EP2009648B1 - Heating and/or cooling device with multiple layers - Google Patents

Heating and/or cooling device with multiple layers Download PDF

Info

Publication number
EP2009648B1
EP2009648B1 EP20080015360 EP08015360A EP2009648B1 EP 2009648 B1 EP2009648 B1 EP 2009648B1 EP 20080015360 EP20080015360 EP 20080015360 EP 08015360 A EP08015360 A EP 08015360A EP 2009648 B1 EP2009648 B1 EP 2009648B1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
spraying
layer
resistive layer
heated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP20080015360
Other languages
German (de)
French (fr)
Other versions
EP2009648A1 (en
Inventor
Elias Russegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watlow Electric Manufacturing Co
Original Assignee
Watlow Electric Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7709725&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2009648(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Watlow Electric Manufacturing Co filed Critical Watlow Electric Manufacturing Co
Publication of EP2009648A1 publication Critical patent/EP2009648A1/en
Application granted granted Critical
Publication of EP2009648B1 publication Critical patent/EP2009648B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/245Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by mechanical means, e.g. sand blasting, cutting, ultrasonic treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Definitions

  • the invention initially relates to a tubular water heater and a heating plate.
  • a heating element which is produced by applying band-shaped layers of an electrically conductive and a resistance-forming material on surfaces of a substrate by means of arc sputtering or by plasma spraying.
  • a release liner is previously applied to the substrate by means of a printing process.
  • the separating layer is made of such a material that, at those points of the substrate on which the separating layer is present, the electrically conductive material not clinging.
  • the known method has the disadvantage that it is relatively complicated and therefore the parts with the electrically conductive resistance layers are relatively expensive. In addition, only more or less flat parts can be provided with an electrically conductive layer with the known method.
  • a rotating cylindrical heating roller known as part of a copying machine to thermally fix copied pages.
  • a heating element is produced by means of a laser ablation from an initially fully cylindrical resistive layer, which receives a spiral structure.
  • the electrically conductive material of which the resistance layer is made is applied flat and generally uniformly on the non-conductive substrate.
  • the application by means of thermal spraying ensures a high adhesion of the electrically conductive material on the non-conductive surface.
  • a variety of materials can be applied quickly and very evenly in this way on the non-conductive substrate.
  • the instantaneous water heater according to the invention and the heating plate according to the invention are particularly inexpensive to produce and white on a small thickness.
  • their heating layers may have a complex geometry which is adapted to the individual conditions of use, in particular to the fluid or part to be heated.
  • the invention is advantageously also suitable for heating those parts or media which do not tolerate uniform heating on their surface or which are dependent on particularly uniform heating.
  • the partial removal of the material layer can be effected by means of laser radiation or by means of a water jet or by means of a powder sandblast.
  • the material When using laser radiation, the material is heated so much that it evaporates.
  • the use of a laser beam has the advantage that with him very quickly very high energies can be coupled into the electrically conductive material, so that it evaporates immediately.
  • This instantaneous evaporation of the electrically conductive material ensures that only comparatively little heat is coupled into the substrate present under the electrically conductive material. This is therefore not damaged in the method according to the invention.
  • the evaporation has the advantage over incineration that essentially no residues in the evaporated areas on the ground remain so their insulation is very good.
  • the electrical resistance of the electrically conductive resistance layer can be detected at least indirectly. In this way, a precise quality control is already possible during the production of the electrically conductive layer.
  • an actual value of the electrical resistance of the electrically conductive resistance layer can be compared with a setpoint value, and the electrical resistance of the electrically conductive layer can be changed in such a way by removal of additional electrically conductive material in regions. that the difference between the actual value and the setpoint is reduced.
  • Such deviations may, for example, be caused by the fact that different amounts of the electrically conductive material reach the substrate during spraying of the thermally conductive material so that the resulting electrically conductive layer has a different thickness at one point than at another location.
  • deviations of the actual value of the electrical resistance of the electrically conductive layer from the desired value can be compensated for with an accuracy of +/- 1%.
  • the partial removal of additional electrically conductive material may include a shortening or lengthening of the electrically conductive layer and / or the variation of the width of the electrically conductive layer.
  • the detection of the actual value of the electrical resistance of the electrically conductive resistance layer and the reduction of the difference between the actual value and the desired value can take place in parallel. This is possible since the electrical resistance of the electrically conductive layer can already be measured during the processing of the electrically conductive layer by means of laser radiation. If this method according to the invention is used, time and thus money can be saved in the production of the electrically conductive resistance layer.
  • the material layer can be removed in such a way that At least one point of the electrically conductive layer is formed a desired melting point in the sense of a fuse.
  • Such an integrated fuse increases the safety when using the electrically conductive resistance layer.
  • the fuse can be integrated into the electrically conductive resistance layer virtually without additional costs and additional time.
  • the material layer can be removed in such a way that the electrically conductive resistance layer is at least partially meandering. This allows the formation of the longest electrically conductive resistive layer on a small area.
  • a non-conductive intermediate layer may be applied thereto, then an electrically conductive material may be applied by means of thermal spraying to the non-conductive intermediate layer in such a way that a material layer formed therefrom substantially initially still has no desired shape, and then the material layer are partially removed by means of laser radiation such that a second electrically conductive layer is formed, which has the desired shape.
  • an electrically conductive material may be applied by means of thermal spraying to the non-conductive intermediate layer in such a way that a material layer formed therefrom substantially initially still has no desired shape, and then the material layer are partially removed by means of laser radiation such that a second electrically conductive layer is formed, which has the desired shape.
  • the electrically conductive material preferably comprises bismuth, tellurium, germanium, silicon and / or gallium arsenide. These materials have proved to be particularly favorable for the application by means of thermal spraying and the subsequent processing by means of laser radiation. In addition, with these materials, the relevant known technical effects can be realized.
  • the local electrical resistance of the electrically conductive resistance layer can be adjusted by a local heat treatment. By heating locally oxides can be registered in the layer, which has an effect on the local electrical conductivity of the material. This allows a special precise and fine adjustment of the electrical resistance.
  • the electrically conductive resistance layer is sealed.
  • This has advantages in particular with a porous substrate (for example metal with Al 2 O 3 intermediate layer). Sealing reduces the risk of electrical breakdown due to humidity, especially at high voltage.
  • a material for sealing silicone, polyimide, or water glass the latter on sodium or potassium-based. The application can be done by dipping, spraying, brushing, etc. The seal of the seal is best when the sealant layer is applied under vacuum.
  • non-conductive substrate is also glass or glass ceramic in question.
  • the electrical resistance layer can be applied permanently, especially by plasma spraying.
  • the good insulating effect of glass makes grounding in the operation of the resistive layer superfluous.
  • special high-temperature glass such as Ceranglas (R).
  • FIG. 1 and 2 shows the production of a tubular water heater:
  • an electrically conductive material layer 14 is applied to a tube 12 made of a high-temperature resistant and an electrical insulator material ( Fig. 1 ).
  • the application takes place in the present exemplary embodiment by means of a device 16, with which germanium particles 18 are sprayed onto the tube 12.
  • the application is carried out by cold gas spraying (also "gas-dynamic Powder coatings called ").
  • the unmelted germanium particles are accelerated to speeds of about 300 - 1,200 m / s and sprayed onto the tube 12.
  • the germanium particles 18 and also the surface of the tube 12 deform.
  • the impact breaks up surface oxides on the surface of the tube 12. Micro-friction due to the impact increases the temperature at the contact surface and leads to micro-welds.
  • the acceleration of the germanium particles 18 takes place by means of a delivery gas, the temperature of which can be slightly increased.
  • the germanium powder 18 never reaches its melting temperature, the temperatures arising on the surface of the tube 12 are relatively moderate, so that, for example, a comparatively inexpensive plastic material can be used for the tube 12.
  • plasma spraying, high-speed flame spraying, arc spraying, autogenous spraying or laser spraying for applying the electrically conductive material to the substrate can also be used instead of the cold gas spraying.
  • germanium, bismuth, tellurium, silicon and / or gallium arsenide are also suitable, depending on the desired technical effect.
  • the coating of the tube 12 with the germanium particles 18 is carried out initially so that gradually the entire surface of the tube 12 is covered with the germanium material layer 14 (see. Fig.1 ).
  • this material layer 14 does not yet have the desired shape:
  • an electrically conductive resistance layer must be made, which extends in the manner of a spiral in the circumferential direction around the tube 12. This will, as out Fig. 2 It can be seen, by means of a laser device 20, a laser beam 22 so directed to the still "shapeless" material layer 14 that a spirally around the tube 12 extending portion 24 is created in which the sprayed electrically conductive material 14 is no longer present.
  • the laser device 20 on the one hand and a device, not shown in the figure, with which the tube 12 is held, are thereby moved so that a continuous working process by the laser device 20 is possible.
  • the actual electrical resistance WIST (see. Fig. 5 ) of the electrically conductive resistance layer 26 is less than the desired per se electrical resistance WSOLL.
  • the in Fig. 4 The lower connecting region 34 of the electrically conductive resistance layer 26 is therefore processed by the laser beam so that its width decreases, so that additional material is evaporated.
  • the electrically conductive resistance layer 26 extends by a dimension d1 (cf. Fig. 4 and 5 ) and, as a result, the actual electrical resistance WIST increases until it approximately corresponds to the desired resistance WSOLL.
  • the final position of the boundary line of the lower electrical connection 34 carries in Fig. 4 the reference numeral 42.
  • the electrically insulating intermediate layer 46 is applied in the further course of the manufacturing process. Then the process described above is repeated, i. H. again electrically conductive material is applied by means of thermal spraying onto the non-conductive intermediate layer 46 in such a way that a second material layer formed therefrom substantially does not yet have the desired shape. This is then processed by laser radiation and partially evaporated (reference numeral 24b) such that a second electrically conductive resistance layer (26b) is formed in the desired shape.
  • the material of the electrically conductive layer is selected such that instead of an electrical heating layer, an electrical cooling layer is formed.
  • the temperature of the heating layer is monitored by a ceramic switch.
  • a ceramic switch This is understood to mean a non-mechanical switch which has an element whose conductivity depends to a considerable extent on its temperature.
  • a bimetal switch can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Resistance Heating (AREA)
  • Laser Beam Processing (AREA)
  • Conductive Materials (AREA)

Abstract

A surface of electroconductive material (18) is applied. The resulting layer (14) is initially not in the desired form. Partial local removal (24) produces an electrically conducting, resistive layer (26) of the desired form. An independent claim is included for a heating and/or cooling unit made as described.

