WO1996012827A1 - TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY - Google Patents

TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY Download PDF

Info

Publication number
WO1996012827A1
WO1996012827A1 PCT/JP1995/001349 JP9501349W WO9612827A1 WO 1996012827 A1 WO1996012827 A1 WO 1996012827A1 JP 9501349 W JP9501349 W JP 9501349W WO 9612827 A1 WO9612827 A1 WO 9612827A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
concentration
alloy
phase
intermetallic compound
Prior art date
Application number
PCT/JP1995/001349
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimitsu Tetsui
Original Assignee
Mitsubishi Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP28395294A external-priority patent/JP3332615B2/en
Priority claimed from JP626295A external-priority patent/JPH08199264A/en
Application filed by Mitsubishi Jukogyo Kabushiki Kaisha filed Critical Mitsubishi Jukogyo Kabushiki Kaisha
Priority to DE19581384T priority Critical patent/DE19581384C2/en
Priority to US08/619,594 priority patent/US6051084A/en
Publication of WO1996012827A1 publication Critical patent/WO1996012827A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention firstly provides a high-temperature oxidation-resistant TiA1-based intermetallic compound base having excellent plastic workability suitable for use in power generation gas turbines, aircraft engines, and the like. Related to alloys and their manufacturing methods.
  • the present invention relates to a high-strength, high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy suitable for use in compressible gas turbines and aircraft engines, and the like. Related to the manufacturing method. Thirdly, the present invention relates to a high-strength, creep-resistant, and oxidation-resistant TiA1-based intermetallic compound suitable for use in gas turbines for power generation and aircraft engines. About the base alloy.
  • the alloy containing the intermetallic compound TiA1 as the main phase is lighter and stronger than the conventional Ti alloy, and has good oxidation resistance up to about 70 O'C. It may be applicable to parts used in high-temperature environments such as turbine blades and turbine rotors because of its favorable properties. It has been expected.
  • the above-mentioned part is a complex shape having a three-dimensional curved surface, and the same shape is used as one method of forming the product shape, and plastic working is performed by fabrication or the like. There is a method to do this.
  • TiA1 series intermetallic compound-based alloy is a difficult-to-work material, and it is necessary to obtain a sufficient amount of plastic working up to the product shape without defects such as cracks and cavities. It is necessary to heat more than 0.
  • the composition of the TiA 1 -based intermetallic compound-based alloy which has been studied the most up to this date, has an A 1 concentration of about 48 atomic%, which is slightly lower than the stoichiometric composition.
  • V, n, Cr, Nb, etc. are added alone or in combination to add about 2 to 5 atomic%. The following can be considered as the reasons why the plastic workability of the alloy having the above composition is insufficient.
  • the formed phases are Ti A1 phase (crystal structure L 1, hereinafter referred to as r phase) and T 13 A 1 phase (crystal structure D 0 2 2 , hereinafter o 2) regardless of the heat treatment conditions.
  • Phase the structure differs slightly depending on the heat treatment conditions, it is mainly a coarse ⁇ phase and a similarly large lamellar structure (a structure formed by alternately laminating the 7 ⁇ phase and the ⁇ 2 phase). ).
  • the r phase and the ⁇ 2 phase are both metal intermetallic compound phases and do not have sufficient plastic deformability even at high temperatures.
  • the lamellar structure is a highly anisotropic structure, and when a deforming stress is applied perpendicular to the lamellar direction, the deformation resistance is reduced. The resistance increases and hardly deforms. Furthermore, since each of the BH grains is large, grain boundary slippage is unlikely to occur.
  • the conventional TiA1-based intermetallic compound-based alloy cannot have sufficient composition workability below 1100.
  • the material is forcibly processed at a temperature of 110 ° C or less, cracks and defects such as cavities are likely to occur in the material. It becomes deformed and loses its initial shape.
  • the oxidation resistance rapidly deteriorates when it exceeds 800, so that the temperature that can be used when applied to products is limited.
  • the TiA1-based intermetallic compound-based alloy is expected to be used in a high-temperature environment such as a turbine blade or a turbine rotor.
  • these parts are also parts where centrifugal stress is the main stress, that is, parts where specific strength (strength normalized by specific gravity) is required as a material property. Since superalloys are currently used for these parts, it is necessary to use TiA1-based intermetallic compound-based alloys as substitutes for superalloys. As a prerequisite, the specific strength must exceed that of the superalloy. Also, since it is used in a high temperature environment, it must have good oxidation resistance.
  • Intermetallic compounds are not limited to TiA1 system, but are usually metallic materials Because of the poor ductility in comparison with conventional methods, conventional research has focused on improving room-temperature ductility.
  • the composition of the TiA1-based intermetallic-based alloy which is considered to be the best to date, depends on the stoichiometric composition, with the A1 concentration being about 48 atomic% as described above. V, Mn, Cr, Nb, etc. are added singly or in combination as an additive component, or about 2 to 5 atomic% is added.
  • the ratio of the grains formed by the heat treatment in the ⁇ + r region near 1300 to the lamellar grains (layered structure of the r phase and ⁇ 2 phase) is almost half. Duplex tissue is considered the best.
  • the high temperature strength of the above structure is low, for example, the strength of 80 O'C is about 40 Kgf Z mm 2 .
  • a typical strength of 8 0 0 • C of the superalloy Oh Ru in fin co, channel 7 1 3 C is about 9 0 K gf Z mm 2 in Ah Ru this and forces, et al, T i A 1 is Despite its light weight (TiA1: specific gravity 3.8, in-conductor 713C: specific gravity 7.9), it is inferior to superalloy in specific strength. It cannot be used as a substitute for alloys.
  • a structure composed of only l to 3 mm coarse lamellar grains formed by heat treatment in the or range but in the former, there is no lamellar and high temperature
  • the strength is even lower than that of the dual tissue.
  • the hardness at high temperatures is similar to each other, but the material is brittle and easily cleaves.
  • high-temperature strength is similarly low, as failures occur before they exhibit their potential strength.
  • the oxidation resistance rapidly deteriorates when the oxidation resistance exceeds 800, so that the usable temperature is also limited from this point.
  • the TiA1-based intermetallic compound-based alloy in order for the TiA1-based intermetallic compound-based alloy to be used as a substitute for a superalloy, it is necessary to exceed the superalloy in specific strength as a precondition. . In addition, since it is used for a long time in a high temperature environment, it is necessary to have good creep resistance and oxidation resistance.
  • the intermetallic compounds not only in the TiA1 series, have poor room-temperature ductility than ordinary metal materials, conventional research has focused on improving the room-temperature ductility.
  • the composition of the TiA1-based intermetallic compound base metal which is considered to be the best to date, has an A1 concentration of about 48 atomic%, which is slightly lower than the stoichiometric composition.
  • Comb, V, Mn, Cr, Nb, etc. are added singly or in combination, and are added in an amount of about 2 to 5 at%.
  • the room-temperature ductility is greatly improved to about 3% or more, and it can be said that there is practically no problem in this regard.
  • the high-temperature strength, creep resistance and oxidation resistance which are the characteristics required for a turbine blade and a turbin rotor, are compared to those of a superalloy. Is still too low to be a substitute for superalloys. The specific data on this is as follows.
  • oxidation resistance oxidation weight gain in the prior art of T i
  • a 1 1 0 0 hour that you only to 8 0 0 hands of the alloy is Ru Oh in about 1 0 mg / cm 2.
  • Lee emissions co ne Honoré 7 1 3 oxidation ⁇ in the same conditions of C is about 2 mg / cm z at Oh Ru this whether et al, oxidation resistance Ru greatly inferior.
  • the present invention has been made in view of the above-mentioned circumstances, and has been made of a high-temperature oxidation-resistant TiA1-based metal having improved plastic workability.
  • the first is to provide a compound-based alloy and a method for producing the same.
  • the present inventor believes that in order to improve the compositional additivity of the TiA1-based intermetallic compound-based alloy, it is necessary to change the phase and the microstructure.
  • the inventor of the present invention prepared ⁇ i A1-based intermetallic compound-based alloys of various compositions having the above-mentioned additive components by melting, sintering, and heat treatment processes to obtain the composition, oxidation resistance, and phase stability. As a result of examining the relationship between composition, composition, relationship between heat treatment conditions and microstructure, and relationship between microstructure and plastic workability, the following findings (i) to (iii) were obtained.
  • the additive component for maximizing the oxidation resistance of the TiA1-based intermetallic compound-based alloy is Nb, and its composition is
  • the oxidation resistance of Ti concentration: 40 to 50 atomic%, A1 concentration: 42 to 50 atomic%, and Nb addition amount: 6 to 10 atomic% is the best.
  • the phase is not stabilized, and only two phases are formed, the same 7 ”phase and / or 2 phase as the conventional TiA1-based intermetallic compound-based alloy.
  • the Ti concentration 42 to 48 atomic% and the A1 concentration: 6 to 10 atomic at 44 to 47 atomic%. %of ? It is necessary to add 1) and 1.5 at% or more of Cr at the same time.
  • T i concentration 42 to 48 atomic%, A 1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1.5 to 3.5 atomic%, It is formed by as-fabrication, ripening treatment at 1000 to 1103, and heat treatment at 12030.
  • the plastic workability of the above-mentioned structures (1) to (3) at the industrial production level of about 1025 is as follows.
  • the structure of 2 shows good plastic workability.
  • the structure of (3) is better than (2) but inferior to (2), and the higher the working rate, the more likely defects are.
  • the first Ti A1 -based intermetallic compound-based alloy according to the present invention has been developed based on the findings described above. Therefore, the present invention provides a Ti concentration: 42 to 48 atomic%, A 1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1.5 to 3.5 atomic%, and fine S phase in r phase It is an object of the present invention to provide a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having excellent plastic workability, characterized by the fact that chromium is dispersed.
  • Ti concentration 42 to 48 atomic%
  • A1 concentration 44 to 47 atomic%
  • Nb density 6 to 10 atomic%
  • Cr concentration Degree Plastic working characterized in that an alloy containing 1.5 to 3.5 atomic% is melted and formed, and then ripened in the range of 110 to 123%. It is an object of the present invention to provide a method for producing a TiA1-based intermetallic compound-based alloy having excellent heat resistance.
  • the present invention has been made in view of the above circumstances, and secondly provides a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having improved high-temperature strength and a method for producing the same. That is what we are trying to do.
  • the structure in order to improve the high-temperature strength of the TiA1-based intermetallic compound-based alloy, it is sufficient that the structure is constituted by fine lamellar grains having a particle diameter of 100 m or less.
  • a fine second phase should be dispersed between the lamellar grains, and the added components and the heat treatment conditions were examined.
  • the material with the 81 concentration of 44 to 47 atomic%, which is smaller than that of the conventional technology, and with Cr added of 1 to 3 atomic% is obtained.
  • the present invention provides a Ti concentration: 42 to 48 atomic%, an A1 concentration: 44 to 47 atomic%, and an Nb concentration: 6 High strength characterized by the development of fine lamellar grains of up to 100 atomic%, Cr concentration: 1-3 atomic%, and particle size: 100 m or less.
  • Another object of the present invention is to provide a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy.
  • Ti concentration 42 to 48 atomic%
  • A1 concentration 44 to 47 atomic%
  • Nb concentration 6 to 10 atomic%
  • Cr concentration 1 to 3 atomic%.
  • High strength, high temperature oxidation resistance TiA1 based intermetallic compound-based alloy characterized by heat-treating the alloy in the range of 1300 to 1400 The purpose is to provide.
  • the present invention has been made in view of the above circumstances, and a third aspect is a TiA1-based intermetallic compound-based alloy having high strength, creep resistance, and good oxidation resistance. It is trying to provide it.
  • the present inventors first examined the additive components from the viewpoint of improving the oxidation resistance and found that the addition of Nb was effective.
  • the structure must be composed of fine lamellar grains with a grain size of 10 m or less.
  • it is necessary to disperse the fine phase of the second phase between the lamellar grains by adding Cr to the lamellar grains.
  • the creep resistance of the above alloys was better than that of the prior art alloy, it was inferior to that of Inconenole 713C in terms of specific strength.
  • the amount of deformation of the lamellar structure, which occupies most of the alloy was small, but the interlaminar intergranularity was small. It was found that the deformation of the ⁇ phase was large.
  • the crystal structure of the / 9 phase was found to be a B 2 structure based on the b c c structure.
  • B2 structure intermetallic compounds have high strength, but it is known that long-term creep deformation resistance is low because of the rapid diffusion rate of atoms due to their crystal structure. .
  • the // phase of the second phase is easily creep deformed. As a result, it was found that the creep strength of the entire alloy did not increase as much as expected.
  • the third Ti A1 -based intermetallic compound base alloy according to the present invention has been developed based on the results of the above investigations, and the present invention provides a Ti concentration: 39 to 47 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1 to 3 atomic%, Ni + Co concentration: 1 to 3 atomic%
  • An object of the present invention is to provide a TiA1-based intermetallic compound-based alloy having high strength, creep resistance, and oxidation resistance.
  • FIG. 1 is a scanning electron microscope showing the metallographic structure of the TiA 1 -based intermetallic compound-based alloy (Comparative Example) of Example 1 manufactured in the example according to the first alloy composition of the present invention. It is a backscattered electron image photograph.
  • FIG. 2 shows a scanning hail microscope showing the metallographic structure of the TiA 1 -based intermetallic compound base alloy (Example) of Example 16 manufactured in the example according to the first alloy composition of the present invention. This is a backscattered electron image photograph.
  • FIG. 3 is a scanning electron beam showing a metal moth of a TiA 1 -based intermetallic compound base metal (Comparative Example) of Example 38 manufactured in the example according to the first alloy composition of the present invention. It is a backscattered electron image photograph by a microscope.
  • FIG. 4 shows an example according to the second alloy composition of the present invention.
  • 1 is an optical microscope photograph showing the metallographic structure of the TiA1-based intermetallic compound-based alloy (Comparative Example) of Example 208 produced in Example 1.
  • FIG. 5 is an optical micrograph showing the metal structure of the TiA 1 -based intermetallic compound-based alloy (Example) of Example 210 manufactured in the example according to the second alloy structure of the present invention. is there .
  • FIG. 6 is an optical microscope photograph showing the metal structure of the TiAl-based intermetallic compound-based alloy (Comparative Example) of Example 211 manufactured in the example according to the second alloy composition of the present invention. is there .
  • Ti is a main constituent element of the alloy of the present invention. If the Ti concentration is less than 42 atomic%, the ⁇ phase is not stabilized, so that the structure becomes similar to that of the alloy of the prior art, and the plastic workability is reduced. On the other hand, if the Ti concentration exceeds 48 at.%, The ratio of coarse; five phases increases, and the plastic workability decreases.
  • a 1 is a main constituent atom of the alloy of the present invention. If the A 1 concentration is less than 44 atomic%, the ratio of the coarse ⁇ phase increases and the plastic workability decreases. On the other hand, A 1 If the content exceeds 9%, the nine phases are not stabilized, so that the structure becomes the same as that of the alloy of the prior art, and the plastic workability decreases.
  • the main effect is to improve the oxidation resistance, but it also has some ⁇ phase stabilizing effect.
  • the Nb concentration is less than 6 atomic%, no effect is observed.
  • the Nb concentration exceeds 10 atomic%, the oxidation resistance decreases.
  • the heat treatment destroys the lamellar structure formed at the time of fabrication, and the generated phase is an r phase and a phase.
  • the aim is to create an organization that is dispersed throughout the phases. If the value is less than 110, the effect is insufficient, and the plastic formability is low because a lamellar structure remains. On the other hand, if the temperature exceeds 123 O'C, a new lamellar structure is formed due to a phase change, resulting in a decrease in plastic workability.
