EP1837614A1 - Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP1837614A1
EP1837614A1 EP06006032A EP06006032A EP1837614A1 EP 1837614 A1 EP1837614 A1 EP 1837614A1 EP 06006032 A EP06006032 A EP 06006032A EP 06006032 A EP06006032 A EP 06006032A EP 1837614 A1 EP1837614 A1 EP 1837614A1
Authority
EP
European Patent Office
Prior art keywords
liquid
oxygen
enriched
evaporator
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06006032A
Other languages
English (en)
French (fr)
Inventor
Thomas Nohlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP06006032A priority Critical patent/EP1837614A1/de
Priority to EP07003254A priority patent/EP1837615A1/de
Priority to US11/688,269 priority patent/US20070220917A1/en
Publication of EP1837614A1 publication Critical patent/EP1837614A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/06Lifting of liquids by gas lift, e.g. "Mammutpumpe"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film

Definitions

  • the invention relates to a method for evaporating an oxygen-enriched feed liquid by indirect heat exchange an evaporator according to the preamble of patent claim 1.
  • Such processes are used, for example, in cryogenic air separation plants and serve to produce a gaseous oxygen product and / or to generate rising steam for a separation column.
  • the forced circulation described in the preamble of claim 1 introduces liquid in a circle through the evaporation passages and thus ensures sufficient excess liquid to prevent dry running of the evaporation passages. It can be used, for example, in cascade evaporators, such as those in DE 1949609 C .
  • WO 03012352 A2 are described.
  • EP 681153 B1 More often, such a forced circulation is used in falling film evaporators, their use in cryogenic air separation plants is made of EP 681153 B1 .
  • DE 10302389 A1 EP 1482266 A1 .
  • DE 10334559 A1 and DE 10332863 A1 is known.
  • the conveyor for the forced circulation is regularly formed by a cryogenic pump. As a rule, this is done for redundancy reasons as a pair of pumps.
  • the invention has for its object to realize a method of the type mentioned above with relatively little technical and / or regulatory technical effort.
  • the conveyor for the circulating liquid has a means for feeding a lift gas. At least a part of the capacity and preferably the entire capacity is at the Invention by means of a mammoth pump (gas lift pump) executed.
  • the lift gas introduced thereby reduces the density of the liquid flow to such an extent that the available hydrostatic pressure is sufficient to transport the circulating liquid to the evaporation passages.
  • mechanical pumps for the operation of the evaporator can be replaced or at least replaced by much smaller devices.
  • any process stream that is available in gaseous form under the appropriate pressure can be used as a lift gas.
  • the oxygen-enriched feed liquid is pure or almost pure oxygen
  • the lift gas is formed by a second oxygen-enriched gas which in particular has an oxygen content which is at least equal to the oxygen content of the oxygen-enriched feed liquid.
  • the "second oxygen-rich gas” can be formed, for example, by compressing the first oxygen-rich gas that is generated in the evaporator. If the system produces a gaseous pressure product anyway, the second oxygen-rich gas can be diverted therefrom. In the case of external compression, ie the gaseous compression of the oxygen product, the lift gas can be diverted at the outlet of the product compressor or its aftercooler. The lift gas may be supplied to the conveyor warm or alternatively upstream of the Be cooled conveyor, for example, in countercurrent to cold process streams (such as in a main heat exchanger). In the internal compression of the oxygen product is first brought liquid to a high pressure and then to a compressed gas (pseudo) evaporated; Here, part of this compressed gas can be used in the invention cold or warm as a lift gas.
  • a compressed gas pseudo
  • the circulating liquid is returned via a riser to the evaporation passages.
  • the means for feeding the lift gas is arranged in the lower portion of the riser, ie in the lower half, preferably in the lower third of the riser, relative to the lowest and the highest geodetic point of the riser. Most preferably, the feed takes place as far down as possible.
  • the circulating liquid can be passed at least partly together with the feed liquid to the evaporation passages.
  • the entire circulating liquid is first mixed with the feed liquid and then introduced the mixture through the conveyor into the evaporation passages.
  • the circulating liquid is passed through the conveyor at least partially separated from the feed liquid.
  • the circulating liquid is passed through the mammoth pump, while the feed liquid is transported through an existing hydrostatic gradient or by a pump to the evaporation passages.