Description

Die Erfindung betrifft zunächst einen rohrförmigen Durchlauferhitzer und eine Heizplatte.The invention initially relates to a tubular water heater and a heating plate.

In der DE 198 10 848 A1 ist ein Heizelement beschrieben, welches dadurch hergestellt wird, dass auf Oberflächen eines Substrats mittels Lichtbogenzerstäubung oder im Plasmaspritzverfahren bandförmige Schichten aus einem elektrisch leitenden und einen Widerstand bildenden Material aufgetragen werden. Um die gewünschte Form der elektrisch leitenden Schicht zu erzielen, wird zuvor mittels eines Printverfahrens eine Trennlage auf das Substrat aufgebracht. Die Trennlage ist aus einem solchen Material, dass an jenen Stellen des Substrats, an denen die Trennlage vorhanden ist, das elektrisch leitende Material nicht anhaftet.In the DE 198 10 848 A1 a heating element is described, which is produced by applying band-shaped layers of an electrically conductive and a resistance-forming material on surfaces of a substrate by means of arc sputtering or by plasma spraying. In order to achieve the desired shape of the electrically conductive layer, a release liner is previously applied to the substrate by means of a printing process. The separating layer is made of such a material that, at those points of the substrate on which the separating layer is present, the electrically conductive material not clinging.

Das bekannte Verfahren hat den Nachteil, dass es relativ aufwändig ist und daher die Teile mit den elektrisch leitenden Widerstandsschichten vergleichsweise teuer sind. Darüber hinaus können mit dem bekannten Verfahren nur mehr oder weniger ebene Teile mit einer elektrisch leitenden Schicht versehen werden.The known method has the disadvantage that it is relatively complicated and therefore the parts with the electrically conductive resistance layers are relatively expensive. In addition, only more or less flat parts can be provided with an electrically conductive layer with the known method.

Des weiteren ist aus der EP 0 399 376 A2 eine rotierende zylindrische Heizwalze als Bestandteil eines Kopiergeräts bekannt, um kopierte Seiten thermisch zu fixieren. Dort wird mittels eines Laser-Abtrags aus einer anfangs vollzylindrischen Widerstandsschicht ein Heizelement hergestellt, welches eine Spiralstruktur erhält.Furthermore, from the EP 0 399 376 A2 a rotating cylindrical heating roller known as part of a copying machine to thermally fix copied pages. There, a heating element is produced by means of a laser ablation from an initially fully cylindrical resistive layer, which receives a spiral structure.

Die vorliegende Erfindung ergibt sich aus den beiliegenden Patentansprüchen.The present invention will become apparent from the appended claims.

Erfindungsgemäß ist keine spezielle vorbehandlung erforderlich, um die gewünschte Form der elektrisch leitenden Widerstandsschicht zu erhalten. Stattdessen wird zunächst das elektrisch leitende Material, aus dem die Widerstandsschicht besteht, flächig und im Allgemeinen gleichmäßig auf dem nicht leitenden Untergrund aufgebracht. Die Aufbringung mittels thermischem Spritzen sorgt dabei für eine hohe Anhaftung des elektrisch leitenden Materials auf dem nicht leitenden Untergrund. Darüber hinaus können die unterschiedlichsten Materialien schnell und sehr gleichmäßig auf diese Art und Weise auf dem nicht leitenden Untergrund aufgebracht werden.According to the invention, no special pretreatment is required to obtain the desired shape of the electrically conductive resistance layer. Instead, first the electrically conductive material of which the resistance layer is made, is applied flat and generally uniformly on the non-conductive substrate. The application by means of thermal spraying ensures a high adhesion of the electrically conductive material on the non-conductive surface. In addition, a variety of materials can be applied quickly and very evenly in this way on the non-conductive substrate.

Danach wird mittels einer geeigneten Einrichtung das aufgebrachte elektrisch leitende Material an bestimmten Stellen entfernt. Hierdurch wird auch eine komplexe Formgebung der elektrisch leitenden Schicht in nur zwei Arbeitsschritten ermöglicht.Thereafter, by means of a suitable device, the applied electrically conductive material to certain Places removed. As a result, a complex shaping of the electrically conductive layer is made possible in only two steps.

Der erfindungsgemäße Durchlauferhitzer und die erfindungsgemäße Heizplatte sind besonders preiswert herstellbar und weißen eine geringe Dicke auf. Außerdem können deren Heizschichten eine komplexe Geometrie aufweisen, die an die individuellen Einsatzbedingungen, insbesondere an das zu heizende Fluid bzw. Teil angepasst ist. Beispielsweise ist die Erfindung vorteilhaft auch zum Erhitzen von solchen Teilen oder Medien geeignet, die an ihrer Oberfläche keine gleichmäßige Aufheizung vertragen oder auf eine besonders gleichmäßige Aufheizung angewiesen sind.The instantaneous water heater according to the invention and the heating plate according to the invention are particularly inexpensive to produce and white on a small thickness. In addition, their heating layers may have a complex geometry which is adapted to the individual conditions of use, in particular to the fluid or part to be heated. For example, the invention is advantageously also suitable for heating those parts or media which do not tolerate uniform heating on their surface or which are dependent on particularly uniform heating.

Das bereichsweise Entfernen der Materialschicht kann mittels Laserstrahlung oder mittels eines Wasserstrahls oder mittels eines Pulver-Sandstrahls erfolgen.The partial removal of the material layer can be effected by means of laser radiation or by means of a water jet or by means of a powder sandblast.

Bei der Verwendung von Laserstrahlung wird das Material so stark erhitzt, dass es verdampft. Die Verwendung eines Laserstrahls hat dabei den Vorteil, dass mit ihm sehr rasch sehr hohe Energien in das elektrisch leitende Material eingekoppelt werden können, so dass dieses sofort verdampft. Durch diese augenblickliche Vedampfung des elektrisch leitenden Materials wird sichergestellt, dass nur vergleichsweise wenig Wärme in den unter dem elektrisch leitenden Material vorhandenen Untergrund eingekoppelt wird. Dieser wird bei dem erfindungsgemäßen Verfahren also nicht beschädigt. Das Abdampfen hat gegenüber dem Verbrennen den Vorteil, dass im Wesentlichen keine Rückstände in den abgedampften Bereichen auf dem Untergrund verbleiben und so deren Isolierwirkung sehr gut ist.When using laser radiation, the material is heated so much that it evaporates. The use of a laser beam has the advantage that with him very quickly very high energies can be coupled into the electrically conductive material, so that it evaporates immediately. This instantaneous evaporation of the electrically conductive material ensures that only comparatively little heat is coupled into the substrate present under the electrically conductive material. This is therefore not damaged in the method according to the invention. The evaporation has the advantage over incineration that essentially no residues in the evaporated areas on the ground remain so their insulation is very good.

Durch eine entsprechende Optik der Vorrichtung, welche den Laserstrahl aussendet, kann dieser in beinahe beliebiger Weise auf das herzustellende Werkstück gerichtet werden. Somit können zum einen beliebig komplexe Konturen aus dem aufgespritzten elektrisch leitenden Material herausgedampft werden, so dass entsprechend komplex konturierte elektrische Widerstandsschichten hergestellt werden können. Zum anderen können aber auch solche Werkstücke bearbeitet werden, welche selbst dreidimensional komplex gestaltet sind. In insgesamt nur zwei Arbeitsschritten kann somit eine elektrisch leitende Widerstandsschicht mit komplexer Geometrie hergestellt werden.By a corresponding optics of the device which emits the laser beam, it can be directed in almost any way on the workpiece to be produced. Thus, on the one hand, arbitrarily complex contours can be evaporated out of the sprayed-on electrically conductive material, so that correspondingly complexly contoured electrical resistance layers can be produced. On the other hand, however, also such workpieces can be processed, which are themselves three-dimensionally complex. In a total of only two steps, an electrically conductive resistance layer with complex geometry can thus be produced.