  • the first alloy composition of the present invention will be described. An example is described.
  • An ingot having the composition shown in Table A was prepared. Next, the ingot was heat-treated in an Ar atmosphere at various temperatures for 5 hours until the ingot was fabricated, or 12 mm in diameter and 12 mm in height by machining. It was processed into a cylindrical test specimen of mm and a compression test was performed. The test conditions were a test temperature of 10 25, a strain rate of 1 X 1 1-3 / s, compression to 1/4 of the initial height, maximum stress, cracking in the cross-sectional structure, and The plastic workability was evaluated based on the presence or absence of defects such as vertices.
  • a plate-like oxidation test piece of 15 mm ⁇ 20 mm ⁇ 2 mm was cut out, polished with a piece of emery paper up to 100 mm, and then subjected to an oxidation test.
  • the test temperature was 90 O'C, and the sample was kept in the atmosphere for 100 hours.
  • Examples 1 to 3 are Ti-A1 binary systems, alloys with an A1 concentration of 48 at.%, As-cast, and after alloying, heat-treated at 1200-C. As a result, in each case, the maximum stress during the compression test was 19 OMPa or more, and defects were observed. Also oxidation weight gain also oxidation resistance 2 5. Lmg Z cm 2 or more and have insufficient Tsu Oh.
  • Examples 4 to 6 show the results of alloys containing A1 concentration: 48 atomic% and adding 1 atomic percent of 3 "at 3 atomic%, and heat-treated at 1200 and 1300 after forming.
  • the maximum stress during the compression test was 1 mm OMPa or more, and the occurrence of defects was observed. It was not enough, violently at 24.1 mg / cm 2 or more.
  • Examples 7 to 12 are alloys according to the present invention, and have Ti: 42 atomic%, A1: 47 atomic%, Nb: 9 atomic%, and Cr: 2 atomic%. This is the result of the as-cast alloy and heat-treated at 110 ° C, 115 ° C * 1200 ° C, 125 ° C, and 135 ° C. After the heat treatment, the maximum stress was less than 14 OMPa and no defects were generated. On the other hand, the maximum stress was not less than 17 OMPa after heat treatment of the as-fabricated and 1100'C, 1250 and 1350, and defects were observed. In addition, the oxidation resistance was significantly superior to those of Examples 1 to 6 with the weight gain of oxidation being 3.5 mg Zcm 2 or less.
  • Examples 13 to 18 are alloys according to the present invention, Ti:
  • Examples 19 to 24 are alloys according to the present invention, and Ti:
  • Examples 25 to 30 are alloys according to the present invention, in which Ti: 45 at%, A 1: 45 at%, Nb: 8.5 at%, Cr: 1.5 at%. These are the results of as-cast alloys and heat treatments at 1100, 1150'C, 1250, 1250, and 135O'C. After the heat treatment, the maximum stress was less than 120 MPa and no defects were generated. On the other hand, the maximum stress was not less than 19 OMPa after the as-cast, heat treatment, and heat treatment, and defects were observed. In addition, the oxidation resistance was significantly superior to those of Examples 1 to 6, with an oxidation weight gain of 3.5 mg / cm 2 or less.
  • Examples 31 to 36 are alloys according to the present invention, in which Ti: 45 atom%, A 1: 45 atom%, Nb: 6.5 atom%, Cr: 3.5 atom. % Of alloys containing aluminum alloys and heat-treated at 110 ° C, 1150 ° C, 1250 ° C, 1250 ° C and 135 ° C. is there. 1 1 5 0 After the heat treatment, the maximum stress was less than 140 MPa, and no defects were generated. On the other hand, the maximum stress was not less than 1 ⁇ OMPa after heat treatment of the as-fabricated and 1100, 1250, 1350, and defects were observed. Also oxidation resistance oxide ⁇ is 4. 3 m g cm 2 were superior significantly below the Examples 1-6 and If you compare
  • Examples 37 and 38 show results in which the Ti concentration was out of the range of the present invention, and the maximum stress was more than 180 MPa after the heat treatment at 1200 ° C, and defects were observed.
  • the oxidation resistance was significantly better than those of Examples 1 to 6 with an increase in oxidation of 4.5 mg Zcm 2 or less.
  • the A1 concentration was out of the range of the present invention, and the maximum stress was 120 OMPa or more after the heat treatment of 1200 ° C, and defects were found. .
  • the oxidation resistance was significantly better than those of Examples 1 to 6 with the weight gain of oxidation being 4.5 mgcm 2 or less.
  • Examples 40 and 41 are the results of Nb concentrations outside the range of the present invention. After the heat treatment, the maximum stress was 15 OMPa or more, and defects were observed. However, the oxidation resistance was excellent when the weight gain of oxidation was 7.1 mg / cm 2 or more, as compared with Examples 1 to 6, but inferior to Examples 7 to 36.
  • the Cr concentration was out of the range of the present invention, but the maximum stress was more than 180 MPa after the heat treatment at 1200 ° C. Occurrence was observed.
  • the oxidation resistance was significantly superior to Example 16 as the oxidation weight gain was 3.3 mg / cm or less.
  • Figure 1 is a backscattered electron image of the Ti-A1 binary alloy of Example 1 taken by scanning scanning electron microscopy.
  • the black parent phase is the r phase
  • the gray phase is the ⁇ 2 phase.
  • the generated phase is composed of two phases, r phase and ⁇ 2 phase, and the structure is a lamellar structure in which the r phase and ⁇ 2 phase are stacked in layers. It can be seen that the grain system is large.
  • FIG. 2 is a backscattered electron image of the alloy of Example 16 of the present invention obtained by a scanning electron microscope after heat treatment at 1200.degree.
  • the black matrix is the r phase and the white phase is the phase. From this figure, it can be seen that the generated phase has two phases, the r phase and the phase, and that the structure is a structure in which fine phases are dispersed.
  • FIG. 3 shows Example 38, which is a backscattered electron image obtained by a scanning electron microscope after heat treatment at 1200, though having less A1 horn than the alloy of the present invention.
  • the black matrix is the r phase and the white phase is the iS phase. From this figure, there are two phases, the r-phase and the 9-phase, and it can be clearly seen that the proportion of coarse phases is large.
  • Ti is a main constituent element of the alloy of the present invention.
  • the Ti concentration is less than 42 atomic%, the proportion of lamellar grains decreases. Therefore, high temperature strength is low.
  • the Ti concentration exceeds 48 at%, the ratio of the second phase for refining the lamellar grains becomes too large, so that the lamellar grains are reduced and the high-temperature strength is reduced. Lower.
  • a 1 is a main constituent element of the alloy of the present invention. If the A1 concentration is less than 44 atomic%, the proportion of the second phase for refining the lamellar grains becomes too large, so that the lamellar grains are reduced and the high-temperature strength is reduced. Lower. On the other hand, when the A 1 concentration exceeds 47 atomic%, the high-temperature strength decreases as the proportion of lamellar grains decreases as in the case of the conventional alloy.
  • the heat treatment is performed in the ⁇ 15 region to disperse the fine second phase while developing the lamella.
  • the purpose is to reduce the particle size of the lamellar grains to 100 ⁇ m or less. If it is less than 130,000, it is in the ⁇ + + r region, and the high-temperature strength is low as in the prior art alloy because the proportion of 7 "grains is large. Since the second phase is absent, it is composed of coarse lamellar grains, as in the case of heat-treating a conventional alloy at a temperature exceeding 140 ° C. As a result, it becomes brittle and its high-temperature strength decreases.
  • Ingots of the composition shown in Table B were obtained by high frequency melting using Ti with a purity of 99.8% and A1, Nb and Cr with a purity of 99.9% as raw materials. Was made. Next, the ingot is subjected to a heat treatment of 1200 * CX 3 h, and then is subjected to free forging to an initial height of 1Z3 at 1205. Was prepared.
  • Example 201 to 203 are conventional alloys, and are alloys containing Ti: 50 at%, A 1: 48 at%, and Cr: 2 at%. However, although the results were obtained by heat treatment at 1300 and 1400, both of the tensile strengths were as low as 44 Kgmm 2 or less. The oxidation ⁇ for or oxidation resistance was Tsu Oh in 2 3 mg Z cm z or more and not ten minutes.
  • Examples 204 to 207 are alloys according to the present invention, and Ti: 42 atomic%, A1: 47 atomic%, Nb: 10 atomic%, Cr: 1 atomic%. This is the result of heat-treating the alloy with the following properties: 1280 ⁇ (:, 1320, 1380, 1440) tensile strength after heat treatment Te 3 8 0 was Tsu or 6 2 K gf / mm 2 or more and a high-hand 1 2 8 0 - (:., 1 4 2 0 tensile strength after heat treatment Te 5 0 1 8 £ Te Bruno 111 111 2 or less and 1 3 2 0 1 3 8 0 Tsu or low when Ru compared after heat treatment Te.
  • any or oxidation resistance oxidation weight gain is 3. 6 mg Z cm 2 or less And excellent compared with the prior art alloys of Examples 201 to 203.
  • Examples 208 to 211 are alloys according to the present invention and
  • Te 1 3 2 0 was as high as 1 3 8 0 'C bow I Zhang strength after heat treatment 6 5 K gf / mm 2 or more.
  • the tensile strength was 52 It was lower than K gf / mm 2 and after the heat treatment at 132 0 CC and 138 ' ⁇ ⁇ .
  • the oxidation resistance was 2.8 mg / cm 2 or less, and the oxidation resistance was significantly superior to that of the conventional alloy.
  • Examples 21 to 21 are alloys according to the present invention, in which Ti: 48 at%, A 1: 44 at%, Nb: 6 at%, Cr: 2 at%. This is the result of a heat treatment at 128 ° C, 140 ° C, and 140 ° C for the alloys owned.
  • 1 on 3 2 0 was Tsu or tensile Ri strength and 5 9 K gf / mm 2 or more high in 1 3 8 0 'C after the heat treatment.
  • 1 2 8 0. 1 4 2 0 'tensile strength after C heat treatment Te 4 6 1 8 Bruno 111 111 2 or less and 1 3 2 0 were lower when compared 1 3 8 0 Te after Netsusho sense.
  • the oxidation resistance was significantly superior to the alloys of the prior art, with the oxidation weight gain being less than 3. S mg Z cm 2 in each case.
  • Examples 21 to 21 are alloys according to the present invention, Ti: 45 at%, A 1: 45 at%, Nb: 7 at%, ⁇ 1 «: 3 at%. This is the result of heat-treating the alloys with the following properties: 1280, 1320, 1380 ⁇ (:, 1440).
  • the after heat treatment Te 1 3 8 0 Tsu or tensile Ri strength and 5 8 K gf / mm 2 or more high.
  • 1 2 8 0 * C. 1 4 2 0 tensile strength after-ripening process Te is 4 Te SK gf Z mm Z below the 1 3 2 0, 1 3 8 0 'C Netsusho was Tsu or low when Ru compared after sense.
  • any or oxidation resistance oxidation weight gain is 3. lmg / cm z less And prior art alloys and It was significantly better by comparison.
  • Example 2 2 0-2 2 1 is T i concentration Ru Ah result of claims outside the well of the present invention, 1 3 8 0 tensile strength after heat treatment Te is 5 3 K g f Roh mm 2 or less It was low. Oxidation resistance was significantly superior to alloys of the prior art, with oxidation weight gain of 3.5 mg Z cmz or less.
  • Example 2 2 2 to 2 2 3 is A 1 concentration Ru Ah result of claims outside the well of the present invention, tensile strength after heat treatment Te 1 3 8 0 and 5 1 K gf / mm 2 or less It was low. Oxidation resistance was significantly superior to alloys of the prior art with an oxidation weight gain of 3.0 mg / cm 2 or less.
  • Example 2 2 4, 2 2 5 is N b concentrations Ru results der of claims outside the well of the present invention, 1 3 8 O 'C tensile strength after heat treatment 5 9 K gf Roh mm z or more and it was high. However, the oxidation resistance was inferior to the alloy of the present invention, with an oxidation weight gain of 6.9 mg / cm 2 or more.
  • Example 2 2 6, 2 2 7 although C r concentrations Ru results der of claims outside the well of the present invention, 1 3 8 0 tensile strength after heat treatment Te is 5 3 K g f / mm 2 or less It was low. The oxidation resistance was 2.5 mg / cm 2 or less, which was significantly better than that of the conventional alloy. The difference in the metallographic structure when heat treatment is performed in different phase regions is shown below by optical micrographs.
  • FIG. 4 shows the metal structure of Example 208, in which Ti: 45 atoms
  • Lamella is a tissue that looks like a layer, in which case the lamellar grains occupy
  • FIG. 5 shows the metallographic structure of Example 210, which is obtained by heat-treating an alloy having the same composition as in FIG. 4 in the ⁇ + ⁇ region at 1380. Most of them are occupied by lamellar grains, and it can be seen that fine second phase exists between the lamellar grains. . In addition, it can be seen that the particle size of each lamella is very fine, about 50 m.
  • Fig. 6 shows the metallographic structure of Example 211, which is obtained by heat-treating an alloy having the same composition as in Fig. 4 in the ⁇ -region, 142O'C. It can be seen that the entire surface is composed only of coarse lamellar grains of about 2 mm.
  • T i is the main constituent element of this alloy.
  • T i concentration is less than 39 atomic%, low-strength r grains are formed, and the structure becomes similar to that of the alloy of the prior art, so that high-temperature strength and creep resistance are reduced.
  • Ti concentration exceeds 47 atomic%, the number of phases increases too much, and the number of lamellar grains is too small, resulting in an improper structure ratio, high-temperature strength, and high creep resistance. Operability decreases.
  • a 1 is the main constituent element of this alloy.
  • the concentration is less than 44 atomic%, the / phase will increase too much, and the number of lamellar grains will be too small.
  • the A 1 concentration exceeds 47 atomic%, low-strength grains are formed, similar to the alloy of the prior art. It is not desirable to become an organization.
  • Nb It is an additive component for improving the oxidation resistance.
  • Nb concentration is less than 6 atomic%, no effect is observed.
  • the Nb concentration exceeds 10 atomic%, the added amount is too large, and on the contrary, the oxidation resistance decreases.
  • 4 Cr Stabilizes the 9 phases of the second phase and has the effect of refining lamellar grains. If the Cr concentration is less than 1 atomic%, the effect of addition is not improved. On the other hand, if the Cr concentration exceeds 3 atomic%, the ⁇ phase will increase too much, and the number of lamellar grains will be too small.
  • High-temperature strength was evaluated by tensile strength.
  • the test temperature was 800 and the initial strain rate was 3.8 x 10 " 4.
  • the creep resistance was evaluated by the rupture time in the creep rupture test. It was. the test temperature Ri Oh at 8 0 0 hand, load stress Ru Oh at 2 0 K gf / mm 2. or oxidation resistance was evaluated Tsu by the oxidation weight gain. test temperature is 8 0 0
  • the test time was 500 hours, and all of the above tests were in air.
  • Example 31 and 302 are alloys of the prior art, and are the results of alloys having Nb or Cr of 2 atomic% each at 48 atomic% of A 1: tensile strength.
  • the 3 8 K gf / mm 2 about, click Li-loop break time is Ri Oh in about 6 0 hours
  • the weight gain of oxidation was about 10 mg / cm 2 .
  • Example 3 0 3 to 3 2 0 is Ru Oh an alloy of the present invention, tensile strength is 4 8 K gfmm 2 or more, click rie flop rupture time Ri Ah at 4 4 5 hours or more, or oxidation weight gain At 3.0 mg / cm 2 or less, all properties were better than those of the prior art alloys.
  • Examples 32 1 to 32 2 are the results of Ti concentrations outside the scope of the present invention. Although the tensile strength and creep rupture time were good as compared with the alloy of the prior art, they were inferior to the alloy of the present invention. The oxidation increase was equivalent to that of the alloy of the present invention.
  • Examples 32 3 and 32 4 are the results of A 1 concentrations outside the scope of the present invention. Although the tensile strength and creep rupture time were good as compared to the alloy of the prior art, they were inferior to the alloy of the present invention. The oxidation increase was equivalent to that of the alloy of the present invention.
  • Examples 32 25 and 32 6 are the results of Nb concentrations outside the range of the present invention.
  • the tensile strength and creep rupture time were equivalent to the alloy of the present invention.
  • the oxidation weight increase was good as compared with the conventional alloy, it was inferior to the alloy of the present invention.
  • Examples 32 27 and 32 28 are the results where the Cr concentration is out of the range of the present invention. Although the tensile strength and creep rupture time were good as compared to the alloy of the prior art, they were inferior to the alloy of the present invention. In addition, the oxidation increase is the total of It was equivalent to gold.
  • Examples 32 29 to 33 32 are the results of those having a Ni + Co concentration outside the scope of the present invention.
  • the tensile strength and oxidation mass were equivalent to the alloy of the present invention.
  • the creep rupture time was good as compared with the alloy of the conventional technology, it was inferior to the alloy of the present invention.
  • the centrifugal stress and the main stress in a high-temperature environment such as a turbine blade and a turbine roller are increased.
  • Intermetallic compound-based alloys can be provided.
  • the plastic formability of a product shape is improved by the plastic workability of a turbine blade or the like.
  • a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having excellent workability can be provided.
  • the part used for a long time in a high-temperature environment and where the centrifugal stress becomes the main stress that is, as a material property, Is high strength, creep resistance, oxidation resistance Ti suitable for application to parts where high temperature strength, creep resistance (above, converted into specific strength) and oxidation resistance are required.
  • An A1-based intermetallic compound-based alloy can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A TiAl intermetallic compound alloy comprising Ti, Al, Nb and Cr and optionally containing Ni and Co, which has plastic workability, resistance to high-temperature oxidation, high strength or creep resistance.

