EP1938162A1 - Procede et dispositif pour compenser des ecarts de position et de forme - Google Patents

Procede et dispositif pour compenser des ecarts de position et de forme

Info

Publication number
EP1938162A1
EP1938162A1 EP06805438A EP06805438A EP1938162A1 EP 1938162 A1 EP1938162 A1 EP 1938162A1 EP 06805438 A EP06805438 A EP 06805438A EP 06805438 A EP06805438 A EP 06805438A EP 1938162 A1 EP1938162 A1 EP 1938162A1
Authority
EP
European Patent Office
Prior art keywords
target
workpiece
program
shape
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06805438A
Other languages
German (de)
English (en)
Inventor
Arndt GLÄBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1938162A1 publication Critical patent/EP1938162A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50057Compensation error by probing test, machined piece, post or pre process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values

Definitions

  • the present invention relates to a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machine tools and to an NC-controlled metal-cutting production machine with a device for compensating for deviations in the position and / or shape of workpieces.
  • the existing material residual stresses of a workpiece are removed by the milling, then it often leads to warping or warping, which can take on significant proportions depending on the component geometry and lead to the fact that the workpiece geometry is outside the manufacturing tolerance. Furthermore, the tool and / or the workpiece is forced by the machining forces from its desired position.
  • the size of the Abdrangung depends essentially on the processing power and the rigidity of the overall system consisting of workpiece, tool and machine.
  • NC-controlled metal-cutting production machines are known from the prior art.
  • the NC programs are nominally preprogrammed in the creation with the appropriate parameters such as the position and geometry data of the workpiece to be machined and other data, such as for feed and cutting speed.
  • US 4,660,148 discloses input modules which are intended to permit certain data input to the on-site NC machine by an operator, including input of non-variable data and geometric data of the workpiece. A consideration of the position and / or shape deviations due to material and / or tool properties does not take place.
  • the disadvantages of the prior art are avoided and provided a cost-effective solution with reduced manufacturing costs.
  • the position and / or shape deviations described above are as a rule systematic errors which are compensated according to the invention by returning the desired-actual difference to an NC program controlling the production device.
  • deformations caused by the release of material tensions arise compensated.
  • transitions between tools with different Abdrangung can be compensated.
  • Form deviations that result from uneven finishing allowance can also be compensated, ie pre-finishing for a constant oversize situation during sizing is no longer necessary. As a result, work sequences can be significantly reduced.
  • a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machines comprising the following steps: a) clamping a new workpiece b) machining the workpiece with the nominal data of the NC program; c) detecting the target-actual deviation; d) optimization of the NC program with the acquisition data from c); e) repeating the iteration steps a) to d) until required position and / or shape tolerances are achieved.
  • the control loop is arranged virtually outside the NC machine.
  • the passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
  • An alternative method according to the invention for compensating for deviations in position and shape in NC-controlled metal-cutting production machines comprises the following steps: a) preparing a workpiece wherein the allowance is greater than the maximum expected position and / or shape deviation; b) detecting the target-actual deviation; c) optimization of the NC program with the acquisition data; d) Finishing the component with modified NC program.
  • the closed loop is passed through in this process within the NC machine when processing an individual component.
  • the component is processed in a first step in such a way that the component sections to be corrected are initially only pretreated.
  • the finishing allowance must be greater than the maximum expected position and shape deviations.
  • the target-actual deviation is detected for the pre-illuminated areas of corresponding measuring devices within the machine.
  • the deviations determined are then returned to the NC program in a further step and automatically implemented in this.
  • the optimized finishing program then finishes the component.
  • this process is carried out in the same way, so that non-systematic, individual errors of a single workpiece can be compensated for here as well.
  • the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization. With the internal control loop, the program optimization is carried out specifically for each component.
  • An advantageous development of the method according to the invention provides that the detection of the desired-actual deviation takes place with a tactile or an optical measuring method.
  • all measuring or test methods can be used, with which the deviation in the required quality and quantity can be determined.
  • the detection with tactile systems such as: measuring machine or probe within the machine, the optical detection (laser triangulation, planar optical measuring systems) outside or inside the machine come as a possible measurement method into consideration.
  • a further advantageous development of the method according to the invention provides that the feedback of the desired-actual deviation is effected in such a way that a correction vector is assigned to each support point of the tool path.
  • the feedback of the setpoint-actual deviation into the NC program is carried out in such a way that a correction vector is assigned to each support point of the toolpath.
  • the correction vector consists of the amount and the direction of the target-actual deviation.
  • Each support point of the tool path is then shifted by the associated correction vector.