Bei der Verwendung eines Wasserstrahls wird überhaupt keine thermische Energie in das Werkstück eingekoppelt. Dies ist besonders bei der Bearbeitung wärmeempfindlicher Kunststoffe vorteilhaft. Gleiches gilt auch für die Verwendung von Pulver-Sandstrahlen.When using a water jet, no thermal energy is coupled into the workpiece at all. This is particularly advantageous in the processing of heat-sensitive plastics. The same applies to the use of powder sandblasting.

Während des bereichsweisen Entfernens der Materialschicht kann der elektrische Widerstand der elektrisch leitenden Widerstandsschicht wenigstens mittelbar erfasst werden. Auf diese Weise ist bereits ummittelbar während der Herstellung der elektrisch leitenden Schicht eine präzise Qualitätskontrolle möglich.During the area-wise removal of the material layer, the electrical resistance of the electrically conductive resistance layer can be detected at least indirectly. In this way, a precise quality control is already possible during the production of the electrically conductive layer.

Dabei kann ein Istwert des elektrischen Widerstandes der elektrisch leitenden Widerstandsschicht mit einem Sollwert verglichen und durch bereichsweises Entfernen zusätzlichen elektrisch leitenden Materials der elektrische Widerstand der elektrisch leitenden Schicht derart verändert werden, dass die Differenz zwischen Istwert und Sollwert reduziert wird. Dies hat den Vorteil, dass bereits während der Herstellung der elektrisch leitenden Schicht Abweichungen von einem gewünschten Widerstand ausgeglichen werden können.In this case, an actual value of the electrical resistance of the electrically conductive resistance layer can be compared with a setpoint value, and the electrical resistance of the electrically conductive layer can be changed in such a way by removal of additional electrically conductive material in regions. that the difference between the actual value and the setpoint is reduced. This has the advantage that even during the production of the electrically conductive layer deviations from a desired resistance can be compensated.

Derartige Abweichungen können bspw. dadurch entstehen, dass beim Spritzen des thermisch leitenden Materials bereichsweise unterschiedliche Mengen des elektrisch leitenden Materials auf den Untergrund gelangen, so dass die hieraus entstehende elektrisch leitende Schicht an einer Stelle eine andere Dicke aufweist als an einer anderen Stelle. Mit dem hier vorgeschlagenen Verfahren können Abweichungen des Istwerts des elektrischen Widerstands der elektrisch leitenden Schicht vom Sollwert mit einer Genauigkeit von +/- 1 % ausgeglichen werden. Das bereichsweise Entfernen zusätzlichen elektrisch leitenden Materials kann eine Verkürzung oder Verlängerung der elektrisch leitenden Schicht und/oder die Veränderung der Breite der elektrisch leitenden Schicht beinhalten.Such deviations may, for example, be caused by the fact that different amounts of the electrically conductive material reach the substrate during spraying of the thermally conductive material so that the resulting electrically conductive layer has a different thickness at one point than at another location. With the method proposed here, deviations of the actual value of the electrical resistance of the electrically conductive layer from the desired value can be compensated for with an accuracy of +/- 1%. The partial removal of additional electrically conductive material may include a shortening or lengthening of the electrically conductive layer and / or the variation of the width of the electrically conductive layer.

Die Erfassung des Istwerts des elektrischen Widerstands der elektrisch leitenden Widerstandsschicht und die Reduktion der Differenz zwischen Istwert und Sollwert können parallel erfolgen. Dies ist möglich, da bereits während der Bearbeitung der elektrisch leitenden Schicht mittels Laserstrahlung der elektrische Widerstand der elektrisch leitenden Schicht gemessen werden kann. Wird dieses erfindungsgemäße Verfahren angewendet, kann bei der Herstellung der elektrisch leitenden Widerstandsschicht zeit und somit Geld gespart werden.The detection of the actual value of the electrical resistance of the electrically conductive resistance layer and the reduction of the difference between the actual value and the desired value can take place in parallel. This is possible since the electrical resistance of the electrically conductive layer can already be measured during the processing of the electrically conductive layer by means of laser radiation. If this method according to the invention is used, time and thus money can be saved in the production of the electrically conductive resistance layer.

Die Materialschicht kann derart entfernt werden, dass an mindestens einer Stelle der elektrisch leitenden Schicht eine Soll-Schmelzstelle im Sinne einer Schmelzsicherung entsteht. Eine solche integrierte Schmelzsicherung erhöht die Sicherheit bei der Verwendung der elektrisch leitenden Widerstandsschicht. Dabei kann die Schmelzsicherung praktisch ohne zusätzliche Kosten und zusätzlichen Zeitaufwand in die elektrisch leitende Widerstandsschicht integriert werden.The material layer can be removed in such a way that At least one point of the electrically conductive layer is formed a desired melting point in the sense of a fuse. Such an integrated fuse increases the safety when using the electrically conductive resistance layer. In this case, the fuse can be integrated into the electrically conductive resistance layer virtually without additional costs and additional time.

Die Materialschicht kann derart entfernt werden, dass die elektrisch leitende Widerstandsschicht wenigstens bereichsweise mäanderförmig ist. Dies ermöglicht die Ausbildung einer möglichst langen elektrisch leitenden Widerstandsschicht auf einer kleinen Fläche.The material layer can be removed in such a way that the electrically conductive resistance layer is at least partially meandering. This allows the formation of the longest electrically conductive resistive layer on a small area.

Nach dem bereichsweisen Entfernen des elektrisch leitenden Materials und der Fertigstellung der elektrisch leitenden Widerstandsschicht kann auf diese eine nicht leitende Zwischenschicht aufgebracht, danach ein elektrisch leitendes Material mittels thermischem Spritzen auf die nicht leitende Zwischenschicht flächig derart aufgebracht werden, dass eine hieraus entstandene Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist, und danach mittels Laserstrahlung die Materialschicht bereichsweise derart entfernt werden, dass eine zweite elektrisch leitende Schicht entsteht, welche die gewünschte Form hat. Erfindungsgemäß ist es also möglich, mehrere Schichten übereinander anzuordnen. Dabei sei an dieser Stelle ausdrücklich darauf hingewiesen, dass das erfindungsgemäße Verfahren nicht nur für die Ausbildung von zwei übereinander angeordneten elektrisch leitenden Widerstandsschichten, sondern für eine beliebige Anzahl übereinander angeordneter Widerstandsschichten anwendbar ist.After the removal of the electrically conductive material and the completion of the electrically conductive resistive layer, a non-conductive intermediate layer may be applied thereto, then an electrically conductive material may be applied by means of thermal spraying to the non-conductive intermediate layer in such a way that a material layer formed therefrom substantially initially still has no desired shape, and then the material layer are partially removed by means of laser radiation such that a second electrically conductive layer is formed, which has the desired shape. According to the invention, it is thus possible to arrange several layers one above the other. It should be expressly noted at this point that the inventive method not only for the formation of two superposed electrically conductive resistance layers, but for any number of superimposed resistive layers applicable is.

Das elektrisch leitende Material umfasst vorzugsweise Bismut, Tellurium, Germanium, Silizium und/oder Galliumarsenid. Diese Materialien haben sich für das Aufbringen mittels thermischem Spritzen und die anschließende Bearbeitung mittels Laserstrahlung als besonders günstig erwiesen. Darüber hinaus sind mit diesen Materialien die einschlägig bekannten technischen Effekte realisierbar.The electrically conductive material preferably comprises bismuth, tellurium, germanium, silicon and / or gallium arsenide. These materials have proved to be particularly favorable for the application by means of thermal spraying and the subsequent processing by means of laser radiation. In addition, with these materials, the relevant known technical effects can be realized.

Der örtliche elektrische Widerstand der elektrisch leitenden Widerstandsschicht kann durch eine lokale Wärmebehandlung eingestellt werden. Durch eine Erwärmung können lokal Oxide in die Schicht eingetragen werden, was sich auf die örtliche elektrische Leitfähigkeit des Materials auswirkt. Dies ermöglicht eine besonderes präzise und feine Einstellung des elektrischen Widerstands.The local electrical resistance of the electrically conductive resistance layer can be adjusted by a local heat treatment. By heating locally oxides can be registered in the layer, which has an effect on the local electrical conductivity of the material. This allows a special precise and fine adjustment of the electrical resistance.

Außerdem ist es günstig, wenn die elektrisch leitende Widerstandsschicht versiegelt wird. Dies hat vor allem Vorteile bei einem porösen Untergrund (beispielsweise Metall mit Al203-Zwischenschicht). Eine Versieglung vermindert das Risiko von Elektrodurchschlägen aufgrund der Luftfeuchtigkeit, insbesondere bei hoher Spannung. Als Material für die Versiegelung eignet sich Silikon, Polyimid, oder Wasserglas, letzteres auf Natrium- oder Kaliumbasis . Die Aufbringung kann durch Tauchen, Spritzen, Streichen, etc. erfolgen. Die Dichtigkeit der Versiegelung ist dann am besten, wenn die Versiegelungsschicht unter Vakuum aufgebracht wird.In addition, it is favorable if the electrically conductive resistance layer is sealed. This has advantages in particular with a porous substrate (for example metal with Al 2 O 3 intermediate layer). Sealing reduces the risk of electrical breakdown due to humidity, especially at high voltage. As a material for sealing silicone, polyimide, or water glass, the latter on sodium or potassium-based. The application can be done by dipping, spraying, brushing, etc. The seal of the seal is best when the sealant layer is applied under vacuum.