Description

明 細 書  Specification
T i A I 系金属間化合物基合金及びそ の製造方法 技術分野  TiAI-based intermetallic compound-based alloy and method for producing the same
本発明は、 第 1 に発電用ガ ス タ ー ビ ン、 航空機用 ェ ン ジ ン等に用 い る に適 し た塑性加工性に優れた高温耐 酸化性 T i A 1 系金属間化合物基合金及びそ の製法に 関す る。  The present invention firstly provides a high-temperature oxidation-resistant TiA1-based intermetallic compound base having excellent plastic workability suitable for use in power generation gas turbines, aircraft engines, and the like. Related to alloys and their manufacturing methods.
本発明 は第 2 に発罨用ガ ス タ ー ビ ン、 航空機用ェ ン ジ ン等に用 い る に適 した高強度、 高温耐酸化性 T i A 1 系金属間化合物基合金及びそ の製造方法に関する 。 本発明 は第 3 に発電用ガス タ ービ ン、 航空機用ェ ン ジ ン に用 い る の に適 し た高強度、 耐ク リ ープ性、 耐酸 化性 T i A 1 系金属間化合物基合金に関する 。  Second, the present invention relates to a high-strength, high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy suitable for use in compressible gas turbines and aircraft engines, and the like. Related to the manufacturing method. Thirdly, the present invention relates to a high-strength, creep-resistant, and oxidation-resistant TiA1-based intermetallic compound suitable for use in gas turbines for power generation and aircraft engines. About the base alloy.
背景技術  Background art
(1) 本発明に係る 第 1 の T i A 1 系金属間化合物基合 金及びそ の製造方法に関する 背景技術  (1) Background art relating to the first TiA1-based intermetallic compound alloy and a method for producing the same according to the present invention
金属間化合物 T i A 1 を主相 とす る合金は従来の T i 合金と比べ る と軽量、 高強度であ り 、 約 7 0 O 'C 程 度ま で は耐酸化性 も良好であ る と の好ま しい特性を有 して い る た め、 タ ー ビ ン ブ レー ド、 タ ー ビ ン ロ ータ 等 の高温環境下で使用 さ れる部位へ適用で き る の で はな いかと期待さ れて き た。 上記部位は 3 次元的な曲面を 有す る複雑形状であ り 、 製品形状 と す る 一つの手法 と して同 じ形状の型材を用 い、 锻造等に よ っ て塑性加工 す る 手法があ る 。 The alloy containing the intermetallic compound TiA1 as the main phase is lighter and stronger than the conventional Ti alloy, and has good oxidation resistance up to about 70 O'C. It may be applicable to parts used in high-temperature environments such as turbine blades and turbine rotors because of its favorable properties. It has been expected. The above-mentioned part is a complex shape having a three-dimensional curved surface, and the same shape is used as one method of forming the product shape, and plastic working is performed by fabrication or the like. There is a method to do this.
T i A 1 系金属間化合物基合金 は難加工材で あ り 、 割れ、 キ ヤ ビ テ ィ 等の欠陥発生がな く 製品形状ま で充 分に塑性加工す る た め に は 1 1 0 0 て 以上 に加熱す る 必要があ る 。 し か し な が ら 工業生産 レ ベ ル で 1 1 0 0 •C 以上で の使用 に耐え る 型材 は現状な い た め 、 塑性加 ェ は実際上困難で あ り 今 日 ま で実用化 さ れて い なか つ た。  TiA1 series intermetallic compound-based alloy is a difficult-to-work material, and it is necessary to obtain a sufficient amount of plastic working up to the product shape without defects such as cracks and cavities. It is necessary to heat more than 0. However, at present, there are no shapes at the industrial production level that can withstand temperatures above 110 • C. Therefore, plastic deformation is practically difficult and has not been put to practical use until today. I was not.
今 日 ま で最 も よ く 研究 さ れて い る T i A 1 系金属間 化合物基合金の組成 は A 1 濃度を 4 8 原子%程度 と 化 学量論組成よ り 若干少な く し、 添加成分 と し て V , n , C r , N b 等を単独で、 あ る い は複合 して 2 〜 5 原子%程度添加す る も の で あ る 。 上記組成の合金の塑 性加工性が不十分な理由 と し て以下の こ と が考え ら れ る 。  The composition of the TiA 1 -based intermetallic compound-based alloy, which has been studied the most up to this date, has an A 1 concentration of about 48 atomic%, which is slightly lower than the stoichiometric composition. As a component, V, n, Cr, Nb, etc. are added alone or in combination to add about 2 to 5 atomic%. The following can be considered as the reasons why the plastic workability of the alloy having the above composition is insufficient.
同組成で は熱処理条件に係わ ら ず生成相 は T i A 1 相 ( 結晶構造 L 1 。 、 以下 r 相 と 称す ) 及び T 1 3 A 1 相 ( 結晶構造 D 0 2 2、 以下 o 2 相 と 称す ) の 2 相 で あ る 。 ま た組織は熱処理条件に よ っ て若干異な る が、 主に粗大な Γ 相及び同様に粗大な ラ メ ラ ー組織 ( 7· 相 と ατ 2 相 が交互に積層 して形成 さ れ る 組織 ) に よ っ て 形成 さ れ る 。 r 相及び α 2 相 は と も に金属問化合物相 で あ り 、 高温域に お い て も 十分な 塑性変形能を有 さ な い。 ま た ラ メ ラ ー組織は異方性の強い組織で あ り 、 変 形応力が ラ メ ラ ー方向 に垂直に かか っ た場合、 変形抵 抗は大き く な り ほ と ん ど変形 し な い。 更に各々 の結 BH 粒が大き いため、 粒界すベ り 等 も生 じ難い, With the same composition, the formed phases are Ti A1 phase (crystal structure L 1, hereinafter referred to as r phase) and T 13 A 1 phase (crystal structure D 0 2 2 , hereinafter o 2) regardless of the heat treatment conditions. Phase). Although the structure differs slightly depending on the heat treatment conditions, it is mainly a coarse Γ phase and a similarly large lamellar structure (a structure formed by alternately laminating the 7 · phase and the ατ 2 phase). ). The r phase and the α 2 phase are both metal intermetallic compound phases and do not have sufficient plastic deformability even at high temperatures. In addition, the lamellar structure is a highly anisotropic structure, and when a deforming stress is applied perpendicular to the lamellar direction, the deformation resistance is reduced. The resistance increases and hardly deforms. Furthermore, since each of the BH grains is large, grain boundary slippage is unlikely to occur.
以上の材料特性的な要因か ら、 従来の組成の T i A 1 系金属間化合物基合金は 1 1 0 0 て 以下で は十分な 組成加工性を有さ な く な る 。 なお、 1 1 0 0 'C 以下で 無理に加工を行 っ て も素材に は割れ、 キ ヤ ビテ ィ 等の 欠陥が発生 し易 く な り 、 ま た型材 も素材の変形抵抗が 高いた め変形 し初期形状を保て な く な る 。  From the above-mentioned factors of the material properties, the conventional TiA1-based intermetallic compound-based alloy cannot have sufficient composition workability below 1100. In addition, even if the material is forcibly processed at a temperature of 110 ° C or less, cracks and defects such as cavities are likely to occur in the material. It becomes deformed and loses its initial shape.
更に従来技術の組成で は耐酸化性は 8 0 0 て を越え る と急激に劣化す る た め、 製品に適用 し た場合使用可 能な温度に制約を受け る。  Furthermore, in the composition of the prior art, the oxidation resistance rapidly deteriorates when it exceeds 800, so that the temperature that can be used when applied to products is limited.
(2) 本発明に係る 第 2 の T i A 1 系金属間化合物基合 金及びそ の製造方法に閲す る 背景技術  (2) Background art which refers to the second TiA1-based intermetallic compound alloy and the method for producing the same according to the present invention
前記 し た ご と く 、 T i A 1 系金属間化合物基合金は 、 タ ー ビ ンブ レー ド、 タ ー ビ ン ロ ータ 等の高温環境下 で使用 さ れる こ と が期待さ れて い る 。 と こ ろ で、 こ れ ら の部位は、 遠心応力が主応力 と な る 部位、 すなわち 材料特性 と して比強度 (比重で規格化 し た強度) が要 求さ れる 部位で も あ る。 こ れ ら の部位は現状で超合金 が用 い られて い る こ と か ら 、 T i A 1 系金属間化合物 基合金が超合金の代替材 と して用 い ら れる た めに は、 前提 と して比強度が超合金を上回 る 必要があ る。 ま た 高温環境下で使用 さ れる こ と か ら耐酸化性が良好であ る 必要があ る 。  As described above, the TiA1-based intermetallic compound-based alloy is expected to be used in a high-temperature environment such as a turbine blade or a turbine rotor. . However, these parts are also parts where centrifugal stress is the main stress, that is, parts where specific strength (strength normalized by specific gravity) is required as a material property. Since superalloys are currently used for these parts, it is necessary to use TiA1-based intermetallic compound-based alloys as substitutes for superalloys. As a prerequisite, the specific strength must exceed that of the superalloy. Also, since it is used in a high temperature environment, it must have good oxidation resistance.
T i A 1 系に限 ら ず金属間化合物は通常の金属材料 と 較べ る と 延性が乏 し い こ と か ら 、 従来の研究 は常温 延性 の 向上に主眼を置いて な さ れて き た。 今 日 ま で最 も よ い と さ れて い る T i A 1 系金属間化合物基合金の 組成 は、 前記 し た よ う に A 1 濃度を 4 8 原子%程度 と 化学量論組成よ り 若干少な く し、 添加成分 と し て V , M n , C r , N b 等を単独で、 あ る い は複合 し て 2 〜 5 原子%程度添加す る も の で あ る 。 ま た組織は 1 3 0 0 て 付近の α + r 域の熱処理で形成 さ れる Γ 粒 と ラ メ ラ ー ( r 相 と α 2 相 の層状組織 ) 粒の比率がほ ぼ半 々 の いわ ゆ る 二重 ( duplex) 組織が最 も よ い と さ れて い る 。 し か し な が ら 上記組織の高温強度は低 く 、 例え ば 8 0 O 'C の強度 は約 4 0 K g f Z m m 2 で あ る 。 一方 、 代表的な超合金で あ る ィ ン コ ネ ル 7 1 3 C の 8 0 0 •C の強度 は約 9 0 K g f Z m m 2 で あ る こ と 力、 ら 、 T i A 1 は軽量で あ る に も 係わ ら ず ( T i A 1 : 比重 3 . 8 、 イ ン コ ネ ル 7 1 3 C : 比重 7 . 9 ) 、 比強度で は超合金に劣 る た め、 超合金の代替材 と は な り 得な い と い え る 。 Intermetallic compounds are not limited to TiA1 system, but are usually metallic materials Because of the poor ductility in comparison with conventional methods, conventional research has focused on improving room-temperature ductility. The composition of the TiA1-based intermetallic-based alloy, which is considered to be the best to date, depends on the stoichiometric composition, with the A1 concentration being about 48 atomic% as described above. V, Mn, Cr, Nb, etc. are added singly or in combination as an additive component, or about 2 to 5 atomic% is added. In addition, the ratio of the grains formed by the heat treatment in the α + r region near 1300 to the lamellar grains (layered structure of the r phase and α 2 phase) is almost half. Duplex tissue is considered the best. However, the high temperature strength of the above structure is low, for example, the strength of 80 O'C is about 40 Kgf Z mm 2 . On the other hand, a typical strength of 8 0 0 • C of the superalloy Oh Ru in fin co, channel 7 1 3 C is about 9 0 K gf Z mm 2 in Ah Ru this and forces, et al, T i A 1 is Despite its light weight (TiA1: specific gravity 3.8, in-conductor 713C: specific gravity 7.9), it is inferior to superalloy in specific strength. It cannot be used as a substitute for alloys.
従来技術の組成に お い て は二重組織以外に も 、 1 2 0 0 'C以下の r 域の熱処理で形成 さ れる r 粒が大半を 占 め る 組織、 あ る い は 1 4 0 0 て 程度の or域の熱処理 で形成 さ れ る l 〜 3 m m の粗大な ラ メ ラ ー粒のみで構 成 さ れ る 組織があ る が、 前者で は ラ メ ラ ーがな い た め 高温強度 は二重組織よ り も 更に低い。 ま た後者で は高 温 の硬 さ は互 いが、 脆 く 劈開破壊 し易 い た め、 材料が 潜在的に も っ てい る 強度を発揮す る 前に破壊に至る た め、 結果 と して同様に高温強度は低い。 In the composition of the prior art, in addition to the dual structure, a structure in which the r grains formed by the heat treatment in the r region of 1200'C or less occupies the majority, or 1400 There is a structure composed of only l to 3 mm coarse lamellar grains formed by heat treatment in the or range, but in the former, there is no lamellar and high temperature The strength is even lower than that of the dual tissue. In the latter case, the hardness at high temperatures is similar to each other, but the material is brittle and easily cleaves. Similarly, high-temperature strength is similarly low, as failures occur before they exhibit their potential strength.
更に従来技術の組成で は耐酸化性は 8 0 0 て を超え る と急激に劣化す る た め、 こ の点か ら も使用 可能温度 に制約を受け る。  Furthermore, in the composition of the prior art, the oxidation resistance rapidly deteriorates when the oxidation resistance exceeds 800, so that the usable temperature is also limited from this point.
(3) 本発明に係る 第 3 の T i A 1 系金属間化合物基合 金の背景技術  (3) Background art of the third Ti A1 based intermetallic compound alloy according to the present invention
前記 し た よ う に T i A 1 系金属間化合物基合金が超 合金の代替材 と して用 い ら れる た めに は、 前提 と して 比強度で超合金を上回 る 必要があ る 。 ま た高温環境下 で長時間使用 さ れる こ と か ら 、 耐ク リ ープ特性と耐酸 化性が良好で あ る必要があ る 。  As described above, in order for the TiA1-based intermetallic compound-based alloy to be used as a substitute for a superalloy, it is necessary to exceed the superalloy in specific strength as a precondition. . In addition, since it is used for a long time in a high temperature environment, it is necessary to have good creep resistance and oxidation resistance.
T i A 1 系に限 らず金属間化合物は通常の金属材料 と較べ る と常温延性が乏 しい こ とか ら、 従来の研究は 常温延性の向上に主眼を置いて な さ れて き た。 今日 ま で最 も よ い と さ れて い る T i A 1 系金属間化合物基合 金の組成は前記 した よ う に A 1 濃度を 4 8 原子%程度 と化学量論組成よ り 若干少な く し、 添加成分 と して V , M n , C r , N b 等を単独で、 あ る い は複合 して 2 〜 5 原子%程度添加す る も の で あ る 。  Since the intermetallic compounds, not only in the TiA1 series, have poor room-temperature ductility than ordinary metal materials, conventional research has focused on improving the room-temperature ductility. As described above, the composition of the TiA1-based intermetallic compound base metal, which is considered to be the best to date, has an A1 concentration of about 48 atomic%, which is slightly lower than the stoichiometric composition. Comb, V, Mn, Cr, Nb, etc. are added singly or in combination, and are added in an amount of about 2 to 5 at%.
従来技術の合金で は常温延性は 3 %程度以上 と大幅 に向上 してお り 、 こ の点に関 して は実用上殆 ど問題な い状態に あ る と言え る。 し力、 しな力く ら、 タ ー ビ ンブ レ 一 ド、 タ ー ビ ン ロ ータ において必要な特性で あ る高温 強度、 耐ク リ ープ特性及び耐酸化性は超合金 と比較す る と ま だ低い た め、 こ の ま ま で は超合金の代替 と は な り 得な い。 こ の こ と に関 し 具体的な デー タ を あ げ る と 以下の と お り で あ る 。 With the alloys of the prior art, the room-temperature ductility is greatly improved to about 3% or more, and it can be said that there is practically no problem in this regard. The high-temperature strength, creep resistance and oxidation resistance, which are the characteristics required for a turbine blade and a turbin rotor, are compared to those of a superalloy. Is still too low to be a substitute for superalloys. The specific data on this is as follows.
• 高温強度 : 従来技術の T i A 1 合金の 8 0 O 'C の強度 は約 4 0 K g f / m m 2 で あ る 。 一方、 代表的 な超合金で あ る ィ ン コ ネ ル (Inconel) 7 1 3 C の 8 0 0 て の強度 は約 9 0 K g f Z m m 2 で あ る こ と 力、 ら 、 T i A l は軽量で あ る に も 係わ ら ず ( T i A l : 比重 3 . 8 、 イ ン コ ネ ル 7 1 3 C : 比重 7 . 9 ) 、 比強度 で は超合金よ り も劣 る 。 • high temperature strength: Strength of 8 0 O 'C of the prior art T i A 1 alloy of Ru Ah at about 4 0 K gf / mm 2. On the other hand, a typical strength of 8 0 0 Hand superalloy Oh Ru in fin co, channel (Inconel) 7 1 3 C is about 9 0 K gf Z mm 2 Oh Ru in this and force, et al, T i A Although l is lightweight, it does not matter (TiAl: 3.8, specific gravity: 713C: specific gravity: 7.9), and is inferior to superalloy in specific strength. .
• 耐 ク リ ー プ性 : 従来技術の T i A l 合金の 8 0 0 て に お け る 1 0 0 時間 ク リ ー プ破断強度 は約 1 5 K g f / m m 2 で あ る 。 一方、 イ ン コ ネ ノレ 7 1 3 C の同 じ条件で の強度は約 4 5 K g f / m m 2 で あ る こ と 力、 ら、 比強度換算 して も 超合金に劣 る 。 • resistant click rie-flop property: T i A l 1 0 0 hour click Li-loop breaking strength you only that the 8 0 0 Hand alloys of the prior art Ru Ah at about 1 5 K gf / mm 2. On the other hand, the strength of the interconnector 7 13 C under the same conditions is about 45 Kgf / mm 2 , and is inferior to that of the superalloy even when converted to a specific strength.
• 耐酸化性 : 従来技術の T i A 1 合金の 8 0 0 て に お け る 1 0 0 時間で の酸化増量 は約 1 0 m g / c m 2 で あ る 。 一方、 イ ン コ ネ ノレ 7 1 3 C の 同 じ条件で の 酸化增量 は約 2 m g / c m z で あ る こ と か ら 、 耐酸化 性 は大幅に劣 る 。 • oxidation resistance: oxidation weight gain in the prior art of T i A 1 1 0 0 hour that you only to 8 0 0 hands of the alloy is Ru Oh in about 1 0 mg / cm 2. On the other hand, Lee emissions co ne Honoré 7 1 3 oxidation增量in the same conditions of C is about 2 mg / cm z at Oh Ru this whether et al, oxidation resistance Ru greatly inferior.
発明 の開示  DISCLOSURE OF THE INVENTION
(1) 第 1 の T i A 1 系金属間化合物基合金及び そ の製 造方法  (1) First TiA1-based intermetallic compound-based alloy and its manufacturing method
本発明 は以上の事情に鑑みて な さ れた も の で あ り 、 塑性加工性を改善 し た高温耐酸化性 T i A 1 系金属間 化合物基合金及びそ の製造方法を第 1 に提供 し ょ う と する も のであ る 。 The present invention has been made in view of the above-mentioned circumstances, and has been made of a high-temperature oxidation-resistant TiA1-based metal having improved plastic workability. The first is to provide a compound-based alloy and a method for producing the same.
