EP2113036B1 - Verfahren zur herstellung von einem faserverbundwerkstoff mit metallischer matrix - Google Patents

Verfahren zur herstellung von einem faserverbundwerkstoff mit metallischer matrix Download PDF

Info

Publication number
EP2113036B1
EP2113036B1 EP08706752.6A EP08706752A EP2113036B1 EP 2113036 B1 EP2113036 B1 EP 2113036B1 EP 08706752 A EP08706752 A EP 08706752A EP 2113036 B1 EP2113036 B1 EP 2113036B1
Authority
EP
European Patent Office
Prior art keywords
metallic
layer
fibers
fiber
metallization layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08706752.6A
Other languages
English (en)
French (fr)
Other versions
EP2113036A2 (de
Inventor
Martin Englhart
Hans Krug
Dietrich Jonke
Helmut Piringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus SAS
Original Assignee
Airbus SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus SAS filed Critical Airbus SAS
Publication of EP2113036A2 publication Critical patent/EP2113036A2/de
Application granted granted Critical
Publication of EP2113036B1 publication Critical patent/EP2113036B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249927Fiber embedded in a metal matrix

Definitions

  • the invention relates to a method for producing a fiber composite material with a metallic matrix.
  • fiber composites made of plastic, in which, for example, glass, carbon or aramid fibers are embedded in a synthetic resin such as epoxy, polyester or vinyl ester resin or a similar synthetic resin.
  • the synthetic resin forms a matrix which encloses the fibers, which are typically arranged in the form of a fabric, woven fabric or braid, and connects them to one another.
  • the problem with such conventional plastic fiber composites is the fact that they are flammable in the event of damage, such as vehicles, such as land, water or aircraft in particular splinter-break with sharp-edged, sharp fragments.
  • composites are known with metallic matrix (also called metal matrix composite materials), which are, however, usually technically complex to produce, since primitive or molded bodies are used, which also has the disadvantage that the geometric freedom of the semifinished product or component to be produced is quite limited.
  • metallic matrix also called metal matrix composite materials
  • the metal matrix composite materials used hitherto are usually heavy, which is disadvantageous in particular in the aerospace industry. In addition, they have the disadvantage that no frictional connection between fibers and metal is generated.
  • PVD / CVD process for example, fibers can be coated all-encompassing, but only with relatively high expenditure on equipment at the same time long coating times.
  • a layer thickness For example, 0.1 mm in a PVD / CVD process, depending on the material a period of several hours to several days is required.
  • the PVD / CVD process a variety of different materials can be deposited, but only with above-average process times.
  • the component size to be coated is limited by the dimensioning of the required vacuum boiler.
  • the object of the invention is to provide a method for producing a metal matrix fiber composite which is simple and quick to perform.
  • the invention provides a fiber composite material with a metallic matrix. This is characterized by a consisting of individual fibers and a fiber material applied thereto, the metallic matrix forming metallic coating, wherein the metallic coating a metallization layer surrounding the fibers and a metallic end layer, in turn applied to the metallization layer.
  • the metallic coating may comprise an additional metallic adhesive layer located between the metallization layer and the metallic end layer, which is advantageous in thermally sprayed final layers to improve adhesion.
  • the metallization layer may have a thickness of 0.5 ⁇ m to 0.5 mm.
  • the metallic end layer can have a thickness of 2 ⁇ m to 20 mm or preferably 20 ⁇ m to 2 mm.
  • the additional metallic adhesive layer may have a thickness of 2 ⁇ m to 1 mm or 20 ⁇ m to 200 ⁇ m.
  • the fibers may be glass, carbon and / or aramid fibers. Particular preference is given to using fibers of electrically non-conductive material.
  • the metallization layer and / or the additional metallic adhesion layer may contain copper and / or nickel.
  • the final metal layer is typically a light metal (e.g., aluminum), which is particularly advantageous for weight reasons. However, it is also possible to use copper base materials or heavy metals.
  • the fibrous material may be formed by a scrim (e.g., fiber nonwoven), woven or braided fiber.
  • the fibers of the fabric, fabric or braid are as such with the metallization layer or with the Metallization layer and the additional metallic adhesive layer coated, and the scrim, fabric or braid in total is coated with the final layer.
  • the fibers of the fabric, fabric or braid are as such with the metallization layer or with the Metallization layer and the additional metallic adhesive layer coated, and the scrim, fabric or braid in total is coated with the final layer.
  • the metal matrix fiber composite can be used in aircraft construction (e.g., wings, rudders, etc.), automotive racing (e.g., spoilers, fairing, underbody, etc.), missiles, sports equipment, and more.
  • aircraft construction e.g., wings, rudders, etc.
  • automotive racing e.g., spoilers, fairing, underbody, etc.
  • missiles sports equipment, and more.
  • a metallic coating which forms the metallic matrix is applied to a fiber material consisting of individual fibers, wherein the metallic coating is formed by a metallization layer surrounding the fibers and a metallic end layer which in turn is applied to the metallization layer Arc wire spraying is made.