Als nichtleitender Untergrund kommt auch Glas oder Glaskeramik in Frage. Hierauf kann die elektrische Widerstandsschicht vor allem durch Plasmaspritzen dauerhaft aufgebracht werden. Die gute Isolierwirkung von Glas macht eine Erdung im Betrieb der Widerstandsschicht überflüssig. Möglich ist auch die Verwendung von speziellem Hochtemperaturglas, wie beispielsweise Ceranglas (R).As a non-conductive substrate is also glass or glass ceramic in question. Then the electrical resistance layer can be applied permanently, especially by plasma spraying. The good insulating effect of glass makes grounding in the operation of the resistive layer superfluous. Also possible is the use of special high-temperature glass, such as Ceranglas (R).

Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:

Figur 1
eine perspektivische Darstellung eines Rohres, auf welches ein elektrisch leitendes Material aufgespritzt wird;
Figur 2
das Rohr von Fig. 1, dessen elektrisch leitende Materialschicht mittels Laserstrahlung bearbeitet wird;
Figur 3
eine Seitenansicht des Rohres von Fig. 2 nach der Bearbeitung;
Figur 4
eine Draufsicht auf ein plattenförmiges Teil mit einer mäanderförmigen elektrisch leitenden Widerstandsschicht;
Figur 5
zwei Diagramme, wobei im einen Diagramm der zeitliche Verlauf des elektrischen Widerstands und im anderen Diagramm der zeitliche Verlauf der Länge der elektrisch leitenden Widerstandsschicht von Fig. 4 während ihrer Herstellung dargestellt sind; und
Figur 6
einen Schnitt durch ein plattenförmiges Teil mit zwei übereinander angeordneten elektrisch leitenden Widerstandsschichten.
Hereinafter, particularly preferred embodiments of the invention with reference to the accompanying drawings are explained in detail. In the drawing show:
FIG. 1
a perspective view of a tube, on which an electrically conductive material is injected;
FIG. 2
the pipe of Fig. 1 whose electrically conductive material layer is processed by means of laser radiation;
FIG. 3
a side view of the tube of Fig. 2 after processing;
FIG. 4
a plan view of a plate-shaped part with a meandering electrically conductive resistance layer;
FIG. 5
two diagrams, wherein in one diagram, the time course of the electrical resistance and in the other diagram, the time course of the length of the electrically conductive resistance layer of Fig. 4 are shown during their manufacture; and
FIG. 6
a section through a plate-shaped part with two superimposed electrically conductive resistance layers.

In den Figuren 1 und 2 ist die Herstellung eines rohrförmigen Durchlauferhitzers dargestellt: Dabei wird auf ein Rohr 12 aus einem hochtemperaturbeständigen und einen elektrischen Isolator bildenden Werkstoff eine elektrisch leitende Materialschicht 14 aufgebracht (Fig. 1). Die Aufbringung erfolgt im vorliegenden Ausführungsbeispiel mittels einer Vorrichtung 16, mit der Germaniumpartikel 18 auf das Rohr 12 aufgespritzt werden. Die Aufbringung erfolgt durch Kaltgasspritzen (auch "gasdynamisches Pulverbeschichten" genannt).In the Figures 1 and 2 shows the production of a tubular water heater: In this case, an electrically conductive material layer 14 is applied to a tube 12 made of a high-temperature resistant and an electrical insulator material ( Fig. 1 ). The application takes place in the present exemplary embodiment by means of a device 16, with which germanium particles 18 are sprayed onto the tube 12. The application is carried out by cold gas spraying (also "gas-dynamic Powder coatings called ").

Bei diesem Spritzprozess werden die ungeschmolzenen Germaniumpartikel auf Geschwindigkeiten von ungefähr 300 - 1.200 m/s beschleunigt und auf das Rohr 12 gespritzt. Beim Aufprall auf das Rohr 12 verformen sich die Germaniumpartikel 18 und auch die Oberfläche des Rohres 12. Durch den Aufprall werden Oberflächenoxide auf der Oberfläche des Rohrs 12 aufgebrochen. Durch Mikroreibung aufgrund des Aufpralls steigt die Temperatur an der Berührungsfläche und führt zu Mikroverschweißungen.In this injection process, the unmelted germanium particles are accelerated to speeds of about 300 - 1,200 m / s and sprayed onto the tube 12. Upon impact with the tube 12, the germanium particles 18 and also the surface of the tube 12 deform. The impact breaks up surface oxides on the surface of the tube 12. Micro-friction due to the impact increases the temperature at the contact surface and leads to micro-welds.

Die Beschleunigung der Germaniumpartikel 18 erfolgt mittels eines Fördergases, dessen Temperatur leicht erhöht sein kann. Da jedoch das Germaniumpulver 18 in keinem Fall seine Schmelztemperatur erreicht, sind die an der Oberfläche des Rohres 12 entstehenden Temperaturen relativ moderat, so dass bspw. ein vergleichsweise preiswertes Kunststoffmaterial für das Rohr 12 verwendet werden kann.The acceleration of the germanium particles 18 takes place by means of a delivery gas, the temperature of which can be slightly increased. However, since the germanium powder 18 never reaches its melting temperature, the temperatures arising on the surface of the tube 12 are relatively moderate, so that, for example, a comparatively inexpensive plastic material can be used for the tube 12.

In anderen, nicht dargestellten Ausführungsbeispielen kann anstelle des Kaltgasspritzens auch Plasmaspritzen, Hochgeschwindigkeitsflammspritzen, Lichtbogenspritzen, Autogenspritzen oder Laserspritzen zur Aufbringung des elektrisch leitenden Materials auf den Untergrund verwendet werden. Anstelle von Germanium eignen sich auch Bismut, Tellurium, Silizium und/oder Galliumarsenid, je nach gewünschtem technischen Effekt.In other exemplary embodiments, not shown, plasma spraying, high-speed flame spraying, arc spraying, autogenous spraying or laser spraying for applying the electrically conductive material to the substrate can also be used instead of the cold gas spraying. Instead of germanium, bismuth, tellurium, silicon and / or gallium arsenide are also suitable, depending on the desired technical effect.

Die Beschichtung des Rohres 12 mit den Germaniumpartikeln 18 erfolgt zunächst so, dass nach und nach die gesamte Oberfläche des Rohres 12 mit der aus Germanium bestehenden Materialschicht 14 bedeckt ist (vgl. Fig.1). Diese Materialschicht 14 hat jedoch noch nicht die gewünschte Form: Um einen rohrförmigen Durchlauferhitzer herstellen zu können, muss eine elektrisch leitende Widerstandsschicht hergestellt werden, welche in der Art einer Spirale in Umfangsrichtung um das Rohr 12 verläuft. Hierzu wird, wie aus Fig. 2 ersichtlich ist, mittels einer Laservorrichtung 20 ein Laserstrahl 22 so auf die noch "formlose" Materialschicht 14 gerichtet, dass ein sich spiralenförmig um das Rohr 12 erstreckender Bereich 24 geschaffen wird, in dem das aufgespritzte elektrisch leitende Material 14 nicht mehr vorhanden ist.The coating of the tube 12 with the germanium particles 18 is carried out initially so that gradually the entire surface of the tube 12 is covered with the germanium material layer 14 (see. Fig.1 ). However, this material layer 14 does not yet have the desired shape: To produce a tubular water heater can, an electrically conductive resistance layer must be made, which extends in the manner of a spiral in the circumferential direction around the tube 12. This will, as out Fig. 2 It can be seen, by means of a laser device 20, a laser beam 22 so directed to the still "shapeless" material layer 14 that a spirally around the tube 12 extending portion 24 is created in which the sprayed electrically conductive material 14 is no longer present.

Dies geschieht dadurch, dass das Material der Materialschicht 14 an dem Ort, an dem der Laserstrahl 22 auf die Schicht 14 trifft, schlagartig so stark erhitzt wird, dass es verdampft. Die Laservorrichtung 20 einerseits und eine in der Figur nicht dargestellte Vorrichtung, mit welcher das Rohr 12 gehalten ist, werden dabei so bewegt, dass ein kontinuierlicher Arbeitsprozess durch die Laservorrichtung 20 möglich ist.This happens because the material of the material layer 14 at the location where the laser beam 22 strikes the layer 14 is suddenly heated so strongly that it evaporates. The laser device 20 on the one hand and a device, not shown in the figure, with which the tube 12 is held, are thereby moved so that a continuous working process by the laser device 20 is possible.