本発明者は T i A 1 系金属間化合物基合金の組成加 ェ性を向上さ せ る た めに は相、 並びに組織を変化さ せ る必要があ る と考え、 添加成分 と して N b 、 C r 、 V、 M n 、 M o の T i 合金で の いわゆ る /3 安定化元素に着 目 し、 相の安定化を図 っ た。 相 は b e c 構造の固 溶体ま た は b c c を ベー ス と す る B 2 型の金属化合物 相であ る こ と によ り 高温域での変形能に富み、 T i A 1 系金属間化合物基合金の塑性加工性の向上に寄与す る こ と が期待で き る。  The present inventor believes that in order to improve the compositional additivity of the TiA1-based intermetallic compound-based alloy, it is necessary to change the phase and the microstructure. We focused on the so-called / 3 stabilizing element in the Ti alloy of b, Cr, V, Mn, and Mo, and worked to stabilize the phase. Since the phase is a solid solution having a bec structure or a B2 type metal compound phase based on bcc, the phase has a high deformability at high temperatures and a TiA1-based intermetallic compound group. It can be expected to contribute to the improvement of the plastic workability of the alloy.
本発明者は上記添加成分を舍有す る種 々 の組成の τ i A 1 系金属間化合物基合金を溶解、 铸造、 熱処理の プ ロ セ ス で作製 し、 組成 と耐酸化性、 相安定化の閲 係、 組成、 熱処理条件 と組織の関係、 及び組織と塑性 加工性の関係を検討 し た結果、 以下の ( i ) 〜 ( iii ) に示す知見を得る に至 っ た。  The inventor of the present invention prepared τ i A1-based intermetallic compound-based alloys of various compositions having the above-mentioned additive components by melting, sintering, and heat treatment processes to obtain the composition, oxidation resistance, and phase stability. As a result of examining the relationship between composition, composition, relationship between heat treatment conditions and microstructure, and relationship between microstructure and plastic workability, the following findings (i) to (iii) were obtained.
( i ) 組成 と耐酸化性、 S相安定化の関係  (i) Relationship between composition, oxidation resistance, and S-phase stabilization
① T i A 1 系金属間化合物基合金の耐酸化性を 最 も向上させ る 添加成分は N b で あ り 、 組成 と して は (1) The additive component for maximizing the oxidation resistance of the TiA1-based intermetallic compound-based alloy is Nb, and its composition is
T i 濃度 : 4 0 〜 5 0 原子%、 A 1 濃度 : 4 2 〜 5 0 原子%、 N b 添加量 : 6 〜 1 0 原子% の耐酸化性が最 良で あ る。 しか しなが ら こ の組成で は 相 は安定化せ ず、 生成相 は従来の T i A 1 系金属間化合物基合金 と 同 じ 7" 相 と or 2 相の 2 相のみで あ る。 ② A l 濃度 : 4 7 原子%以下において、 6 〜 1 0 原子%の 1^ 1) に加え C r 、 M o 、 V 等の更に強力な ^ 安定化元素を 1 . 5 原子%以上添加す る と r 相 と o 2 相に加え /9 相が安定化す る が、 C r 以外の添加成分 で は耐酸化性はいずれ も N b 単独添加の も のに比べ低 下す る 。 The oxidation resistance of Ti concentration: 40 to 50 atomic%, A1 concentration: 42 to 50 atomic%, and Nb addition amount: 6 to 10 atomic% is the best. However, in this composition, the phase is not stabilized, and only two phases are formed, the same 7 ”phase and / or 2 phase as the conventional TiA1-based intermetallic compound-based alloy. (2) At an Al concentration of less than 47 at%, add 6 to 10 at% of 1 ^ 1) plus more powerful ^ stabilizing elements such as Cr, Mo, V and more than 1.5 at%. This stabilizes the / 9 phase in addition to the r and o 2 phases, but the oxidation resistance of all the components other than Cr is lower than that of Nb alone.
③ 耐酸化性がよ く 、 かつ 相を安定化さ せ る た めに は、 T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%において 6 〜 1 0 原子%の ? 1) 、 及び 1 . 5 原子%以上の C r を複合添加す る 必要があ る。  ③ In order to have good oxidation resistance and to stabilize the phase, the Ti concentration: 42 to 48 atomic% and the A1 concentration: 6 to 10 atomic at 44 to 47 atomic%. %of ? It is necessary to add 1) and 1.5 at% or more of Cr at the same time.
( ϋ ) 組成、 熱処理条件 と組織の関係  (ϋ) Relationship between composition, heat treatment condition and structure
耐酸化性がよ く 、 かつ / S 相が安定する N b と C r を 添加 した合金の铸造後、 並びに種々 の温度での熱処理 後の組辙を検討 し た と こ ろ、 組織は以下の 3 つに大別 で き る こ と が判っ た。  After examining the composition of the alloy to which Nb and Cr were added, which have good oxidation resistance and stable / S phase, and the composition after heat treatment at various temperatures, the following microstructure was obtained. It turned out that it can be roughly divided into three.
① ΟΤ 2 + Γ ラ メ ラ ー組織及び r 相 と /? 相力、 ら な る組織  ① ΟΤ 2 + Γ Lamellar organization and r-phase and /?
T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 . 5 〜 3 . 5 原子%において、 铸造ま ま 及び 1 0 0 0 て 〜 1 1 3 0 て の熟処理、 1 2 3 0 て 以上の熱処理に よ っ て形成 さ れる 。  T i concentration: 42 to 48 atomic%, A 1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1.5 to 3.5 atomic%, It is formed by as-fabrication, ripening treatment at 1000 to 1103, and heat treatment at 12030.
② 微細な ? 相が Γ 相中に分散 した組織  ② Microstructure with fine phase dispersed in 相 phase
上記組成において 1 1 3 0 て 〜 1 2 3 0 て の熱処理 に よ っ て形成 さ れる 。 ③ 粗大な /9 相 と r 相よ り な る 組織 In the above composition, it is formed by the heat treatment of 110 to 123. ③ Organization with coarse / 9 phase and r phase
T i 濃度 : 4 0 〜 4 8 原子%、 A 1 濃度 : 4 2 〜 4 4 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C i " 濃度 : 3 原子%以上において铸造ま ま 、 及び 1 0 0 0 て 以上の 熱処理によ っ て形成さ れる 。 なお、 /9 相の割合は②ょ り 、 ③の方が多い。  Ti concentration: 40 to 48 atomic%, A1 concentration: 42 to 44 atomic%, Nb concentration: 6 to 10 atomic%, Ci "concentration: 3 atomic% or more, and It is formed by the above heat treatment, and the ratio of the / 9 phase is higher in (3) and (3).
( iii ) 組織 と塑性加工性の関連  (iii) Relationship between structure and plastic workability
上記①〜③の組織の工業生産 レ ベ ル で可能な 1 0 2 5 て 程度で の塑性加工性は次の とお り で あ る 。  The plastic workability of the above-mentioned structures (1) to (3) at the industrial production level of about 1025 is as follows.
①の ラ メ ラ ーが存在す る組織で は変形抵抗が大き く 、 従来技術の合金と 同様に割れ、 キ ヤ ビテ ィ 等の欠陥 が発生 し易 く な る。  In the structure in which the lamella described in (1) is present, deformation resistance is large, and cracks and defects such as cavities are liable to occur as in the case of the conventional alloy.
②の組織は良好な塑性加工性を示す。  The structure of ② shows good plastic workability.
③の組織は①よ り は良好であ る が②よ り は劣 り 、 加 工率が大き く な る と欠陥が発生易 く な る。  The structure of (3) is better than (2) but inferior to (2), and the higher the working rate, the more likely defects are.
本発明に係る第 1 の T i A 1 系金属間化合物基合金 は、 以上示 し た知見に基づいて開発 さ れた も ので、 本 発明 は、 T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃 度 : 1 . 5 〜 3 . 5 原子%を舍有 し、 r 相中に微細な S 相が分散 して な る こ と を特徴 と す る塑性加工性に優 れた高温耐酸化性 T i A 1 系金属間化合物基合金を提 供す る こ と を 目的 と す る。  The first Ti A1 -based intermetallic compound-based alloy according to the present invention has been developed based on the findings described above. Therefore, the present invention provides a Ti concentration: 42 to 48 atomic%, A 1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1.5 to 3.5 atomic%, and fine S phase in r phase It is an object of the present invention to provide a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having excellent plastic workability, characterized by the fact that chromium is dispersed.
ま た、 T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 滬度 : 6 〜 1 0 原子%、 C r 濃 度 : 1 . 5 〜 3 . 5 原子%を含有す る 合金を溶解、 铸 造後、 1 1 3 0 〜 1 2 3 0 て の範囲で熟処理を行 う こ と を特徴 と す る 塑性加工性に優れた高温耐酸化性 T i A 1 系金属間化合物基合金の製法を提供す る こ と を 目 的 と す る 。 Also, Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to 47 atomic%, Nb density: 6 to 10 atomic%, Cr concentration Degree: Plastic working characterized in that an alloy containing 1.5 to 3.5 atomic% is melted and formed, and then ripened in the range of 110 to 123%. It is an object of the present invention to provide a method for producing a TiA1-based intermetallic compound-based alloy having excellent heat resistance.
(2) 第 2 の T i A 1 系金属間化合物基合金及び そ の 製造方法  (2) Second TiA1-based intermetallic compound-based alloy and method for producing the same
本発明 は以上の事情に鑑みて な さ れた も の で あ り 、 高温強度を改善 し た 高温耐酸化性 T i A 1 系金属間化 合物基合金及び そ の製法を第 2 に提供 し よ う と す る も の で あ る 。  The present invention has been made in view of the above circumstances, and secondly provides a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having improved high-temperature strength and a method for producing the same. That is what we are trying to do.
本発明 は T i A 1 系金属間化合物基合金の高温強度 を 向上 さ せ る た め に は、 粒径 1 0 0 m以下の微細 な ラ メ ラ ー粒で組織を構成 さ せればよ く 、 こ の た め に は ラ メ ラ ー粒 と ラ メ ラ ー粒 と の間に微細 な第 2 相を分散 さ せればよ い と 考え 、 添加成分、 並びに熱処理条件を 検討 し た。 そ し て こ の結果、 八 1 濃度を 4 4 〜 4 7 原 子% と 従来技術よ り 少な く し、 C r を 1 〜 3 原子%添 加 し た材料の 1 3 0 0 〜 1 4 0 0 て に おいて従来技術 の組成で は存在 し な い α + β 域があ る こ と を、 そ し て ま た こ の領域に熱処理すれば上記組織 は実現で き る こ と を把握 し た。  In the present invention, in order to improve the high-temperature strength of the TiA1-based intermetallic compound-based alloy, it is sufficient that the structure is constituted by fine lamellar grains having a particle diameter of 100 m or less. For this purpose, it was considered that a fine second phase should be dispersed between the lamellar grains, and the added components and the heat treatment conditions were examined. Then, as a result, the material with the 81 concentration of 44 to 47 atomic%, which is smaller than that of the conventional technology, and with Cr added of 1 to 3 atomic%, is obtained. In addition, it was found that there is an α + β region that does not exist in the composition of the conventional technology, and that the above-mentioned structure can be realized by heat treatment in this region. Was.
更に耐酸化性向上 の た め の添加成分を検討 し た結果 、 N b の添加が有効で あ る こ と を把握 し た。  Furthermore, as a result of examining the additive components for improving the oxidation resistance, it was found that the addition of Nb was effective.
本発明 に かか る 第 2 の T i A 1 系金属間化合物基合 金は、 以上の検討結果に基づいて開発さ れた も ので、 本発明 は、 T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 〜 3 原子%を含有 し、 粒径 : 1 0 0 m以下 の微細な ラ メ ラ ー粒が発達 して な る こ と を特徴 とす る 高強度、 高温耐酸化性 T i A 1 系金属間化合物基合金 を提供す る こ と を 目 的 と す る 。 Second Ti A1 -based intermetallic compound grouping according to the present invention Since gold was developed based on the above study results, the present invention provides a Ti concentration: 42 to 48 atomic%, an A1 concentration: 44 to 47 atomic%, and an Nb concentration: 6 High strength characterized by the development of fine lamellar grains of up to 100 atomic%, Cr concentration: 1-3 atomic%, and particle size: 100 m or less. Another object of the present invention is to provide a high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy.
ま た、 T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃 度 : 1 〜 3 原子%を舍有す る 合金を 1 3 0 0 〜 1 4 0 0 て の範囲で熱処理を行 う こ と を特徴 と す る 高強度、 高温耐酸化性 T i A 1 系金属間化合物基合金の製造方 法を提供す る こ と を 目 的 と す る。  Also, Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1 to 3 atomic%. High strength, high temperature oxidation resistance TiA1 based intermetallic compound-based alloy characterized by heat-treating the alloy in the range of 1300 to 1400 The purpose is to provide.
(3) 第 3 の T i A 1 系金属間化合物基合金  (3) Third Ti A1 based intermetallic compound based alloy
本発明 は以上の事情に鑑みて な さ れた も の で あ り 、 高強度で耐ク リ ープ性、 並びに耐酸化性が良好な T i A 1 系金属間化合物基合金を第 3 に提供 し ょ う とす る も ので あ る 。  The present invention has been made in view of the above circumstances, and a third aspect is a TiA1-based intermetallic compound-based alloy having high strength, creep resistance, and good oxidation resistance. It is trying to provide it.
本発明者は先ず耐酸化性向上 の観点か ら添加成分を 検討 し、 N b の添加が有効であ る こ と を把握 し た。 次 に従来合金の優れた特性で あ る 常温延性を維持 しつつ 、 高温強度を向上さ せ る た めに は、 粒径 1 0 m以下 の微細な ラ メ ラ ー粒で組織を構成さ せればよ く 、 こ の た め に は C r 添加に よ っ て ラ メ ラ ー粒 と ラ メ ラ ー粒 と の間に微細な第 2 相の /? 相を分散さ せればよ い こ を見 出 し た。 すなわ ち、 添加成分 と して N b と C r を添加 すれば耐酸化性 と高温強度向上が可能で あ る こ と を見 出 し た。 The present inventors first examined the additive components from the viewpoint of improving the oxidation resistance and found that the addition of Nb was effective. Next, in order to improve the high-temperature strength while maintaining the excellent properties of ordinary alloys at room temperature ductility, the structure must be composed of fine lamellar grains with a grain size of 10 m or less. In order to achieve this, it is necessary to disperse the fine phase of the second phase between the lamellar grains by adding Cr to the lamellar grains. You see Issued. In other words, they found that the addition of Nb and Cr as additive components could improve oxidation resistance and high-temperature strength.
しか し なが ら上記合金の耐ク リ ーブ性は従来技術の 合金よ り は良好で あ る も の の ィ ン コ ネノレ 7 1 3 C に は 比強度換算 して も劣 っ た。 こ の原因を ク リ ープ変形後 の組織観察に よ っ て調査 し た結果、 合金中大半を 占 め る ラ メ ラ ー組織の変形量は少なか っ たが、 ラ メ ラ ー粒 間の ^ 相の変形量が多い こ と が分 っ た。 ま た /9 相の結 晶構造は b c c 構造を基本 と す る B 2 構造で あ る こ と が分かっ た。 一般に B 2 構造の金属間化合物は高強度 で あ る が、 そ の結晶構造か ら原子の拡散速度が速い た め、 長時間の ク リ ープ変形抵抗は低い こ と が知 られて い る 。 すなわ ち、 N b と C r を添加 し た T i A l 合金 で は、 わずかの分量で はあ る が第 2 相の /? 相が容易に ク リ ープ変形す る た め、 結果 と して合金全体で の ク リ ープ強度は期待 して い た ほ ど上が ら なかっ た こ と が分 か っ た。  However, although the creep resistance of the above alloys was better than that of the prior art alloy, it was inferior to that of Inconenole 713C in terms of specific strength. As a result of investigating the cause by microstructural observation after creep deformation, the amount of deformation of the lamellar structure, which occupies most of the alloy, was small, but the interlaminar intergranularity was small. It was found that the deformation of the ^ phase was large. In addition, the crystal structure of the / 9 phase was found to be a B 2 structure based on the b c c structure. In general, B2 structure intermetallic compounds have high strength, but it is known that long-term creep deformation resistance is low because of the rapid diffusion rate of atoms due to their crystal structure. . In other words, in the TiAl alloy to which Nb and Cr are added, although the amount is small, the // phase of the second phase is easily creep deformed. As a result, it was found that the creep strength of the entire alloy did not increase as much as expected.
以上の観察結果に基づき 、 相の耐ク リ ープ性を向 上さ せる ため、 種々 の第 5 成分を検討 した と こ ろ N i と C o を単独で、 あ る い は複合 して添加する こ と が有 効であ る こ と を見出 し た。 ま た こ の原因を組織観察に よ っ て調査 し た と こ ろ、 N i ま た は C 0 の添加に よ り B 2 構造に類似な、 一般に Heus ler 構造 と 呼ばれる L 2 , 構造の金属間化合物相 (以下、 β ' 相 と称す る ) が 相内において ナ ノ オ ーダーで整合折出 してお り 、 あたかも N i 基超合金において の ク リ ーブ変形抵抗の 源泉で あ る r Z r ' 界面 と 同様の界面が 9相中におい て形成さ れて い る こ と が分かっ た。 Based on the above observations, various fifth components were examined to improve the creep resistance of the phase.Ni and Co were added alone or in combination. It was found that doing was effective. Investigation of the cause by microstructural observation revealed that the addition of Ni or C0 resembles the L2 structure, which is similar to the B2 structure and is generally called the Heusler structure. Interphase (hereinafter referred to as β 'phase) In the phase, and the interface similar to the rZr 'interface, which is the source of the creep deformation resistance in the Ni-base superalloy, is found in the nine phases. It was found that it was formed.
