legierungsbestandteile den Legierungen bzw. den damit hergestellten Bauteilen zusätzliche Eigenschaften verleihen.Alternatives according to the invention of the TiAl alloy, which are produced in particular by the production method described above or components made from this TiAl alloy, comprise at least one of the elements from a group comprising tungsten, zirconium and hafnium. With such alloys, the structures described can be achieved at room temperature or in the α-phase temperature range. In addition, the alloy components mentioned can give the alloys or the components produced with them additional properties.

Die TiAl - Legierung beinhaltet nach einer erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 43,5 bis 45 at.% Aluminium, 3,5 bis 4,5 at.% Niob, 0,1 bis 0,5 at.% Molybdän, 0,4 bis 1 at.% Wolfram, 0,25 bis 0,35 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor, wobei die Legierung genau diese Zusammensetzung aufweisen kann oder zusätzliche weitere Legierungselemente umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to an alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0, 4 to 1 at.% Tungsten, 0.25 to 0.35 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy having precisely this composition may have or may include additional alloy elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.

Die TiAl - Legierung beinhaltet nach einer weiteren erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 43,5 bis 45 at.% Aluminium, 3,5 bis 4,5 at.% Niob, 0,85 bis 0,95 at.% Molybdän, 0,1 bis 3 at.% Zirkon, 0,25 bis 2,2 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor , wobei die Legierung genau diese Zusammensetzung aufweisen kann oder zusätzliche weitere Legierungselemente umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to a further alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.85 to 0.95 at.% Molybdenum, 0 , 1 to 3 at.% Zirconium, 0.25 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy being exactly these May have composition or may comprise additional further alloying elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.

Die TiAl - Legierung beinhaltet nach einer weiteren erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 46 bis 48 at.% Aluminium, 3,5 bis 5 at.% Niob, 0,1 bis 0,5 at.% Molybdän, 0,4 bis 1,8 at% Wolfram, 0,1 bis 3 at.% Zirkon, 0,35 bis 2,2 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor, wobei die Legierung genau diese Zusammensetzung aufweisen kann oder ein zusätzliches weiteres Legierungselement, nämlich Hafnium, umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to a further alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 46 to 48 at.% Aluminum, 3.5 to 5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0.4 to 1 , 8 at% tungsten, 0.1 to 3 at.% Zirconium, 0.35 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, wherein the alloy can have precisely this composition or can comprise an additional further alloy element, namely hafnium. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.

In diesen Legierungen können zum Beispiel Bor und Kohlenstoff sowohl zur Mischkristallverfestigung der Legierung beitragen als auch Boride und/oder Karbide erzeugen, welche die Gefügeausbildung positiv hinsichtlich einer homogenen Gefügestruktur mit geeigneten Koloniegrößen und Lamellendicken bzw. - abständen der α2 - Ti3Al - und γ - TiAl - Lamellen beeinflussen können.In these alloys, for example, boron and carbon can both contribute to solid solution strengthening of the alloy and also produce borides and / or carbides, which positively affect the microstructure with regard to a homogeneous microstructure with suitable colony sizes and lamellar thicknesses or spacings of the α 2 - Ti 3 Al - and γ - TiAl - lamellae can influence.

Bei dem Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung kann das im α - Phasen - Temperaturbereich wärmebehandelte Halbzeug oder Vorprodukt nachfolgend einer zweiten Wärmebehandlung bei einer Temperatur unterhalb einer γ - Solvus - Temperatur des Werkstoff unterzogen werden, um die Bildung der Lamellen aus α2 - Ti3Al und γ - TiAl aus den α - Ti - Körnern zu beeinflussen und gewünschte Lamellendicken bzw. - abstände einzustellen.In the method for producing a component from a TiAl alloy, the semi-finished product or intermediate product heat-treated in the α-phase temperature range can be subjected to a second heat treatment at a temperature below a γ-solvus temperature of Material are subjected to influence the formation of the lamellae from α 2 - Ti 3 Al and γ - TiAl from the α - Ti grains and to set the desired lamella thicknesses or spacings.

Eine entsprechende TiAl - Legierung bzw. ein daraus hergestelltes Bauteil kann somit in der TiAl - Legierung bei Einsatztemperaturen bis zu 1000 °C weniger als 5 vol.% β - Phase und vorzugsweise gar keine β - Phase aufweisen, so dass die Kriechbeständigkeit verbessert wird.A corresponding TiAl alloy or a component made therefrom can thus have less than 5% by volume β phase and preferably no β phase at all in the TiAl alloy at operating temperatures of up to 1000 ° C., so that the creep resistance is improved.