  • Application by thermal spraying is particularly simple, fast and inexpensive, and allows a high degree of flexibility with regard to the desired geometry.
  • the metallic coating contains a metallic adhesive layer that is applied between the metallization layer and the metallic end layer, which is advantageous because the final layer is injected by arc wire. is applied.
  • the metallization layer can be applied chemically / reactively or by thermal spraying.
  • the additional metallic adhesive layer is applied galvanically.
  • the fibers forming the fibrous material are e.g. Glass, carbon and / or aramid fibers.
  • fibers of electrically nonconductive material which are rendered conductive by the metallization layer described above.
  • the metallization layer and / or the additional metallic adhesion layer can be formed by copper and / or nickel.
  • the metallic end layer is typically made of a light metal (e.g., aluminum), but it may be formed of a copper-based alloy or a heavy metal.
  • the fiber material can be formed by a scrim, fabric or mesh of the fibers.
  • the fibers of the fabric, fabric or braid may be coated with the metallization layer or with the metallization layer and the additional metallic adhesion layer, and the fabric, fabric or braid as a whole may be coated with the final layer. It is likewise possible for the fabric layer, woven fabric or braid in its entirety to be coated with the metallization layer and, if appropriate, the adhesion layer in such a way that the fibers are coated in an all-encompassing manner, and then the final layer is applied.
  • the invention has the particular advantage that a fiber composite material with a metallic matrix is provided, in which the fibers are non-positively connected to the metallic matrix, in particular the metallization layer. This is not the case with previous methods and metal matrix composites.
  • the (single) figure shows in a schematic enlarged cross-sectional view a section through a fiber composite material according to the invention with metallic matrix.
  • the fiber composite material shown in the figure which is generally designated by the reference numeral 10, comprises a metallic matrix, which binds and surrounds a fiber material.
  • the fiber material consists of the fibers 1 shown very schematically in the figure, which may be formed for example by electrically non-conductive glass fibers, or for example by carbon or aramid fibers.
  • a metallic conductive layer which is also referred to below as the metallization layer 2, on which in turn a metallic adhesive layer 3 may be applied.
  • the metallization layer 2 and the metallic adhesion layer 3 are each applied to the individual fibers 1, which are processed in the illustrated embodiment to a mesh fabric.
  • the metallic end layer 4 is applied to the fiber fabric as a whole.
  • the metallic end layer 4 can also be applied directly to the metallization layer 2; In this case, only the metallization layer 2 is located on the individual fibers 1, which are then processed, for example, into a fiber fabric, onto which then the metallic final layer 4 is applied.
  • a finished fiber material for example in the form of a fiber-mesh semifinished product or a mesh fabric
  • an adhesion layer 3 may optionally be applied to the metallization layer 2 in order subsequently to apply the final layer 4.
  • the fibers 1 must first be pretreated in order to coat them adhesively, in particular if they consist of electrically non-conductive material (for example glass fibers).
  • the application of the metallic end layer 4 is effected by arc wire spraying.
  • the metallization layer 2 can be applied, for example, reductive / chemical or by thermal spraying.
  • a prior application of a metallization and / or adhesive layer is useful, which ensures an intensive bonding of the metallic end layer 4 to the fibers 1.
  • the additional metallic adhesive layer 3 can be applied, for example, galvanically or by thermal spraying.
  • the metallization layer 2 or the metallization layer 2 and the metallic adhesion layer 3 thus form the basis for the metallic end layer 4.
  • the metallization layer 2 can also be applied to the individual fibers 1, while the additional metallic adhesion layer 3 is applied to the fiber material formed by the fibers 1, whereupon in turn the metallic end layer 4 is applied.
  • a prefabricated (for example commercially available) fiber material can be assumed, which is provided with the metallization layer 2 in a first step. In this case, care must be taken that the individual fibers 1 are each enclosed by the metallization layer 2.
  • the metallization layer 2 may typically have a thickness of 0.5 ⁇ m to 0.5 mm, but the thickness is not limited to this range.
  • the additional metallic adhesive layer 3 may have a thickness of 2 ⁇ m to 1 mm, in particular from 20 ⁇ m to 200 ⁇ m, without, however, being restricted to this range.
  • the metallic end layer 4 can be a have very different thickness, depending on the application range between 2 microns and 20 mm, preferably between 20 microns and 2 mm.
  • the metallic conductive layer or metallization layer 2 may contain or may be formed by any metals suitable for the purpose (e.g., copper and / or nickel).
  • the metallic end layer 4 may also contain or be formed by any suitable metals.
  • the end layer 4 is made of light metals (e.g., aluminum), copper base materials, or heavy metals.
  • the additional electroplated or by thermal spraying adhesive layer 3 may also contain or be formed by copper and / or nickel and / or aluminum or another suitable metal.
  • the described fiber matrix composite with metallic matrix forms a highly solid, non-flammable, unbreakable material without fragmentation behavior with an optimum ratio of strength to weight.