本発明にかかる 第 3 の T i A 1 系金属間化合物基合 金は、 以上の検討結果に基づいて開発さ れた も ので、 本発明 は、 T i 濃度 : 3 9 〜 4 7 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 〜 3 原子%、 N i + C o 濃度 : 1 〜 3 原子% を舍有す る 高強度、 耐ク リ ーブ性、 耐酸化性 T i A 1 系金属間化合物基合金を提供す る こ と を 目的 とす る。  The third Ti A1 -based intermetallic compound base alloy according to the present invention has been developed based on the results of the above investigations, and the present invention provides a Ti concentration: 39 to 47 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1 to 3 atomic%, Ni + Co concentration: 1 to 3 atomic% An object of the present invention is to provide a TiA1-based intermetallic compound-based alloy having high strength, creep resistance, and oxidation resistance.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1 の合金組成にかかる実施例に おいて製造 した例 1 の T i A 1 系金属間化合物基合金 (比較例) の金属組織を示す走査型電子顕微鏡に よ る 反射電子像写真であ る 。  FIG. 1 is a scanning electron microscope showing the metallographic structure of the TiA 1 -based intermetallic compound-based alloy (Comparative Example) of Example 1 manufactured in the example according to the first alloy composition of the present invention. It is a backscattered electron image photograph.
図 2 は、 本発明の第 1 の合金組成にかかる 実施例に おいて製造 した例 1 6 の T i A 1 系金属間化合物基合 金 (実施例) の金属組織を示す走査型雹子顕微鏡に よ る反射電子像写真で あ る。  FIG. 2 shows a scanning hail microscope showing the metallographic structure of the TiA 1 -based intermetallic compound base alloy (Example) of Example 16 manufactured in the example according to the first alloy composition of the present invention. This is a backscattered electron image photograph.
図 3 は、 本発明の第 1 の合金組成にかかる 実施例に おいて製造 し た例 3 8 の T i A 1 系金属間化合物基合 金 (比較例 ) の金属組蛾を示す走査型電子顕微鏡に よ る反射電子像写真であ る。  FIG. 3 is a scanning electron beam showing a metal moth of a TiA 1 -based intermetallic compound base metal (Comparative Example) of Example 38 manufactured in the example according to the first alloy composition of the present invention. It is a backscattered electron image photograph by a microscope.
図 4 は、 本発明の第 2 の合金組成にかかる 実施例に おいて製造 し た例 2 0 8 の T i A 1 系金属間化合物基 合金 (比較例) の金属組織を示す光学顕微鏡写真で あ る 。 FIG. 4 shows an example according to the second alloy composition of the present invention. 1 is an optical microscope photograph showing the metallographic structure of the TiA1-based intermetallic compound-based alloy (Comparative Example) of Example 208 produced in Example 1.
図 5 は、 本発明の第 2 の合金組織にかかる 実施例に おいて製造 し た例 2 1 0 の T i A 1 系金属間化合物基 合金 (実施例) の金属組織を示す光学顕微鏡写真で あ る 。  FIG. 5 is an optical micrograph showing the metal structure of the TiA 1 -based intermetallic compound-based alloy (Example) of Example 210 manufactured in the example according to the second alloy structure of the present invention. is there .
図 6 は、 本発明の第 2 の合金組成にかかる 実施例に おいて製造 し た例 2 1 1 の T i A 1 系金属間化合物基 合金 (比較例) の金属組織を示す光学顕微鏡写真であ る 。  FIG. 6 is an optical microscope photograph showing the metal structure of the TiAl-based intermetallic compound-based alloy (Comparative Example) of Example 211 manufactured in the example according to the second alloy composition of the present invention. is there .
発明を実施す る た めの最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
(1)本発明に係わる 合金 (第 1 の合金組成) における 各成分の作用並びに限定理由及び熱処理温度の限定理 由を示す。  (1) The action of each component in the alloy (first alloy composition) according to the present invention, the reason for limitation, and the reason for limitation of the heat treatment temperature are shown.
① T i  ① Ti
T i は本発明合金の主要構成元素で あ る 。 T i 濃度 が 4 2 原子%未満に な る と ^ 相が安定化 し な い ため、 従来技術の合金 と 同様の組織 と な り 、 塑性加工性が低 下す る 。 一方 T i 濃度が 4 8 原子%を越え る と粗大な ;5 相の割合が多 く な る た め塑性加工性が低下する。  Ti is a main constituent element of the alloy of the present invention. If the Ti concentration is less than 42 atomic%, the ^ phase is not stabilized, so that the structure becomes similar to that of the alloy of the prior art, and the plastic workability is reduced. On the other hand, if the Ti concentration exceeds 48 at.%, The ratio of coarse; five phases increases, and the plastic workability decreases.
② A 1  ② A 1
A 1 は本発明合金の主要構成原子で あ る 。 A 1 濃度 が 4 4 原子%未満にな る と粗大な ^ 相の割合が多 く な る た め塑性加工性が低下す る 。 一方 A 1 濃度が 4 7 原 子%を越え る と 9 相が安定化 しな いため、 従来技術の 合金と同様の組織と な り 塑性加工性が低下する 。 A 1 is a main constituent atom of the alloy of the present invention. If the A 1 concentration is less than 44 atomic%, the ratio of the coarse ^ phase increases and the plastic workability decreases. On the other hand, A 1 If the content exceeds 9%, the nine phases are not stabilized, so that the structure becomes the same as that of the alloy of the prior art, and the plastic workability decreases.
(D N b  (D N b
主な作用 は耐酸化性の向上で あ る が、 ^ 相安定化効 果 も若干 も つ。 N b 濃度が 6 原子%未満で は添加効果 が認め ら れな い。 一方 N b 濃度が 1 0 原子%を越え る と耐酸化性が低下す る 。  The main effect is to improve the oxidation resistance, but it also has some ^ phase stabilizing effect. When the Nb concentration is less than 6 atomic%, no effect is observed. On the other hand, if the Nb concentration exceeds 10 atomic%, the oxidation resistance decreases.
④ C r  ④ C r
相を安定化させ る 作用 を もつ。 C r 濃度が 1 . 5 原子%未満で は添加効果が認め られない。 一方 C r 濃 度が 3 . 5 原子%を越え る と粗大な /9 相の割合が多 く な る た め塑性加工性が低下する。  It has the effect of stabilizing the phase. If the Cr concentration is less than 1.5 atomic%, no effect is observed. On the other hand, if the Cr concentration exceeds 3.5 atomic%, the ratio of the coarse / 9 phase increases and the plastic workability decreases.
⑤ 熱処理温度  ⑤ Heat treatment temperature
本発明に係わる 合金で は熱処理は铸造時に形成さ れ る ラ メ ラ ー組織を消滅さ せ、 生成相が r 相 と 相の 2 相で、 微細な 相が ?■ 相中に分散 し た組織 と す る こ と を 目的 と して行う 。 1 1 3 0 て 未満で は効果が不十分 であ り 、 ラ メ ラ ー組織が残存す る た め塑性加工性は低 い。 一方 1 2 3 O 'C を越え る と相変化に よ っ て新た に ラ メ ラ ー組織が形成さ れる た め塑性加工性が低下す る 以下、 本発明の第 1 の合金組成にかかる 実施例につ いて説明す る 。  In the alloy according to the present invention, the heat treatment destroys the lamellar structure formed at the time of fabrication, and the generated phase is an r phase and a phase. ■ The aim is to create an organization that is dispersed throughout the phases. If the value is less than 110, the effect is insufficient, and the plastic formability is low because a lamellar structure remains. On the other hand, if the temperature exceeds 123 O'C, a new lamellar structure is formed due to a phase change, resulting in a decrease in plastic workability. Hereinafter, the first alloy composition of the present invention will be described. An example is described.
純度 9 9 . 9 %の T i 、 純度 9 9 . 9 9 %の A l 、 純度 9 9 . 9 %の N b 、 及び純度 9 9 . 9 %の C r を 原料 と して用 い、 非消耗電極式ア ー ク 溶解炉に よ っ て99.9% pure Ti, 99.9% pure Al, 99.9% pure Nb, and 99.9% pure Cr. By non-consumable electrode arc melting furnace used as raw material
、 表 A に示す組成の イ ン ゴ ッ ト を作製 した。 次に こ の ィ ン ゴ ッ ト を铸造ま ま で、 あ る い は種々 の温度で 5 時 間 A r 雰囲気中で熱処理 し た後、 機械加工に よ り 直径 1 2 m m、 高さ 1 2 m m の円柱状試験片に加工 し圧縮 試験を実施 し た。 試験条件は試験温度 1 0 2 5 て 、 ひ ずみ速度 1 X 1 Ο - 3 / s であ り 、 初期高さ の 1 / 4 ま で圧縮 し、 最大応力、 並びに断面組織で の割れ、 キ ヤ ビ テ ィ 等の欠陥発生有無によ り 塑性加工性を評価 し た 。 ま た 1 5 m m X 2 0 m m X 2 m m の平板状の酸化試 験片を切出 し、 ェ メ リ ー紙で 1 0 0 0 番ま で研磨 し た 後、 酸化試験を行っ た。 試験温度は 9 0 O 'C で あ り 大 気中で 1 0 0 時間保有 し た後の酸化置によ り 耐酸化性 を評価 した。 An ingot having the composition shown in Table A was prepared. Next, the ingot was heat-treated in an Ar atmosphere at various temperatures for 5 hours until the ingot was fabricated, or 12 mm in diameter and 12 mm in height by machining. It was processed into a cylindrical test specimen of mm and a compression test was performed. The test conditions were a test temperature of 10 25, a strain rate of 1 X 1 1-3 / s, compression to 1/4 of the initial height, maximum stress, cracking in the cross-sectional structure, and The plastic workability was evaluated based on the presence or absence of defects such as vertices. Further, a plate-like oxidation test piece of 15 mm × 20 mm × 2 mm was cut out, polished with a piece of emery paper up to 100 mm, and then subjected to an oxidation test. The test temperature was 90 O'C, and the sample was kept in the atmosphere for 100 hours.
例 1 〜 3 は T i — A 1 2 元系で A 1 濃度 : 4 8 原子 %の合金の铸造ま ま 及び铸造後 1 2 0 0 て 、 1 3 0 0 •C で熱処理 し た も の の結果で あ る が、 いずれ も圧縮試 験時の最大応力 は 1 9 O M P a 以上で あ る 、 欠陥発生 が認め ら れた。 ま た耐酸化性について も酸化増量が 2 5 . l m g Z c m 2 以上と不十分で あ っ た。 Examples 1 to 3 are Ti-A1 binary systems, alloys with an A1 concentration of 48 at.%, As-cast, and after alloying, heat-treated at 1200-C. As a result, in each case, the maximum stress during the compression test was 19 OMPa or more, and defects were observed. Also oxidation weight gain also oxidation resistance 2 5. Lmg Z cm 2 or more and have insufficient Tsu Oh.
例 4 〜 6 は A 1 濃度 : 4 8 原子%で じ 1" を 3 原子% 添加 し た合金の铸造ま ま 及び铸造後 1 2 0 0 て 、 1 3 0 0 て で熱処理 した も の の結果で あ る が、 いずれも圧 縮試験時の最大応力 は 1 Ί O M P a 以上であ り 、 欠陥 発生が認め ら れた。 ま た耐酸化性について も酸化增量 力く 2 4 . 1 m g / c m 2 以上 と不十分であ っ た。 Examples 4 to 6 show the results of alloys containing A1 concentration: 48 atomic% and adding 1 atomic percent of 3 "at 3 atomic%, and heat-treated at 1200 and 1300 after forming. However, in each case, the maximum stress during the compression test was 1 mm OMPa or more, and the occurrence of defects was observed. It was not enough, violently at 24.1 mg / cm 2 or more.
例 7 〜 1 2 は本発明に係わ る 合金であ り 、 T i : 4 2 原子%、 A 1 : 4 7 原子%、 N b : 9 原子%、 C r : 2 原子%を舍有す る 合金の铸造ま ま 及び 1 1 0 O 'C 、 1 1 5 0 *C 1 2 0 0 て 、 1 2 5 0 て 、 1 3 5 0 て で熱処理 し た も の の結果で あ る 。 1 1 5 0 て 、 1 2 0 0 て 熱処理後で は最大応力 は 1 4 O M P a 以下であ り 欠陥発生はなかっ た。 一方铸造ま ま 、 及び 1 1 0 0 'C 、 1 2 5 0 て 、 1 3 5 0 て 熱処理後で は最大応力は 1 7 O M P a 以上であ り 欠陥発生が認め られた。 ま た耐 酸化性は酸化増量が 3 . 5 m g Z c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて いた。 Examples 7 to 12 are alloys according to the present invention, and have Ti: 42 atomic%, A1: 47 atomic%, Nb: 9 atomic%, and Cr: 2 atomic%. This is the result of the as-cast alloy and heat-treated at 110 ° C, 115 ° C * 1200 ° C, 125 ° C, and 135 ° C. After the heat treatment, the maximum stress was less than 14 OMPa and no defects were generated. On the other hand, the maximum stress was not less than 17 OMPa after heat treatment of the as-fabricated and 1100'C, 1250 and 1350, and defects were observed. In addition, the oxidation resistance was significantly superior to those of Examples 1 to 6 with the weight gain of oxidation being 3.5 mg Zcm 2 or less.
例 1 3 〜 1 8 は本発明に係わる 合金であ り 、 T i : Examples 13 to 18 are alloys according to the present invention, Ti:
4 5 原子%、 A 1 : 4 5 原子%、 N b : 8 原子%、 C r : 2 原子%を含有す る 合金の铸造ま ま 及び 1 1 0 0An alloy containing 45 atomic%, A 1: 45 atomic%, Nb: 8 atomic%, and Cr: 2 atomic%
•C 、 1 1 5 0 て 、 1 2 0 0 て 、 1 2 5 0 て 、 1 3 5 0 て で熱処理 した も の の結果で あ る 。 1 1 5 0 て 、 1 2 0 0 て 熱処理後で は最大応力 は 1 2 0 M P a 以下で あ り 欠陥発生はなか っ た。 一方铸造ま ま 及び 1 1 0 0 'C 、 1 2 5 0 て 、 1 3 5 0 て 熱処理後で は最大応力 は 1 6 0 M P a 以上であ り 欠陥発生が ¾め ら れた。 ま た耐 酸化性は酸化増量が 3 . 3 m g ノ c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて い た。 • The results of the heat treatments at C, 1150, 1250, 1250 and 1350 are shown. After the heat treatment, the maximum stress was 120 MPa or less, and no defects were generated. On the other hand, after as-fabrication and heat treatment at 110 ° C., 125 ° C. and 135 ° C., the maximum stress was 160 MPa or more, and the occurrence of defects was confirmed. The oxidation resistance was significantly better than those of Examples 1 to 6 with the oxidation weight gain of 3.3 mg / cm 2 or less.
例 1 9 〜 2 4 は本発明に係わ る 合金で あ り 、 T i : Examples 19 to 24 are alloys according to the present invention, and Ti:
4 8 原子%、 A 1 : 4 4 原子%、 N b : 6 原子%、 C r : 2 原子%を舍有す る 合金の铸造ま ま 及び 1 1 0 0 て 、 1 1 5 0 て 、 1 2 0 0 て 、 1 2 5 0 て 、 1 3 5 0 て で熱処理 し た も のの結果で あ る 。 1 1 5 0 て 、 1 2 0 0 て 熱処理後で は最大応力 は 1 2 0 M P a 以下であ り 欠陥発生はなか っ た。 一方铸造ま ま 及び 1 1 0 0 て 、 1 2 5 0 て 、 1 3 5 0 'C 熱処理後で は最大応力 は 1 5 O M P a 以上で あ り 欠陥発生が認め ら れた。 ま た耐 酸化性は酸化増量が 4 . 6 m g / c m 2 以下 と例 1 〜 6 と比較す る と 大幅に優れて い た。 48 atomic%, A1: 44 atomic%, Nb: 6 atomic%, C r: Forged alloy containing 2 atomic% and heat-treated at 1100, 1150, 1250, 1250, and 1350 This is the result of After the heat treatment, the maximum stress was less than 120 MPa and no defects were generated. On the other hand, the maximum stress was not less than 15 OMPa after heat treatment of the as-fabricated, 1100, 1250, and 1350'C heat-induced defects. In addition, the oxidation resistance was remarkably superior to those of Examples 1 to 6, with an oxidation weight gain of 4.6 mg / cm 2 or less.
例 2 5 〜 3 0 は本発明に係わる 合金で あ り 、 T i : 4 5 原子%、 A 1 : 4 5 原子%、 N b : 8 . 5 原子% 、 C r : 1 . 5 原子%を舍有す る 合金の铸造ま ま及び 1 1 0 0 、 1 1 5 0 'C 1 2 0 0 て 、 1 2 5 0 て 、 1 3 5 O 'C で熱処理 した も の の結果で あ る 。 1 1 5 0 て 、 1 2 0 0 て 熱処理後で は最大応力 は 1 2 0 M P a 以下で あ り 欠陥発生 はなか っ た。 一方铸造ま ま及び 1 1 0 0 て 、 1 2 5 0 て 、 1 3 5 0 て 熱処理後で は最大 応力 は 1 9 O M P a 以上で あ り 欠陥発生が認め ら れた 。 ま た耐酸化性は酸化増量が 3 . 5 m g / c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて い た。 Examples 25 to 30 are alloys according to the present invention, in which Ti: 45 at%, A 1: 45 at%, Nb: 8.5 at%, Cr: 1.5 at%. These are the results of as-cast alloys and heat treatments at 1100, 1150'C, 1250, 1250, and 135O'C. After the heat treatment, the maximum stress was less than 120 MPa and no defects were generated. On the other hand, the maximum stress was not less than 19 OMPa after the as-cast, heat treatment, and heat treatment, and defects were observed. In addition, the oxidation resistance was significantly superior to those of Examples 1 to 6, with an oxidation weight gain of 3.5 mg / cm 2 or less.
例 3 1 〜 3 6 は本発明に係わ る 合金であ り 、 T i : 4 5 原子%、 A 1 : 4 5 原子%、 N b : 6 . 5 原子% 、 C r : 3 . 5 原子%を含有す る 合金の涛造ま ま及び 1 1 0 0 ΐ 、 1 1 5 0 て 、 1 2 0 0 て 、 1 2 5 0 ΐ . 1 3 5 0 て で熱処理 し た も の の結果で あ る。 1 1 5 0 て 、 1 2 0 0 て 熱処理後で は最大応力 は 1 4 0 M P a 以下であ り 欠陥発生はなかっ た。 一方铸造ま ま及び 1 1 0 0 て 、 1 2 5 0 て 、 1 3 5 0 て 熱処理後で は最大 応力 は 1 Ί O M P a 以上で あ り 欠陥発生が認め ら れた 。 ま た耐酸化性は酸化增量が 4 . 3 m g c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて いた Examples 31 to 36 are alloys according to the present invention, in which Ti: 45 atom%, A 1: 45 atom%, Nb: 6.5 atom%, Cr: 3.5 atom. % Of alloys containing aluminum alloys and heat-treated at 110 ° C, 1150 ° C, 1250 ° C, 1250 ° C and 135 ° C. is there. 1 1 5 0 After the heat treatment, the maximum stress was less than 140 MPa, and no defects were generated. On the other hand, the maximum stress was not less than 1 Ί OMPa after heat treatment of the as-fabricated and 1100, 1250, 1350, and defects were observed. Also oxidation resistance oxide增量is 4. 3 m g cm 2 were superior significantly below the Examples 1-6 and If you compare
例 3 7 、 3 8 は T i 濃度が本発明の範囲外の も のの 結果で、 1 2 0 0 'C 熱処理後において最大応力 は 1 8 0 M P a 以上であ り 欠陥発生が認め ら れた。 なお、 耐 酸化性は酸化増量が 4 . 5 m g Z c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて いた。 Examples 37 and 38 show results in which the Ti concentration was out of the range of the present invention, and the maximum stress was more than 180 MPa after the heat treatment at 1200 ° C, and defects were observed. Was. The oxidation resistance was significantly better than those of Examples 1 to 6 with an increase in oxidation of 4.5 mg Zcm 2 or less.