  • the evaporator of the invention is at least partially formed as a falling film evaporator.
  • the evaporator may be embodied as a combination of two or more sections, at least one of which is formed as a falling film section and at least one other than a circulating section, in which liquid is thrown over by the thermosiphon effect.
  • the evaporator is designed as a pure falling film evaporator. It may consist of one or more heat exchanger blocks, which are preferably designed as aluminum plate heat exchanger.
  • thermosiphon evaporators so-called cascade evaporators
  • the invention also relates to a device for evaporating an oxygen-enriched use liquid according to claim 7.
  • the invention relates to an application according to claim 8, a method for the cryogenic separation of air according to the claims 9 to 11 and a device for cryogenic separation of air according to claim 12.
  • Both embodiments are concerned with the use of the evaporation process according to the invention in a main condenser of an air separation plant, in which the distillation column system is designed as a two-column system for nitrogen-oxygen separation.
  • the distillation column system may comprise further separation columns, which are not shown in the drawings, for example for the production of noble gases such as argon, krypton and / or xenon.
  • noble gases such as argon, krypton and / or xenon.
  • a two-column system consists of a high-pressure column ("second separation column”), into which at least part of the feed air is introduced, and a low-pressure column (“first separation column”), in which oxygen is recovered. These two columns are in heat exchange relationship across the main condenser.
  • This is designed as a condenser-evaporator, that is, he acts on the one hand as an "evaporator” for an "oxygen-rich feed liquid" here by oxygen from the Low pressure column is formed, and on the other hand, as a condenser for gaseous nitrogen from the high-pressure column, which is introduced into the liquefaction passages (the operation of the liquefaction passages is not shown in the drawings).
  • the distillation column system has a double column, that is to say the low-pressure column 2 is arranged above the high-pressure column 1.
  • the main capacitor 3 is arranged, which is designed as a falling-film capacitor or cascade capacitor.
  • the main capacitor 3 is designed as a falling film evaporator.
  • the "oxygen-rich feed liquid" is formed by the reflux liquid of the low-pressure column, which is collected on the lowest bottom or in a collecting device arranged underneath and placed on top of the evaporation passages of the main capacitor 3 (not shown in Figure 1) There, the oxygen is partially evaporated.
  • the resulting gaseous oxygen flows together with the remaining liquid fraction in the outer space of the main capacitor 3, which is formed in the example by the bottom space of the low-pressure column.
  • the gas rises in the low-pressure column and occurs there in mass and heat exchange with downflowing liquid.
  • the liquid remaining fraction is returned via the lines 4 and 5 as circulating liquid to the evaporation passages.
  • the liquid circulation is driven according to the invention by a mammoth pump 6, in which a lift gas 7 is blown after throttling 8 to a suitable pressure in the liquid stream.
  • a mammoth pump 6 in which a lift gas 7 is blown after throttling 8 to a suitable pressure in the liquid stream.
  • the valve 8 determines the mass flow of the lift gas and thus also the flow rate of liquid.
  • the lift gas 7 is formed in the example by gaseous pressure oxygen, which is branched off from the oxygen product of the plant.
  • the oxygen product can either be withdrawn, for example, in gaseous form from the low-pressure column 2, heated in a main heat exchanger against feed air and compressed in the gaseous state (not shown).
  • liquid oxygen from the low pressure column is brought to a high pressure in the liquid state, vaporized (or pseudo-vaporized if the pressure is supercritical) in indirect heat exchange with a heat transfer medium such as highly compressed feed air and warmed.
  • the embodiment of Figure 2 shows a similar system, but here high pressure column 1 and low pressure column are arranged side by side.
  • the main capacitor 3 is designed as a falling-film evaporator and arranged above the high-pressure column 1.
  • the "oxygen-rich feed liquid” is led separately via the lines 11 and 13 and the mechanical pump 12 to the evaporation passages of the main capacitor 3.
  • the two-phase mixture leaving the evaporation passages is separated into a gas fraction, the "first oxygen-enriched gas” 15 and a liquid fraction, the circulating liquid in the liquid line 4.
  • the recirculating liquid is returned to the evaporation passages of the main condenser 3 by means of a mammoth pump 6.
  • a mammoth pump 6 For this purpose, it is first passed downwards in the falling liquid line 4, so that the one liquid column of height h1 can press the gas-laden liquid in the riser line over the height h2 to the evaporation passages.