  • the matrix materials are not limited to light metals, e.g. Aluminum, any other suitable metals can be used, which can be applied in a suitable form as a layer on the prepared fiber material.
  • the actual matrix is formed essentially only by this coating, and a non-positive connection between the fibers and the metallic matrix is produced.
  • a particular advantage over, for example PVD / CVD method consists firstly that the order speed is much greater, that the fibers can be coated from all sides, and that in terms of the size of the components are not the limits as in the said vacuum process, at where the dimension is limited by the size of the surrounding vacuum vessel.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbundwerkstoffs mit metallischer Matrix.
  • Es sind Faserverbundwerkstoffe aus Kunststoff bekannt, bei denen beispielsweise Glas-, Kohlenstoff- oder Aramidfasern in ein Kunstharz wie Epoxid-, Polyester- oder Vinylesterharz oder ein ähnliches Kunstharz eingebettet sind. Dabei bildet das Kunstharz'eine Matrix, welche die typischerweise in Form eines Geleges, Gewebes oder Geflechts angeordneten Fasern umhüllt und miteinander verbindet. Problematisch bei derartigen herkömmlichen Kunststoff-Faserverbundwerkstoffen ist der Umstand, dass sie im Schadensfall, etwa bei Fahrzeugen, wie Land-, Wasser- oder insbesondere Luftfahrzeugen brennbar und splitterbruchempfindlich mit scharfkantigen, spitzen Bruchstücken sind.
  • Zudem sind Verbundwerkstoffe mit metallischer Matrix bekannt (auch Metallmatrix-Verbundwerkstoffe genannt), die jedoch in der Regel technisch aufwendig herzustellen sind, da Ur- oder Formkörper verwendet werden, was zudem den Nachteil mit sich bringt, dass die geometrische Gestaltungsfreiheit des herzustellenden Halbzeuges oder Bauteils recht eingeschränkt ist. Des Weiteren sind die bisher verwendeten Metallmatrix-Verbundwerkstoffe meist schwer, was insbesondere in der Luft- und Raumfahrttechnik von Nachteil ist. Zudem weisen sie den Nachteil auf, dass keine kraftschlüssige Verbindung zwischen Fasern und Metall erzeugt wird.
  • Mit PVD/CVD-Verfahren können beispielsweise Fasern allumfassend beschichtet werden, allerdings nur unter verhältnismäßig großem apparativem Aufwand bei gleichzeitig langen Beschichtungszeiten. Für eine Schichtdicke von beispielsweise 0,1 mm ist bei einem PVD/CVD-Verfahren je nach Werkstoff ein Zeitraum von mehreren Stunden bis zu einigen Tagen erforderlich. Somit kann beim PVD/CVD-Verfahren zwar eine Vielzahl von verschiedenen Werkstoffen abgeschieden werden, allerdings nur mit überdurchschnittlich langen Prozesszeiten. Zudem ist die zu beschichtende Bauteilgröße durch die Dimensionierung des erforderlichen Vakuumkessels beschränkt.
  • Aus der US 5 846 288 ist ein Verfahren zur Herstellung eines elektrisch leitenden Materials, welches beispielsweise zur Herstellung von gepressten oder gesinterten leitenden Streifen oder Stäben verwendet werden kann, bekannt, bei dem in einer Lösung von Silbersalzen aus Zinnoxid hergestellte granulare Partikel beschichtet werden.
  • Weiterer Stand der Technik ist aus der US 5326525 A , US 3535093 A , US 5426000 A , US 4132828 A , US 853294 A , US5352537 A und aus der GB 2219006 A bekannt.
  • Die Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung eines Metallmatrix-Faserverbundwerkstoffs zu schaffen, das einfach und schnell durchzuführen ist.
  • Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Faserverbundwerkstoffs mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen und Weiterbildungen des Erfindungsgegenstands sind in den Unteransprüchen angegeben.
  • Durch die Erfindung wird ein Faserverbundwerkstoff mit metallischer Matrix geschaffen. Dieser ist gekennzeichnet durch ein aus einzelnen Fasern bestehendes Fasermaterial und eine darauf aufgebrachte, die metallische Matrix bildende metallische Beschichtung, wobei die metallische Beschichtung eine die Fasern umgebende Metallisierungsschicht und eine ihrerseits auf der Metallisierungsschicht aufgetragene metallische Endschicht umfasst.
  • Die metallische Beschichtung kann eine zwischen der Metallisierungsschicht und der metallischen Endschicht befindliche zusätzliche metallische Haftschicht umfassen, welche bei thermisch gespritzten Endschichten zur Verbesserung der Haftung vorteilhaft ist.
  • Die Metallisierungsschicht kann eine Dicke von 0,5 µm bis 0,5 mm aufweisen.
  • Die metallische Endschicht kann eine Dicke von 2 µm bis 20 mm oder bevorzugt von 20 µm bis 2 mm aufweisen.
  • Die zusätzliche metallische Haftschicht kann eine Dicke von 2 µm bis 1 mm bzw. 20 µm bis 200 µm aufweisen.
  • Die Fasern können Glas-, Kohlenstoff- und/oder Aramidfasern sein. Besonders bevorzugt werden Fasern aus elektrisch nicht leitendem Material verwendet.
  • Die Metallisierungsschicht und/oder die zusätzliche metallische Haftschicht kann Kupfer und/oder Nickel enthalten.
  • Die metallische Endschicht besteht typischerweise aus einem Leichtmetall (z.B. Aluminium), was aus Gewichtsgründen besonders vorteilhaft ist. Es können aber auch Kupfer-Basiswerkstoffe oder Schwermetalle eingesetzt werden.
  • Das Fasermaterial kann durch ein Gelege (z.B. Faser-Vlies), Gewebe oder Geflecht der Fasern gebildet sein.
  • Gemäß einer Ausführungsform sind die Fasern des Geleges, Gewebes oder Geflechts als solche mit der Metallisierungsschicht oder mit der Metallisierungsschicht und der zusätzlichen metallischen Haftschicht beschichtet, und das Gelege, Gewebe oder Geflecht insgesamt ist mit der Endschicht beschichtet. Ebenso ist es jedoch möglich von einem bereits vorgefertigten Faser-Gelege, -gewebe oder -geflecht auszugehen, das in seiner Gesamtheit zunächst mit einer Metallisierungsschicht und ggf. einer Haftschicht versehen wird, bevor abschließend die Endschicht aufgetragen wird.