  • the correction vectors are determined by taking the detected actual geometry, i. the determined measurement data, with the target geometry, for example, determined from a CAD model, related. It is of crucial importance that the respectively associated areas or interpolation points are offset against each other.
  • an advantageous development of the method according to the invention provides that the unambiguous relationship between associated regions is defined by synchronizing marks which are set between regions with a large change in curvature. Synchronization marks must always be placed between areas between which the curvature changes greatly. If all measurement points, ie the actual geometry, are related to the corresponding points on the CAD model, ie the target geometry, a vector field is obtained with the corresponding interpolation points of the NC program can be moved. The unambiguous relation between the correction vectors of the vector field and the NC program is produced by the same synchronous marks which were already used in the actual geometry and the target geometry.
  • An NC-controlled cutting production machine with a device for compensating for deviations in position and / or shape of workpieces has the following: a control unit which has a memory unit for storing a desired geometry of a workpiece, a measuring device for detecting the actual geometry a workpiece and a computing unit for calculating the target-actual deviation, which controls the further processing of the workpiece according to the target-actual deviation or independently optimizes the NC program.
  • An advantageous embodiment of the NC-controlled metal-cutting production machine is an NC-controlled milling machine.
  • An advantageous embodiment of the NC-controlled metal-cutting production machine has tactile or optical measuring devices for detecting the actual geometry.
  • the tactile or optical measuring devices are advantageously integrated in the actual cutting machine, but also here the measuring devices can be mounted outside.
  • FIGS. shows: 1 shows a flow chart of a first embodiment of a method according to the invention
  • FIG. 2 shows a flow chart of a second embodiment of a method according to the invention
  • Fig. 5 shows a third example of position and shape deviations when milling a flow profile.
  • FIG. 1 shows a flow chart of a first embodiment of a method according to the invention for compensating for deviations in position and shape in an NC-controlled metal-cutting machine.
  • the control loop takes place outside the NC machine.
  • the passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
  • the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization.
  • FIG. 2 shows a flow chart of a second embodiment of a erfindunmotheren method for compensating for position and shape deviations in an NC-controlled milling machine.
  • the closed loop is passed through in this process within the NC machine during the processing of each component.
  • the component clamped in the processing machine is pre-exposed after the start of the process in a first step.
  • the finishing allowance must be greater than the maximum expected deviations in position and form, as otherwise the workpiece will be rejected.
  • the pre-illuminated areas of corresponding measuring devices within the machine in the case of the present exemplary embodiment of automatic push buttons, the target-actual deviation is detected.
  • the determined measurement results are then fed back to the NC program in a further step.
  • the component In the event that the target-actual deviation is within the allowable tolerance, ie in the case of a Yes branch, the component is finished. In the event that the target / actual deviation is not within the permissible tolerance, ie with a no-branch, the deviation is automatically implemented in the NC program and pass through another finishing pass. With the optimized finishing program, the component is then finished. For the next component, this procedure is followed in the same way.
  • FIGS. 3 to 5 show a few examples of deviations in position and shape during the milling of a flow profile, as occur, for example, in blade production for turbomachines.
  • the desired geometry of a flow profile 1 is shown with a dashed line.
  • the dotted line represents the actual geometry.
  • the deviations between the actual geometry and the target geometry are represented by correction vectors.
  • synchronization points are shown in the region of the profile nose and the profile trailing edge.
  • Figure 3 shows a circumferentially constant shape deviation, ie the deviations of the actual geometry of the target geometry are at all Make the profile contour the same size. At all points of the geometry there is an excess.
  • FIG. 4 shows an example of a flow profile with shape deviations that are not constant over the entire contour. There is an undersize in the suction area of the profile, i. the actual geometry is in places within the target geometry.
  • FIG. 5 shows an example of a flow profile with position and shape deviations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un procédé servant à compenser des écarts de position et/ou de forme dans des machines de production par enlèvement de copeaux à commande numérique. Le procédé selon l'invention présente les étapes suivantes : a) fixation d'une nouvelle pièce ; b) usinage de la pièce au moyen des données nominales du programme de commande numérique ; c) détection de l'écart entre la valeur de consigne et la valeur réelle ; d) optimisation du programme de commande numérique au moyen des données acquises ; e) répétition des étapes itératives a) à d) jusqu'à ce que les tolérances de position et/ou de forme requises soient atteintes. L'invention concerne également une machine de production par enlèvement de copeaux à commande numérique, qui comprend un dispositif pour la compensation d'écarts de position et/ou de forme dans des pièces. L'invention permet de remédier aux inconvénients de l'état de la technique et fournit une solution économique réduisant les frais de fabrication.
EP06805438A 2005-10-20 2006-10-17 Procede et dispositif pour compenser des ecarts de position et de forme Ceased EP1938162A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050205A DE102005050205A1 (de) 2005-10-20 2005-10-20 Verfahren und Vorrichtung zum Kompensieren von Lage-und Formabweichungen
PCT/DE2006/001832 WO2007045223A1 (fr) 2005-10-20 2006-10-17 Procede et dispositif pour compenser des ecarts de position et de forme