例 3 8 、 3 9 は A 1 濃度が本発明の範囲外の も のの 結果で、 1 2 0 0 ΐ 熱処理後において最大応力 は 1 8 O M P a 以上で あ り 欠陥発生が ¾め ら れた。 なお、 耐 酸化性は酸化増量が 4 . 5 m g c m 2 以下 と例 1 〜 6 と比較す る と大幅に優れて いた。 In Examples 38 and 39, the A1 concentration was out of the range of the present invention, and the maximum stress was 120 OMPa or more after the heat treatment of 1200 ° C, and defects were found. . The oxidation resistance was significantly better than those of Examples 1 to 6 with the weight gain of oxidation being 4.5 mgcm 2 or less.
例 4 0 、 4 1 は N b 濃度が本発明 の範囲外の も のの 結果で あ る 。 1 2 0 0 て 熱処理後において、 最大応力 は 1 5 O M P a 以上であ り 欠陥発生が認め られた。 し か しなが ら耐酸化性は酸化増量が 7 . 1 m g / c m 2 以上と例 1 〜 6 と比較す る と優れて いたが、 例 7 〜 3 6 に較べ る と劣 っ て いた。 Examples 40 and 41 are the results of Nb concentrations outside the range of the present invention. After the heat treatment, the maximum stress was 15 OMPa or more, and defects were observed. However, the oxidation resistance was excellent when the weight gain of oxidation was 7.1 mg / cm 2 or more, as compared with Examples 1 to 6, but inferior to Examples 7 to 36.
例 4 2 、 4 3 は C r 濃度が本発明の範囲外の も のの 結果であ る が、 1 2 0 0 'C 熱処理後において、 最大応 力 は 1 8 0 M P a 以上で あ り 欠陥発生が認め ら れた。 な お、 耐酸化性 は酸化増量が 3 . 3 m g / c m 以下 と 例 1 6 と 比較す る と 大幅に優れて い た。 In Examples 42 and 43, the Cr concentration was out of the range of the present invention, but the maximum stress was more than 180 MPa after the heat treatment at 1200 ° C. Occurrence was observed. In addition, the oxidation resistance was significantly superior to Example 16 as the oxidation weight gain was 3.3 mg / cm or less.
Ml ΓΤ t5¾ 5 1 Ml ΓΤ t5¾ 5 1
成 (原子%) J± flfl IS JUS Jl B  Composition (atomic%) J ± flfl IS JUS Jl B
¾¾ *□ 7 酸化r 重- 例  ¾¾ * □ 7 Oxidized r-Example
Ti Al Nb Cr 最木応 Λ 割れ発生  Ti Al Nb Cr Wood Λ Cracking
(MPa) R "»、 (mg/ cA) (MPa) R "», (mg / cA)
1 52 48 踌造まま 200 25.11 52 48 As-built 200 25.1
2 52 48 一 1200'C 190 26.22 52 48 1 1200'C 190 26.2
3 52 48 一 1300て 230 27.0 3 52 48 1 1300 to 230 27.0
¾り  Puri
4 49 48 3 铸造まま 180 25.1 4 49 48 3 As-built 180 25.1
5 49 48 一 3 1200て 170 24.15 49 48 1 3 1200 te 170 24.1
6 49 48 3 1300て 200 24.86 49 48 3 1300 te 200 24.8
7 铸造まま 210 4- 2.9 あり 7 As-built 210 4-2.9 Available
8 1100'C 170 2.2 8 1100'C 170 2.2
9 1150'C 140 2.5 9 1150'C 140 2.5
47 9 o し  47 9 o
10 1200*C 130 3.0 10 1200 * C 130 3.0
11 1250て 180 3.1 11 1250 and 180 3.1
あ Ό  Ah
12 1350て 250 3.5 12 1350 to 250 3.5
13 铸造まま 220 3.2 13 As-built 220 3.2
めり  Meri
14 1100'C 160 3.1 14 1100'C 160 3.1
15 1150'C 120 2.815 1150'C 120 2.8
45 45 8 2 なし 45 45 8 2 None
16 1200 *C 110 2.7 16 1200 * C 110 2.7
17 1250 *C 170 3.2 17 1250 * C 170 3.2
めり  Meri
18 1350 ΐ 280 3.3 18 1350 ΐ 280 3.3
19 铸造まま 200 3.8 19 As-built 200 3.8
fcり  fc
20 1100'C 150 4.1 20 1100'C 150 4.1
21 1150'C 120 3.921 1150'C 120 3.9
48 44 6 2 なし 48 44 6 2 None
22 1200 'C 100 4.3 22 1200 'C 100 4.3
23 1250 ΐ 150 4.2 23 1250 ΐ 150 4.2
めり  Meri
24 1350て 230 4.6 24 1350 230 230 4.6
25 铸造まま 250 2.9 あり 25 ま ま As built 250 2.9 Available
26 1100'C 190 2.7 26 1100'C 190 2.7
27 1150て 160 27 1150 and 160
1.5 ¾し 1 2.4 1.5 Length 1 2.4
45 45 8.5 45 45 8.5
28 1200て 150 3.0 28 1200 150 150 3.0
29 1250.C 200 3.2 29 1250.C 200 3.2
あり  Yes
30 1350て 320 3.5 30 1350 and 320 3.5
31 铸造まま 230 3.5 あり 31 As-built 230 3.5 Available
32 1100'C 170 4.1 32 1100'C 170 4.1
33 1150'C 140 3.733 1150'C 140 3.7
45 45 6.5 3.5 なし 45 45 6.5 3.5 None
34 1200*C 120 4.0 34 1200 * C 120 4.0
35 1250て 170 3.9 あり 35 1250 and 170 3.9 Yes
36 1350'C 220 4.3 36 1350'C 220 4.3
37 41 41 10 2 190 2.837 41 41 10 2 190 2.8
38 59 43 6 2 180 あり 4.538 59 43 6 2 180 Yes 4.5
39 43 48 7 2 200 3.839 43 48 7 2 200 3.8
40 46 47 5 2 1200 450 7.1 なし 40 46 47 5 2 1200 450 7.1 None
41 43 44 11 2 140 7.6 41 43 44 11 2 140 7.6
42 45 46 8 1 200 2.9 あり 42 45 46 8 1 200 2.9 Yes
43 44 45 7 4 180 3.3 以下、 上記例 1 , 例 1 6 , 例 3 8 の走査型電子顕微 鏡に よ る 反応電子像の写真を示す。 43 44 45 7 4 180 3.3 Hereinafter, photographs of the reaction electron images obtained by the scanning electron microscopes of Examples 1, 16, and 38 are shown.
図 1 は例 1 の T i - A 1 2 元系合金の铸造ま ま の走 查型電子顕微鏡に よ る 反射電子像で あ る 。 こ こ で黒い 母相は r 相で あ り 、 灰色の相 は οτ 2 相で あ る 。 こ の図 よ り 生成相 は r 相 と α 2 相の 2 相で あ り 、 組織は r 相 と οτ 2 相が層状に積み重な っ た ラ メ ラ ー組織で各ラ メ ラ ー粒の粒系 は大き い こ と が判る 。  Figure 1 is a backscattered electron image of the Ti-A1 binary alloy of Example 1 taken by scanning scanning electron microscopy. Here, the black parent phase is the r phase, and the gray phase is the οτ 2 phase. According to this figure, the generated phase is composed of two phases, r phase and α2 phase, and the structure is a lamellar structure in which the r phase and οτ2 phase are stacked in layers. It can be seen that the grain system is large.
図 2 は例 1 6 の本発明の合金の 1 2 0 0 て 熱処理後 の走査型電子顕微鏡に よ る反射電子像であ る 。 こ こ で 黒い母相 は r 相であ り 、 白色の相 は 相で あ る 。 こ の 図よ り 生成相 は r 相 と 相の 2 相で あ り 、 組織は微細 な 相が分散 し た組織であ る こ と が判る。  FIG. 2 is a backscattered electron image of the alloy of Example 16 of the present invention obtained by a scanning electron microscope after heat treatment at 1200.degree. Here, the black matrix is the r phase and the white phase is the phase. From this figure, it can be seen that the generated phase has two phases, the r phase and the phase, and that the structure is a structure in which fine phases are dispersed.
図 3 は例 3 8 であ り 、 本発明の合金よ り A 1 纔度が 少な い も の の 1 2 0 0 て 熱処理後の走査型電子顕微鏡 に よ る反射電子像で あ る。 こ こ で黒い母相 は r 相で あ り 、 白色の相 は iS 相であ る 。 こ の図よ り 生成相 は r 相 と 9 相の 2 相で あ り 、 粗大な 相の割合が多い こ と力く 判る。  FIG. 3 shows Example 38, which is a backscattered electron image obtained by a scanning electron microscope after heat treatment at 1200, though having less A1 horn than the alloy of the present invention. Here, the black matrix is the r phase and the white phase is the iS phase. From this figure, there are two phases, the r-phase and the 9-phase, and it can be clearly seen that the proportion of coarse phases is large.
(2) 以下、 本発明に係わる 合金 (第 2 の合金組成) における 各成分の作用並びに限定理由及び熱処理温度 の限定理由を示す。  (2) Hereinafter, the action of each component in the alloy (second alloy composition) according to the present invention, the reason for limitation, and the reason for limiting the heat treatment temperature will be described.
① T i  ① Ti
T i は本発明合金の主要構成元素であ る 。 T i 濃度 が 4 2 原子%未満に な る と ラ メ ラ ー粒の比率が少な く な る た め高温強度 は低い。 一方、 T i 濃度が 4 8 原子 %を越え る と ラ メ ラ ー粒微細化の た め の第 2 相 の比率 が増加 し過ぎ る た め、 ラ メ ラ ー粒が滅少 し高温強度 は 低 く な る 。 Ti is a main constituent element of the alloy of the present invention. When the Ti concentration is less than 42 atomic%, the proportion of lamellar grains decreases. Therefore, high temperature strength is low. On the other hand, if the Ti concentration exceeds 48 at%, the ratio of the second phase for refining the lamellar grains becomes too large, so that the lamellar grains are reduced and the high-temperature strength is reduced. Lower.
② A 1  ② A 1
A 1 は本発明合金の主要構成元素で あ る 。 A 1 濃度 力く 4 4 原子%未満に な る と ラ メ ラ ー粒微細化の た め の 第 2 相 の比率が増加 し 過ぎ る た め、 ラ メ ラ ー粒が滅少 し高温強度 は低 く な る 。 一方、 A 1 濃度が 4 7 原子% を超え る と 従来技術の合金 と 同様に ラ メ ラ ー粒の比率 が少な く な る た め高温強度 は低 く な る 。  A 1 is a main constituent element of the alloy of the present invention. If the A1 concentration is less than 44 atomic%, the proportion of the second phase for refining the lamellar grains becomes too large, so that the lamellar grains are reduced and the high-temperature strength is reduced. Lower. On the other hand, when the A 1 concentration exceeds 47 atomic%, the high-temperature strength decreases as the proportion of lamellar grains decreases as in the case of the conventional alloy.
③ N b  ③ N b
耐酸化性を 向上 さ せ る た め の添加成分で あ る 。 N b 濃度が 6 原子%未満で は添加効果が認め ら れな い。 一 方、 N b 濃度が 1 0 原子%を超え る と 添加量が多過ぎ 逆に耐酸化性が低下す る 。  It is an additive component for improving oxidation resistance. When the Nb concentration is less than 6 atomic%, no effect is observed. On the other hand, if the Nb concentration exceeds 10 atomic%, the amount of addition is too large, and on the contrary, the oxidation resistance decreases.
④ C r  ④ C r
第 2 相を安定化 さ せ ラ メ ラ ー粒を微細化す る 作用 を も つ。 C r 濃度が 1 原子%未満で は添加効果が認め ら れな い。 一方、 C r 濃度が 3 原子%を超え る と 第 2 相 の割合が多 く な り 過ぎ、 ラ メ ラ ー粒の比率が滅少す る た め高温強度が低下す る 。  It has the effect of stabilizing the second phase and refining the lamellar grains. If the Cr concentration is less than 1 atomic%, no effect is observed. On the other hand, when the Cr concentration exceeds 3 atomic%, the proportion of the second phase becomes too large, and the proportion of the lamellar grains decreases, so that the high-temperature strength decreases.
⑤ 熱処理温度  ⑤ Heat treatment temperature
本発明 に係わ る 合金で は熱処理 は α 十 5 域で行い 、 ラ メ ラ ー を発達 さ せ る と 同時に 、 微細 な 第 2 相を分散 さ せて ラ メ ラ ー粒の粒径を 1 0 0 〃 m以下にす る こ と を 目的 と して行 う 。 1 3 0 0 て 未満で は α + + r 域 で あ り 、 7" 粒の割合が多 く な る た め従来技術の合金 と 同様に高温強度は低い。 一方、 1 4 0 0 て を超え る と or単相域で あ り 、 第 2 相がな いた め従来技術の合金を 1 4 0 0 て を超え る 温度で熱処理す る 場合 と 同様に粗 大な ラ メ ラ ー粒で構成さ れる た め脆 く な り 、 高温強度 も低下す る 。 In the alloy according to the present invention, the heat treatment is performed in the α15 region to disperse the fine second phase while developing the lamella. The purpose is to reduce the particle size of the lamellar grains to 100 μm or less. If it is less than 130,000, it is in the α + + r region, and the high-temperature strength is low as in the prior art alloy because the proportion of 7 "grains is large. Since the second phase is absent, it is composed of coarse lamellar grains, as in the case of heat-treating a conventional alloy at a temperature exceeding 140 ° C. As a result, it becomes brittle and its high-temperature strength decreases.
以下、 本発明の第 2 の合金組成にかかる 実施例につ いて説明する。  Hereinafter, examples according to the second alloy composition of the present invention will be described.
純度 9 9 . 8 % の T i 、 純度 9 9 . 9 % の A 1 、 N b 、 及び C r を原料と して用 い、 高周波溶解によ っ て 表 B に示す組成の イ ン ゴ ッ ト を作製 した。 次に こ の ィ ン ゴ ッ ト に 1 2 0 0 *C X 3 h の熱処理を施 し た後、 1 0 2 5 て において初期高さ の 1 Z 3 ま で 自 由鍛造を行 つ て鍛造素材を作製 した。  Ingots of the composition shown in Table B were obtained by high frequency melting using Ti with a purity of 99.8% and A1, Nb and Cr with a purity of 99.9% as raw materials. Was made. Next, the ingot is subjected to a heat treatment of 1200 * CX 3 h, and then is subjected to free forging to an initial height of 1Z3 at 1205. Was prepared.
こ の鍛造素材を表 B に示す種々 の温度で熱処理 した 後、 機械加工に よ り 平行部の直径 5 m m、 標点間距離 2 2 m m の丸棒状試験片を加工 して 引張り 試験を実施 した。 引張り 試験温度は 8 0 0 て で あ る 。 ま た 1 5 m m X 2 0 m m X 2 m m の平板状の酸化試験片を切 り 出 し、 ェ メ リ ー紙で 1 0 0 0 番ま で研磨 し た後、 酸化試 験を行 っ た。 試験温度は 9 0 0 て で あ り 大気中で 1 0 0 時間保持 した後の酸化增量に よ り 耐酸化性を評価 し 例 2 0 1 〜 2 0 3 は従来技術の合金であ り 、 T i : 5 0 原子%、 A 1 : 4 8 原子%、 C r : 2 原子%を舍 有す る 合金の 1 2 0 0 て 、 1 3 0 0 て 及び 1 4 0 0 て で熱処理 し た も のの結果で あ る が、 引張 り 強度はいず れ も 4 4 K g m m 2 以下 と低か っ た。 ま た耐酸化 性について も酸化增量が 2 3 m g Z c m z 以上 と不十 分で あ っ た。 After heat-treating this forged material at various temperatures shown in Table B, a round bar-shaped specimen with a parallel part diameter of 5 mm and a gauge length of 22 mm was machined and subjected to a tensile test. . The tensile test temperature was 800. Also, a 15 mm X 20 mm X 2 mm plate-shaped oxidation test piece was cut out, polished with a piece of emery paper to 100, and then subjected to an oxidation test. . The test temperature was 900, and the oxidation resistance was evaluated based on the amount of oxidation after holding for 100 hours in the air. Example 201 to 203 are conventional alloys, and are alloys containing Ti: 50 at%, A 1: 48 at%, and Cr: 2 at%. However, although the results were obtained by heat treatment at 1300 and 1400, both of the tensile strengths were as low as 44 Kgmm 2 or less. The oxidation增量for or oxidation resistance was Tsu Oh in 2 3 mg Z cm z or more and not ten minutes.
例 2 0 4 〜 2 0 7 は本発明に係わ る合金で あ り 、 T i : 4 2 原子%、 A 1 : 4 7 原子%、 N b : 1 0 原子 %、 C r : 1 原子%を舍有す る 合金の 1 2 8 0 · (: 、 1 3 2 0 て 、 1 3 8 0 て 、 1 4 2 0 て で熱処理 した も の の結果で あ る。 1 3 2 0 て 、 1 3 8 0 て 熱処理後で は 引張 り 強度は 6 2 K g f / m m 2 以上と高か っ た。 一 方 1 2 8 0 · (: 、 1 4 2 0 て 熱処理後で は引張り 強度は 5 0 1 8 £ ノ 111 111 2 以下 と 1 3 2 0 て 、 1 3 8 0 て 熱 処理後に比べ る と低か っ た。 ま た耐酸化性は酸化増量 がいずれ も 3 . 6 m g Z c m 2 以下と例 2 0 1 〜 2 0 3 の従来技術の合金 と比較す る と大幅に優れて い た。 例 2 0 8 〜 2 1 1 は本発明に係わ る 合金で あ り 、 TExamples 204 to 207 are alloys according to the present invention, and Ti: 42 atomic%, A1: 47 atomic%, Nb: 10 atomic%, Cr: 1 atomic%. This is the result of heat-treating the alloy with the following properties: 1280 · (:, 1320, 1380, 1440) tensile strength after heat treatment Te 3 8 0 was Tsu or 6 2 K gf / mm 2 or more and a high-hand 1 2 8 0 - (:., 1 4 2 0 tensile strength after heat treatment Te 5 0 1 8 £ Te Bruno 111 111 2 or less and 1 3 2 0 1 3 8 0 Tsu or low when Ru compared after heat treatment Te. any or oxidation resistance oxidation weight gain is 3. 6 mg Z cm 2 or less And excellent compared with the prior art alloys of Examples 201 to 203. Examples 208 to 211 are alloys according to the present invention and
1 : 4 5 原子%、 A 1 : 4 5 原子%、 N b : 8 原子% 、 C r : 2 原子%を舍有す る 合金の 1 2 8 0 て 、 1 31: 45 atomic%, A 1: 45 atomic%, Nb: 8 atomic%, Cr: 2 atomic%
2 0 て 、 1 3 8 0 *C . 1 4 2 0 て で熱処理 し た も の の 結果で あ る 。 1 3 2 0 て 、 1 3 8 0 'C 熱処理後で は弓 I 張強度は 6 5 K g f / m m 2 以上 と高かっ た。 一方 1 2 8 0 て 、 1 4 2 0 'C 熱処理後で は引張 り 強度は 5 2 K g f / m m 2 以下 と 1 3 2 0 'C、 1 3 8 Ο ΐ 熱処理 後に比べ る と低かっ た。 ま た耐酸化性は酸化增量がい ずれ も 2 . 8 m g ノ c m 2 以下 と従来技術の合金と比 較す る と大幅に優れて い た。 This is the result of heat treatment performed at 130 to 180 * C. Te 1 3 2 0, was as high as 1 3 8 0 'C bow I Zhang strength after heat treatment 6 5 K gf / mm 2 or more. On the other hand, the tensile strength was 52 It was lower than K gf / mm 2 and after the heat treatment at 132 0 CC and 138 '熱処理 熱処理. The oxidation resistance was 2.8 mg / cm 2 or less, and the oxidation resistance was significantly superior to that of the conventional alloy.
例 2 1 2 〜 2 1 5 は本発明に係わ る合金で あ り 、 T i : 4 8 原子%、 A 1 : 4 4 原子%、 N b : 6 原子% 、 C r : 2 原子%を舍有す る 合金の 1 2 8 0 ΐ . 1 3 2 0 て 、 1 3 8 0 て 、 1 4 2 0 'C で熱処理 し た も の の 結果で あ る。 1 3 2 0 て 、 1 3 8 0 'C 熱処理後で は引 張 り 強度は 5 9 K g f / m m 2 以上 と高か っ た。 一方 1 2 8 0 . 1 4 2 0 'C 熱処理後で は引張 り 強度は 4 6 1 8 ノ 111 111 2 以下 と 1 3 2 0 て 、 1 3 8 0 て 熱処 理後に比べる と低かっ た。 ま た耐酸化性は酸化増量が いずれも 3 . S m g Z c m 2 以下と従来技術の合金と 比較す る と大幅に優れて いた。 Examples 21 to 21 are alloys according to the present invention, in which Ti: 48 at%, A 1: 44 at%, Nb: 6 at%, Cr: 2 at%. This is the result of a heat treatment at 128 ° C, 140 ° C, and 140 ° C for the alloys owned. 1 on 3 2 0 was Tsu or tensile Ri strength and 5 9 K gf / mm 2 or more high in 1 3 8 0 'C after the heat treatment. Meanwhile 1 2 8 0. 1 4 2 0 'tensile strength after C heat treatment Te 4 6 1 8 Bruno 111 111 2 or less and 1 3 2 0 were lower when compared 1 3 8 0 Te after Netsusho sense. In addition, the oxidation resistance was significantly superior to the alloys of the prior art, with the oxidation weight gain being less than 3. S mg Z cm 2 in each case.
