EP1926841B1 - Kaltgasspritzverfahren - Google Patents

Kaltgasspritzverfahren Download PDF

Info

Publication number
EP1926841B1
EP1926841B1 EP06793543.7A EP06793543A EP1926841B1 EP 1926841 B1 EP1926841 B1 EP 1926841B1 EP 06793543 A EP06793543 A EP 06793543A EP 1926841 B1 EP1926841 B1 EP 1926841B1
Authority
EP
European Patent Office
Prior art keywords
coating
particles
nanoparticles
microencapsulation
cold gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06793543.7A
Other languages
English (en)
French (fr)
Other versions
EP1926841A1 (de
Inventor
Rene Jabado
Jens Dahl Jensen
Ursus KRÜGER
Daniel Körtvelyessy
Volkmar LÜTHEN
Uwe Pyritz
Ralph Reiche
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1926841A1 publication Critical patent/EP1926841A1/de
Application granted granted Critical
Publication of EP1926841B1 publication Critical patent/EP1926841B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a cold spraying method in which a cold spray jet directed onto a substrate to be coated is produced by means of a cold spray nozzle, to which particles forming the coating are added.
  • the aforementioned Kaltgasspritzbacter is for example from the DE 102 24 780 A1 known.
  • particles which are to form a coating on a substrate to be coated are introduced into a cold gas jet produced by means of a cold spray nozzle and are preferably accelerated by the latter to supersonic speed. Therefore, the particles impact the substrate with a high kinetic energy sufficient to ensure adhesion of the particles to the substrate.
  • coatings can be produced with high deposition rates, with thermal activation of the particles not being necessary or only to a small extent. Therefore, thermally relatively sensitive particles can be used for film formation. Due to the requirement of injecting kinetic energy into the particles, it is necessary that they have sufficient inertia. Therefore, the cold gas spraying is limited to particle sizes above 5 microns.
  • a thermal coating method can be used.
  • the nanoparticles are suspended in a liquid and with this liquid the flame jet fed to the thermal coating process.
  • mixtures of liquids can be used, whereby the composition of the nanostructured layer can be influenced.
  • the use of thermal spraying is limited to applications of this method to high temperature resistant layered materials when nanostructuring of the nanoparticles being supplied is to be maintained (eg, ceramic particles).
  • microencapsulation agglomerates of nanoparticles can be provided with microencapsulations. This microencapsulation then holds the nanoparticles together.
  • microencapsulated agglomerates can be deposited, for example, by sputtering, wherein the microencapsulation is retained during the sputtering process due to the low mechanical stress during the deposition from the gas phase.
  • agglomerates of nanoparticles can also be prepared by encapsulating them in a polymer suspension.
  • the encapsulated agglomerates produced thereby are said to be loose and are suitable for different applications, for example, the production of layers.
  • the object of the invention is to provide a cold gas spraying process for coating substrates, with which nanostructured layers of unsintered agglomerates of nanoparticles can be produced.
  • microencapsulated agglomerates of nanoparticles whose microencapsulation consists of a self-assembling layer of bipolar polymer molecules, in the formation of electrostatic forces are used to increase the density of the microencapsulation .
  • These agglomerates have a sufficient inertia with respect to the application of the cold gas spraying process, so that they adhere to it during acceleration to the substrate to be coated.
  • the microencapsulation of the nanoparticles according to the invention thus has the purpose that the nanoparticles can be incorporated into a forming coating. Within the coating that is being built up, the advantages of the nanoparticles can be utilized.
  • nanostructured coatings can be produced whose structure is determined by the nanostructure of the nanoparticles. Since the nanoparticles with the inventive method are the cold gas spraying accessible, it is also possible to use relatively temperature-sensitive nanoparticles, since this method can be carried out in relation to thermal spraying at low temperatures. This concludes, however not a certain warming of the cold gas jet, through which an additional activation of the particles can take place.
  • the energy input into the cold gas jet is dimensioned such that the microencapsulation of the particles is destroyed on the substrate. It can thereby be achieved that the properties of the formed coating are determined solely by the properties of the nanoparticles, while the decomposition products of the microencapsulation escape into the environment. This can be achieved, for example, by virtue of the fact that the microencapsulation has a significantly lower boiling point than the nanoparticles, so that the heat resulting from the impact of the particles on the substrate is sufficient to evaporate the microencapsulation without the nanoparticles being melted.
  • the microencapsulation can also be deliberately selected so that it can be incorporated, for example, as a filler in the coating. This results in composites of the nanoparticles and the material of the microencapsulation, whose properties can be adjusted to the required requirement profile.
  • the microencapsulation could contain polymers, while the nanoparticles are formed from hard materials (for example, ceramics such as TiO.sub.2. ) Because of the hardness of the nanoparticles, this makes it possible to produce a wear protection layer made of plastic which has an enormous ductility and adhesion due to the properties of the plastic matrix.
  • the energy input into the cold gas jet is dimensioned such that the microencapsulation is incorporated into the coating.
  • the structure of the particles used for coating remains largely intact, wherein the microencapsulation in the coating forms a matrix in which the nanoparticles are contained.
  • a restructuring within the particles can take place depending on the energy input into the cold gas jet.
  • the energy input into the cold gas jet is changed during the construction of the coating. This makes it possible to influence the structure of the coating depending on the layer thickness, so that layers with variable properties can be produced over the layer thickness.
  • the energy input can be abruptly changed to a layered structure of the coating or continuously changed to produce gradient layers.
  • the energy input into the cold gas jet can essentially be influenced by two energy components.
  • the kinetic energy input can be influenced by the degree of acceleration of the particles in the cold gas jet. This is the main variable of influence since, according to the principle of cold gas spraying, the kinetic energy of the particles causes coating formation.
  • Another possibility of influencing the energy input is the already mentioned possibility to additionally supply thermal energy to the cold gas jet. This helps to heat the particles due to the reaction of the kinetic energy when hitting the forming coating.
  • the addition of the different types of particles takes place during the construction of the coating.
  • a reactive gas to be added to the cold gas jet, which reacts with constituents of the particles in the formation of the coating.
  • oxygen can be added to gas, which, for example, leads to the formation of oxides when metallic nanoparticles are used, whose properties of wear protection can be specifically utilized in the finished coating.
  • the reactive gas contributes to the dissolution of the material of the microencapsulation.
  • the activation energy for reaction with the reactive gas advantageously arises only at the time of impact of the particles on the forming coating when the kinetic energy of the particles is converted into heat energy.
  • various nanoparticles are contained in the particles.
  • the mixtures of nanoparticles in the particles can react with one another when these particles strike the forming coating or form structural phases which have a mixture of the elements contained in the nanoparticles.
  • nanoparticles By a suitable selection of the nanoparticles it can also be achieved that the various nanoparticles react with one another during the formation of the coating. As a result, precursors of reaction products can be prepared as nanoparticles whose reaction products would pose problems in the production as nanoparticles.
  • the nanostructure of the coating is specifically changed in a heat treatment step following the coating.
  • the Heat treatment step can be set in the structure of the nanostructured coating diffusion processes of individual alloying elements of the nanoparticles or between nanoparticles of different composition in motion, which can be influenced by temperature and duration during the heat treatment, the structural change targeted. Furthermore, any stresses can be reduced by the heat treatment in the coating.
  • auxiliaries for the layer formation in particular grain growth inhibitors, are contained in the particles.
  • grain growth inhibitors it is possible, for example, to obtain the nanostructure in a heat treatment of the nanostructured layer with a simultaneous reduction of stresses in the microstructure.
  • Grain growth inhibitors are for example in US 6,287,714 B1 described.
  • the substrate is formed by a plastic body, in particular a lamp base, wherein a protective layer against electromagnetic radiation, in particular in the UV range is formed as a coating whose composition in the area adjacent to the lamp base in terms of good adhesion is modified on the lamp base.
  • the lamp base to be coated may, for example, be lamp sockets of gas discharge lamps for use in motor vehicle headlamps.
  • the proportions of the headlight light in the UV range are in fact harmful to the lamp base made of plastic, which decomposes under its influence during prolonged operation of the gas discharge lamp.
  • the need for coating the lamp cap to protect against UV radiation may be, for example of the EP 1 460 675 A2 be removed.
  • the problem to be solved in the coating is that the layers which are suitable for UV protection have a ceramic microstructure and therefore because of their brittle behavior tend to break off from the ductile base material of the lamp base.
  • This can be prevented by the inventive use of the described method in that the composition of the layer on the lamp base is optimized in terms of good adhesion.
  • a polymer portion which simultaneously forms the microencapsulation, can be incorporated into the layer so that it achieves properties which are comparable in terms of ductility to those of the base material.
  • a gradient layer can then be formed, in which the proportion of polymer material decreases towards the surface of the layer and finally disappears completely, since this must be kept away from the radiation of the lamp as a UV-light-sensitive component.
  • the UV-light impermeable components for example copper oxide, can be provided as nanoparticles in the microencapsulation, the proportion of such nanopatterns being increased towards the surface of the layer up to a proportion of 100%.
  • a multilayer structure may also be preferred, the proportion of polymer material being reduced step by step.
  • FIG. 1 a coating system for cold gas spraying is shown.
  • This has a vacuum container 11, in which on the one hand a cold spray nozzle 12 and on the other hand, a substrate to be coated 13 are arranged (fastening not shown in detail).
  • a process gas can be supplied to the cold spray nozzle.
  • This has, as indicated by the contour, a Laval shape, through which the process gas is expanded and accelerated in the form of a cold gas jet (arrow 15) to a surface 16 of the substrate 13 back.
  • the process gas may contain as reactive gas, for example, oxygen 17, which betei a reaction at the surface 16 of the substrate 13 is is.
  • the process gas can be heated in a manner not shown, whereby a required process temperature can be set in the vacuum container 11.
  • a second line 18 of the cold spray nozzle 12 particles 19 are supplied, which are accelerated in the gas jet and impinge on the surface 16.
  • the kinetic energy of the particles 19 leads to the formation of a layer 20 into which the oxygen 17 can also be incorporated.
  • the processes occurring during the layer formation are explained in more detail below.
  • the substrate 13 in the direction of the double arrow 21 in front of the cold gas nozzle 12 are moved back and forth.
  • the vacuum in the vacuum vessel 11 is constantly maintained by a vacuum pump 22, wherein the process gas is passed through a filter 23 before being passed through the vacuum pump 22 in order to filter out particles and other residual products of the coating that do not hit the surface 16 these were tied.
  • an influence zone 24 which indicates that due to the kinetic energy of the particles 19, an interaction between the near-surface regions of the substrate 13 and the impinging particles 19 is formed. This leads to an adhesion of the growing layer 20 on the substrate, wherein the substrate is micro-deformed on the surface. With further layer growth, the already adhering particles 19 with the newly incident particles 19 in a comparable interaction, whereby a continuous layer structure is possible.
  • the particles 19 consist of an agglomerate 25 of nanoparticles, which are held together by a microencapsulation 26b.
  • the microencapsulation 26b is retained when the particles 19 strike the substrate 13.
  • the microencapsulation thus represents a matrix in which the agglomerate of nanoparticles is bound.
  • the nanoparticles can consist, for example, of copper oxide with which a UV protective coating can be applied in the case of a lamp according to FIG.
  • the microencapsulation in this case would consist of the material of the lamp cap, for example a polymer, so that an excellent adhesion of the nanoparticles bound in the microencapsulation 26b arises.
  • the kinetic energy imparted to the particles 19 by the cold gas nozzle 12 can be increased so that more and more evaporation of the microencapsulation 26 occurs when the particles strike the forming layer 20.
  • a gradient layer can be produced whose generated surface consists exclusively of copper oxide in order to produce an effective UV protection for the polymer of the substrate 13.
  • FIGS. 2 and 3 represent different forms of agglomerated nanoparticles 27 in different microencapsules 26a, 26b, 26c.
  • a microencapsulation 26a can be formed by introducing the nanoparticles 27 into a suspension. Within this suspension, the nanoparticles agglomerate into agglomerates corresponding to the amount of FIG. 2 correspond to nanoparticles 27.
  • a suspension is added to the suspension in which the agglomerates of the nanoparticles 27 are already present, which forms the microencapsulation 26a.
  • These may, for example, be molecules which form a so-called self-assembling layer, ie a self-structuring layer, around the respective agglomerate of nanoparticles 27.
  • These may, for example, be bipolar polymer molecules which automatically align themselves in the layer of the microencapsulation 26a and in this way produce the polymer sheath with a comparatively high density.
  • This process of self-assembly is supported in particular by nanoparticles 27, which themselves have a charge or are designed as dipoles.
  • FIG. 3 a particle 19 is shown, which is constructed in multiple layers.
  • the agglomerates of nanoparticles 27a, 27b are each provided with a microencapsulation, the microencapsulations yielding a multilayered particle.
  • the particles 19 according to FIG. 4 can be prepared by a process which the company Capsulution ® has explained on 23.05.2005 on their homepage www.capsulution.com under "Technology”. This method is referred to there as LBL Technology ® (LBL means layer by layer).
  • LBL means layer by layer.
  • the nanoparticles are suspended in an aqueous solution according to this method, whereby electrostatic forces of the material of the microencapsulation are used to form the microencapsules around the agglomerates.
  • FIG. 4 an embodiment of the method according to the invention is shown schematically.
  • a particle 19 is accelerated to the surface 16 of the substrate 13 and easily deforms upon impact, the microencapsulation 26a is blown off.
  • the nanoparticles 27 form the coating 20, which is getting thicker as the process continues.
  • the energy input by the cold spraying process is adjusted so that the microstructure of the nanoparticles 27 is largely retained, so that the nanostructure of the forming layer 20 is determined by the size of the nanoparticles.
  • FIG. 5 is an application example of a according to the described method according to FIG. 1
  • Protective layer 28 formed shown This is applied to a lamp cap 29 and thereby protects it from UV radiation emanating from a lamp body 30.
  • lamp 31 is a gas discharge lamp for vehicle headlights.
  • the lamp base 29 is provided only in the area with the protective layer 28 which is exposed to the UV radiation directly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

  • Die Erfindung betrifft ein Kaltgasspritzverfahren, bei dem mit einer Kaltspritzdüse ein auf ein zu beschichtendes Substrat gerichteter Kaltgasstrahl erzeugt wird, dem die Beschichtung bildende Partikel beigegeben werden.
  • Das eingangs genannte Kaltgasspritzverfahren ist beispielsweise aus der DE 102 24 780 A1 bekannt. Dabei werden Partikel, die eine Beschichtung auf einem zu beschichtenden Substrat bilden sollen, in einen mittels einer Kaltspritzdüse erzeugten Kaltgasstrahl eingebracht und durch diesen vorzugsweise auf Überschallgeschwindigkeit beschleunigt. Daher treffen die Partikel auf das Substrat mit einer hohen kinetischen Energie auf, die ausreicht, um eine Haftung der Partikel auf dem Substrat bzw. untereinander zu gewährleisten. Auf diese Weise lassen sich mit hohen Depositionsraten Beschichtungen erzeugen, wobei eine thermische Aktivierung der Partikel nicht oder nur in geringem Maße notwendig ist. Daher lassen sich thermisch verhältnismäßig empfindliche Partikel für die Schichtbildung verwenden. Aufgrund des Erfordernisses der Einprägung einer kinetischen Energie in die Partikel ist es notwendig, dass diese eine genügende Masseträgheit aufweisen. Daher ist das Kaltgasspritzen auf Partikelgrößen oberhalb von 5µm beschränkt.
  • Besteht der Wunsch, nanostrukturierte Schichten durch Verwendung von Nanopartikeln herzustellen, so kann gemäß der US 6,447,848 B1 ein thermisches Beschichtungsverfahren verwendet werden. Hierbei werden die Nanopartikel in einer Flüssigkeit suspendiert und mit dieser Flüssigkeit dem Flammstrahl des thermischen Beschichtungsverfahrens zugeführt. Dabei können auch Mischungen von Flüssigkeiten verwendet werden, wodurch sich die Zusammensetzung der nanostrukturierten Schicht beeinflussen lässt. Die Verwendung des thermischen Spritzens ist auf Anwendungen dieses Verfahrens auf Schichtmaterialien mit einer hohen Temperaturbeständigkeit beschränkt, wenn die Nanostrukturierung der zugeführten Nanoteilchen erhalten bleiben soll (z. B. keramische Teilchen).
  • Gemäß R. S. Lima et al. wird in Thin Solid Films 416 (2002), Seiten 129 - 135 vorgeschlagen, dass Agglomerate von Nanopartikeln aus Wolframkarbid und Kobalt hergestellt werden können, indem diese gesintert werden. Diese lassen sich dann durch Kaltgasspritzen verarbeiten. Dies bestätigt auch H.-J. Kim et al. in Materials Science and Engineering A 391 (2005), Seiten 243 - 248.
  • Gemäß der US 2003/0219384 A1 und der US 2003/0075011 A1 ist es weiterhin bekannt, dass Agglomerate von Nanopartikeln mit Mikroverkapselungen versehen werden können. Diese Mikroverkapselung hält dann die Nanopartikel zusammen. Solche mikroverkapselten Agglomerate können beispielsweise durch Sputtern abgeschieden werden, wobei während des Sputter-Prozesses die Mikroverkapselung auf Grund der geringen mechanischen Belastungen bei der Abscheidung aus der Gasphase erhalten bleibt.
  • Gemäß der WO 2004/091571 A2 ist es bekannt, dass Agglomerate von Nanopartikeln auch dadurch hergestellt werden können, dass diese in einer Polymersuspension verkapselt werden. Die hierdurch erzeugten verkapselten Agglomerate werden als lose bezeichnet und eignen sich für unterschiedliche Anwendungen, beispielsweise die Herstellung von Schichten.
  • Die Aufgabe der Erfindung besteht darin, ein Kaltgasspritzverfahren zum Beschichten von Substraten anzugeben, mit dem sich nanostrukturierte Schichten aus ungesinterten Agglomeraten von Nanopartikeln herstellen lassen herstellen lassen.
  • Diese Aufgabe wird erfindungsgemäß mit den eingangs angegebenen Kaltgasspritzverfahren dadurch gelöst, dass als Partikel mikroverkapselte Agglomerate von Nanopartikeln verwendet werden, deren Mikroverkapselung aus einem self-assembling Layer aus bipolaren Polymer-Molekülen besteht, bei dessen Bildung elektrostatische Kräfte zur Erhöhung der Dichte der Mikroverkapselung genutzt werden. Diese Agglomerate weisen in Bezug auf die Anwendung des Kaltgasspritzverfahrens eine genügende Masseträgheit auf, damit diese bei einer Beschleunigung zum zu beschichtenden Substrat hin auf diesem haften bleiben. Die Mikroverkapselung der Nanopartikel hat erfindungsgemäß also den Zweck, dass die Nanopartikel in eine sich bildenden Beschichtung eingebaut werden können. Innerhalb der sich im Aufbau befindlichen Beschichtung können die Vorteile der Nanopartikel genutzt werden. Insbesondere lassen sich nanostrukturierte Beschichtungen herstellen, deren Struktur von der Nanostruktur der Nanopartikel bestimmt wird. Da die Nanopartikel mit dem erfindungsgemäßen Verfahren dem Kaltgasspritzen zugänglich werden, ist es auch möglich, verhältnismäßig temperaturempfindliche Nanopartikel zu verwenden, da dieses Verfahren im Verhältnis zu thermischen Spritzverfahren bei geringen Temperaturen durchgeführt werden kann. Dieses schließt jedoch nicht eine gewisse Erwärmung des Kaltgasstrahls aus, durch die eine zusätzliche Aktivierung der Partikel erfolgen kann.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der Energieeintrag in den Kaltgasstrahl derart bemessen wird, dass die Mikroverkapselung der Partikel auf das Substrat zerstört wird. Hierdurch kann erreicht werden, dass die Eigenschaften der ausgebildeten Beschichtung allein durch die Eigenschaften der Nanopartikel bestimmt wird, während die Zersetzungsprodukte der Mikroverkapselung in die Umgebung entweichen. Dies lässt sich beispielsweise dadurch erreichen, dass die Mikroverkapselung im Vergleich zu den Nanopartikeln einen wesentlich geringeren Siedepunkt aufweist, so dass die aufgrund des Auftreffens der Partikel auf das Substrat entstehende Wärme zur Verdampfung der Mikroverkapselung ausreicht, ohne dass die Nanopartikel aufgeschmolzen werden.
  • Die Mikroverkapselung kann jedoch auch bewusst so ausgewählt werden, dass diese beispielsweise als Füllstoff in die Beschichtung eingebaut werden kann. Es entstehen dabei Komposite aus den Nanopartikeln und dem Material der Mikroverkapselung, deren Eigenschaften sich auf das geforderte Anforderungsprofil einstellen lassen. Beispielsweise könnte die Mikroverkapselung Polymere enthalten, während die Nanopartikel aus Hartstoffen (beispielsweise Keramiken wie TiO2 gebildet sind. Hierdurch lässt sich aufgrund der Härte der Nanopartikel eine Verschleißschutzschicht aus Kunststoff herstellen, die aufgrund der Eigenschaften der Kunststoffmatrix eine enorme Duktilität und Haftung aufweist.
  • Sollten ungewünschte Rückstände des Materials der zerstörten Mikroverkapselung in der Beschichtung verbleiben, so können diese gemäß einer weiteren Ausgestaltung der Erfindung in einem nachgelagerten Verfahrensschritt aus der Beschichtung entfernt werden. Hierzu eignen sich beispielsweise Wärmebehandlungsverfahren, wobei die Temperatur bei diesem Verfahren so eingestellt wird, dass die gewünschten Eigenschaften der Nanopartikel nicht beeinflusst werden, jedoch die Rückstände der Mikroverkapselung aus der Beschichtung entweichen. Eine andere Möglichkeit ist die Anwendung chemischer Verfahren, bei denen die Rückstände der Mikroverkapselung beispielsweise mit einem Lösungsmittel aus der Beschichtung herausgelöst werden können. Das nachträgliche Entfernen der Rückstände der Mikroverkapselung kann auch bewusst genutzt werden, um poröse nanostrukturierte Beschichtungen herzustellen.
  • Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass der Energieeintrag in den Kaltgasstrahl derart bemessen wird, dass die Mikroverkapselung in die Beschichtung eingebaut wird. Bei dieser Ausgestaltung des Verfahrens bleibt die Struktur der zur Beschichtung verwendeten Partikel weitgehend erhalten, wobei die Mikroverkapselung in der Beschichtung eine Matrix bildet, in der die Nanopartikel enthalten sind. Während des Auftreffens der Partikel auf die sich ausbildende Beschichtung kann je nach dem Energieeintrag in den Kaltgasstrahl jedoch eine Umstrukturierung innerhalb der Partikel erfolgen.
  • Weiterhin ist es vorteilhaft möglich, dass der Energieeintrag in den Kaltgasstrahl während des Aufbaus der Beschichtung geändert wird. Hierdurch wird es möglich, den Aufbau der Beschichtung abhängig von der Schichtdicke zu beeinflussen, so dass sich Schichten mit veränderlichen Eigenschaften über die Schichtdicke erzeugen lassen. Der Energieeintrag kann abrupt geändert werden, um einen schichtweisen Aufbau der Beschichtung zu erzeugen, oder kontinuierlich geändert werden, um Gradientenschichten zu erzeugen.
  • Der Energieeintrag in den Kaltgasstrahl kann im Wesentlichen durch zwei Energiekomponenten beeinflusst werden. Einmal lässt sich der kinetische Energieeintrag durch den Grad der Beschleunigung der Partikel im Kaltgasstrahl beeinflussen. Dies ist die Haupteinflussgröße, da gemäß dem Prinzip des Kaltgasspritzens die kinetische Energie der Partikel die Beschichtungsbildung bewirkt. Eine weitere Möglichkeit der Beeinflussung des Energieeintrags ist die bereits erwähnte Möglichkeit, dem Kaltgasstrahl zusätzlich thermische Energie zuzuführen. Diese unterstützt die Erwärmung der Partikel aufgrund der Umsetzung der kinetischen Energie beim Auftreffen auf die sich bildende Beschichtung.
  • Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass während des Aufbaus der Beschichtung die Zugabe der verschiedenartigen Partikel erfolgt. Hierin besteht vorteilhaft eine andere Möglichkeit, die Beschichtung mit über der Schichtdicke veränderlichen Eigenschaften auszustatten. Es ist sowohl möglich, Partikel einer bestimmten Art zu verspritzen und ab einem bestimmten Zeitpunkt Partikel einer andern Art zu verwenden; als auch ist es möglich, Mischungen von Partikeln zu verwenden, wobei sich hierdurch der sich ausbildenden nanostrukturierten Beschichtung eine Mikrostruktur überlagern lässt, da eine Diffusion der Nanopartikel von einem Partikel in einen benachbarten nur begrenzt möglich ist.
  • Zusätzlich ist es vorteilhaft möglich, dass dem Kaltgasstrahl ein reaktives Gas zugegeben wird, welches bei der Bildung der Beschichtung mit Bestandteilen der Partikel reagiert. Als reaktives Gas kann insbesondere Sauerstoff zugegeben werden, was bei der Verwendung metallischer Nanopartikel beispielsweise zur Bildung von Oxyden führt, deren Eigenschaften eines Verschleißschutzes in der fertig gestellten Beschichtung gezielt genutzt werden können. Eine andere Möglichkeit besteht darin, dass das reaktive Gas zur Auflösung des Materials der Mikroverkapselung beiträgt. Die Aktivierungsenergie zur Reaktion mit dem reaktiven Gas entsteht vorteilhaft erst im Zeitpunkt des Auftreffens der Partikel auf die sich ausbildende Beschichtung, wenn die kinetische Energie der Partikel in Wärmeenergie umgewandelt wird.
  • Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass in den Partikeln verschiedenartige Nanopartikel enthalten sind. Die Gemische von Nanopartikeln in den Partikeln können beim Auftreffen dieser Partikel auf die sich ausbildende Beschichtung miteinander reagieren bzw. Gefügephasen ausbilden, die eine Mischung der in den Nanopartikeln enthaltenden Elemente aufweisen. Hierdurch lassen sich Gefügezustände mit einer Nanostruktur erzeugen, welche sich durch eine standardmäßige Legierungsbildung wegen der sich dort einstellenden Gleichgewichte nicht erzeugen ließen.
  • Durch eine geeignete Auswahl der Nanopartikel kann auch erreicht werden, dass die verschiedenartigen Nanopartikel während der Bildung der Beschichtung miteinander reagieren. Hierdurch lassen sich Vorstufen von Reaktionsprodukten als Nanopartikel herstellen, deren Reaktionsprodukte bei der Herstellung als Nanopartikel Probleme aufwerfen würden.
  • Weiterhin kann vorgesehen werden. Dass die Nanostruktur der Beschichtung in einem dem Beschichten nachgelagerten Wärmebehandlungsschritt gezielt verändert wird. Durch den Wärmebehandlungsschritt können in dem Gefüge der naostrukturierten Beschichtung Diffusionsprozesse einzelner Legierungselemente der Nanopartikel bzw. zwischen Nanopartikeln unterschiedlicher Zusammensetzung in Gang gesetzt werden, wobei durch Temperatur und Dauer bei der Wärmebehandlung die Gefügeveränderung gezielt beeinflusst werden kann. Weiterhin können durch die Wärmebehandlung in der Beschichtung eventuelle Spannungen abgebaut werden.
  • Weiterhin ist es vorteilhaft, wenn zusätzlich zu den Nanopartikeln Hilfsstoffe für die Schichtbildung, insbesondere Kornwachstums-Inhibitoren in den Partikeln enthalten sind. Mit den Kornwachstums-Inhibitoren ist es beispielsweise möglich, bei einer Wärmebehandlung der nanostrukturierten Schicht die Nanostruktur bei einem gleichzeitigen Abbau von Spannungen in dem Gefüge zu erhalten. Kornwachstums-Inhibitoren sind beispielsweise in der US 6,287,714 B1 beschrieben.
  • Eine günstige Anwendung des Verfahrens liegt vorteilhafterweise darin, dass das Substrat durch einen Kunststoffkörper, insbesondere einen Lampensockel gebildet wird, wobei als Beschichtung eine Schutzschicht gegen elektromagnetische Strahlung insbesondere im UV-Bereich ausgebildet wird, deren Zusammensetzung im an den Lampensockel angrenzenden Bereich hinsichtlich einer guten Haftung auf dem Lampensockel modifiziert ist. Bei dem zu beschichtenden Lampensockel kann es sich beispielsweise um Lampensockel von Gasentladungslampen für den Einsatz in Kfz-Scheinwerfen handeln. Die Anteile des Scheinwerferlichtes im UV-Bereich sind nämlich bei längerer Betriebsdauer der Gasentladungslampe schädlich für den aus Kunststoff gefertigten Lampensockel, der sich unter ihrem Einfluss zersetzt. Die Notwendigkeit einer Beschichtung des Lampensockels zum Schutz gegen UV-Strahlung kann beispielsweise der EP 1 460 675 A2 entnommen werden. Das Problem, das bei der Beschichtung zu lösen ist, liegt darin, dass die als UV-Schutz geeigneten Schichten eine keramische Gefügestruktur aufweisen und daher aufgrund ihres spröden Verhaltens dazu neigen, von dem duktilen Grundwerkstoff des Lampensockels abzuplatzen. Dies kann durch die erfindungsgemäße Verwendung des beschriebenen Verfahrens dadurch verhindert werden, dass die Zusammensetzung der Schicht am Lampensockel hinsichtlich einer guten Haftung optimiert ist. Beispielsweise kann ein Polymeranteil, der gleichzeitig die Mikroverkapselung bildet, mit in die Schicht eingebaut werden, damit diese Eigenschaften erlangt, die hinsichtlich der Duktilität mit denen des Grundwerkstoffes vergleichbar sind. In der weitern Folge des Beschichtungsverfahrens kann dann eine Gradientenschicht gebildet werden, in der der Anteil an Polymerwerkstoff hin zur Oberfläche der Schicht abnimmt und schließlich vollständig verschwindet, da dieser als UV-lichtempfindlicher Anteil von der Strahlung der Lampe ferngehalten werden muss. Die UVlichtundurchlässigen Anteile, beispielsweise Kupferoxid, können als Nanopartikel in der Mikroverkapselung vorgesehen werden, wobei der Anteil an derartigen Nanopatikeln zur Schichtoberfläche hin bis zu einem Anteil von 100% gesteigert wird.
  • Anstelle einer Gradientenschicht kann auch ein mehrschichtiger Aufbau bevorzugt werden, wobei der Anteil an Polymerwerkstoff schrittweise verringert wird. Auch ist es möglich, als duktilitätssteigernden Anteil in der Beschichtung nicht ein Polymermaterial, sondern elementares Kupfer zu verwenden. Dieses kann entweder als Mischung von Nanopartikeln mit Kupferoxid gemeinsam verspritzt werden. Eine andere Möglichkeit besteht darin, nur Kupfer als Nanopartikel zu verwenden, und gleichzeitig Sauerstoff als Reaktivgas in den Kaltgasstrahl beizumengen, der zu einer Oxidation der Nanopartikel aus Kupfer führt.
  • Weitere Merkmale der Erfindung sind im Folgenden anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente in den Figuren sind jeweils durch gleiche Bezugszeichen benannt, wobei diese nur insoweit mehrfach erläutert werden, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen
  • Figur 1
    eine Beschichtungsanlage zur Ausführung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens schematisch, die
    Figuren 2 und 3
    Ausführungsbeispiele von mikroverkapselten Agglomeraten von Nanopartikeln als schematische Schnitte,
    Figur 4
    ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens und
    Figur 5
    eine Gasentladungslampe für Kfz, die mit einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens beschichtet wurde.
  • Gemäß Figur 1 ist eine Beschichtungsanlage für das Kaltgasspritzen dargestellt. Diese weist einen Vakuumbehälter 11 auf, in dem einerseits eine Kaltspritzdüse 12 und andererseits ein zu beschichtendes Substrat 13 angeordnet sind (Befestigung nicht näher dargestellt). Durch eine erste Leitung 14 kann ein Prozessgas der Kaltspritzdüse zugeführt werden. Diese weist, wie durch die Kontur angedeutet, eine Laval-Form auf, durch die das Prozessgas entspannt und in Form eines Kaltgasstrahls (Pfeil 15) zu einer Oberfläche 16 des Substrates 13 hin beschleunigt wird. Das Prozessgas kann als reaktives Gas beispielsweise Sauerstoff 17 enthalten, welcher an einer Reaktion an der Oberfläche 16 des Substrates 13 betei ligt ist. Weiterhin kann das Prozessgas in nicht dargestellter Weise erwärmt werden, wodurch sich in dem Vakuumbehälter 11 eine geforderte Prozesstemperatur einstellen lässt.
  • Durch eine zweite Leitung 18 können der Kaltspritzdüse 12 Partikel 19 zugeführt werden, die in dem Gasstrahl beschleunigt werden und auf die Oberfläche 16 auftreffen. Die kinetische Energie der Partikel 19 führt zu der Ausbildung einer Schicht 20, in die auch der Sauerstoff 17 eingebaut werden kann. Die bei der Schichtbildung ablaufenden Prozesse werden im Folgenden noch näher erläutert. Zur Ausbildung der Schicht 20 kann das Substrat 13 in Richtung des Doppelpfeils 21 vor der Kaltgasdüse 12 hin und her bewegt werden. Während dieses Beschichtungsprozesses wird das Vakuum im Vakuumbehälter 11 durch eine Vakuumpumpe 22 ständig aufrechterhalten, wobei das Prozessgas vor Durchleitung durch die Vakuumpumpe 22 durch einen Filter 23 geführt wird, um Partikel und andere Restprodukte der Beschichtung auszufiltern, die beim Auftreffen auf die Oberfläche 16 nicht an diese gebunden wurden.
  • Schraffiert dargestellt ist eine Einflusszone 24, die andeutet, dass aufgrund der kinetischen Energie der Partikel 19 eine Wechselwirkung zwischen den oberflächennahen Bereichen des Substrates 13 und den auftreffenden Partikeln 19 entsteht. Diese führt zu einer Anhaftung der aufwachsenden Schicht 20 auf dem Substrat, wobei das Substrat an der Oberfläche mikroverformt wird. Bei weiterem Schichtwachstum treten die bereits anhaftenden Partikel 19 mit den jeweils neu auftreffenden Partikeln 19 in eine vergleichbare Wechselwirkung, wodurch ein kontinuierlicher Schichtaufbau möglich wird.
  • Die Partikel 19 bestehen aus einem Agglomerat 25 aus Nanopartikeln, die durch eine Mikroverkapselung 26b zusammengehalten werden. Bei dem Ausführungsbeispiel des erfindungsgemäßen Verfahrens gemäß Figur 1 bleibt die Mikroverkapselung 26b beim Auftreffen der Partikel 19 auf das Substrat 13 erhalten. Die Mikroverkapselung stellt damit eine Matrix dar, in der das Agglomerat von Nanopartikeln gebunden ist. Die Nanopartikel können beispielsweise aus Kupferoxid bestehen, mit dem eine UV-Schutzbeschichtung bei einer Lampe gemäß Figur 6 aufgebracht werden kann. Die Mikroverkapselung bestünde in diesem Falle aus dem Material des Lampensockels, beispielsweise einem Polymer, so dass eine ausgezeichnete Haftung der in der Mikroverkapselung 26b gebundenen Nanopartikel entsteht. Im weiteren Verlauf des Beschichtungsverfahrens kann die kinetische Energie, die durch die Kaltgasdüse 12 den Partikeln 19 aufgeprägt wird, erhöht werden, so dass es mehr und mehr zu einer Verdampfung der Mikroverkapselung 26 beim Auftreffen der Partikel auf die sich bildende Schicht 20 kommt. Auf diese Weise lässt sich eine Gradientenschicht herstellen, deren erzeugte Oberfläche ausschließlich aus Kupferoxid besteht, um einen wirksamen UV-Schutz für das Polymer des Substrates 13 zu erzeugen. Der Aufbau der Partikel 19 gemäß dem Ausführungsbeispiel gemäß Figur 1 lässt sich Figur 3 entnehmen.
  • Die Figuren 2 und 3 stellen verschiedene Ausprägungen von agglomerierten Nanopartikeln 27 in verschiedenen Mikroverkapselungen 26a, 26b, 26c dar. Eine Mikroverkapselung 26a kann dadurch gebildet werden, dass die Nanopartikel 27 in eine Suspension eingebracht werden. Innerhalb dieser Suspension agglomerieren die Nanopartikel zu Agglomeraten, die der Menge der in Figur 2 dargestellten Nanopartikel 27 entsprechen. In einem weiteren Verfahrensschritt wird der Suspension, in der die Agglomerate der Nanopartikeln 27 bereits vorliegen, ein Material zugegeben, welches die Mikroverkapselung 26a ausbildet. Hierbei kann es sich beispielsweise um Moleküle handeln, die um das jeweilige Agglomerat von Nanopartikeln 27 einem so genannten self-assembling Layer, also eine sich selbst strukturierende Schicht bilden. Hierbei kann es sich beispielsweise um bipolare Polymer-Moleküle handeln, die sich in der Schicht der Mikroverkapselung 26a automatisch ausrichten und auf diese Weise die Polymerumhüllung mit einer vergleichsweise hohen Dichte erzeugen. Dieser Prozess des self-assembling wird insbesondere durch Nanopartikel 27 unterstützt, welche selbst eine Ladung aufweisen oder als Dipol ausgebildet sind.
  • In Figur 3 ist ein Partikel 19 dargestellt, welches mehrschichtig aufgebaut ist. Die Agglomerate von Nanopartikeln 27a, 27b werden jeweils mit einer Mikroverkapselung versehen, wobei die Mikroverkapselungen ein mehrschichtiges Partikel ergeben. Die Partikel 19 gemäß Figur 4 können nach einem Verfahren hergestellt werden, welches die Firma Capsulution ® am 23.05.2005 auf Ihrer Homepage www.capsulution.com unter "Technology" erläutert hat. Dieses Verfahren wird dort als LBL-Technology ® bezeichnet (LBL bedeutet layer by layer). Die Nanopartikeln werden gemäß diesem Verfahren in einer wässrigen Lösung suspendiert, wobei zur Bildung der Mikroverkapselungen um die Agglomerate elektrostatische Kräfte des Materials der Mikroverkapselung genutzt werden.
  • In Figur 4 ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens schematisch dargestellt. Ein Partikel 19 wird auf die Oberfläche 16 des Substrates 13 beschleunigt und verformt diese beim Auftreffen leicht, wobei die Mikroverkapselung 26a abgesprengt wird. Die Nanopartikel 27 bilden dabei die Beschichtung 20, die bei Fortführung des Verfahrens immer dicker wird. Der Energieeintrag durch das Kaltspritzverfahren wird so eingestellt, dass die Gefügestruktur der Nanopartikel 27 weitgehend erhalten wird, so dass die Nanostruktur der sich bildenden Schicht 20 durch die Größe der Nanopartikel bestimmt wird.
  • In Figur 5 ist ein Anwendungsbeispiel für eine gemäß dem beschriebenen Verfahren gemäß Figur 1 gebildete Schutzschicht 28 dargestellt. Diese wird auf einen Lampensockel 29 aufgebracht und schützt diesen dadurch vor UV-Strahlung, die von einem Lampenkörper 30 ausgeht. Bei der dargestellten Lampe 31 handelt es sich um eine Gasentladungslampe für Kfz-Scheinwerfer. Der Lampensockel 29 ist nur in dem Bereich mit der Schutzschicht 28 versehen, der der UV-Strahlung direkt ausgesetzt ist.

Claims (12)

  1. Kaltgasspritzverfahren, bei dem mit einer Kaltspritzdüse (12) ein auf ein zu beschichtendes Substrat (13) gerichteter Kaltgasstrahl (15) erzeugt wird, dem die Beschichtung (20) bildende Partikel (19) beigegeben werden,
    dadurch gekennzeichnet,
    dass als Partikel (19) mikroverkapselte ungesinterte Agglomerate von Nanopartikeln (27) verwendet werden, wobei die Mikroverkapselung (26a) aus einem self-assembling Layer aus bipolaren Polymer-Molekülen besteht, bei dessen Bildung elektrostatische Kräfte zur Erhöhung der Dichte der Mikroverkapselung genutzt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Energieeintrag in den Kaltgasstrahl (15) derart bemessen wird, dass die Mikroverkapselung (26a, 26b, 26c) der Partikel (19) auf das Substrat zerstört wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass Rückstände des Materials der zerstörten Mikroverkapselung (26a, 26b, 26c) in einem nachgelagerten Verfahrensschritt aus der Beschichtung entfernt werden.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Energieeintrag in den Kaltgasstrahl (15) derart bemessen wird, dass die Mikroverkapselung (26a, 26b, 26c) in die Beschichtung (20) eingebaut wird.
  5. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Energieeintrag in den Kaltgasstrahl (15) während des Aufbaus der Beschichtung (20) geändert wird.
  6. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekenntzeichnet,
    dass während des Aufbaus der Beschichtung (20) die Zugabe verschiedenartiger Partikel (19) erfolgt.
  7. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass dem Kaltgasstrahl (15) ein reaktives Gas zugegeben wird, welches bei der Bildung der Beschichtung (20) mit Bestandteilen der Partikel (19) reagiert.
  8. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die in den Partikeln (19) verschiedenartige Nanopartikel (27) enthalten sind.
  9. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die verschiedenartigen Nanopartikel (27) während der Bildung der Beschichtung (20) miteinander reagieren.
  10. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Nanostruktur der Beschichtung (20) in einem dem Beschichten nachgelagerten Wärmebehandlungsschritt gezielt verändert wird.
  11. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zusätzlich zu den Nanopartikeln (27) Hilfsstoffe für die Schichtbildung, insbesondere Kornwachstums-Inhibitoren in den Partikeln (19) enthalten sind.
  12. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Substrat durch einen Kunststoffkörper, insbesondere einen Lampensockel (29) gebildet wird, wobei als Beschichtung eine Schutzschicht (28) gegen elektromagnetische Strahlung insbesondere im UV-Bereich ausgebildet wird, deren Zusammensetzung im an den Lampensockel angrenzenden Bereich hinsichtlich einer guten Haftung auf dem Lampensockel modifiziert ist.
EP06793543.7A 2005-09-23 2006-09-15 Kaltgasspritzverfahren Not-in-force EP1926841B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047688A DE102005047688C5 (de) 2005-09-23 2005-09-23 Kaltgasspritzverfahren
PCT/EP2006/066392 WO2007033936A1 (de) 2005-09-23 2006-09-15 Kaltgasspritzverfahren

Publications (2)

Publication Number Publication Date
EP1926841A1 EP1926841A1 (de) 2008-06-04
EP1926841B1 true EP1926841B1 (de) 2014-08-20

Family

ID=37085297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793543.7A Not-in-force EP1926841B1 (de) 2005-09-23 2006-09-15 Kaltgasspritzverfahren

Country Status (4)

Country Link
US (1) US8080278B2 (de)
EP (1) EP1926841B1 (de)
DE (1) DE102005047688C5 (de)
WO (1) WO2007033936A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047103A1 (de) 2006-09-28 2008-04-03 Siemens Ag Pulver für Kaltgasspritzverfahren
GB0909183D0 (en) 2009-05-28 2009-07-08 Bedi Kathryn J Coating method
DE102009033620A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Kaltgasspritzen von oxydhaltigen Schutzschichten
DE102009037846A1 (de) * 2009-08-18 2011-02-24 Siemens Aktiengesellschaft Partikelgefüllte Beschichtungen, Verfahren zur Herstellung und Verwendungen dazu
DE102009052983A1 (de) 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Beschichten von Kunststoffbauteilen mittels kinetischen Kaltgasspritzens
DE102009052970A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
WO2011108671A1 (ja) * 2010-03-04 2011-09-09 イマジニアリング株式会社 被膜形成装置、及び被膜形成物の製造方法
DE102010022593A1 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen einer Schicht mit einer metallischen Gefügephase und einer Gefügephase aus Kunststoff, Bauteil mit einer solchen Schicht sowie Verwendungen dieses Bauteils
SG186916A1 (en) * 2010-07-15 2013-02-28 Commw Scient Ind Res Org Surface treatment
DE102011052118A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zum Aufbringen einer Beschichtung auf einem Substrat, Beschichtung und Verwendung von Partikeln
DE102011052120A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien
DE102011052119A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
US20140065320A1 (en) * 2012-08-30 2014-03-06 Dechao Lin Hybrid coating systems and methods
US9850579B2 (en) * 2015-09-30 2017-12-26 Delavan, Inc. Feedstock and methods of making feedstock for cold spray techniques
DE102018009153B4 (de) 2017-11-22 2021-07-08 Mitsubishi Heavy Industries, Ltd. Beschichtungsverfahren
US11492708B2 (en) 2018-01-29 2022-11-08 The Boeing Company Cold spray metallic coating and methods
CN110468402A (zh) * 2018-05-11 2019-11-19 中国科学院金属研究所 一种冷喷涂制备y2o3陶瓷涂层的改进方法
US11634820B2 (en) * 2019-06-18 2023-04-25 The Boeing Company Molding composite part with metal layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004694A1 (de) * 2000-07-07 2002-01-17 Linde Ag Kunststoffoberfläche mit thermisch gespritzter beschichtung und verfahren zu ihrer herstellung
WO2004091571A2 (en) * 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
WO1999010121A1 (en) * 1997-08-22 1999-03-04 Inframat Corporation Grain growth inhibitor for superfine materials
FR2775696B1 (fr) * 1998-03-05 2000-04-14 Saint Gobain Vitrage Substrat a revetement photocatalytique
US7101575B2 (en) * 1998-03-19 2006-09-05 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
RU2160697C2 (ru) 1998-09-11 2000-12-20 Акционерное общество закрытого типа "Тетра" Способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры (варианты)
RU2149218C1 (ru) 1998-12-18 2000-05-20 Бузник Вячеслав Михайлович Состав для покрытий и способ его нанесения
US6344237B1 (en) * 1999-03-05 2002-02-05 Alcoa Inc. Method of depositing flux or flux and metal onto a metal brazing substrate
US6723387B1 (en) * 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
US6674047B1 (en) * 2000-11-13 2004-01-06 Concept Alloys, L.L.C. Wire electrode with core of multiplex composite powder, its method of manufacture and use
US7442227B2 (en) * 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
DE10224780A1 (de) * 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
WO2004035496A2 (en) 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
DE10312806A1 (de) 2003-03-21 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe
US20050132843A1 (en) * 2003-12-22 2005-06-23 Xiangyang Jiang Chrome composite materials
US20060090593A1 (en) * 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004694A1 (de) * 2000-07-07 2002-01-17 Linde Ag Kunststoffoberfläche mit thermisch gespritzter beschichtung und verfahren zu ihrer herstellung
WO2004091571A2 (en) * 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process

Also Published As

Publication number Publication date
DE102005047688B3 (de) 2006-11-02
WO2007033936A1 (de) 2007-03-29
EP1926841A1 (de) 2008-06-04
US20110039024A1 (en) 2011-02-17
US8080278B2 (en) 2011-12-20
DE102005047688C5 (de) 2008-09-18

Similar Documents

Publication Publication Date Title
EP1926841B1 (de) Kaltgasspritzverfahren
EP1899494B1 (de) Verfahren zum herstellen von keramischen schichten
DE102012212954B4 (de) Kaltgesprühte und wärmebehandelte Beschichtung für Magnesium
DE102009026655B3 (de) Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung
DD259586A5 (de) Verfahren zur herstellung von gespruehten abreibbaren beschichtungen und nach dem verfahren hergestellte beschichtung
DE112004002500T5 (de) Kaltspritzvorrichtung mit Pulvervorheizeinrichtung
WO2009010297A1 (de) Duplex-aluminium-werkstoff auf basis von aluminium mit einer ersten phase und einer zweiten phase und verfahren zur herstellung des duplex-aluminium-werkstoffs
EP2732072B1 (de) Verfahren zum reparieren einer schadstelle in einem gussteil und verfahren zum erzeugen eines geeigneten reparaturmaterials
EP2807287A1 (de) Verfahren zum kaltgasspritzen
EP2576863B1 (de) Verfahren zum herstellen einer schicht mittels kaltgasspritzen und verwendung einer solchen schicht
DE3224305C2 (de)
DE102016223244A1 (de) Verfahren und Vorrichtung zum generativen Fertigen eines dreidimensionalen Objekts und dreidimensionales Objekt
EP2257656B1 (de) Verfahren zum erzeugen einer schicht durch kaltgasspritzen
EP3211974B1 (de) Verfahren zur herstellung einer schichtstruktur an einem oberflächenbereich eines bauelements und verwendung einer vorrichtung zum durchführung dieses verfahrens
WO2019076677A1 (de) Verfahren zur herstellung eines gleitlagers sowie ein mit dem verfahren hergestelltes gleitlager
DE1646679A1 (de) Verfahren zur Herstellung von Schutzueberzuegen auf Kohienstoffgegenstaenden und Einrichtung zu seiner Durchfuehrung
DE102011120540B4 (de) Herstellung eines Sinterpulvers und Sinterkörper
EP1785508B1 (de) Verfahren zur Herstellung einer photokatalytisch aktiven Schicht
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
EP0911423A1 (de) Verbinden von Werkstücken
WO2017132711A1 (de) Tiegel
DE10114306B4 (de) Kompositschicht, Verfahren zur Herstellung einer Kompositschicht und deren Verwendung
EP1923478A1 (de) Raue Haftvermittlerschicht
EP2087143A2 (de) Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110308

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 683541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013929

Country of ref document: DE

Effective date: 20141002

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

26N No opposition filed

Effective date: 20150521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060915

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 11

Ref country code: NL

Payment date: 20160905

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160809

Year of fee payment: 11

Ref country code: SE

Payment date: 20160908

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161121

Year of fee payment: 11

Ref country code: CH

Payment date: 20161202

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013929

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 683541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916