  • flow 135,000 Nm 3 / h via the pump 12 and 270,000 Nm 3 / h are guided by means of the mammoth pump 6, the 350 Nm 3 / h lift gas 7, 9, circulated in the circulation; These flow rates are set via the valves 10 and 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit (4,5;11,13) durch indirekten Wärmeaustausch in einem Verdampfer (3), der Verdampfungspassagen aufweist. Die sauerstoffreiche Einsatzflüssigkeit wird in die Verdampfungspassagen eingeleitet (4,5;11,13) und dort partiell verdampft. Aus den Verdampfungspassagen werden ein erstes sauerstoffangereichertes Gas (15) und ein flüssig verbliebener Anteil (4) der sauerstoffangereicherten Einsatzflüssigkeit abgezogen. Mindestens ein Teil des flüssig verbliebenen Anteils wird mittels einer Fördereinrichtung (6) als Umlaufflüssigkeit in die Verdampfungspassagen zurückgeleitet (4,5). Die Fördereinrichtung (6) für die Umlaufflüssigkeit weist ein Mittel zum Einspeisen eines Liftgases (7,9) auf. Die Erfindung betrifft außerdem ein Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft, in dem beziehungsweise der dieses Verdampfungsverfahren beziehungsweise die entsprechende Vorrichtung eingesetzt wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit durch indirekten Wärmeaustausch ein einem Verdampfer gemäß dem Oberbegriff des Patentanspruchs 1.
  • Derartige Verfahren werden beispielsweise in Tieftemperatur-Luftzerlegungsanlagen eingesetzt und dienen zur Erzeugung eines gasförmigen Sauerstoffprodukts und/oder zur Erzeugung von aufsteigendem Dampf für eine Trennsäule. Der im Oberbegriff des Patentanspruchs 1 beschriebene Zwangsumlauf führt Flüssigkeit im Kreis durch die Verdampfungspassagen und stellt damit einen ausreichenden Flüssigkeitsüberschuss sicher, um ein Trockenlaufen der Verdampfungspassagen zu verhindern. Er kann zum Beispiel bei Kaskadenverdampfern eingesetzt werden, wie sie beispielsweise in DE 1949609 C , WO 0192798 A2 (= US 2005028554 A1 ), EP 1287302 B1 (= US 6748763 B2 ) oder WO 03012352 A2 beschrieben sind. Noch häufiger wird ein derartiger Zwangsumlauf bei Fallfilmverdampfern verwendet, deren Einsatz in Tieftemperatur-Luftzerlegungsanlagen ist aus EP 681153 B1 , EP 795349 B1 (= US 5901574 ), EP 1094286 B1 (= US 6430961 B1 ), EP 1213552 A1 , EP 1243882 B1 (= US 6530242 B2 ), DE 10115258 A1 , EP 1308680A1 (= US 6612129 B2 ), DE 20205751 U1 , EP 1336805 A1 (= US 2004055331 A1 ), DE 10213211 A1 , DE 10213212 A1 , DE 10232430 A1 , DE 10302389 A1 , EP 1482266 A1 , DE 10334559 A1 und DE 10332863 A1 bekannt ist.
  • Die Fördereinrichtung für den Zwangsumlauf wird regelmäßig durch eine Tieftemperaturpumpe gebildet. In der Regel wird diese aus Redundanzgründen als Pumpenpaar ausgeführt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art mit relativ geringem apparativen und /oder regeltechnischem Aufwand zu realisieren.
  • Diese Aufgabe wird dadurch gelöst, dass die Fördereinrichtung für die Umlaufflüssigkeit ein Mittel zum Einspeisen eines Liftgases aufweist. Mindestens ein Teil der Förderleistung und vorzugsweise die gesamte Förderleistung wird bei der Erfindung mittels einer Mammutpumpe (gas lift pump) ausgeführt. Das dabei eingeführte Liftgas verringert die Dichte des Flüssigkeitsstroms so weit, dass der vorhandene hydrostatische Druck ausreicht, um die Umlaufflüssigkeit zu den Verdampfungspassagen zu transportieren. Dadurch können mechanische Pumpen für den Betrieb des Verdampfers ersetzt oder zumindest durch deutlich kleinere Geräte ersetzt werden.