Wie aus Fig. 3 ersichtlich ist, wird hierdurch eine sich von einem axialen Ende des Rohres 12 zum anderen erstreckende und spiralenförmig in Umfangsrichtung verlaufende elektrisch leitende Widerstandsschicht 26 geschaffen. Das Rohr 12 und die elektrisch leitende Widerstandsschicht 26 bilden insgesamt einen elektrischen Durchlauferhitzer 28.How out Fig. 3 As can be seen, thereby extending from one axial end of the tube 12 to the other and extending spirally extending in the circumferential direction electrically conductive resistance layer 26 is provided. The tube 12 and the electrically conductive resistance layer 26 form a total of an electric water heater 28th

Figur 4 zeigt in der Draufsicht eine ebene Heizplatte 28. Diese besteht aus einem in dieser Draufsicht nicht sichtbaren nicht leitenden Untergrund, auf dem analog zu dem in den Fign. 1 und 2 beschriebenen Verfahren zunächst eine flächige Materialschicht 14 aufgebracht wurde, aus der anschließend Bereiche 24 mittels eines Laserstrahls abgedampft wurden (aus Darstellungsgründen ist nur ein Bereich 24 mit Bezugszeichen versehen). Hierdurch entstand eine mäanderförmig sich von einem Ende zum anderen Ende der Platte 28 erstreckende elektrisch leitende Widerstandsschicht 26. Diese weist jedoch zwei Besonderheiten auf:

  • Zunächst ist an dem in Fig. 4 oberen Ende die Materialschicht 14, aus der die elektrisch leitende Widerstandsschicht 26 hergestellt ist, so abgedampft worden, dass die Leiterbahn 26 eine Querschnittsverengung aufweist. Hierdurch wird eine Schmelzsicherung 30 geschaffen, durch welche der Betrieb der Heizplatte 28 abgesichert wird.
FIG. 4 shows in plan view a flat heating plate 28. This consists of a non-visible in this plan view non-conductive ground, on the analogous to that in the FIGS. 1 and 2 described first, a sheet-like material layer 14 has been applied, were subsequently evaporated from the areas 24 by means of a laser beam (for illustrative purposes, only one area 24 provided with reference numerals). This resulted a meandering from one end to the other end of the plate 28 extending electrically conductive resistance layer 26. However, this has two peculiarities:
  • First, at the in Fig. 4 upper end of the material layer 14, from which the electrically conductive resistance layer 26 is made, has been evaporated so that the conductor track 26 has a cross-sectional constriction. As a result, a fuse 30 is provided, through which the operation of the heating plate 28 is secured.

Eine zweite Besonderheit besteht darin, dass die Heizleistung bzw. die Wärmestromdichte der elektrisch leitenden Widerstandsschicht noch während ihrer Herstellung so korrigiert wurde, dass sie mit sehr hoher Präzision der gewünschten Heizleistung und der gewünschten Wärmestromdichte entspricht. Dies geschieht auf folgende Art und Weise:

  • An Endbereiche 32 und 34 der elektrisch leitenden Widerstandsschicht 26 wird während des Abdampfens der Bereiche 24 eine elektrische Spannung angelegt, so dass während dieses Abdampfens der elektrische Widerstand der elektrisch leitenden Schicht 26 kontinuierlich gemessen werden kann. Mit dem Laserstrahl wird dabei die Materialschicht 14 nur in zunächst sehr schmalen Bereichen 24 abgedampft. Die in Fig. 4 horizontal verlaufenden abgedampften Bereiche 24 verlaufen also zunächst nur von einem in Fig. 4 gestrichelt dargestellten Rand 36 bis zu dem darüber liegenden horizontalen Rand 38 der elektrisch leitenden Widerstandsschicht 26 (auch hier ist aus Darstellungsgründen nur in einem Bereich 24 das entsprechende Bezugszeichen eingetragen). Darüber hinaus wird die Materialschicht 14 zunächst vom Laserstrahl so bearbeitet, dass der in Fig. 4 untere elektrische Endbereich 34 relativ breit ist. Dies ist ebenfalls durch eine gestrichelte Linie mit dem Bezugszeichen 40 dargestellt.
A second special feature is that the heating power or the heat flux density of the electrically conductive resistive layer was corrected during its production so that it corresponds to the desired heat output and the desired heat flux density with very high precision. This happens in the following way:
  • At the end regions 32 and 34 of the electrically conductive resistance layer 26, an electrical voltage is applied during the evaporation of the regions 24, so that the electrical resistance of the electrically conductive layer 26 can be continuously measured during this evaporation. With the laser beam while the material layer 14 is evaporated only in initially very narrow regions 24. In the Fig. 4 horizontally extending evaporated areas 24 thus initially run only from one in Fig. 4 Dashed edge 36 shown up to the overlying horizontal edge 38 of the electrically conductive resistance layer 26 (here, too, for representation reasons, only in a region 24, the corresponding reference number entered). Furthermore the material layer 14 is first processed by the laser beam so that the in Fig. 4 lower electrical end region 34 is relatively wide. This is also shown by a dashed line by the reference numeral 40.

Im vorliegenden Ausführungsbeispiel wird während des Abdampfens der Bereiche 24 aus der Materialschicht 14 durch Widerstandsmessung der entstehenden Schicht 26 festgestellt, dass der tatsächliche elektrische Widerstand WIST (vgl. Fig. 5) der elektrisch leitenden Widerstandsschicht 26 geringer ist als der an sich gewünschte elektrische Widerstand WSOLL. Der in Fig. 4 untere Anschlussbereich 34 der elektrisch leitenden Widerstandsschicht 26 wird daher vom Laserstrahl so bearbeitet, dass seine Breite abnimmt, es wird also zusätzliches Material abgedampft. Hierdurch verlängert sich die elektrisch leitende Widerstandsschicht 26 um ein Maß dl (vgl. Fig. 4 und 5) und in der Folge steigt der tatsächliche elektrische Widerstand WIST an, bis er in etwa dem gewünschten Widerstand WSOLL entspricht. Die endgültige Position der Begrenzungslinie des unteren elektrischen Anschlusses 34 trägt in Fig. 4 das Bezugszeichen 42.In the present embodiment, it is found during the evaporation of the regions 24 from the material layer 14 by resistance measurement of the resulting layer 26, that the actual electrical resistance WIST (see. Fig. 5 ) of the electrically conductive resistance layer 26 is less than the desired per se electrical resistance WSOLL. The in Fig. 4 The lower connecting region 34 of the electrically conductive resistance layer 26 is therefore processed by the laser beam so that its width decreases, so that additional material is evaporated. As a result, the electrically conductive resistance layer 26 extends by a dimension d1 (cf. Fig. 4 and 5 ) and, as a result, the actual electrical resistance WIST increases until it approximately corresponds to the desired resistance WSOLL. The final position of the boundary line of the lower electrical connection 34 carries in Fig. 4 the reference numeral 42.

Um die Wärmestromdichte einzustellen, werden ferner die in Fig. 4 horizontalen abgedampften Bereiche 24 vergrößert. Die endgültige Begrenzung, bei welcher die elektrisch leitende Widerstandsschicht 26 die gewünschte Wärmestromdichte aufweist, trägt in Fig. 4 das Bezugszeichen 44 (aus Darstellungsgründen ist auch dieses Bezugszeichen nur bei einem abgedampften Bereich 24 eingetragen).In order to adjust the heat flow density, the in Fig. 4 horizontal evaporated areas 24 enlarged. The final boundary, in which the electrically conductive resistance layer 26 has the desired heat flow density contributes Fig. 4 the reference numeral 44 (for illustrative purposes, this reference numeral is also entered only at a vaporized area 24).

In Fig. 6 ist eine plattenförmige Heizvorrichtung im Schnitt dargestellt. Im Gegensatz zu den oben beschriebenen Ausführungsbeispielen umfasst sie nicht nur eine elektrisch leitende Widerstandsschicht, sondern zwei elektrisch leitende Widerstandsschichten 26a und 26b. Zwischen diesen ist eine elektrisch nicht leitende Zwischenschicht 46 vorhanden. Die Herstellung dieser elektrischen Heizplatte 28 erfolgt folgendermaßen:

  • Zunächst wird wie bei den obigen Ausführungsbeispielen ein elektrisch leitendes Material auf einen plattenförmigen Träger 12 aufgebracht. Die,Aufbringung erfolgt dabei flächig durch thermisches Spritzen in einer Art und Weise, dass die hieraus entstehende Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist. Anschließend wird mittels Laserstrahlung die Materialschicht bereichsweise (Bezugszeichen 24a) derart abgedampft, dass eine elektrisch leitende Widerstandsschicht 26a erzeugt wird, welche die gewünschte Form aufweist.
In Fig. 6 a plate-shaped heater is shown in section. Unlike the ones described above Embodiments, it includes not only an electrically conductive resistance layer, but two electrically conductive resistance layers 26a and 26b. Between these an electrically non-conductive intermediate layer 46 is present. The production of this electric heating plate 28 takes place as follows:
  • First, as in the above embodiments, an electrically conductive material is applied to a plate-shaped carrier 12. The, application takes place surface by thermal spraying in such a way that the resulting material layer initially has substantially no desired shape. Subsequently, the material layer is partially evaporated by laser radiation (reference numeral 24a) in such a way that an electrically conductive resistance layer 26a is produced, which has the desired shape.

Auf die fertige elektrisch leitende Widerstandsschicht 26a wird im weiteren Verlauf des Herstellungsvorgangs die elektrisch isolierende Zwischenschicht 46 aufgebracht. Dann wird der oben beschriebene Vorgang wiederholt, d. h. es wird wieder elektrisch leitendes Material mittels thermischem Spritzen auf die nicht leitende Zwischenschicht 46 flächig derart aufgebracht, dass eine hieraus entstandene zweite Materialschicht im Wesentlichen noch nicht die gewünschte Form aufweist. Diese wird dann mittels Laserstrahlung bearbeitet und bereichsweise (Bezugszeichen 24b) derart abgedampft, dass eine zweite elektrisch leitende Widerstandsschicht (26b) in der gewünschten Form entsteht.On the finished electrically conductive resistance layer 26a, the electrically insulating intermediate layer 46 is applied in the further course of the manufacturing process. Then the process described above is repeated, i. H. again electrically conductive material is applied by means of thermal spraying onto the non-conductive intermediate layer 46 in such a way that a second material layer formed therefrom substantially does not yet have the desired shape. This is then processed by laser radiation and partially evaporated (reference numeral 24b) such that a second electrically conductive resistance layer (26b) is formed in the desired shape.