  • Der Metallmatrix-Faserverbundwerkstoff kann im Flugzeugbau (z.B. Flügel, Ruder etc.), im Automobil-Rennsport (z.B. Spoiler, Verkleidung, Bodengruppe etc.), bei Flugkörpern, Sportgeräten und vielem mehr eingesetzt werden.
  • Erfindungsgemäß ist es vorgesehen, dass auf ein aus einzelnen Fasern bestehendes Fasermaterial eine die metallische Matrix bildende metallische Beschichtung aufgebracht wird, wobei die metallische Beschichtung durch eine die Fasern umgebende Metallisierungsschicht und eine ihrerseits auf die Metallisierungsschicht aufgebrachte metallische Endschicht gebildet wird, die (Endschicht) durch Lichtbogendrahtspritzen hergestellt wird. Ein Aufbringen durch thermisches Spritzen ist besonders einfach, schnell und kostengünstig, und ermöglicht eine hohe Flexibilität hinsichtlich der gewünschten Geometrie.
  • Zusätzlich enthält die metallische Beschichtung eine metallische Haftschicht, die zwischen der Metallisierungsschicht und der metallischen Endschicht aufgebracht wird, was vorteilhaft ist, da die Endschicht durch Lichtbogendraht-spritzen. aufgetragen wird.
  • Die Metallisierungsschicht kann chemisch/reaktiv oder durch thermisches Spritzen aufgebracht werden.
  • Die zusätzliche metallische Haftschicht wird galvanisch aufgebracht.
  • Die das Fasermaterial bildenden Fasern sind z.B. Glas-, Kohlenstoff- und/oder Aramidfasern. Besondere Vorteile bieten sich jedoch, wenn Fasern aus elektrisch nicht leitendem Material verwendet werden, die durch die oben beschriebene Metallisierungsschicht leitfähig gemacht werden.
  • Die Metallisierungsschicht und/oder die zusätzliche metallische Haftschicht kann durch Kupfer und/oder Nickel gebildet werden.
  • Die metallische Endschicht besteht typischerweise aus einem Leichtmetall (z.B. Aluminium), sie kann aber auch aus einer Kupfer-Basislegierung oder einem Schwermetall gebildet werden.
  • Das Fasermaterial kann durch ein Gelege, Gewebe oder Geflecht der Fasern gebildet sein.
  • Die Fasern des Geleges, Gewebes oder Geflechts können als solche mit der Metallisierungsschicht oder mit der Metallisierungsschicht und der zusätzlichen metallischen Haftschicht beschichtet werden, und das Gelege,.Gewebe oder Geflecht insgesamt mit der Endschicht beschichtet werden. Ebenso ist es möglich, dass das Fasergelege, -gewebe oder -geflecht in seiner Gesamtheit mit der Metallisierungsschicht und ggf. der Haftschicht derart beschichtet wird, dass die Fasern allumfassend beschichtet sind, und dass anschließend die Endschicht aufgetragen wird.
  • Die Erfindung weist insbesondere den Vorteil auf, dass ein Faserverbundwerkstoff mit metallischer Matrix geschaffen wird, bei dem die Fasern mit der metallischen Matrix, insbesondere der Metallisierungsschicht, kraftschlüssig verbunden sind. Dies ist bei bisherigen Verfahren und MetallMatrix-Verbundwerkstoffen nicht der Fall.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert.
  • Die (einzige) Figur zeigt in einer schematisierten vergrößerten Querschnittsansicht einen Schnitt durch einen erfindungsgemäß hergestellten Faserverbundwerkstoff mit metallischer Matrix.
  • Der in der Figur dargestellte Faserverbundwerkstoff, der insgesamt mit dem Bezugszeichen 10 bezeichnet ist, umfasst eine metallische Matrix, welche ein Fasermaterial bindet und umgibt. Das Fasermaterial besteht aus den in der Figur sehr schematisch dargestellten Fasern 1, welche beispielsweise durch elektrisch nicht leitende Glasfasern gebildet sein können, oder z.B. auch durch Kohlenstoff- oder Aramidfasern. Auf den Fasern 1 befindet sich eine metallische leitende Schicht, die nachfolgend auch als Metallisierungsschicht 2 bezeichnet wird, auf welcher wiederum eine metallische Haftschicht 3 aufgebracht sein kann. Die Metallisierungsschicht 2 und die metallische Haftschicht 3 sind jeweils auf den einzelnen Fasern 1 aufgebracht, welche bei dem dargestellten Ausführungsbeispiel zu einem Gittergewebe verarbeitet sind. Die metallische Endschicht 4 dagegen ist auf das Fasergewebe insgesamt aufgebracht. Anstelle eine metallische Haftschicht 3 vorzusehen, kann die metallische Endschicht 4 auch direkt auf die Metallisierungsschicht 2 aufgebracht sein; in diesem Falle befindet sich auf den Einzelfasern 1 lediglich die Metallisierungsschicht 2, die anschließend z.B. zu einem Fasergewebe verarbeitet werden, auf das dann insgesamt die metallische Endschicht 4 aufgebracht wird. Ebenso kann von einem fertigen Fasermaterial (z.B. in Form eines Fasergeflecht-Halbzeuges oder eines Gittergewebes) ausgegangen werden, das in seiner Gesamtheit zunächst mit der Metallisierungsschicht 2 derart versehen wird, dass die einzelnen Fasern 1 des Fasermaterials jeweils allumfassend von der Metallisierungsschicht 2 umgeben bzw. umschlossen sind. Anschließend kann optional eine Haftschicht 3 auf die Metallisierungsschicht 2 aufgetragen werden, um anschließend die Endschicht 4 aufzutragen.
  • Die Fasern 1 müssen zunächst vorbehandelt werden, um sie haftfest beschichten zu können, insbesondere wenn sie aus elektrisch nicht leitendem Material bestehen (z.B. Glasfasern). Das Aufbringen der metallischen Endschicht 4 erfolgt durch Lichtbogendrahtspritzen. Die Metallisierungsschicht 2 kann beispielsweise reduktiv/chemisch oder durch thermisches Spritzen aufgetragen werden.
  • Eine vorherige Aufbringung einer Metallisierungs- und/oder Haftschicht ist nützlich, welche eine intensive Bindung der metallischen Endschicht 4 an die Fasern 1 gewährleistet. Die zusätzliche metallische Haftschicht 3 kann beispielsweise galvanisch oder mittels thermischen Spritzens aufgebracht werden. Die Metallisierungsschicht 2 bzw. die Metallisierungsschicht 2 und die metallische Haftschicht 3 bilden somit die Basis für die metallische Endschicht 4.