Die globularen Kolonien mit Lamellen aus α2 - Ti3Al und γ - TiAl können bei Raumtemperatur 95 vol.% oder mehr, insbesondere 98 vol.% oder mehr der TiAl - Legierung bilden. Der Rest kann durch Silizide, Karbide und/oder Boride gebildet sein, wobei die TiAl - Legierung bis zu 5% Gew.%, vorzugsweise bis zu 2% Gew.% Silizide, Karbide und/oder Boride enthalten kann, deren mittlere oder maximale Korngröße kleiner oder gleich 5 µm sein kann.The globular colonies with lamellae made of α 2 - Ti 3 Al and γ - TiAl can form 95% by volume or more, in particular 98% by volume or more, of the TiAl alloy at room temperature. The remainder can be formed by silicides, carbides and / or borides, the TiAl alloy being able to contain up to 5% by weight, preferably up to 2% by weight, of silicides, carbides and / or borides, their mean or maximum grain size can be less than or equal to 5 µm.

Die globularen Kolonien aus α2 - Ti3Al - und γ - TiAl - Lamellen können eine mittlere oder maximale Größe von 50 bis 300 µm, insbesondere von 100 bis 200 µm aufweisen, wobei der mittlere Lamellenabstand im Bereich von 10 nm bis 1 µm liegen kann. Unter dem Lamellenabstand wird hierbei der Abstand von Lamellen gleicher Phase zueinander verstanden, also der Abstand einer γ - TiAl - Lamelle zu der nächsten γ - TiAl - Lamelle bzw. der Abstand einer α2 - Ti3Al - Lamelle zur nächsten α2 - Ti3Al - Lamelle.The globular colonies of α 2 - Ti 3 Al and γ - TiAl lamellae can have an average or maximum size of 50 to 300 μm, in particular 100 to 200 μm, the average lamellae spacing being in the range from 10 nm to 1 μm can. The lamella spacing is understood here as the distance between lamellae in the same phase, i.e. the distance from one γ-TiAl lamella to the next γ-TiAl lamella or the distance from one α 2 -Ti 3 Al lamella to the next α 2 -Ti 3 Al lamella.

KURZBESCHREIBUNG DER FIGURBRIEF DESCRIPTION OF THE FIGURE

Die beigefügte Zeichnung zeigt in rein schematischer Weise das Gefüge einer erfindungsgemäßen TiAl - Legierung bzw. eines Bauteils aus einer TiAl - Legierung.The attached drawing shows in a purely schematic manner the structure of a TiAl alloy according to the invention or a component made from a TiAl alloy.

AUSFÜHRUNGSBEISPIELEXAMPLE OF EXECUTION

Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Offenbarung werden bei der nachfolgend detaillierten Beschreibung deutlich.Further advantages, characteristics and features of the present disclosure will become apparent from the detailed description below.

Für eine TiAl - Legierung, die aus 43,8 at.% Aluminium, 4 at.% Niob, 0,9 at.% Molybdän, 0,3 at.% Silizium, 0,3 at.% Kohlenstoff, 0,1 at.% Bor sowie Rest Titan und unvermeidbaren Verunreinigungen besteht, kann durch die entsprechenden Wärmebehandlungen im α - Phasen - Temperaturbereich und einer nachfolgenden zweiten Wärmebehandlung bei einer Temperatur unterhalb der γ - Solvus - Temperatur der TiAl - Legierung ein Gefüge ausgebildet werden, wie es in der beigefügten Zeichnung dargestellt ist. Die globularen Kolonien 1 aus α2 - Ti3Al - Lamellen 2 und γ - TiAl - Lamellen 3 sind gleichachsig mit ähnlichen Größen und kugelartigen Formen ausgebildet, wobei sich an den Grenzen der Kolonien 1 Silizide 4 sowie Boride 5 und Karbide 6 ausgeschieden haben.For a TiAl alloy consisting of 43.8 at.% Aluminum, 4 at.% Niobium, 0.9 at.% Molybdenum, 0.3 at.% Silicon, 0.3 at.% Carbon, 0.1 at .% Boron and the remainder titanium and unavoidable impurities, a structure can be formed through the corresponding heat treatments in the α-phase temperature range and a subsequent second heat treatment at a temperature below the γ-solvus temperature of the TiAl alloy, as shown in is shown in the accompanying drawing. The globular colonies 1 made up of α 2 - Ti 3 Al lamellae 2 and γ - TiAl lamellae 3 are equiaxed with similar sizes and spherical shapes, with silicides 4 and borides 5 and carbides 6 having separated at the borders of the colonies 1.