In einem nicht dargestellten Ausführungsbeispiel ist das Material der elektrisch leitenden Schicht so gewählt, dass anstelle einer elektrischen Heizschicht eine elektrische Kühlschicht gebildet wird.In an embodiment not shown, the material of the electrically conductive layer is selected such that instead of an electrical heating layer, an electrical cooling layer is formed.

In einem anderen nicht dargestellten Ausführungsbeispiel wird die Temperatur der Heizschicht durch einen keramischen Schalter überwacht. Hierunter wird ein nicht-mechanischer Schalter verstanden, welcher ein Element aufweist, dessen Leitfähigkeit in erheblichem Umfang von seiner Temperatur abhängt. Alternativ kann auch ein Bimetallschalter verwendet werden.In another embodiment, not shown, the temperature of the heating layer is monitored by a ceramic switch. This is understood to mean a non-mechanical switch which has an element whose conductivity depends to a considerable extent on its temperature. Alternatively, a bimetal switch can be used.

Claims (12)

  1. Tubular flow heater (28) comprising a plurality of layers which are applied by thermal spraying, the layers comprising a non-conductive, tubular substrate (12), an electrically conductive resistive layer (26; 26a; 26b) and an electrical insulation layer (46), the electrically conductive resistive layer (26; 26a; 26b) being applied to the non-conductive, tubular substrate (12) and comprising an electrically conductive material (14) which is initially applied by plasma spraying, high velocity oxygen fuel spraying, arc spraying, oxyacetylene spraying, laser spraying or cold gas spraying and is then removed in regions such that a desired shape is produced, and the electrical insulation layer (46) is applied to the electrically conductive resistive layer (26; 26a; 26b).
  2. Heated plate (28) comprising a plurality of layers which are applied by thermal spraying, the layers comprising a non-conductive substrate (12), an electrically conductive resistive layer (26; 26a; 26b) and an electrical insulation layer (46), the electrically conductive resistive layer (26; 26a; 26b) being applied to the non-conductive substrate (12) and comprising an electrically conductive material (14) which is initially applied by plasma spraying, high velocity oxygen fuel spraying, arc spraying, oxyacetylene spraying, laser spraying or cold gas spraying and is then removed in regions such that a desired shape is produced, and the electrical insulation layer (46) is applied to the electrically conductive resistive layer (26; 26a; 26b).
  3. Tubular flow heater or heated plate (28) according to claim 1, characterised in that it comprises a plurality of electrically conductive resistive layers (26; 26a; 26b) which are separated by a corresponding plurality of non-conductive intermediate layers (46).
  4. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the non-conductive substrate (12) is a glass material.
  5. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the electrically conductive resistive layer (26; 26a; 26b) consists of a material which contains bismuth, tellurium, germanium, silicon and/or gallium arsenide.
  6. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the regions of the electrically conductive material (14) are removed by means of a laser and/or by means of a water jet and/or by means of powdered sand blasting.
  7. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the regions of the electrically conductive material (14) are removed by a laser such that no residues remain at the points where removal has taken place.
  8. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the electrically conductive resistive layer (26) comprises micro-welds of the thermally sprayed particles on the contact surface, which are caused by an increase in the temperature owing to the impact.
  9. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the size of the region (24) of the removed electrically conductive resistive layer (26; 26a; 26b) is increased in order to adjust a heat flux density.
  10. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that it comprises a ceramic switch which monitors the temperature of the electrically conductive resistive layer (26; 26a; 26b).
  11. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that the thickness of the resulting electrically conductive resistive layer (26; 26a; 26b) differs from one point to another.
  12. Tubular flow heater or heated plate (28) according to any of the preceding claims, characterised in that at least one region of the electrically conductive resistive layer comprises a predetermined melting point as a safety fuse.
EP20080015360 2001-12-19 2002-12-16 Heating and/or cooling device with multiple layers Revoked EP2009648B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162276.7A DE10162276C5 (en) 2001-12-19 2001-12-19 Tubular water heater and heating plate and method for their preparation
EP02796639A EP1459332B1 (en) 2001-12-19 2002-12-16 Method for the production of an electrically conductive resistive layer and heating and/or cooling device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP02796639A Division EP1459332B1 (en) 2001-12-19 2002-12-16 Method for the production of an electrically conductive resistive layer and heating and/or cooling device

Publications (2)

Publication Number Publication Date
EP2009648A1 EP2009648A1 (en) 2008-12-31
EP2009648B1 true EP2009648B1 (en) 2014-01-29

Family

ID=7709725

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02796639A Expired - Lifetime EP1459332B1 (en) 2001-12-19 2002-12-16 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
EP20080015360 Revoked EP2009648B1 (en) 2001-12-19 2002-12-16 Heating and/or cooling device with multiple layers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02796639A Expired - Lifetime EP1459332B1 (en) 2001-12-19 2002-12-16 Method for the production of an electrically conductive resistive layer and heating and/or cooling device

Country Status (8)

Country Link
US (4) US7361869B2 (en)
EP (2) EP1459332B1 (en)
AT (1) ATE414321T1 (en)
CA (1) CA2471268C (en)
DE (2) DE10162276C5 (en)
ES (2) ES2452325T3 (en)
PT (2) PT1459332E (en)
WO (1) WO2003052776A2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162276C5 (en) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Tubular water heater and heating plate and method for their preparation
DE10355043A1 (en) 2003-11-25 2005-06-23 Watlow Electric Manufacturing Co., St. Louis Method for fastening an electrical conductor to a surface element, and hot runner element, in particular for a plastic injection device
DE102004047357A1 (en) * 2004-09-29 2006-04-06 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Electrical arrangement and method for producing an electrical arrangement
US7280750B2 (en) * 2005-10-17 2007-10-09 Watlow Electric Manufacturing Company Hot runner nozzle heater and methods of manufacture thereof
DE102008051921B4 (en) 2007-11-02 2023-02-16 Gfe Fremat Gmbh Layer system and method for creating a contact element for a layer system
US20110188838A1 (en) * 2008-05-30 2011-08-04 Thermoceramix, Inc. Radiant heating using heater coatings
US8306408B2 (en) * 2008-05-30 2012-11-06 Thermoceramix Inc. Radiant heating using heater coatings
US8318265B2 (en) * 2008-06-12 2012-11-27 General Electric Company Plasma mediated processing of non-conductive substrates
DE102008049215A1 (en) 2008-09-27 2010-04-01 Hotset Heizpatronen U. Zubehör Gmbh Electric heating element for technical purposes
US20100077602A1 (en) * 2008-09-27 2010-04-01 Wolfgang Kollenberg Method of making an electrical heater
US8291728B2 (en) * 2009-02-27 2012-10-23 Corning Incorporated Method for the joining of low expansion glass
US9090022B1 (en) 2009-09-17 2015-07-28 Flexible Steel Lacing Company Belt splicing apparatus for conveyor belts
ES2655994T3 (en) 2010-07-22 2018-02-22 Watlow Electric Manufacturing Company Combination fluid sensor system
FR2977373B1 (en) * 2011-06-30 2013-12-20 Valeo Systemes Thermiques METHOD FOR MANUFACTURING A THERMO-ELECTRICAL DEVICE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE, AND THERMO-ELECTRIC DEVICE OBTAINED BY SUCH A METHOD
US20130071716A1 (en) * 2011-09-16 2013-03-21 General Electric Company Thermal management device
DE102011057105B4 (en) 2011-12-28 2016-11-17 Webasto Ag Electric vehicle heater
DE102011057108A1 (en) 2011-12-28 2013-07-04 Webasto Ag Electrical heating device for engine-driven road vehicle, has heating conductor electrically insulated opposite to substrate, and heat shield component extending over part of surface of conductor on side that is formed opposite to substrate
JP5945339B2 (en) * 2012-02-27 2016-07-05 ワトロウ エレクトリック マニュファクチュアリング カンパニー Temperature detection and control system for layered heating elements
US9224626B2 (en) 2012-07-03 2015-12-29 Watlow Electric Manufacturing Company Composite substrate for layered heaters
US9673077B2 (en) 2012-07-03 2017-06-06 Watlow Electric Manufacturing Company Pedestal construction with low coefficient of thermal expansion top
DE102013105292A1 (en) * 2013-05-23 2014-11-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Thermoelectric module, thermoelectric generator device and method for producing a thermoelectric module
DE102014005339B4 (en) 2014-01-28 2022-06-09 Wolfgang B. Thörner Process for the production of a contact element
CN108368913B (en) 2015-12-03 2020-11-17 弹性钢接头公司 Tape splicing apparatus and method
DE102017003416A1 (en) * 2017-04-07 2018-10-11 Stiebel Eltron Gmbh & Co. Kg Electric water heating system
DE102017213339A1 (en) 2017-08-02 2018-08-23 Continental Automotive Gmbh Circuit arrangement and method for producing a circuit arrangement
CN108070815B (en) * 2017-11-20 2019-08-16 四川富乐德科技发展有限公司 A kind of preparation process of the aluminium meltallizing layer applied to electronic industry cavity equipment
DE102019201818A1 (en) * 2019-02-12 2020-08-13 Vitesco Technologies GmbH Heating device with a plurality of electrical heating elements
DE102019133039A1 (en) * 2019-09-19 2021-03-25 Dbk David + Baader Gmbh Fluid heater
DE102019214550B4 (en) * 2019-09-24 2021-06-24 Vitesco Technologies GmbH Method of making an electrical heating element
DE102019214566B4 (en) * 2019-09-24 2021-04-01 Vitesco Technologies GmbH Heating arrangement
DE102019214588A1 (en) * 2019-09-24 2021-03-25 Vitesco Technologies GmbH Electric heater for a vehicle
DE102019127753A1 (en) * 2019-10-15 2021-04-15 Türk + Hillinger GmbH Method for producing an electrical heating element for electrical heating devices and / or load resistors
DE102020207875A1 (en) 2020-06-24 2021-12-30 Vitesco Technologies GmbH Electric heating arrangement and electric heating device with such a heating arrangement
CN111778501A (en) * 2020-06-30 2020-10-16 武汉武钢华工激光大型装备有限公司 Method and device for preparing conducting layer on Cr20Ni80 thermal spraying coating
DE102022117290A1 (en) 2022-07-12 2024-01-18 Marelli Automotive Lighting Reutlingen (Germany) GmbH Method for providing a circuit board and circuit board
WO2024017494A1 (en) * 2022-07-19 2024-01-25 Oerlikon Metco Ag, Wohlen Electric heating element production method