  • Das Ersetzen mechanischer Pumpleistung durch die Einblasung von Liftgas an dieser Stelle wurde bisher nicht erwogen, weil die Herstellung eines geeigneten Liftgases mehr Energie benötigt, als eine entsprechende mechanische Pumpe verbraucht. Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass die apparative Vereinfachung und die betriebstechnischen Vorteile der Mammutpumpe diesen Nachteil überwiegen. Insbesondere stellt sich die Frage der Redundanz nicht. Auch kann die Menge der Umlaufflüssigkeit in einem sehr weiten Bereich eingestellt werden, ohne dass dazu die Apparatur verändert werden muss. Muss zum Beispiel während des Betriebs der Anlage die Umlaufmenge erhöht werden, ist dies durch eine einfache Erhöhung der Liftgasmenge zu bewerkstelligen. Durch Mammutpumpe ist der Prozess besonders einfach zu regeln; er erfordert einen relativ geringen regeltechnischen Aufwand.
  • Grundsätzlich kann jeder Prozessstrom, der gasförmig unter entsprechendem Druck zur Verfügung steht, als Liftgas eingesetzt werden. Insbesondere dann, wenn es sich bei der sauerstoffangereicherten Einsatzflüssigkeit um reinen oder fast reinen Sauerstoff handelt, ist es jedoch günstig, wenn das Liftgas durch ein zweites sauerstoffangereichertes Gas gebildet wird, das insbesondere einen Sauerstoffgehalt aufweist, der mindestens gleich dem Sauerstoffgehalt der sauerstoffangereicherten Einsatzflüssigkeit ist.
  • Das "zweite sauerstoffreiche Gas" kann zum Beispiel durch Verdichten des ersten sauerstoffreichen Gases gebildet werden, das in den Verdampfer erzeugt wird. Erzeugt die Anlage, ohnehin ein gasförmiges Druckprodukt, so kann das zweite sauerstoffreiche Gas aus diesem abgezweigt werden. Im Falle der Außenverdichtung, also der gasförmigen Verdichtung des Sauerstoffprodukts kann das Liftgas am Austritt des Produktverdichters beziehungsweise seines Nachkühlers abgezweigt werden. Das Liftgas kann der Fördereinrichtung warm zugeführt oder alternativ stromaufwärts der Fördereinrichtung abgekühlt werden, zum Beispiel im Gegenstrom zu kalten Prozessströmen (etwa in einem Hauptwärmetauscher). Bei der Innenverdichtung wird das Sauerstoffprodukt zunächst flüssig auf einen hohen Druck gebracht und anschließend zum einem Druckgas (pseudo-)verdampft; hier kann ein Teil dieses Druckgases im Rahmen der Erfindung kalt oder warm als Liftgas eingesetzt werden.
  • Die Umlaufflüssigkeit wird über eine Steigleitung zu den Verdampfungspassagen zurückgeleitet. Im Rahmen der Erfindung ist es günstig, wenn das Mittel zum Einspeisen des Liftgases im unteren Abschnitt der Steigleitung angeordnet ist, also in der unteren Hälfte, vorzugsweise im unteren Drittel der Steigleitung, relativ zum niedrigsten und zum höchsten geodätischen Punkt der Steigleitung. Höchst vorzugsweise findet die Einspeisung so weit unten wie möglich statt.
  • Die Umlaufflüssigkeit kann mindestens zum Teil gemeinsam mit der Einsatzflüssigkeit zu den Verdampfungspassagen geleitet werden. Zum Beispiel wird die gesamte Umlaufflüssigkeit zunächst mit der Einsatzflüssigkeit vermischt und das Gemisch anschließend durch die Fördereinrichtung in die Verdampfungspassagen eingeleitet.
  • Zusätzlich oder alternativ wird die Umlaufflüssigkeit mindestens zum Teil getrennt von der Einsatzflüssigkeit durch die Fördereinrichtung geleitet. Beispielsweise wird nur die Umlaufflüssigkeit durch die Mammutpumpe geleitet, während die Einsatzflüssigkeit durch ein vorhandenes hydrostatisches Gefälle oder durch eine Pumpe zu den Verdampfungspassagen transportiert wird.
  • Vorzugsweise ist der Verdampfer der Erfindung der Verdampfer mindestens teilweise als Fallfilmverdampfer ausgebildet. Er kann beispielsweise als eine Kombination aus zwei oder mehreren Abschnitten ausgeführt sein, von denen mindestens einer als Fallfilmabschnitt und mindestens ein anderer als Umlaufabschnitt ausgebildet ist, in dem Flüssigkeit durch den Thermosiphon-Effekt umgeworfen wird. Alternativ ist der Verdampfer als reiner Fallfilmverdampfer ausgebildet. Er kann dabei aus einem oder mehreren Wärmetauscherblöcken bestehen, die vorzugsweise als Aluminium-Plattenwärmetauscher ausgeführt sind. Besonders günstig ist der Einsatz des erfindungsgemäßen Verfahrens auch bei mehrstöckigen Thermosiphon-Verdampfem, so genannten Kaskadenverdampfern, wie sie zum Beispiel aus DE 1949609 B , WO 0192798 A2 (= US 2005028554 A1 ), EP 1287302 B1 (= US 6748763 B2 ) oder WO 03012352 A2 bekannt sind.
  • Die Erfindung betrifft außerdem eine Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit gemäß Patentanspruch 7.
  • Des Weiteren betrifft die Erfindung eine Anwendung gemäß Patentanspruch 8, ein Verfahren zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 9 bis 11 und eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß Patentanspruch 12.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen grob schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel der Erfindung mit einem zwischen zwei Trennsäulen angeordneten Verdampfer und
    Figur 2
    ein zweites Ausführungsbeispiel der Erfindung mit einem am Kopf einer von zwei nebeneinander angeordneten Trennsäulen.
  • Beide Ausführungsbeispiele befassen sich mit der Anwendung des erfindungsgemäßen Verdampfungsverfahrens bei einem Hauptkondensator einer Luftzerlegungsanlage, bei der das Destilliersäulen-System als Zwei-Säulen-System zur Stickstoff-Sauerstoff-Trennung ausgebildet ist. Das Destilliersäulen-System kann weitere Trennsäule aufweisen, die in den Zeichnungen nicht dargestellt sind, beispielsweise zur Gewinnung von Edelgasen wie etwa Argon, Krypton und/oder Xenon. Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sowie der Aufbau von Zwei-Säulen-Anlagen im Speziellen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Ein Zwei-Säulen-System besteht aus einer Hochdrucksäule ("zweite Trennsäule"), in die mindestens ein Teil der Einsatzluft eingeleitet wird, und einer Niederdrucksäule ("erste Trennsäule"), in der Sauerstoff gewonnen wird. Diese beiden Trennsäulen stehen über den Hauptkondensator in Wärmeaustauschbeziehung. Dieser ist als Kondensator-Verdampfer ausgebildet, das heißt er wirkt einerseits als "Verdampfer" für eine "sauerstoffreiche Einsatzflüssigkeit", die hier durch Sauerstoff aus der Niederdrucksäule gebildet wird, und andererseits als Kondensator für gasförmigen Stickstoff aus der Hochdrucksäule, der in die Verflüssigungspassagen eingeleitet wird (die Wirkungsweise der Verflüssigungspassagen ist in den Zeichnungen nicht dargestellt).
  • In dem Beispiel der Figur 1 weist das Destilliersäulen-System eine Doppelsäule auf, das heißt die Niederdrucksäule 2 ist oberhalb der Hochdrucksäule 1 angeordnet. Zwischen den beiden Säulen, genauer gesagt im Sumpf der Niederdrucksäule, ist der Hauptkondensator 3 angeordnet, der als Fallfilmkondensator oder Kaskadenkondensator ausgebildet ist. In einem konkreten Beispiel ist der Hauptkondensator 3 als Fallfilmverdampfer ausgebildet. Die "sauerstoffreiche Einsatzflüssigkeit" wird durch die Rücklaufflüssigkeit der Niederdrucksäule gebildet, die auf dem untersten Boden oder in einer darunter angeordnete Sammeleinrichtung gesammelt und oben auf die Verdampfungspassagen des Hauptkondensators 3 aufgegeben wird (nicht dargestellt in Figur 1) Dort wird der Sauerstoff partiell verdampft. Der dabei entstehende gasförmige Sauerstoff (das "erste sauerstoffangereicherte Gas") strömt gemeinsam mit dem flüssig verbliebenen Anteil in den Außenraum des Hauptkondensators 3, der in dem Beispiel durch den Sumpfraum der Niederdrucksäule gebildet wird. Das Gas steigt in der Niederdrucksäule auf und tritt dort in Stoff- und Wärmeaustausch mit herabfließender Flüssigkeit. Der flüssig verbliebene Anteil wird über die Leitungen 4 und 5 als Umlaufflüssigkeit zu den Verdampfungspassagen zurückgeleitet.
  • Der Flüssigkeitsumlauf wird erfindungsgemäß durch eine Mammutpumpe 6 angetrieben, in der ein Liftgas 7 nach Abdrosselung 8 auf einen geeigneten Druck in den Flüssigkeitsstrom eingeblasen wird. Durch das injizierte Gas wird die Dichte der Flüssigkeitssäule in der Steigleitung 5 vermindert und der hydrostatische Druck der in der Flüssigkeitsleitung 4 über eine Höhe h1 oberhalb der Mammutpumpe anstehenden Flüssigkeit reicht aus, um die mit Gasblasen verdünnte Flüssigkeit in der Steigleitung über die größere Höhe h2 anzuheben. Das Ventil 8 bestimmt den Mengenstrom des Liftgases und damit auch den Mengenstrom an Flüssigkeit. Das Liftgas 7 wird in dem Beispiel durch gasförmigen Drucksauerstoff gebildet, der aus dem Sauerstoffprodukt der Anlage abgezweigt wird. Das Sauerstoffprodukt kann entweder beispielsweise gasförmig aus der Niederdrucksäule 2 abgezogen, in einem Hauptwärmetauscher gegen Einsatzluft angewärmt und in gasförmigem Zustand verdichtet werden (nicht dargestellt). Alternativ wird flüssiger Sauerstoff aus der Niederdrucksäule in flüssigem Zustand auf einen hohen Druck gebracht, in indirektem Wärmeaustausch mit einem Wärmeträger wie etwa hoch verdichteter Einsatzluft verdampft (oder pseudoverdampft, falls der Druck überkritisch ist) und angewärmt.
  • Das Ausführungsbeispiel der Figur 2 zeigt ein ähnliches System, allerdings sind hier Hochdrucksäule 1 und Niederdrucksäule nebeneinander angeordnet. Der Hauptkondensator 3 ist als Fallfilmverdampfer ausgebildet und oberhalb der Hochdrucksäule 1 angeordnet. Hier wird die "sauerstoffreicher Einsatzflüssigkeit" separat über die Leitungen 11 und 13 sowie die mechanische Pumpe 12 zu den-Verdampfungspassagen des Hauptkondensators 3 geführt. Das aus den Verdampfungspassagen austretende Zwei-Phasen-Gemisch wird in einen Gasanteil, das "erste sauerstoffangereicherte Gas" 15 und einen Flüssiganteil, die Umlaufflüssigkeit in der Flüssigkeitsleitung 4 getrennt.
  • Analog zu Figur 1, aber separat von der Flüssigkeit 11, 13 aus der Säule, wird die Umlauffüssigkeit mittels einer Mammutpumpe 6 zu den Verdampfungspassagen des Hauptkondensators 3 zurückgeführt. Hierzu wird sie zunächst in der fallenden Flüssigkeitsleitung 4 nach unten geleitet, sodass der eine Flüssigkeitssäule der Höhe h1 die mit Gasblasen beschickte Flüssigkeit in der Steigleitung über die Höhe h2 zu den Verdampfungspassagen drücken kann. In einem konkreten Zahlenbeispiel strömen 135.000 Nm3/h über die Pumpe 12 zu und 270.000 Nm3/h werden mittels der Mammutpumpe 6, die 350 Nm3/h Liftgas 7, 9 einspeist, im Umlaufkreislauf geführt; diese Mengenströme werden über die Ventile 10 und 17 eingestellt.

Claims (13)

  1. Verfahren zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit (4, 5; 11, 13) durch indirekten Wärmeaustausch in einem Verdampfer (3), der Verdampfungspassagen aufweist, wobei die sauerstoffreiche Einsatzflüssigkeit in die Verdampfungspassagen eingeleitet (4, 5; 11, 13) und dort partiell verdampft wird, aus den Verdampfungspassagen ein erstes sauerstoffangereichertes Gas (15) und ein flüssig verbliebener Anteil (4) der sauerstoffangereicherten Einsatzflüssigkeit abgezogen werden und mindestens ein Teil des flüssig verbliebenen Anteils als Umlaufflüssigkeit mittels einer Fördereinrichtung (6) in die Verdampfungspassagen zurückgeleitet (4, 5) wird, dadurch gekennzeichnet, dass die Fördereinrichtung (6) für die Umlaufflüssigkeit ein Mittel zum Einspeisen eines Liftgases (7, 9) aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Liftgas (7, 9) durch ein zweites sauerstoffangereichertes Gas gebildet wird, das insbesondere einen Sauerstoffgehalt aufweist, der mindestens gleich dem Sauerstoffgehalt der sauerstoffangereicherten Einsatzflüssigkeit (11, 13) ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Umlaufflüssigkeit über eine Steigleitung (5) zu den Verdampfungspassagen zurückgeleitet wird, wobei das Mittel zum Einspeisen des Liftgases (7, 9) in der unteren Hälfte, vorzugsweise im unteren Drittel der Steigleitung (5) angeordnet ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Umlaufflüssigkeit mindestens zum Teil gemeinsam mit der Einsatzflüssigkeit zu den Verdampfungspassagen geleitet wird (4, 5 in Figur 1).
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umlaufflüssigkeit mindestens zum Teil getrennt von der Einsatzflüssigkeit durch die Fördereinrichtung geleitet wird (4, 5 in Figur 2).
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verdampfer (3) mindestens teilweise als Fallfilmverdampfer ausgebildet ist.
  7. Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit (4, 5; 11, 13) durch indirekten Wärmeaustausch mit einem Verdampfer (3), der Verdampfungspassagen zur partiellen Verdampfung einer sauerstoffreichen Einsatzflüssigkeit aufweist, mit Mitteln (4, 5; 11, 13) zum Einleiten der sauerstoffreichen Einsatzflüssigkeit in die Verdampfungspassagen, mit Mitteln zum Abziehen eines ersten sauerstoffangereichertes Gas (15) und eines flüssig verbliebenen Anteils (4) der sauerstoffangereicherten Einsatzflüssigkeit aus den Verdampfungspassagen und mit einer Fördereinrichtung (6) zum Zurückleiten mindestens eines Teils des flüssig verbliebenen Anteils (4, 5) als Umlaufflüssigkeit in die Verdampfungspassagen, dadurch gekennzeichnet, dass die Fördereinrichtung (6) für die Umlaufflüssigkeit ein Mittel zum Einspeisen eines Liftgases (7, 9) aufweist.
  8. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6 und/oder der Vorrichtung nach Anspruch 7 in einem Verfahren und/oder einer Vorrichtung zur Tieftemperaturzerlegung von Luft.
  9. Verfahren zur Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine erste Trennsäule (2) aufweist, wobei verdichtete und gereinigte Einsatzluft in das Destilliersäulen-System eingeleitet wird und in der ersten Trennsäule (2) eine flüssige Fraktion (4, 11) gewonnen wird und diese flüssige Fraktion als sauerstoffangereicherten Einsatzflüssigkeit einem Verfahren zum Verdampfen gemäß einem der Ansprüche 1 bis 6 unterworfen wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das aus der flüssigen Fraktion erzeugte erste sauerstoffangereicherte Gas (15) mindestens zum Teil in die erste Trennsäule (2) eingeleitet wird.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Destilliersäulen-System eine zweite Trennsäule (1) aufweist und der Verdampfer (3) als Kondensator-Verdampfer ausgebildet ist, wobei eine gasförmige Fraktion aus der zweiten Trennsäule (1) in die Verflüssigungspassagen des Kondensator-Verdampfers (3) eingeleitet wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass mindestens ein Teil der in den Verflüssigungspassagen gebildeten Flüssigkeit in die zweite Trennsäule (1) eingeleitet wird.
  13. Vorrichtung zur Tieftemperaturzerlegung von Luft mit einem Destilliersäulen-System, das mindestens eine erste Trennsäule (2) aufweist, mit Mitteln zum Einleiten von verdichteter und gereinigter Einsatzluft in das Destilliersäulen-System, mit Mitteln zur Gewinnung einer flüssigen Fraktion (4, 11) in der ersten Trennsäule (2), mit einer Vorrichtung gemäß Anspruch 7 zum Verdampfen dieser flüssigen Fraktion als sauerstoffangereicherte Einsatzflüssigkeit einem Verfahren.
EP06006032A 2006-03-23 2006-03-23 Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Withdrawn EP1837614A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06006032A EP1837614A1 (de) 2006-03-23 2006-03-23 Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP07003254A EP1837615A1 (de) 2006-03-23 2007-02-15 Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US11/688,269 US20070220917A1 (en) 2006-03-23 2007-03-20 Process and Device for Evaporating an Oxygen-Enriched Working Fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06006032A EP1837614A1 (de) 2006-03-23 2006-03-23 Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP1837614A1 true EP1837614A1 (de) 2007-09-26

Family

ID=36676457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006032A Withdrawn EP1837614A1 (de) 2006-03-23 2006-03-23 Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Country Status (2)

Country Link
US (1) US20070220917A1 (de)
EP (1) EP1837614A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726019B2 (ja) * 2011-08-19 2015-05-27 大陽日酸株式会社 熱交換器試験装置、及び熱交換器試験方法
US11358878B2 (en) * 2016-11-14 2022-06-14 William H. Mitchell, JR. Systems and methods for separating soluble solutions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE849850C (de) * 1944-01-27 1952-09-18 Adolf Messer G M B H Verfahren zur Zerlegung von Luft
GB1295022A (de) * 1970-06-06 1972-11-01
DE2323941A1 (de) * 1973-05-11 1974-11-28 Linde Ag Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff
EP0866293A1 (de) * 1997-03-21 1998-09-23 The BOC Group plc Abwärtsströmender Wärmetauscher mit Lufthebepumpe
EP0895047A2 (de) * 1997-07-30 1999-02-03 The Boc Group, Inc. Destillationsapparat und eine Methode zur Herstellung eines komprimierten flüssigen Produktes
FR2780147A1 (fr) * 1999-06-29 1999-12-24 Air Liquide Installation de distillation d'air et boite froide correspondante

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605500C1 (de) * 1996-02-14 1997-04-17 Linde Ag Vorrichtung und Verfahren zum Verdampfen einer Flüssigkeit
DE19950570A1 (de) * 1999-10-20 2001-04-26 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10027139A1 (de) * 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
DE10027140A1 (de) * 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
DE10113791A1 (de) * 2001-03-21 2002-10-17 Linde Ag Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
DE10153252A1 (de) * 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10205878A1 (de) * 2002-02-13 2003-08-21 Linde Ag Tieftemperatur-Luftzerlegungsverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE849850C (de) * 1944-01-27 1952-09-18 Adolf Messer G M B H Verfahren zur Zerlegung von Luft
GB1295022A (de) * 1970-06-06 1972-11-01
DE2323941A1 (de) * 1973-05-11 1974-11-28 Linde Ag Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff
EP0866293A1 (de) * 1997-03-21 1998-09-23 The BOC Group plc Abwärtsströmender Wärmetauscher mit Lufthebepumpe
EP0895047A2 (de) * 1997-07-30 1999-02-03 The Boc Group, Inc. Destillationsapparat und eine Methode zur Herstellung eines komprimierten flüssigen Produktes
FR2780147A1 (fr) * 1999-06-29 1999-12-24 Air Liquide Installation de distillation d'air et boite froide correspondante

Also Published As

Publication number Publication date
US20070220917A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1482266B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1666824A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1357342A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
DE10228111A1 (de) Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
WO2020083528A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2012019753A2 (de) Verfahren und vorrichtung zur gewinnung von drucksauerstoff und druckstickstoff durch tieftemperaturzerlegung von luft
EP2053330A1 (de) Verfahren zur Tieftemperatur-Luftzerlegung
EP2322888B1 (de) Verfahren und Vorrichtung zur Gewinnung eines Helium-Neon-Konzentrats aus Luft
EP1227288A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
WO2021104668A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2020244801A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102007042462A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2914913B1 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
EP3557166A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
EP1837614A1 (de) Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE19933558A1 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE20319823U1 (de) Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
EP1837615A1 (de) Verfahren und Vorrichtung zum Verdampfen einer sauerstoffangereicherten Einsatzflüssigkeit und Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080327

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566