BEZUGSZEICHENLISTEREFERENCE LIST

11
globulare Kolonienglobular colonies
22
α2 - Ti3Al - Lamellenα 2 - Ti 3 Al - lamellae
33
γ - TiAl - Lamellenγ - TiAl lamellae
44th
SilizideSilicides
55
BorideBoride
66th
KarbideCarbides

Claims (12)

  1. TiAl alloy which has a microstructure at room temperature that comprises globular colonies (1) of lamellae of α2-Ti3Al(2) and γ-TiAl (3) and silicide precipitates (4), wherein the β phase in the alloy makes up less than 5 vol.% and the alloy has one of the following compositions:
    (i) 43.5 to 45 at.% aluminum,
    3.5 to 4.5 at.% niobium,
    0.1 to 0.5 at.% molybdenum,
    0.4 to 1 at.% tungsten,
    0.25 to 0.35 at.% silicon,
    0.25 to 0.35 at.% carbon,
    0.05 to 0.15 at.% boron,
    0 to 3.5 at.% zircon,
    0 to 0.3 at.% hafnium,
    unavoidable impurities and
    titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%;
    (ii) 43.5 to 45 at.% aluminum,
    3.5 to 4.5 at.% niobium,
    0.85 to 0.95 at.% molybdenum,
    0.1 to 3 at.% zircon,
    0.25 to 2.2 at.% silicon,
    0.25 to 0.35 at.% carbon,
    0.05 to 0.15 at.% boron,
    0 to 2.0 at.% tungsten,
    0 to 0.3 at.% hafnium,
    unavoidable impurities and
    titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%;
    (iii) 46 to 48 at.% aluminum,
    3.5 to 5 at.% niobium,
    0.1 to 0.5 at.% molybdenum,
    0.4 to 1.8 at.% tungsten
    0.1 to 3 at.% zircon,
    0.35 to 2.2 at.% silicon,
    0.25 to 0.35 at.% carbon,
    0.05 to 0.15 at.% boron,
    0 to 0.3 at.% hafnium,
    unavoidable impurities and
    titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%;
  2. Method for producing a component from a TiAl alloy according to claim 1, which method comprises the following steps:
    - selecting a TiAl alloy which comprises a chemical composition of the TiAl alloy according to claim 1, and which is present in the α-Ti phase with silicides in the chemical composition of the TiAl alloy to be selected in an α phase temperature range,
    - melting the TiAl alloy,
    - casting the TiAl alloy into a semi-finished product or atomizing the TiAl alloy to form powder,
    - precipitation-stabilizing the semi-finished product or a preliminary product produced from the semi-finished product or the powder by cooling the semi-finished product or the preliminary product from a silicide starting temperature in such a way that silicides are precipitated,
    - heat-treating the precipitation-stabilized semi-finished product or preliminary product in the α-phase temperature range in which silicide precipitates (4) are present for 0.5 to 2 hours and cooling, such that globular colonies (1) of lamellae of α2-Ti3Al (2) and γ-TiAl (3) are formed.
  3. Method according to claim 2, wherein the precipitation stabilization takes place directly during solidification from the melt or during cooling after compaction or shaping, and/or the silicide starting temperature is above or below a silicide dissolution temperature.
  4. Method according to any of claims 2 to 3, wherein the α-phase temperature range is below a silicide dissolution temperature and above a gamma solvus temperature and preferably includes a range of at least 15 K, in particular at least 20 K.
  5. Method according to any of claims 2 to 4, wherein the α-phase temperature range, a silicide dissolution temperature and/or a gamma solvus temperature of the TiAl alloy is determined by simulation calculations and/or by test melts and metallographic examinations.
  6. Method according to any of claims 2 to 5, wherein the TiAl alloy is selected such that the TiAl alloy exhibits peritectic solidification with α-Ti phase formation or solidification with β-phase formation.
  7. Method according to any of claims 2 to 6, wherein the heat-treated semi-finished product or preliminary product is subjected to a second heat treatment at a temperature below a gamma-solvus temperature for a period of 2 hours to 24 hours.
  8. Component made of a TiAl alloy according to claim 1, preferably for a turbomachine, wherein the TiAl alloy has less than 5 vol.% of β phase at operating temperatures of up to 900°C, and the globular colonies have an average or maximum size of 50 to 300 µm.
  9. Component according to claim 8, wherein the TiAl alloy does not have a β phase at operating temperatures of up to 900°C.
  10. Component according to any of claims 8 to 9, wherein the globular colonies of lamellae of α2-Ti3Al and γ-TiAl form more than or equal to 95 vol.%, preferably more than or equal to 98 vol.%, of the TiAl alloy.
  11. Component according to any of claims 8 to 10, wherein up to 5 wt.%, preferably up to 2 wt.%, of silicides, carbides and/or borides are contained in the TiAl alloy, wherein the average or maximum grain size of the silicides, carbides and/or borides is smaller than or equal to 5 µm, in particular the diameter according to a circle-area equivalent is smaller than or equal to 5 µm.
  12. Component according to any of claims 8 to 11, wherein the globular colonies of lamellae of α2-Ti3Al and γ-TiAl have an average or maximum size of 100 to 200 µm and/or the average lamellae spacing is in the range of from 10 nm to 1 µm.
EP16178936.7A 2016-07-12 2016-07-12 High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy Active EP3269838B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16178936.7A EP3269838B1 (en) 2016-07-12 2016-07-12 High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
ES16178936T ES2891724T3 (en) 2016-07-12 2016-07-12 High temperature resistant TiAl alloy, method for manufacturing a corresponding TiAl alloy component and corresponding TiAl alloy component
US15/644,927 US10590520B2 (en) 2016-07-12 2017-07-10 High temperature resistant TiAl alloy, production method therefor and component made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16178936.7A EP3269838B1 (en) 2016-07-12 2016-07-12 High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy

Publications (2)

Publication Number Publication Date
EP3269838A1 EP3269838A1 (en) 2018-01-17
EP3269838B1 true EP3269838B1 (en) 2021-09-01

Family

ID=56409029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16178936.7A Active EP3269838B1 (en) 2016-07-12 2016-07-12 High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy

Country Status (3)

Country Link
US (1) US10590520B2 (en)
EP (1) EP3269838B1 (en)
ES (1) ES2891724T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326746A1 (en) * 2016-11-25 2018-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining and/or repairing substrates of titanium aluminide alloys
EP3974551B1 (en) * 2019-05-23 2023-12-13 IHI Corporation Tial alloy and method of manufacturing the same
JP7241367B2 (en) * 2019-05-23 2023-03-17 三菱重工エンジン&ターボチャージャ株式会社 Method for manufacturing TiAl alloy member and system for manufacturing TiAl alloy member
CN113481444B (en) * 2021-07-05 2022-04-08 四川大学 Method for regulating and controlling fine grain structure of peritectic solidification cast TiAl alloy
US11807911B2 (en) * 2021-12-15 2023-11-07 Metal Industries Research & Development Centre Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor
CN116024457A (en) * 2023-01-04 2023-04-28 中国航空制造技术研究院 High-strength TiAl alloy with tensile strength of more than 750MPa and additive manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229216A (en) 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
DE102006052650A1 (en) 2006-01-17 2007-07-19 Daimlerchrysler Ag Α / α2 titanium alloy valve and method of making the same
DE102007051499A1 (en) 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
GB2467312B (en) 2009-01-28 2013-06-26 Mark Labudek Design Ltd Titanium alloy, a method of producing the alloy and an article made of the alloy
US20120041276A1 (en) 2010-08-13 2012-02-16 Delcina Doreus All in one medical monitor
WO2012041276A2 (en) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
EP2851445B1 (en) * 2013-09-20 2019-09-04 MTU Aero Engines GmbH Creep-resistant TiAl alloy
EP3553193A1 (en) * 2014-07-14 2019-10-16 MTU Aero Engines GmbH Al-rich high temperature tial alloy

Also Published As

Publication number Publication date
EP3269838A1 (en) 2018-01-17
US10590520B2 (en) 2020-03-17
ES2891724T3 (en) 2022-01-31
US20180016668A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP2956562B1 (en) Nickel-cobalt alloy
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
EP2145967B1 (en) Titanium aluminide alloys
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
EP2742162B1 (en) Method for producing forged tial components
DE102004056582B4 (en) Alloy based on titanium aluminides
EP3249064A1 (en) Additive manufacture of high temperature components from tial
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
DE102010037046A1 (en) Nickel base superalloys and articles
EP2851445B1 (en) Creep-resistant TiAl alloy
DE102017113780A1 (en) Subject and additive manufacturing process for manufacturing
EP3530763B1 (en) Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component
EP3581668B1 (en) Method for producing a component from gamma tial and correspondingly manufactured component
EP2905350A1 (en) High temperature TiAl alloy
DE2046409A1 (en) Thermo-mechanical increase in the resistance of the superalloys
EP2620517A1 (en) Heat-resistant TiAl alloy
EP3553193A1 (en) Al-rich high temperature tial alloy
EP3211111A2 (en) Heat treatment method for components made of nickel base superalloys
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
DE102008055546A1 (en) A method for improving mechanical properties of a beta-treated titanium alloy article
WO2012041276A2 (en) Heat-resistant tial alloy
DE2148390A1 (en) Cobalt alloy and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013736

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2891724

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013736

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016013736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1426333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901