Publications (1)

Publication Number Publication Date
EP1938162A1 true EP1938162A1 (fr) 2008-07-02

Family

ID=37698031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805438A Ceased EP1938162A1 (fr) 2005-10-20 2006-10-17 Procede et dispositif pour compenser des ecarts de position et de forme

Country Status (5)

Country Link
US (1) US8014892B2 (fr)
EP (1) EP1938162A1 (fr)
CA (1) CA2625402C (fr)
DE (1) DE102005050205A1 (fr)
WO (1) WO2007045223A1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503029B2 (en) * 2006-03-31 2009-03-10 Synopsys, Inc. Identifying layout regions susceptible to fabrication issues by using range patterns
DE602008002823D1 (de) * 2007-03-21 2010-11-11 Abb Technology Ab Ischer fehler zwischen arbeitsobjekten und einer halteeinrichtung
CA2829576C (fr) * 2011-03-09 2018-05-22 Rolls-Royce Corporation Inspection par imagerie intelligente de surface de composants de profil
DE102011006447A1 (de) 2011-03-30 2012-10-04 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bearbeiten von Werkstücken mittels einer numerisch gesteuerten Werkstückbearbeitungsvorrichtung sowie Werkstückbearbeitungsvorrichtung
US9008813B2 (en) * 2011-09-22 2015-04-14 GM Global Technology Operations LLC Method to improve the dimensional accuracy and surface quality for large spring back compensation for fuel cell bipolar plate forming
FR2984197B1 (fr) * 2011-12-15 2014-01-03 Essilor Int Procede de transformation d'une surface progressive initiale
DE102013002252A1 (de) * 2013-02-08 2014-08-14 Ulrich Gärtner Bearbeitungsvorrichtung und Bearbeitungsverfahren zur Bearbeitung eines Werkstücks
EP2984596B1 (fr) * 2013-04-11 2019-10-30 Raytheon Company Usinage de contour inverse à des fins d'élimination de déformation de contrainte résiduelle
US20140365199A1 (en) * 2013-06-11 2014-12-11 The Mathworks, Inc. Pairing a physical device with a model element
CN103273292B (zh) * 2013-06-14 2016-04-20 沈阳飞机工业(集团)有限公司 一种细长复杂t型零件变形的控制及补偿方法
US10360052B1 (en) 2013-08-08 2019-07-23 The Mathworks, Inc. Automatic generation of models from detected hardware
WO2015037143A1 (fr) * 2013-09-13 2015-03-19 株式会社牧野フライス製作所 Procédé d'évaluation de trajectoire d'outil et procédé et dispositif de génération de trajectoire d'outil
EP3045992B1 (fr) 2015-01-14 2020-10-14 Hexagon Technology Center GmbH Compensation d'erreurs se produisant dans un processus de production
CN104759942B (zh) * 2015-04-22 2018-06-26 华中科技大学 一种薄壁零件的铣削变形在线测量与补偿加工方法
CN105242637A (zh) * 2015-10-27 2016-01-13 华中科技大学 一种航空薄壁叶片补偿加工方法
US10401823B2 (en) 2016-02-04 2019-09-03 Makino Inc. Real time machining process monitoring utilizing preprocess simulation
EP3229088B1 (fr) * 2016-04-08 2020-08-19 Klingelnberg AG Procede de surveillance de la geometrie d'une machine a tailler les engrenages et dispositif comprenant une machine a tailler les engrenages, d'un dispositif de mesure et d'un module de logiciel
US10401803B2 (en) * 2016-09-26 2019-09-03 General Electric Company Apparatus and method for computer code adjustments in an industrial machine
US11238547B2 (en) 2017-01-12 2022-02-01 Johnson Controls Tyco IP Holdings LLP Building energy cost optimization system with asset sizing
US11061424B2 (en) 2017-01-12 2021-07-13 Johnson Controls Technology Company Building energy storage system with peak load contribution and stochastic cost optimization
US11847617B2 (en) 2017-02-07 2023-12-19 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with financial analysis functionality
US11900287B2 (en) 2017-05-25 2024-02-13 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with budgetary constraints
CA2996796C (fr) * 2017-02-27 2020-07-07 Usnr, Llc Optimisation de bille et tasseau biseaute
US11409274B2 (en) 2017-05-25 2022-08-09 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system for performing maintenance as soon as economically viable
US11636429B2 (en) 2017-05-25 2023-04-25 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance systems and methods with automatic parts resupply
WO2018217251A1 (fr) * 2017-05-25 2018-11-29 Johnson Controls Technology Company Système de maintenance prédictive modélisée pour équipement de construction
US11120411B2 (en) 2017-05-25 2021-09-14 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with incentive incorporation
US11416955B2 (en) 2017-05-25 2022-08-16 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with integrated measurement and verification functionality
US11747800B2 (en) 2017-05-25 2023-09-05 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with automatic service work order generation
WO2019153169A1 (fr) * 2018-02-08 2019-08-15 Abb Schweiz Ag Procédé et appareil pour régler une trajectoire de mouvement de robot
US11480360B2 (en) 2019-08-06 2022-10-25 Johnson Controls Tyco IP Holdings LLP Building HVAC system with modular cascaded model
FR3104584B1 (fr) 2019-12-17 2021-12-03 Michelin & Cie Composé diorganomagnésien asymétrique
FR3104586B1 (fr) 2019-12-17 2021-12-03 Michelin & Cie Composé diorganomagnésien asymétrique pour système catalytique
FR3116276B1 (fr) 2020-11-19 2023-11-10 Michelin & Cie Diorganomagnésien ayant une chaîne diénique ou oléfinique et fonctionnelle amine
FR3116277A1 (fr) 2020-11-19 2022-05-20 Compagnie Generale Des Etablissements Michelin Copolymères fonctionnels amine à blocs éthyléniques et diéniques
FR3116538B1 (fr) 2020-11-24 2022-11-25 Michelin & Cie Co-catalyseur comprenant plusieurs liaisons carbone magnésium
CN113547385B (zh) * 2021-08-06 2022-08-23 中国航发沈阳黎明航空发动机有限责任公司 一种薄壁环形零件的在线测量补偿方法
DE102021121991A1 (de) * 2021-08-25 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen eines Betriebsparameters eines Werkzeugs zum Formen von Bauteilen in einer Presse
CN117655563B (zh) * 2024-01-31 2024-05-28 成都沃特塞恩电子技术有限公司 激光切割路径规划方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620422C1 (en) * 1986-06-18 1988-01-14 Gildemeister Ag Method for correcting the processing programme of a tool of a numerically controlled machine tool
US6256546B1 (en) * 1998-09-28 2001-07-03 General Electric Company System and method for numerical control processing of an in-processing part
WO2004071717A1 (fr) * 2003-02-13 2004-08-26 Abb Ab Procede et systeme permettant de programmer un robot industriel, de sorte qu'il se deplace vers des emplacements determines sur un objet, et generation d'un programme de balayage de surface

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031368A (en) * 1972-04-17 1977-06-21 Verkstadsteknik Ab Adaptive control of cutting machining operations
JPS57114331A (en) * 1980-12-30 1982-07-16 Fanuc Ltd Shape correcting method in wire-cut electric discharge machining
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
US4428055A (en) * 1981-08-18 1984-01-24 General Electric Company Tool touch probe system and method of precision machining
JPS5976720A (ja) * 1982-10-27 1984-05-01 Inoue Japax Res Inc 放電加工装置
JPS5981094A (ja) * 1982-11-02 1984-05-10 株式会社日立製作所 自動機械
US4605886A (en) * 1983-09-02 1986-08-12 Inoue-Japax Research Incorporated Feed-deviation preventive path-controlled machining method and apparatus
US4555610A (en) * 1983-09-13 1985-11-26 Data Card Corporation Laser machining system
JPS6074003A (ja) * 1983-09-30 1985-04-26 Ryozo Setoguchi 形状創成装置
JPS61288959A (ja) * 1985-02-15 1986-12-19 Toyoda Mach Works Ltd 対話形数値制御研削盤のデータ入力装置
US4816729A (en) * 1986-06-30 1989-03-28 General Electric Company Closed loop machining system calibration
US4748554A (en) * 1986-08-14 1988-05-31 Gte Valeron Corporation Machine monitoring system using motion detection for synchronization
US4790697A (en) * 1987-05-21 1988-12-13 Hines Industries, Inc. Automatic grinder
JP2846881B2 (ja) * 1987-09-14 1999-01-13 豊田工機株式会社 数値制御研削盤
ATE70644T1 (de) * 1987-10-14 1992-01-15 Traub Ag Verfahren zum steuern einer werkzeugmaschine.
EP0326625A1 (fr) 1988-02-01 1989-08-09 Starrfräsmaschinen AG Appareil pour déterminer les irrégularités d'une machine d'usinage de pièces
JPH0652484B2 (ja) * 1988-02-15 1994-07-06 豊田工機株式会社 非真円形工作物加工用数値制御装置
JPH077296B2 (ja) * 1988-04-05 1995-01-30 豊田工機株式会社 非真円形工作物加工用数値制御装置
JPH0683945B2 (ja) * 1988-07-26 1994-10-26 豊田工機株式会社 非真円形工作物加工用数値制御装置
JP2637488B2 (ja) * 1988-07-28 1997-08-06 豊田工機株式会社 数値制御研削盤
JPH02220106A (ja) * 1989-02-22 1990-09-03 Okuma Mach Works Ltd 計測機能を有するデジタイズ制御装置
US5047966A (en) * 1989-05-22 1991-09-10 Airfoil Textron Inc. Airfoil measurement method
JPH03176703A (ja) * 1989-12-05 1991-07-31 Yoshiaki Kakino 数値制御装置
DE4014405A1 (de) * 1990-05-04 1991-11-07 Eckehart Schulze Verfahren zur steuerung der umlauf-bahnbewegungen der drueckrolle einer drueckmaschine und drueckmaschine zur durchfuehrung des verfahrens
US5411430A (en) * 1991-09-25 1995-05-02 Hitachi Ltd. Scanning optical device and method for making a hybrid scanning lens used therefor
DE69314688T2 (de) * 1992-04-23 1998-02-19 Heidenhain Gmbh Dr Johannes Numerische Steuerungseinrichtung und Verfahren zur Steuerung der Bewegung eines Werkzeuges
JPH068105A (ja) * 1992-06-29 1994-01-18 Komatsu Ltd 円筒形状加工装置
US5710709A (en) * 1993-08-19 1998-01-20 Iowa State University Research Foundation, Inc. NC milling simulation and dimensional verification via dexel representation
JPH07104819A (ja) * 1993-09-30 1995-04-21 Toyoda Mach Works Ltd Ncデータ作成装置
JP3315556B2 (ja) 1994-04-27 2002-08-19 三菱電機株式会社 レーザ加工装置
JP3702496B2 (ja) 1995-07-10 2005-10-05 三菱電機株式会社 数値制御装置を用いた加工方法
JPH0929598A (ja) 1995-07-25 1997-02-04 Hitachi Ltd 非球面形状物体の加工装置
JP3287981B2 (ja) * 1995-08-15 2002-06-04 理化学研究所 形状制御方法とこの方法によるnc加工装置
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
JP2929996B2 (ja) * 1996-03-29 1999-08-03 トヨタ自動車株式会社 工具点列発生方法
DE19614128C2 (de) 1996-04-10 2001-03-01 Agie Sa Verfahren und Vorrichtung zur Steuerung einer Werkzeugmaschine, insbesondere einer Funkenerosionsmaschine
AU3294197A (en) * 1996-06-06 1998-01-05 Boeing Company, The Method for improving the accuracy of machines
US6681145B1 (en) * 1996-06-06 2004-01-20 The Boeing Company Method for improving the accuracy of machines
US5898590A (en) 1996-08-21 1999-04-27 The Boeing Company Method and apparatus for numerically controlled pattern determination
JPH10253346A (ja) 1997-01-07 1998-09-25 Nikon Corp 非球面形状測定器および非球面光学部材の製造方法
JP3200023B2 (ja) 1997-01-16 2001-08-20 ファナック株式会社 生産設備の制御装置
US6233533B1 (en) * 1998-06-04 2001-05-15 Performance Friction Corporation Turning center with integrated non-contact inspection system
JP2000084794A (ja) 1998-09-14 2000-03-28 Makino Milling Mach Co Ltd 加工処理装置
EP1134543B1 (fr) 1999-03-03 2007-02-07 Riken Capteur de mesure de forme de type sonde, dispositif d'usinage nc, et procede de mesure de forme utilisant ledit capteur
JP2000317775A (ja) * 1999-04-28 2000-11-21 Mitsutoyo Corp 加工システム
JP3602037B2 (ja) * 1999-08-23 2004-12-15 株式会社フジエ 動画像データファイルの作成方法
JP4398044B2 (ja) 2000-02-03 2010-01-13 東芝機械株式会社 工作機械の数値制御装置および制御方法
WO2002023408A1 (fr) * 2000-09-18 2002-03-21 Hitachi, Ltd. Procede de description de profiles pleins et dispositif associe et systeme d'aide a la conception de profiles pleins les utilisant
JP3973466B2 (ja) * 2001-06-19 2007-09-12 株式会社リコー 成形用型、成形用型の製造方法、成形用型の製造システム、及び成形方法
US6862492B2 (en) 2001-10-03 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Numerically controlled apparatus
DE10155430B4 (de) 2001-11-12 2006-12-14 Siemens Ag Adaption von Kompensationsdaten zur Verringerung von Stellungsfehlern bei Werkzeugmaschinen und Robotern
JP2003200332A (ja) 2001-12-27 2003-07-15 Fanuc Ltd 歯車加工用制御装置
US6912446B2 (en) * 2002-10-23 2005-06-28 General Electric Company Systems and methods for automated sensing and machining for repairing airfoils of blades
JP4556383B2 (ja) 2002-11-29 2010-10-06 コニカミノルタホールディングス株式会社 転写光学面の加工方法
DE10322340B4 (de) * 2003-05-17 2006-09-14 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Fräsen von Freiformflächen
US7479959B2 (en) * 2004-02-23 2009-01-20 Ironclad Llc Geometric modeling system with intelligent configuring of solid shapes
GB0419381D0 (en) * 2004-09-01 2004-10-06 Renishaw Plc Machine tool method
US7450127B2 (en) * 2005-03-23 2008-11-11 Hurco Companies Inc. Method of tolerance-based trajectory planning
US7629985B2 (en) * 2006-01-26 2009-12-08 Autodesk, Inc. Method for creation of architectural space objects for area and volume calculation
GB0707921D0 (en) * 2007-04-24 2007-05-30 Renishaw Plc Apparatus and method for surface measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620422C1 (en) * 1986-06-18 1988-01-14 Gildemeister Ag Method for correcting the processing programme of a tool of a numerically controlled machine tool
US6256546B1 (en) * 1998-09-28 2001-07-03 General Electric Company System and method for numerical control processing of an in-processing part
WO2004071717A1 (fr) * 2003-02-13 2004-08-26 Abb Ab Procede et systeme permettant de programmer un robot industriel, de sorte qu'il se deplace vers des emplacements determines sur un objet, et generation d'un programme de balayage de surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007045223A1 *

Also Published As

Publication number Publication date
US20090132080A1 (en) 2009-05-21
CA2625402A1 (fr) 2007-04-26
WO2007045223A1 (fr) 2007-04-26
DE102005050205A1 (de) 2007-04-26
US8014892B2 (en) 2011-09-06
CA2625402C (fr) 2016-09-20

Similar Documents

Publication Publication Date Title
EP1938162A1 (fr) Procede et dispositif pour compenser des ecarts de position et de forme
DE3702594C2 (fr)
EP2040881B1 (fr) Procédé d'usinage combiné par perçage de précision et rodage ainsi qu'installation d'usinage pour la mise en oeuvre du procédé
DE102012205423A1 (de) Verfahren und Programm zum Berechnen eines Korrekturwerts für eine Werkzeugmaschine
EP1588224B1 (fr) Procede et dispositif de fabrication d'aubes de service
EP1981674A1 (fr) Dispositif et procede d'usinage de roues coniques dans un procede de division avec compensation complete des erreurs de division
EP2923790B1 (fr) Procédé de meulage de roues coniques dans un procédé de rectification en bout
EP0468385A2 (fr) Procédé pour la rectification tangentielle des pièces à usiner en coupe transversale non circulaires
DE102020117709A1 (de) Zahnradbearbeitungsunterstützungsvorrichtung und Zahnradbearbeitungsvorrichtung
DE3119629A1 (de) Verfahren zum spannen und positionieren von praezisionsteilen
WO2022101197A1 (fr) Corps de mesure pour la vérification d'écarts géométriques d'une machine-outil à 3 axes, machine-outil à trois axes et procédé de compensation d'écarts géométriques d'une machine-outil à 3 axes
DE102011105897A1 (de) Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen
DE102007048588A1 (de) Verfahren zum Nachbearbeiten eines extern vorgefertigten Formteils
DE2747883C3 (de) Verfahren zur Herstellung einer Bohrung
EP3596563B1 (fr) Procédé d'usinage de pièces avec un centre d'usinage
DE102019129078A1 (de) Werkzeugmaschine und Zahnradbearbeitungsverfahren
DE19743139A1 (de) Vorrichtung zum Durchführen eines Schleifvorganges und Verfahren dazu
DE102017011602A1 (de) Numerische Steuerung
WO2009129789A1 (fr) Procédé et dispositif de correction de position automatique
DE102020121648B4 (de) Verfahren und Vorrichtung zur Nachbearbeitung von spanend oder additiv gefertigten Bauteilen
WO2019086228A1 (fr) Étalonnage amélioré des machines-outil
EP0334345A2 (fr) Procédé pour rectifier les cames d'un arbre à cames
DE19919147B4 (de) Verfahren zur Ermittlung eines Konturfehlers und Verfahren zur Kontrolle einer korrekten Sollwertvorgabe
DE202011106104U1 (de) Vorrichtung zur Beförderung und Bearbeitung von Werkstücken
DE102022112154B3 (de) Messkörper zur Überprüfung von geometrischen Abweichungen einer 3-achsigen Werkzeugmaschine, 3-achsige Werkzeugmaschine und Verfahren zur Kompensation geometrischer Abweichungen einer 3-achsigen Werkzeugmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080702

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190130