  • Gemäß einer Modifikation kann die Metallisierungsschicht 2 auch auf die einzelnen Fasern 1 aufgebracht werden, während die zusätzliche metallische Haftschicht 3 auf das durch die Fasern 1 gebildete Fasermaterial aufgebracht wird, worauf dann wiederum die metallische Endschicht 4 aufgebracht wird.
  • Ebenso kann, wie bereits voranstehend beschrieben, gleich von einem vorgefertigten (z.B. handelsüblichen) Fasermaterial ausgegangen werden, das in einem ersten Schritt mit der Metallisierungsschicht 2 versehen wird. Hierbei ist darauf zu achten, dass die einzelnen Fasern 1 jeweils von der Metallisierungsschicht 2 umschlossen werden.
  • Die Metallisierungsschicht 2 kann typischerweise eine Dicke von 0,5 µm bis 0,5 mm haben, ohne dass die Dicke jedoch auf diesen Bereich beschränkt ist. Die zusätzliche metallische Haftschicht 3 kann eine Dicke von 2 µm bis zu 1 mm, insbesondere von 20 µm bis 200 µm haben, ohne jedoch auf diesen Bereich beschränkt zu sein. Die metallische Endschicht 4 schließlich kann eine sehr unterschiedliche Dicke haben, je nach Anwendungsbereich zwischen 2 µm und 20 mm, bevorzugt zwischen 20 µm und 2 mm.
  • Die metallische Leitschicht oder Metallisierungsschicht 2 kann beliebige für den Zweck geeignete Metalle enthalten oder durch diese gebildet sein (z.B. Kupfer und/oder Nickel). Die metallische Endschicht 4 kann ebenfalls beliebige geeignete Metalle enthalten oder durch diese gebildet sein. Typischerweise besteht die Endschicht 4 aus Leichtmetallen (z.B. Aluminium), Kupfer-Basiswerkstoffen oder Schwermetallen.
  • Die zusätzliche galvanisch oder durch thermisches Spritzen aufgetragene Haftschicht 3 kann ebenfalls Kupfer und/oder Nickel und/oder auch Aluminium oder ein anderes geeignetes Metall enthalten oder durch dieses gebildet sein.
  • Besonders vorteilhaft ist, dass eine kraftschlüssige Verbindung von den Einzelfasern mit dem Metall, insbesondere der Metallisierungsschichten, erzeugt wird. Durch die Schrumpfung flüssig aufgebrachter Metalle bilden sich viele Mikrospalte zwischen der Faser und dem Metall.
  • Beispiel:
  • Ein Ausführungsbeispiel eines metallischen Faserverbundwerkstoffs kann folgendermaßen hergestellt werden:
    • Entfetten eines aus Glasfasern 1 gebildeten Gittergewebes in einer alkalischen, wässrigen Abkochentfettung, danach gründliches Spülen in VE-Wasser;
    • chemische (außenstromlose) Metallisierung (z.B. chemisch Kupfer oder chemisch Nickel) des entfetteten Glasfaser-Gittergewebes zur Erzeugung einer dünnen, elektrisch leitfähigen Umhüllung der bisher elektrisch nichtleitenden Fasern 1, sowie gründliches Spülen;
    • galvanisches Verstärken der mit der Leitschicht bzw. Metallisierungsschicht 2 dünn beschichteten Fasern 1 auf eine Schichtdicke von z.B. 150 µm (z.B. Nickelbad, Stromdichte 2-3A/dm2), um eine zusätzliche metallische Haftschicht 3 auszubilden, sowie wiederum gründliches Spülen und Auftrocknen des Glasfaser-Gittergewebes;
    • beidseitiges, leichtes Strahlen der galvanisierten (vernickelten) Oberfläche mit Korund (Korngröße z.B. 0 bis 100 µm) in einer Injektorstrahlanlage, um dadurch die Oberfläche aufzurauen;
    • beidseitiges Beschichten der aufgerauten Oberfläche mittels Lichtbogendrahtspritzens mit einem Leichtmetall (z.B. Aluminium). Das Lichtbogendrahtspritzen kann solange durchgeführt werden bis die Lücken des ursprünglichen Glasfasergitters geschlossen sind und eine kompakte, durchgehende Schicht (Verbund) entstanden ist. Dieser Verbund zeichnet sich durch eine hohe Festigkeit bei gleichzeitig geringem Eigengewicht aus. Ferner sind mechanische Bearbeitungsmethoden wie Bohren, Fräsen, Schleifen, Polieren oder ähnliches dieses Verbundes möglich.
  • Der beschriebene Faserverbundwerkstoff mit metallischer Matrix bildet einen in hohem Maße festen, nicht entflammbaren, bruchunempfindlichen Werkstoff ohne Splitterbruchverhalten mit einem optimalen Verhältnis von Festigkeit zu Gewicht. Bei den Matrixwerkstoffen ist man nicht auf Leichtmetalle wie z.B. Aluminium beschränkt, es können beliebige andere geeignete Metalle verwendet werden, welche in einer geeigneten Form als Schicht auf das vorbereitete Fasermaterial aufgebracht werden können. Die eigentliche Matrix wird im Wesentlichen erst durch diese Beschichtung gebildet, und eine kraftschlüssige Verbindung zwischen Fasern und metallischer Matrix wird erzeugt.
  • Durch Nutzung einer Kombination eines galvanischen Verfahrens (gerichteter Faraday'scher Prozess) zur Erzeugung einer Metallisierungs-, Leit- oder Haftschicht mit einem Prozess hoher Auftragsgeschwindigkeit, insbesondere thermischem Spritzen, ist eine wirksame Umhüllung des Fasermaterials mit hoher Auftragsgeschwindigkeit möglich. Dabei ist man nicht auf die gängigen Metalle der elektrochemischen Spannungsreihe beschränkt, wie es z.B. bei dem galvanischen Verfahren der Fall ist. Was die Größe der herstellbaren Faserverbunde, also letztlich der herstellbaren Bauteile betrifft, sind nahezu keine Grenzen gesetzt, da thermisches Spritzen bei Bauteilen von nahezu beliebiger Größe durchgeführt werden kann. Ein besonderer Vorteil gegenüber beispielsweise PVD/CVD-Verfahren besteht zum einen darin, dass die Auftragsgeschwindigkeit wesentlich größer ist, dass die Fasern von allen Seiten beschichtet werden können, und dass hinsichtlich der Größe der Bauteile nicht die Grenzen wie bei den besagten Vakuumverfahren bestehen, bei denen die Dimension durch die Größe des umgebenden Vakuumkessels beschränkt sind.
  • Bezugszeichenliste
  • 1
    Fasern
    2
    Metallisierungsschicht, metallische Leitschicht
    3
    metallische Haftschicht
    4
    metallische Endschicht
    10
    Faserverbundwerkstoff