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE235132C (en) * 1909-12-18
US1767715A (en) * 1927-02-19 1930-06-24 Central Radio Lab Electrical resistance
US2022314A (en) * 1933-12-29 1935-11-26 Globar Corp Electrical resistor and its manufacture
US2622178A (en) * 1946-04-22 1952-12-16 Blue Ridge Glass Corp Electric heating element and method of producing the same
US2673142A (en) * 1949-04-15 1954-03-23 Blue Ridge Glass Corp Electric heating element
US2623971A (en) * 1951-06-21 1952-12-30 Blue Ridge Glass Corp Electric resistance heater
US2842464A (en) * 1953-03-02 1958-07-08 Saint Gobain Method of producing an electrical resistance on glass
US2859321A (en) * 1955-07-11 1958-11-04 Garaway Alexander Electric resistance heater
US2878357A (en) * 1956-07-13 1959-03-17 Gen Dynamics Corp Electric heated laminated glass panel
US2966430A (en) * 1957-02-05 1960-12-27 Kanthal Ab Electric resistance elements
US3169892A (en) * 1959-04-08 1965-02-16 Jerome H Lemelson Method of making a multi-layer electrical circuit
US3220889A (en) * 1962-08-02 1965-11-30 Philco Corp Electrical circuit components
US3375342A (en) * 1963-03-04 1968-03-26 Sprague Electric Co Electron beam milling of electrical coatings
NL127687C (en) * 1963-04-10
US3417229A (en) * 1965-10-14 1968-12-17 Sanders Associates Inc Electrical resistance heating articles
NL6707448A (en) * 1967-05-30 1968-12-02
US3564475A (en) * 1967-10-24 1971-02-16 Nippon Kogaku Kk Variable resistance element with multiple patterns for measuring instruments
US3675317A (en) * 1970-05-13 1972-07-11 Welwya Canada Ltd Method for spiralling electrical resistors
US3750049A (en) * 1970-09-30 1973-07-31 R Rorden Laser trimming tool
US3657510A (en) * 1970-11-19 1972-04-18 Union Carbide Corp Q-switched laser device for altering surfaces
BE789555A (en) * 1971-09-30 1973-03-29 Saint Gobain CORRECTION OF THE ELECTRICAL RESISTANCE OF ELECTRICALLY HEATED WINDOWS
US4032861A (en) * 1973-11-15 1977-06-28 Union Carbide Corporation Laser device for altering surfaces in accordance with given patterns
US4016645A (en) * 1974-05-02 1977-04-12 Asg Industries, Inc. Electric heater plate and terminal thereof
GB1546091A (en) * 1975-02-28 1979-05-16 Johnson Matthey Co Ltd Thermometers
US4057707A (en) * 1975-10-17 1977-11-08 Corning Glass Works Electric heating unit
FR2339313A1 (en) * 1976-01-23 1977-08-19 Murata Manufacturing Co SEMICONDUCTOR HEATING ELEMENT WITH POSITIVE TEMPERATURE COEFFICIENT
US4297670A (en) * 1977-06-03 1981-10-27 Angstrohm Precision, Inc. Metal foil resistor
US4176445A (en) * 1977-06-03 1979-12-04 Angstrohm Precision, Inc. Metal foil resistor
US4306217A (en) * 1977-06-03 1981-12-15 Angstrohm Precision, Inc. Flat electrical components
FR2398374A1 (en) * 1977-07-19 1979-02-16 Lignes Telegraph Telephon ADJUSTING RESISTORS FOR HYBRID CIRCUITS
US4258078A (en) * 1978-06-22 1981-03-24 Bell Telephone Laboratories, Incorporated Metallization for integrated circuits
JPS5889380A (en) * 1981-11-20 1983-05-27 Matsushita Electric Ind Co Ltd Thermal head
JPS59175580A (en) * 1983-03-25 1984-10-04 株式会社日立製作所 Heat generating resistor
JPS60140693A (en) * 1983-12-28 1985-07-25 日立金属株式会社 Resistance film heating implement
US4566936A (en) * 1984-11-05 1986-01-28 North American Philips Corporation Method of trimming precision resistors
DE3512659A1 (en) * 1985-04-06 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Heater for electrically operated hot-water apparatuses
DE3630393C2 (en) * 1985-09-10 1994-06-23 Sharp Kk Resistance thermometer
DE3545454A1 (en) * 1985-12-20 1987-07-02 Bosch Siemens Hausgeraete Heating element for thermal domestic appliances, especially for hotplates
KR870005921A (en) * 1985-12-26 1987-07-07 노부오 사수가 Conductive glass plate
US4684779A (en) * 1986-01-22 1987-08-04 General Motors Corporation Laser welding metal sheets with associated trapped gases
DE3619530A1 (en) * 1986-04-11 1987-10-15 Wolfgang Dr Hoettler Data carrier, particularly in label or card form
EP0257677A2 (en) * 1986-08-08 1988-03-02 SILICONIX Incorporated Trimmable high value polycrystalline silicon resisitor
US4703557A (en) * 1986-10-07 1987-11-03 Cts Corporation Adjustment of thick film resistor (TCR) by laser annealing
DE3708577A1 (en) * 1987-03-17 1988-09-29 Ver Glaswerke Gmbh Car glass window pane which is provided with a layer which is electrically conductive and reflects heat rays
FR2620820B1 (en) * 1987-09-22 1992-06-19 Degussa HEATING ELECTRIC RESISTOR FOR RHEOMETER
JPH01220406A (en) * 1988-02-29 1989-09-04 Taiyo Yuden Co Ltd Manufacture of metal film resistor
US4897520A (en) * 1988-10-31 1990-01-30 American Telephone And Telegraph Company, At&T Technologies, Inc. Laser debris vacuum scoop
JPH02304905A (en) * 1989-05-19 1990-12-18 Tama Electric Co Ltd Manufacture of resistor
JPH02308291A (en) * 1989-05-24 1990-12-21 Onoda Cement Co Ltd Heat fixing roll for copying machine and its manufacture
DE8908139U1 (en) * 1989-07-04 1989-10-12 Siegert Gmbh, 8501 Cadolzburg, De
JPH0832304B2 (en) * 1989-08-18 1996-03-29 株式会社日立製作所 Method for forming inorganic polymer thin film
JPH03295185A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Heating element
JP2564415B2 (en) * 1990-04-18 1996-12-18 株式会社日立製作所 Air flow detector
JP2938143B2 (en) * 1990-05-29 1999-08-23 沖電気工業株式会社 Manufacturing method of fixing device
US5233327A (en) * 1991-07-01 1993-08-03 International Business Machines Corporation Active resistor trimming by differential annealing
JPH05307926A (en) * 1991-11-21 1993-11-19 Nippon Autom Kk Temperature fuse
DE69218134T2 (en) * 1991-12-09 1997-09-18 Toshiba Lighting & Technology Fixing heating element and method for its production
JPH05326112A (en) * 1992-05-21 1993-12-10 Shin Etsu Chem Co Ltd Layered ceramic heater
DE4222278C1 (en) * 1992-07-07 1994-03-31 Roederstein Kondensatoren Process for the manufacture of electrical thick film fuses
JPH06290917A (en) * 1993-04-02 1994-10-18 Ebara Corp Manufacture of flame-sprayed heater
JPH06326246A (en) * 1993-05-13 1994-11-25 Mitsubishi Electric Corp Thick film circuit board and production thereof
US5750958A (en) * 1993-09-20 1998-05-12 Kyocera Corporation Ceramic glow plug
WO1995020819A1 (en) * 1994-01-31 1995-08-03 Nippon Tungsten Co., Ltd. Flat ptc heater and resistance value regulating method for the same
US5616266A (en) * 1994-07-29 1997-04-01 Thermal Dynamics U.S.A. Ltd. Co. Resistance heating element with large area, thin film and method
JPH08101592A (en) * 1994-09-30 1996-04-16 Toshiba Lighting & Technol Corp Fixing heater, manufacture thereof, fixing device and image forming device
GB2301223B (en) * 1995-05-26 1999-04-21 Johnson Electric Sa Polymeric type positive temperature coefficient thermistors
NL1000729C1 (en) * 1995-07-05 1997-01-08 Ooithuis Beheer B V Cavity wall construction with internal electrothermal layer
US6448538B1 (en) * 1996-05-05 2002-09-10 Seiichiro Miyata Electric heating element
GB9622695D0 (en) * 1996-10-31 1997-01-08 Delta Theta Ltd Thermal elements
DE29702813U1 (en) * 1997-01-10 1997-05-22 Ego Elektro Geraetebau Gmbh Contact heat transferring cooking system with an electric hotplate
EP0904562A1 (en) * 1997-03-17 1999-03-31 Koninklijke Philips Electronics N.V. Optical switching device
US5923995A (en) * 1997-04-18 1999-07-13 National Semiconductor Corporation Methods and apparatuses for singulation of microelectromechanical systems
US6762396B2 (en) * 1997-05-06 2004-07-13 Thermoceramix, Llc Deposited resistive coatings
US6096995A (en) * 1997-05-30 2000-08-01 Kyocera Corporation Heating roller for fixing
US6099974A (en) * 1997-07-16 2000-08-08 Thermal Spray Technologies, Inc. Coating that enables soldering to non-solderable surfaces
DE19810848A1 (en) * 1998-02-06 1999-08-12 Heinz Zorn Mirror heater
WO2000007850A1 (en) 1998-08-05 2000-02-17 Lear Automotive Dearborn, Inc. Trim panel having electrical connectors
DE19856087A1 (en) * 1998-12-04 2000-06-21 Siceram Gmbh Electric instantaneous water heater and process for its manufacture
AU3845799A (en) * 1999-05-18 2000-12-05 Advanced Heating Technologies Ltd. Electrical heating elements and method for producing same
DE10001330A1 (en) * 2000-01-14 2001-07-19 Heinrich Schuermann Electric cooker plate has flat coating of electrical heating resistance material with binding material containing electrical resistance element of conducting carbon in contact with underside
KR100468373B1 (en) * 2000-01-17 2005-01-27 마쯔시다덴기산교 가부시키가이샤 Resistor and method for fabricating the same
US6433319B1 (en) * 2000-12-15 2002-08-13 Brian A. Bullock Electrical, thin film termination
WO2001067819A1 (en) * 2000-03-03 2001-09-13 Cooper Richard P Thin film tubular heater
KR100352892B1 (en) * 2000-05-22 2002-09-16 주식회사 팍스텍 Method for manufacturing thin film heating material and heating device thereof
DE10029244A1 (en) * 2000-06-14 2002-01-03 Elias Russegger A fuel oil pre-heater has a PTC coated tube over which the oil is passed inside an outer tube.
US6609292B2 (en) * 2000-08-10 2003-08-26 Rohm Co., Ltd. Method of making chip resistor
TW517251B (en) * 2000-08-30 2003-01-11 Matsushita Electric Ind Co Ltd Resistor and method of manufacturing resistor
JP3967553B2 (en) * 2001-03-09 2007-08-29 ローム株式会社 Chip resistor manufacturing method and chip resistor
DE10162276C5 (en) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Tubular water heater and heating plate and method for their preparation
DE10355043A1 (en) 2003-11-25 2005-06-23 Watlow Electric Manufacturing Co., St. Louis Method for fastening an electrical conductor to a surface element, and hot runner element, in particular for a plastic injection device
JP5263727B2 (en) * 2007-11-22 2013-08-14 コーア株式会社 Resistor
TWI381170B (en) * 2009-09-17 2013-01-01 Cyntec Co Ltd Current sensing resistor device and process
EP2678868B1 (en) * 2011-02-23 2019-05-01 Miraco, Inc. Tunable resistance conductive ink circuit