例 2 1 6 〜 2 1 9 は本発明に係わ る合金で あ り 、 T i : 4 5 原子%、 A 1 : 4 5 原子%、 N b : 7 原子% 、 〇 1« : 3 原子%を舍有す る 合金の 1 2 8 0 て 、 1 3 2 0 て 、 1 3 8 0 · (: 、 1 4 2 0 て で熱処理 し た も の の 結果で あ る 。 1 3 2 0 て 、 1 3 8 0 て 熱処理後で は引 張 り 強度は 5 8 K g f / m m 2 以上 と高か っ た。 一方 1 2 8 0 *C . 1 4 2 0 て 熟処理後で は引張 り 強度は 4 S K g f Z m m Z 以下 と 1 3 2 0 て 、 1 3 8 0 'C 熱処 理後に比べ る と低か っ た。 ま た耐酸化性は酸化増量が いずれ も 3 . l m g / c m z 以下 と従来技術の合金 と 比較す る と大幅に優れて いた。 Examples 21 to 21 are alloys according to the present invention, Ti: 45 at%, A 1: 45 at%, Nb: 7 at%, 〇 1 «: 3 at%. This is the result of heat-treating the alloys with the following properties: 1280, 1320, 1380 · (:, 1440). the after heat treatment Te 1 3 8 0 Tsu or tensile Ri strength and 5 8 K gf / mm 2 or more high. On the other hand 1 2 8 0 * C. 1 4 2 0 tensile strength after-ripening process Te is 4 Te SK gf Z mm Z below the 1 3 2 0, 1 3 8 0 'C Netsusho was Tsu or low when Ru compared after sense. any or oxidation resistance oxidation weight gain is 3. lmg / cm z less And prior art alloys and It was significantly better by comparison.
例 2 2 0 〜 2 2 1 は T i 濃度が本発明の請求範囲外 の も のの結果で あ る が、 1 3 8 0 て 熱処理後において 引張 り 強度は 5 3 K g f ノ m m 2 以下 と低か っ た。 な お耐酸化性は酸化増量が 3 . 5 m g Z c m z 以下 と従 来技術の合金 と比較す る と大幅に優れて い た。 Example 2 2 0-2 2 1 is T i concentration Ru Ah result of claims outside the well of the present invention, 1 3 8 0 tensile strength after heat treatment Te is 5 3 K g f Roh mm 2 or less It was low. Oxidation resistance was significantly superior to alloys of the prior art, with oxidation weight gain of 3.5 mg Z cmz or less.
例 2 2 2 〜 2 2 3 は A 1 濃度が本発明 の請求範囲外 の も の の結果で あ る が、 1 3 8 0 て 熱処理後において 引張 り 強度は 5 1 K g f / m m 2 以下 と低か っ た。 な お耐酸化性は酸化増量が 3 . 0 m g / c m 2 以下 と従 来技術の合金 と比較する と大幅に優れていた。 Example 2 2 2 to 2 2 3 is A 1 concentration Ru Ah result of claims outside the well of the present invention, tensile strength after heat treatment Te 1 3 8 0 and 5 1 K gf / mm 2 or less It was low. Oxidation resistance was significantly superior to alloys of the prior art with an oxidation weight gain of 3.0 mg / cm 2 or less.
例 2 2 4 、 2 2 5 は N b 濃度が本発明の請求範囲外 の も のの結果であ る が、 1 3 8 O 'C 熱処理後において 引張り 強度は 5 9 K g f ノ m m z 以上 と高かっ た。 し か し なが ら耐酸化性は酸化増量が 6 . 9 m g / c m 2 以上 と本発明 の合金 と比較す る と劣 っ て いた。 Example 2 2 4, 2 2 5 is N b concentrations Ru results der of claims outside the well of the present invention, 1 3 8 O 'C tensile strength after heat treatment 5 9 K gf Roh mm z or more and it was high. However, the oxidation resistance was inferior to the alloy of the present invention, with an oxidation weight gain of 6.9 mg / cm 2 or more.
例 2 2 6 、 2 2 7 は C r 濃度が本発明の請求範囲外 の も の の結果であ る が、 1 3 8 0 て 熱処理後において 引張 り 強度は 5 3 K g f / m m 2 以下 と低か っ た。 な お耐酸化性は酸化増量が 2 . 5 m g / c m 2 以下 と従 来技術の合金 と比較す る と大幅に優れて いた。
Figure imgf000029_0001
以下、 異な る 相領域で熱処理 し た場合の金属組織の 違いを光学顕微鏡写真で示す。
Example 2 2 6, 2 2 7 although C r concentrations Ru results der of claims outside the well of the present invention, 1 3 8 0 tensile strength after heat treatment Te is 5 3 K g f / mm 2 or less It was low. The oxidation resistance was 2.5 mg / cm 2 or less, which was significantly better than that of the conventional alloy.
Figure imgf000029_0001
The difference in the metallographic structure when heat treatment is performed in different phase regions is shown below by optical micrographs.
図 4 は例 2 0 8 の金厲組織で あ り 、 T i : 4 5 原子 FIG. 4 shows the metal structure of Example 208, in which Ti: 45 atoms
%、 A 1 : 4 5 原子%、 N b : 8 原子%、 C r : 2 原 子%を舍有す る 合金を a + iff + r 域で あ る 1 2 8 O 'C で熱処理 し た場合の金属組織で あ る 。 ラ メ ラ ー は層 状 に 見え る 組織で あ る が、 こ の場合 ラ メ ラ ー粒が占 め る %, A 1: 45 atomic%, Nb: 8 atomic%, Cr: 2 atomic% The alloy containing the alloy was heat-treated in the a + iff + r region at 128 O'C. It is the metal structure of the case. Lamella is a tissue that looks like a layer, in which case the lamellar grains occupy
一 2 比率 は半分以下 と 少な い こ と がわか る 。 One two The ratio is small, less than half.
図 5 は例 2 1 0 の金属組織で あ り 図 4 と 同 じ組成の 合金を α + β 域で あ る 1 3 8 0 て で熱処理 し た場合の 金属組織で あ る 。 ほ と ん どが ラ メ ラ ー粒で 占 め ら れて お り 、 ラ メ ラ ー粒 と ラ メ ラ ー粒の間に微細 な第 2 相力く 存在 して い る こ と が分か る 。 ま た、 ラ メ ラ 一粒の粒径 は約 5 0 m と 非常に微細で あ る こ と が分か る 。  FIG. 5 shows the metallographic structure of Example 210, which is obtained by heat-treating an alloy having the same composition as in FIG. 4 in the α + β region at 1380. Most of them are occupied by lamellar grains, and it can be seen that fine second phase exists between the lamellar grains. . In addition, it can be seen that the particle size of each lamella is very fine, about 50 m.
図 6 は例 2 1 1 の金属組織で あ り 図 4 と 同 じ組成の 合金を α 域で あ る 1 4 2 O 'C で熱処理 し た場合の金属 組織で あ る 。 全面が 2 m m程度の粗大な ラ メ ラ ー粒の みで構成 さ れて い る こ と が分かる 。  Fig. 6 shows the metallographic structure of Example 211, which is obtained by heat-treating an alloy having the same composition as in Fig. 4 in the α-region, 142O'C. It can be seen that the entire surface is composed only of coarse lamellar grains of about 2 mm.
(3) 以下、 本発明 に係わ る 第 3 の 合金組成に お け る 各成分の作用並びに限定理由を示す。  (3) Hereinafter, the action of each component and the reason for limitation in the third alloy composition according to the present invention will be described.
① T i : T i は本合金の主要構成元素で あ る 。 T i 濃度が 3 9 原子%未満に な る と 低強度な r 粒が生成 し、 従来技術の合金 と 類似の組織 と な る た め高温強度 、 耐 ク リ ー プ性 は低 く な る 。 一方 T i 濃度が 4 7 原子 %を越え る と 9 相が増加 し過ぎ、 ラ メ ラ ー粒が滅少 し 過ぎ る た め、 組織比率が不適切 と な り 、 高温強度、 耐 ク リ 一 プ性が低下す る 。  ① T i: T i is the main constituent element of this alloy. When the T i concentration is less than 39 atomic%, low-strength r grains are formed, and the structure becomes similar to that of the alloy of the prior art, so that high-temperature strength and creep resistance are reduced. On the other hand, if the Ti concentration exceeds 47 atomic%, the number of phases increases too much, and the number of lamellar grains is too small, resulting in an improper structure ratio, high-temperature strength, and high creep resistance. Operability decreases.
② A 1 : A 1 は本合金の主要構成元素で あ る 。 A ② A 1: A 1 is the main constituent element of this alloy. A
1 濃度が 4 4 原子%未満に な る と /? 相が増加 し過ぎ、 ラ メ ラ ー粒が滅少 し過ぎ る た め、 組織比率が不適切 と な り 望ま し く な い。 一方 A 1 濃度が 4 7 原子%を越え る と 低強度な Γ 粒が生成 し、 従来技術の合金 と 類似 の 組織と な る た め望ま し く な い。 1 If the concentration is less than 44 atomic%, the / phase will increase too much, and the number of lamellar grains will be too small. On the other hand, when the A 1 concentration exceeds 47 atomic%, low-strength grains are formed, similar to the alloy of the prior art. It is not desirable to become an organization.
③ N b : 耐酸化性を 向上さ せ る た め の添加成分で あ る 。 N b 濃度が 6 原子%未満で は添加効果が認め ら れな い。 一方、 N b 濃度が 1 0 原子%を越え る と添加 量が多過ぎ逆に耐酸化性が低下す る 。 ③ Nb : It is an additive component for improving the oxidation resistance. When the Nb concentration is less than 6 atomic%, no effect is observed. On the other hand, if the Nb concentration exceeds 10 atomic%, the added amount is too large, and on the contrary, the oxidation resistance decreases.
④ C r : 第 2 相の 9 相を安定化させ ラ メ ラ ー粒を 微細化す る 作用を もつ。 C r 濃度が 1 原子%未満で は 添加効果が ¾め ら れな い。 一方、 C r 濃度が 3 原子% を越え る と ^ 相が増加 し過ぎ、 ラ メ ラ ー粒が滅少 し過 ぎ る た め、 組織比率が不適切 と な り 望ま し く ない。  ④ Cr: Stabilizes the 9 phases of the second phase and has the effect of refining lamellar grains. If the Cr concentration is less than 1 atomic%, the effect of addition is not improved. On the other hand, if the Cr concentration exceeds 3 atomic%, the ^ phase will increase too much, and the number of lamellar grains will be too small.
⑤ N i 、 C o : N i と C r は同 じ効果を も ち、 β ' 相を安定化 し ^ 相内か ら整合折出 さ せる 作用を もつ 。 N i + C 0 濃度が 1 原子%未満で は添加効果が認,め られない。 一方 N i 十 C 0 濃度が 3 原子%を越え る と β ' 相が増加 し過ぎ、 β ' 相が成長 し過ぎ る ため、 β / β ' 界面が '减少す る た め、 耐ク リ ープ性が低下 し望 ま し く ない。  ⑤N i, C o: N i and C r have the same effect, and have the effect of stabilizing the β 'phase and matching out from the ^ phase. When the concentration of Ni + C 0 is less than 1 atomic%, no effect is observed. On the other hand, if the Ni10C0 concentration exceeds 3 atomic%, the β 'phase increases too much, and the β' phase grows too much, so that the β / β 'interface is too small and the anti-creation This is not desirable due to the deterioration of the loopability.
以下、 本発明の第 3 の合成組成にかかる 実施例につ いて説明す る 。  Hereinafter, examples according to the third synthetic composition of the present invention will be described.
純度 9 9 . 8 %の T i 、 純度 9 9 . 9 %の A 1 、 N b 、 C r 、 N i 、 及び C o を原料 と して用 い、 高周波 溶解に よ っ て表 C に示す組成の ィ ン ゴ ッ ト を作製 し た 。 次に こ の ィ ン ゴ "ノ ト に 1 0 0 0 'C X 5 0 h の均質化 処理を施 し た後、 機械加工によ り 平行部の直径 5 m m 、 標点間距離 2 2 m m 引張り 試験片、 及び ク リ ープ破 断試験片を採取 し た。 ま た 2 0 m m X 2 0 m m X 2 m m の酸化試験片を採取 し た。 Using 99.8% pure Ti and 99.9% pure A1, Nb, Cr, Ni, and Co as raw materials, shown in Table C by high frequency melting An ingot of the composition was prepared. Next, after homogenizing 100 000 'CX 50 h to this ingot, the parallel part diameter was 5 mm and the distance between gauge points was 22 mm by machining. Specimen and creep rupture Cut specimens were collected. Oxidized test specimens of 20 mm X 20 mm X 2 mm were also collected.
高温強度 は 引 張 り 強度に よ っ て評価 し た。 試験温度 は 8 0 0 て で あ り 、 初期ひずみ速度 は 3 . 8 X 1 0 " 4 で あ る 。 耐 ク リ ー ブ性 は ク リ ー プ破断試験で の破 断時間に よ っ て評価 し た。 試験温度 は 8 0 0 て で あ り 、 負荷応力 は 2 0 K g f / m m 2 で あ る 。 ま た耐酸化 性 は酸化増量に よ っ て 評価 し た。 試験温度 は 8 0 0 て で あ り 、 試験時間 は 5 0 0 時間で あ る 。 以上の試験は い ずれ も 大気中で あ っ た。 High-temperature strength was evaluated by tensile strength. The test temperature was 800 and the initial strain rate was 3.8 x 10 " 4. The creep resistance was evaluated by the rupture time in the creep rupture test. It was. the test temperature Ri Oh at 8 0 0 hand, load stress Ru Oh at 2 0 K gf / mm 2. or oxidation resistance was evaluated Tsu by the oxidation weight gain. test temperature is 8 0 0 The test time was 500 hours, and all of the above tests were in air.
Figure imgf000033_0001
Figure imgf000033_0001
例 3 0 1 、 3 0 2 は従来技術の合金で あ り 、 A 1 : 4 8 原子% において N b 又は C r を各 々 2 原子%舍有 す る 合金の結果で あ る が、 引張り 強度は 3 8 K g f / m m 2 程度、 ク リ ープ破断時間は 6 0 時間程度で あ り 、 ま た酸化増量は 1 0 m g ノ c m 2 程度で あ っ た。 例 3 0 3 〜 3 2 0 は本発明の合金で あ る が、 引張 り 強度は 4 8 K g f m m 2 以上、 ク リ ープ破断時間は 4 4 5 時間以上で あ り 、 ま た酸化増量は 3 . 0 m g / c m 2 以下 と いずれの特性 も従来技術の合金よ り は良 好で あ っ た。 Example 31 and 302 are alloys of the prior art, and are the results of alloys having Nb or Cr of 2 atomic% each at 48 atomic% of A 1: tensile strength. the 3 8 K gf / mm 2 about, click Li-loop break time is Ri Oh in about 6 0 hours The weight gain of oxidation was about 10 mg / cm 2 . Example 3 0 3 to 3 2 0 is Ru Oh an alloy of the present invention, tensile strength is 4 8 K gfmm 2 or more, click rie flop rupture time Ri Ah at 4 4 5 hours or more, or oxidation weight gain At 3.0 mg / cm 2 or less, all properties were better than those of the prior art alloys.
例 3 2 1 〜 3 2 2 は T i 濃度が本発明の範囲外の も の の結果で あ る 。 引張 り 強度 と ク リ ープ破断時間は従 来技術の合金 と比較す る と良好であ る も の の、 本発明 の合金に比べ る と劣 っ た。 なお酸化増量は本発明の合 金 と 同等で あ っ た。  Examples 32 1 to 32 2 are the results of Ti concentrations outside the scope of the present invention. Although the tensile strength and creep rupture time were good as compared with the alloy of the prior art, they were inferior to the alloy of the present invention. The oxidation increase was equivalent to that of the alloy of the present invention.
例 3 2 3 、 3 2 4 は A 1 濃度が本発明の範囲外の も の の結果で あ る。 引張り 強度 と ク リ ープ破断時間は従 来技術の合金 と比較す る と良好で あ る も の の、 本発明 の合金に比べ る と劣 っ た。 なお酸化増量は本発明の合 金 と 同等で あ っ た。  Examples 32 3 and 32 4 are the results of A 1 concentrations outside the scope of the present invention. Although the tensile strength and creep rupture time were good as compared to the alloy of the prior art, they were inferior to the alloy of the present invention. The oxidation increase was equivalent to that of the alloy of the present invention.
例 3 2 5 、 3 2 6 は N b 濃度が本発明の範囲外の も の の結果で あ る 。 引張り 強度 と ク リ ープ破断時間は本 発明の合金 と 同等で あ っ た。 酸化増量は従来技術の合 金 と比較す る と良好で あ る も の の、 本発明の合金に比 ベる と劣 っ た。  Examples 32 25 and 32 6 are the results of Nb concentrations outside the range of the present invention. The tensile strength and creep rupture time were equivalent to the alloy of the present invention. Although the oxidation weight increase was good as compared with the conventional alloy, it was inferior to the alloy of the present invention.
例 3 2 7 、 3 2 8 は C r 濃度が本発明の範囲外の も の の結果で あ る 。 引張 り 強度 と ク リ ープ破断時間は従 来技術の合金 と比較す る と良好で あ る も の の、 本発明 の合金に比べ る と劣 っ た。 なお酸化増量は本発明の合 金 と 同等で め っ た。 Examples 32 27 and 32 28 are the results where the Cr concentration is out of the range of the present invention. Although the tensile strength and creep rupture time were good as compared to the alloy of the prior art, they were inferior to the alloy of the present invention. In addition, the oxidation increase is the total of It was equivalent to gold.
例 3 2 9 〜 3 3 2 は N i + C o 濃度が本発明 の範囲 外の も の の結果で あ る 。 引張 り 強度 と酸化增量は本発 明の合金 と 同等であ っ た。 ク リ ープ破断時間は従来技 術の合金 と比較す る と良好で あ る も の の、 本発明の合 金に比べ る と劣 っ た。  Examples 32 29 to 33 32 are the results of those having a Ni + Co concentration outside the scope of the present invention. The tensile strength and oxidation mass were equivalent to the alloy of the present invention. Although the creep rupture time was good as compared with the alloy of the conventional technology, it was inferior to the alloy of the present invention.
産業上の利用可能性  Industrial applicability
(1) 以上詳述 した如 く 本発明の第 1 の合金組成によ れば、 タ ー ビ ン ブ レー ド、 タ ー ビ ン ロ ー ラ 等の高温環 境下において遠心応力が主応力 と な る 部位、 すなわ ち 材料特性 と して比強度 (比重で規格化 し た強度) が要 求さ れる 部位に適用す る に適 し た高強度、 高温耐酸化 性 T i A 1 系金属間化合物基合金が提供で き る。  (1) As described in detail above, according to the first alloy composition of the present invention, the centrifugal stress and the main stress in a high-temperature environment such as a turbine blade and a turbine roller are increased. High strength, high temperature oxidation resistant TiA1 series metal suitable for applications where specific strength (strength normalized by specific gravity) is required as a material property Intermetallic compound-based alloys can be provided.
(2) 以上詳述 した如 く 本発明の第 2 の合成組成に よ れば、 タ ー ビ ン ブ レー ド等の塑性加工性に よ り 製品形 状 と す る も の に適 した、 塑性加工性に優れた、 高温耐 酸化性 T i A 1 系金属間化合物基合金が提供で き る 。  (2) As described in detail above, according to the second synthetic composition of the present invention, the plastic formability of a product shape is improved by the plastic workability of a turbine blade or the like. A high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having excellent workability can be provided.
(3) 以上のよ う に、 本発明の第 3 の合金組成によ れ ば、 高温環境下において長時間使用 さ れ、 遠心応力が 主応力 と な る 部位、 すなわ ち材料特性 と して は高温強 度、 耐ク リ ープ性 (以上、 比強度換算) 並びに耐酸化 性が要求さ れる 部位に適用す る に適 し た高強度、 耐ク リ ープ性、 耐酸化性 T i A 1 系金属間化合物基合金が 提供で き る 。 (3) As described above, according to the third alloy composition of the present invention, the part used for a long time in a high-temperature environment and where the centrifugal stress becomes the main stress, that is, as a material property, Is high strength, creep resistance, oxidation resistance Ti suitable for application to parts where high temperature strength, creep resistance (above, converted into specific strength) and oxidation resistance are required. An A1-based intermetallic compound-based alloy can be provided.

Claims

請求の範囲 The scope of the claims
1 . T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 . 5 〜 3 . 5 原子%を舍有 し、 r 相中に微細な 相 が分散 して な る こ と を特徴 と す る 塑性加工性に優れた 高温耐酸化性 T i A 1 系金属間化合物基合金。  1. Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1.5 to 3.5 atomic% A high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy having excellent plastic workability, characterized in that fine phases are dispersed in the r phase.
2 . T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 : 1 0 原子%、 C r 濃度 : 1 . 5 〜 3 . 5 原子%を舍有す る 合金を溶解、 $寿造後 、 1 1 3 0 〜 1 2 3 0 て の範囲で熱処理を行 う こ と を 特徴 とす る 塑性加工性に優れた高温耐酸化性 T i A 1 系金属間化合物基合金。  2. Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to: 10 atomic%, Cr concentration: 1.5 to 3.5 atomic % Of the alloy that has a high percentage of high-temperature oxidation resistance with excellent plastic workability characterized by heat treatment in the range of 110 to 230 after melting the alloy containing $%. i A1 based intermetallic compound based alloy.
3 . T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 〜 3 原子%を舍有 し、 粒径 : 1 0 0 m以下の微細 な ラ メ ラ ー粒が発達 して い る こ と を特徴 と す る 高強度 、 高温耐酸化性 T i A 1 系金属間化合物基合金。  3. Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1 to 3 atomic%. A high-strength, high-temperature oxidation-resistant TiA1-based intermetallic compound-based alloy characterized by the development of fine lamellar grains having a particle size of 100 m or less.
4 . T i 濃度 : 4 2 〜 4 8 原子%、 A 1 濃度 : 4 4 〜 4. Ti concentration: 42 to 48 atomic%, A1 concentration: 44 to
4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 〜 3 原子%を舍有す る 合金を 1 3 0 0 〜 1 4 0 0 て の範囲で熱処理を行 う こ と を特徴 とす る高強度、 高温 耐酸化性 T i A 1 系金属間化合物基合金。 An alloy containing 47 at.%, Nb concentration: 6 to 10 at.%, And Cr concentration: 1 to 3 at.% Is subjected to heat treatment in the range of 130 to 140 at. High strength, high temperature oxidation resistance Ti A1 based intermetallic compound based alloy characterized by the following.
5 . T i 濃度 : 3 9 〜 4 7 原子%、 A 1 濃度 : 4 4 〜 4 7 原子%、 N b 濃度 : 6 〜 1 0 原子%、 C r 濃度 : 1 〜 3 原子%、 N i + C o 濃度 : 1 〜 3 原子%を舍有 す る 高強度、 耐ク リ ーブ性、 耐酸化性 T i A l 系金属 間化合物基合金。 5. Ti concentration: 39 to 47 atomic%, A1 concentration: 44 to 47 atomic%, Nb concentration: 6 to 10 atomic%, Cr concentration: 1 to 3 atomic%, Ni + Co concentration: 1 to 3 atomic% High strength, creep resistance, oxidation resistance TiAl-based intermetallic compound-based alloy.
PCT/JP1995/001349 1994-10-25 1995-07-06 TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY WO1996012827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19581384T DE19581384C2 (en) 1994-10-25 1995-07-06 Titanium-aluminum alloy based on an intermetallic compound
US08/619,594 US6051084A (en) 1994-10-25 1995-07-06 TiAl intermetallic compound-based alloys and methods for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28395294A JP3332615B2 (en) 1994-10-25 1994-10-25 TiAl-based intermetallic compound-based alloy and method for producing the same
JP6/283952 1994-10-25
JP626295A JPH08199264A (en) 1995-01-19 1995-01-19 Titanium-aluminum series intermetallic compound base alloy
JP7/6262 1995-01-19

Publications (1)

Publication Number Publication Date
WO1996012827A1 true WO1996012827A1 (en) 1996-05-02

Family

ID=26340361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001349 WO1996012827A1 (en) 1994-10-25 1995-07-06 TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY

Country Status (3)

Country Link
US (1) US6051084A (en)
DE (1) DE19581384C2 (en)
WO (1) WO1996012827A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287991B2 (en) * 2000-02-23 2009-07-01 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
DE102007051499A1 (en) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
JP2009215631A (en) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
DE102009050603B3 (en) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Process for producing a β-γ-TiAl base alloy
CN101942583A (en) * 2010-09-30 2011-01-12 洛阳双瑞精铸钛业有限公司 High-temperature resistant TiAl-based alloy with excellent casting performance and preparation method thereof
EP3012337B1 (en) * 2013-06-19 2018-04-25 National Institute for Materials Science Hot-forged ti-al-based alloy and method for producing same
CN104028734B (en) * 2014-06-18 2016-04-20 西北工业大学 The method of the low segregation of high niobium containing titanium aluminium alloy and even tissue refinement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578769A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Heat resistant alloy on intermetallic
JPH05255783A (en) * 1991-12-23 1993-10-05 General Electric Co <Ge> Manufacture of titanium aluminide casting
JPH05255827A (en) * 1992-03-13 1993-10-05 Sumitomo Metal Ind Ltd Production of alloy based on tial intermetallic compound
JPH05320791A (en) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound alloy
JPH06116692A (en) * 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19964C (en) * G. POULSON in Hamburg Cofferdam clamp forceps with reflector
US5089225A (en) * 1989-12-04 1992-02-18 General Electric Company High-niobium titanium aluminide alloys
JPH03285051A (en) * 1990-03-30 1991-12-16 Sumitomo Light Metal Ind Ltd Method for forging titanium aluminide
US5284620A (en) * 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
JP2546551B2 (en) * 1991-01-31 1996-10-23 新日本製鐵株式会社 γ and β two-phase TiAl-based intermetallic alloy and method for producing the same
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
US5264051A (en) * 1991-12-02 1993-11-23 General Electric Company Cast gamma titanium aluminum alloys modified by chromium, niobium, and silicon, and method of preparation
DE4219470A1 (en) * 1992-06-13 1993-12-16 Asea Brown Boveri Component for high temperatures, in particular turbine blade, and method for producing this component
JPH06346173A (en) * 1993-06-11 1994-12-20 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound base alloy
US5417781A (en) * 1994-06-14 1995-05-23 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578769A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Heat resistant alloy on intermetallic
JPH05255783A (en) * 1991-12-23 1993-10-05 General Electric Co <Ge> Manufacture of titanium aluminide casting
JPH05255827A (en) * 1992-03-13 1993-10-05 Sumitomo Metal Ind Ltd Production of alloy based on tial intermetallic compound
JPH05320791A (en) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound alloy
JPH06116692A (en) * 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production

Also Published As

Publication number Publication date
DE19581384C2 (en) 1999-03-11
US6051084A (en) 2000-04-18
DE19581384T1 (en) 1996-12-19

Similar Documents

Publication Publication Date Title
Sun et al. Alloying mechanism of beta stabilizers in a TiAl alloy
JP4996468B2 (en) High heat resistance, high strength Co-based alloy and method for producing the same
JP4287991B2 (en) TiAl-based alloy, method for producing the same, and moving blade using the same
JP6430103B2 (en) Titanium alloy with good oxidation resistance and high strength at high temperature
JP5278936B2 (en) Heat resistant superalloy
US4879092A (en) Titanium aluminum alloys modified by chromium and niobium and method of preparation
JPH04272154A (en) Oxidation resisting low expanding super-alloy
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JPWO2008032751A1 (en) Ni-based single crystal superalloy
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JPH0593234A (en) Microalloyed nial intermetalic compound having improved ductility
JPWO2010021314A1 (en) Oxide dispersion strengthened alloy
Cui et al. Phase stability and yield stress of Ni-base superalloys containing high Co and Ti
JP5226846B2 (en) High heat resistance, high strength Rh-based alloy and method for producing the same
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
WO1996012827A1 (en) TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
JPH10259435A (en) Iridium base alloy
US7632455B2 (en) High temperature niobium alloy
Yamaguchi et al. Gamma titanium aluminide alloys
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JPH05255782A (en) Cast gamma titanium-aluminum alloy modified by chromium, niobium and silicon and its production
JP3393378B2 (en) High melting point superalloy and its manufacturing method
KR100412426B1 (en) TiAl-based intermetallics compound comprising yttrium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08619594

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref document number: 19581384

Country of ref document: DE

Date of ref document: 19961219

WWE Wipo information: entry into national phase

Ref document number: 19581384

Country of ref document: DE