Claims (2)

  1. Verfahren zur Herstellung eines Faserverbundwerkstoffs mit metallischer Matrix, wobei auf ein einzelne Fasern (1) enthaltendes Fasermaterial eine die metallische Matrix bildende metallische Beschichtung aufgebracht wird, wobei die metallische Beschichtung durch eine die Fasern (1) umgebende Metallisierungsschicht (2) und eine metallische Endschicht (4) gebildet wird, dadurch gekennzeichnet, dass die Endschicht (4) durch Lichtbogendrahtspritzen hergestellt wird, wobei zusätzlich zwischen der Metallisierungsschicht (2) und der metallischen Endschicht (4) eine metallische Haftschicht (3) galvanisch aufgebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Metallisierungsschicht (2) chemisch oder durch thermisches Spritzen hergestellt wird.
EP08706752.6A 2007-01-24 2008-01-12 Verfahren zur herstellung von einem faserverbundwerkstoff mit metallischer matrix Active EP2113036B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710004531 DE102007004531A1 (de) 2007-01-24 2007-01-24 Faserverbundwerkstoff mit metallischer Matrix und Verfahren zu seiner Herstellung
PCT/DE2008/000055 WO2008089722A2 (de) 2007-01-24 2008-01-12 Faserverbundwerkstoff mit metallischer matrix und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP2113036A2 EP2113036A2 (de) 2009-11-04
EP2113036B1 true EP2113036B1 (de) 2014-10-08

Family

ID=39563927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08706752.6A Active EP2113036B1 (de) 2007-01-24 2008-01-12 Verfahren zur herstellung von einem faserverbundwerkstoff mit metallischer matrix

Country Status (9)

Country Link
US (1) US20100092751A1 (de)
EP (1) EP2113036B1 (de)
JP (1) JP5535649B2 (de)
CN (1) CN101636516B (de)
BR (1) BRPI0807808A2 (de)
CA (1) CA2676731C (de)
DE (1) DE102007004531A1 (de)
RU (1) RU2465364C2 (de)
WO (1) WO2008089722A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975317B1 (fr) * 2011-05-18 2013-05-31 Snecma Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine
DE102012011264A1 (de) * 2012-06-07 2013-12-12 Technische Universität Dresden Metallgussverbundbauteil
DE102013016854A1 (de) * 2013-10-10 2015-04-16 Airbus Defence and Space GmbH Faserverbund-Halbzeug und Verfahren zum Herstellen von Faserverbundhalbzeugen
RU2568407C1 (ru) * 2014-07-01 2015-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Волокнистый композиционный материал с матрицей на основе ниобия
WO2017163408A1 (ja) 2016-03-25 2017-09-28 三菱重工業株式会社 めっき層付き繊維強化部材、及び繊維強化部材のめっき方法
US11306384B2 (en) 2017-07-10 2022-04-19 ResOps, LLC Strengthening mechanism for thermally sprayed deposits
DE102017120270B4 (de) 2017-09-04 2024-03-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fahrzeug und Verfahren zur Herstellung einer Revisionsklappe
RU2726422C1 (ru) * 2019-06-17 2020-07-14 Общество с ограниченной ответственностью "ЭЛКАД" Труба гибридная

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219006A (en) * 1988-05-26 1989-11-29 Rolls Royce Plc Coated fibre for use in a metal matrix
DE102005050045B3 (de) * 2005-10-19 2007-01-04 Praxair Surface Technologies Gmbh Verfahren zur Beschichtung eines Bauteils

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1215002A (en) * 1967-02-02 1970-12-09 Courtaulds Ltd Coating carbon with metal
US3535093A (en) * 1968-05-09 1970-10-20 Union Carbide Corp Aluminum composite containing carbon fibers coated with silver
US3575783A (en) * 1968-11-13 1971-04-20 United Aircraft Corp Unidirectional fiber reinforced metal matrix tape
US3763001A (en) * 1969-05-29 1973-10-02 J Withers Method of making reinforced composite structures
US3807996A (en) * 1972-07-10 1974-04-30 Union Carbide Corp Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
JPS5125519B2 (de) * 1973-11-30 1976-07-31
SU531645A1 (ru) * 1975-03-07 1976-10-15 Физико-технический институт АН Белорусской ССР Способ изготовлени волокнистого композиционного материала
JPS6041136B2 (ja) * 1976-09-01 1985-09-14 財団法人特殊無機材料研究所 シリコンカ−バイド繊維強化軽金属複合材料の製造方法
JPS589822B2 (ja) * 1976-11-26 1983-02-23 東邦ベスロン株式会社 炭素繊維強化金属複合材料プリプレグ
US4341823A (en) * 1981-01-14 1982-07-27 Material Concepts, Inc. Method of fabricating a fiber reinforced metal composite
US4680093A (en) * 1982-03-16 1987-07-14 American Cyanamid Company Metal bonded composites and process
US4909910A (en) * 1982-03-16 1990-03-20 American Cyanamid Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom
JPS62120446A (ja) * 1985-11-21 1987-06-01 Nippon Carbon Co Ltd 繊維強化金属複合材料の製造法
US4786566A (en) * 1987-02-04 1988-11-22 General Electric Company Silicon-carbide reinforced composites of titanium aluminide
JPS63249775A (ja) * 1987-04-03 1988-10-17 株式会社アスク 耐火クロス
JPS63249645A (ja) * 1987-04-07 1988-10-17 新日本製鐵株式会社 炭素繊維−アルミニウム複合材料の製造方法
GB8713449D0 (en) * 1987-06-09 1987-07-15 Alcan Int Ltd Aluminium alloy composites
US4853294A (en) * 1988-06-28 1989-08-01 United States Of America As Represented By The Secretary Of The Navy Carbon fiber reinforced metal matrix composites
US5326525A (en) * 1988-07-11 1994-07-05 Rockwell International Corporation Consolidation of fiber materials with particulate metal aluminide alloys
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites
US5229165A (en) * 1989-11-09 1993-07-20 Allied-Signal Inc. Plasma sprayed continuously reinforced aluminum base composites
US5045407A (en) * 1989-12-22 1991-09-03 General Electric Company Silicon carbide fiber-reinforced titanium base composites having improved interface properties
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
US5228493A (en) * 1990-07-02 1993-07-20 General Electric Company Abrasion method of forming filament reinforced composites
US5426000A (en) * 1992-08-05 1995-06-20 Alliedsignal Inc. Coated reinforcing fibers, composites and methods
JP3303361B2 (ja) * 1992-10-20 2002-07-22 石川島播磨重工業株式会社 繊維強化超耐熱合金
JPH07126776A (ja) * 1993-11-08 1995-05-16 Sumitomo Metal Ind Ltd 繊維強化金属複合材料
JPH07278697A (ja) * 1994-04-12 1995-10-24 Shizuo Mukai 繊維強化金属基複合材料の製造方法
US5846288A (en) 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
JPH10330865A (ja) * 1997-05-28 1998-12-15 Hitachi Ltd 複合体の製造方法及び複合体
US5967400A (en) * 1997-12-01 1999-10-19 Inco Limited Method of forming metal matrix fiber composites
EP1540025A1 (de) * 2002-08-20 2005-06-15 3M Innovative Properties Company Metallmatrix-verbundwerkstoffe und herstellungsverfahren dafür

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219006A (en) * 1988-05-26 1989-11-29 Rolls Royce Plc Coated fibre for use in a metal matrix
DE102005050045B3 (de) * 2005-10-19 2007-01-04 Praxair Surface Technologies Gmbh Verfahren zur Beschichtung eines Bauteils

Also Published As

Publication number Publication date
CN101636516B (zh) 2011-12-14
BRPI0807808A2 (pt) 2014-06-17
US20100092751A1 (en) 2010-04-15
CA2676731C (en) 2013-08-13
DE102007004531A1 (de) 2008-07-31
WO2008089722A3 (de) 2008-12-04
CN101636516A (zh) 2010-01-27
JP2010516504A (ja) 2010-05-20
RU2009131843A (ru) 2011-02-27
WO2008089722A2 (de) 2008-07-31
EP2113036A2 (de) 2009-11-04
JP5535649B2 (ja) 2014-07-02
CA2676731A1 (en) 2008-07-31
RU2465364C2 (ru) 2012-10-27

Similar Documents

Publication Publication Date Title
EP2113036B1 (de) Verfahren zur herstellung von einem faserverbundwerkstoff mit metallischer matrix
EP2714386B1 (de) Verfahren zur herstellung einer oberflächenstruktur mit blitzschutz sowie damit herstellbare oberflächenstruktur
DE102008001468B4 (de) Verfahren zum Beschichten eines Faserverbundbauteils für ein Luft- oder Raumfahrzeug und durch ein derartiges Verfahren hergestelltes Faserverbundbauteil
DE19627860C1 (de) Schaufel für Strömungsmaschine mit metallischer Deckschicht
DE102013107849A1 (de) Faserverbundstruktur und Verfahren zur Herstellung
EP2994572B1 (de) Walze
DE102009037893A1 (de) Herstellung von Hohlkörpern oder Schichten mit Hohlräumen
EP2524951B1 (de) Verfahren zur Herstellung eines Hybridbauteils
EP0836931B1 (de) Verfahren zum Herstellen eines Schichtkörpers
EP3819106B1 (de) Verfahren zur herstellung eines verbundbauteils, das mit einem faserver-stärktem kunststoffbauteil, an dem mindestens eine oberfläche mit einer beschichtung ausgebildet ist, gebildet ist
DE102012010424B4 (de) Verfahren zur Herstellung eines Verbundbauteils und ein mit dem Verfahren hergestelltes Verbundbauteil
DE3127505A1 (de) Verfahren zum zumindest teilweisen metallisieren einer oberflaeche einer schichtstruktur
DE102012011264A1 (de) Metallgussverbundbauteil
DE102014011139A1 (de) Motorkomponente
DE102008052604B4 (de) Faserverstärkter Verbundwerkstoff sowie Verfahren zur Herstellung desselben
WO2018011362A1 (de) Zylinderbohrungen beschichten ohne vorgängige aktivierung der oberfläche
DE102013110921A1 (de) Verfahren zur Herstellung eines Strukturbauteils sowie Strukturbauteil aus Verbundwerkstoff mit metallischer Deckschicht
EP2952338B1 (de) Verfahren zum herstellen eines bauteils aus faserverstärktem verbundmaterial, vorform und herstellvorrichtung
DE102012222739A1 (de) Verfahren zum Herstellen eines Bauteilverbunds und Bauteilverbund
DE102010023496B4 (de) Rumpfsegment eines Flugzeugs
DE102004035773A1 (de) Langfaserverstärkter Metallverbundkörper, Verfahren zu seiner Herstellung und geeignete Verwendungen
DE102017116033B4 (de) Verfahren zur Herstellung eines Faserhalbzeuges und eines Faserverbundbauteils sowie Faserverbundbauteil
EP2676993A1 (de) Bauteil mit einer die Haftung vermindernden Schicht und Verfahren zu dessen Herstellung
DE3129893C2 (de) Verfahren zur Herstellung eines Hohlleiters
DE19726976A1 (de) Biegsamer, leitfähiger, flächiger Körper und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090720

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100309

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 690679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012297

Country of ref document: DE

Effective date: 20141120

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141008

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150208

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150112

26N No opposition filed

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 690679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008012297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240123

Year of fee payment: 17