Also Published As

Publication number Publication date
EP1459332A2 (en) 2004-09-22
US20060108354A1 (en) 2006-05-25
CA2471268C (en) 2007-07-17
WO2003052776A2 (en) 2003-06-26
EP2009648A1 (en) 2008-12-31
PT2009648E (en) 2014-03-25
US9029742B2 (en) 2015-05-12
PT1459332E (en) 2008-12-29
US9758854B2 (en) 2017-09-12
US7361869B2 (en) 2008-04-22
US20150267288A1 (en) 2015-09-24
EP1459332B1 (en) 2008-11-12
ATE414321T1 (en) 2008-11-15
US20130260048A1 (en) 2013-10-03
ES2314125T3 (en) 2009-03-16
US20050025470A1 (en) 2005-02-03
DE10162276C5 (en) 2019-03-14
DE10162276B4 (en) 2015-07-16
DE10162276A1 (en) 2003-07-17
WO2003052776A3 (en) 2004-03-04
DE50213016D1 (en) 2008-12-24
CA2471268A1 (en) 2003-06-26
ES2452325T3 (en) 2014-03-31

Similar Documents

Publication Publication Date Title
EP2009648B1 (en) Heating and/or cooling device with multiple layers
DE102005018062B4 (en) Process for the production of heating devices for components for injection molding equipment
EP1844181B1 (en) Cold gas spraying method
EP3083107B1 (en) Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
EP0165565B1 (en) Vacuum plasma coating machine
DE3417462C3 (en) Arc vapor deposition method for a substrate
EP2179426B1 (en) Multilayer system comprising contact elements, and method for the production of a contact element for a multilayer system
DE4129120C2 (en) Method and device for coating substrates with high temperature resistant plastics and use of the method
DE102018120015A1 (en) 3D metal printing process and arrangement for such
DE1553761A1 (en) Process for coating the cutting edges of sharpened devices
DE102017125597A1 (en) 3D metal printing method and arrangement for such
DE102005004116A1 (en) Method for cold gas spraying and cold gas spray gun
DE19535078B4 (en) Monitoring and control of thermal spray processes
EP3147067A1 (en) Device and method for producing and/or repairing of in particular rotationally symmetrical components
DE3007169C2 (en) Process for the production of micro-bores in metal parts with the aid of a power laser
EP1029104B1 (en) GAZ JET PVD METHOD FOR PRODUCING A LAYER WITH MoSi2
DE2544847C2 (en) Plasma spray device
EP2617868A1 (en) Method and device for thermal spraying
WO2003049500A2 (en) Method and device for producing an electrical strip conductor on a substrate
DE20302566U1 (en) Soldering tip has heat conductive body with non-wettable layer and outer tinned layer with adhesive layer between
DE19821772A1 (en) Ceramic evaporator boats with improved initial wetting behavior
DE3643208C2 (en)
EP0401259A1 (en) Process and device for depositing layers of a high-temperature superconducting material on substrates
EP0083091A2 (en) Process and apparatus for coating articles with molten metal
DE4141317C1 (en) Prodn. of wear-reducing coating to reduce cracking and distortion - for screw surface in e.g. plastic extruder comprises introducing molybdenum@-contg. material into laser beam and depositing on steel body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1459332

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20090206

17Q First examination report despatched

Effective date: 20090313

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01C 17/242 20060101ALI20130703BHEP

Ipc: H05B 3/40 20060101ALI20130703BHEP

Ipc: H01C 17/24 20060101AFI20130703BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130812

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1459332

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 651652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215885

Country of ref document: DE

Effective date: 20140313

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140317

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DREISS PATENTANWAELTE, DE

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2452325

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WATLOW ELECTRIC MANUFACTURING COMPANY, US

Free format text: FORMER OWNER: WATLOW ELECTRIC MANUFACTURING COMPANY, US

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140400781

Country of ref document: GR

Effective date: 20140515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50215885

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

26 Opposition filed

Opponent name: WEBASTO SE

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50215885

Country of ref document: DE

Effective date: 20141019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: FRIEDERICHSTR. 6, 70174 STUTTGART (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: FRIEDRICHSTR. 6, 70174 STUTTGART (DE)

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141216

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20161208

Year of fee payment: 15

Ref country code: GB

Payment date: 20161228

Year of fee payment: 15

Ref country code: CH

Payment date: 20161227

Year of fee payment: 15

Ref country code: NL

Payment date: 20161226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161202

Year of fee payment: 15

Ref country code: FR

Payment date: 20161227

Year of fee payment: 15

Ref country code: SE

Payment date: 20161129

Year of fee payment: 15

Ref country code: PT

Payment date: 20161202

Year of fee payment: 15

Ref country code: ES

Payment date: 20161227

Year of fee payment: 15

Ref country code: GR

Payment date: 20161229

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50215885

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50215885

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161229

Year of fee payment: 15

Ref country code: TR

Payment date: 20161206

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20161227

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161222

Year of fee payment: 15

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20170322

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20170322

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20140129

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20140129

REG Reference to a national code

Ref country code: GR

Ref legal event code: NF

Ref document number: 20140400781

Country of ref document: GR

Effective date: 20171023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 651652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED