EP1806429B1 - Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom - Google Patents

Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom Download PDF

Info

Publication number
EP1806429B1
EP1806429B1 EP06000403A EP06000403A EP1806429B1 EP 1806429 B1 EP1806429 B1 EP 1806429B1 EP 06000403 A EP06000403 A EP 06000403A EP 06000403 A EP06000403 A EP 06000403A EP 1806429 B1 EP1806429 B1 EP 1806429B1
Authority
EP
European Patent Office
Prior art keywords
cold
cold spraying
pressure
installation according
particle stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06000403A
Other languages
English (en)
French (fr)
Other versions
EP1806429A1 (de
Inventor
Rene Jabado
Jens Dahl Dr. Jensen
Ursus Dr. Krüger
Daniel Körtvelyessy
Volkmar Dr. Lüthen
Ralph Reiche
Michael Rindler
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06000403A priority Critical patent/EP1806429B1/de
Priority to DE502006001063T priority patent/DE502006001063D1/de
Priority to AT06000403T priority patent/ATE400674T1/de
Priority to RU2007100423/05A priority patent/RU2426602C2/ru
Priority to US11/651,730 priority patent/US7631816B2/en
Publication of EP1806429A1 publication Critical patent/EP1806429A1/de
Application granted granted Critical
Publication of EP1806429B1 publication Critical patent/EP1806429B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing

Definitions

  • the invention relates to a cold gas spraying plant and a cold gas spraying process.
  • the US 6,124,563 and the US Pat. No. 6,630,207 describe pulsed thermal spray processes.
  • the DE 103 19 481 A1 and the WO 2003/041868 A2 describe special spray nozzle designs for the cold gas spraying process.
  • the object is achieved by a cold gas spraying system according to claim 1 and a cold gas spraying method according to claim 29.
  • FIG. 1 shows a Kaltgasspritzstrom 1 'according to the prior art.
  • the powder for a coating 13 is applied through a nozzle 8 to a substrate 10, for example a component (turbine blade 120, 130, (FIG. Fig. 9 . 10 ), Combustion chamber wall 155 ( Fig. 11 ) or a housing part ( Fig. 9 ) of a turbine 100 ( Fig. 9 ), so that there forms a coating 13.
  • the powder comes from a powder container 16, wherein the pressure required for the cold gas spraying is generated by a high pressure gas generator 22, so that a cold gas particle stream 7 is generated by supplying the powder to the high pressure gas as the carrier gas in the nozzle 8. If necessary, the high-pressure gas can be heated by means of a heater 19.
  • the heater 19 may be integrated in the high-pressure gas generator.
  • Cold spraying means that temperatures up to a maximum of 80 ° C - 550 ° C, especially 400 ° C to 550 ° C are used.
  • the substrate temperature is 80 ° C to 100 ° C.
  • the speeds are at 300m / s to 2000m / s.
  • FIG. 2 1 shows a cold gas spraying installation 1 according to the invention.
  • the cold gas spraying installation 1 according to the invention has over the prior art ( Fig. 1 ) one or more influencing means 25, 26, 29, 32, 35, 36, the at least one property of the cold gas particle stream 7 (eg., Temperature T, pressure p, particle density p, particulate material M, velocity v, ...) changeable change (modulated).
  • This influencing of the properties of the cold gas particle stream 7 can take place periodically or aperiodically during a coating process.
  • periodic changes in coating times may be followed by aperiodic changes or vice versa.
  • Preferably, only a periodic change of the one or more properties takes place.
  • the influencing means may be, for example, a pulse heating means 25 which alternately, preferably pulsatingly, heats the high-pressure gas of the high-pressure gas generator and thus leads to a modulation of the cold gas particle stream 7.
  • the pulse heating means 25 may also be part of the heater 19.
  • a valve 32 as an influencing means in particular a perforated disc (chopper) 32 may be mounted in front of the nozzle inlet opening 8 '. Since this interrupts the cold gas particle stream 7 periodically or aperiodically, a pulsating cold gas particle stream 7 is generated in the direction of the substrate 10, which causes locally different particle densities p in the beam direction.
  • the valve 32 When the valve 32 is closed, the material accumulates in front of the nozzle 8 and it builds up a higher pressure, which relaxes after opening the valve again.
  • a modulated cold gas particle stream 7 can also be produced by adding the powder from the powder container 16 in changeable amounts per unit time, preferably pulsatingly, to the high-pressure gas. This can be done for example by particular piezoelectric injectors 35 as influencing means.
  • the cold gas particle stream 7 can be modulated by pressure generator 29 as an influencing means, preferably by piezoelectric pressure generator 29, which are arranged at the beginning of the Laval nozzle 8 or on the nozzle 8 and change the cross section of the Laval nozzle changeable.
  • the nozzle 8 may comprise a piezoelectric material or an inner piezoelectric coating which expand or contract by applying a voltage and thus change the cross section of the cold gas particle stream 7 and hence the particle density p, the pressure p and the velocity of the cold gas particle stream 7 change.
  • the cold gas particle stream 7 in the region of the nozzle 8 can be influenced by an acoustic wave coupling by means of a shaft coupler 26, in particular by an ultrasound generator, which rests on the nozzle 8. These prevent any adhesion of particles in the nozzle 8.
  • the high pressure gas can be controlled by a high pressure valve 36 as an influencing means.
  • the high-pressure valve 36 is integrated, for example, in the high-pressure gas generator or along a line 37, which leads the gas from the high-pressure gas generator 22 to the powder.
  • the influencing means 25, 26, 29, 32, 35, 36 can be used singly, paired or multiple and used.
  • the material M is supplied by the or the powder injectors 35 pulse-like the cold gas particle stream 7 and the velocity v of the cold gas particle stream 7 is modulated.
  • the influencing means 25, 32, 35, 36 can either be arranged only in front of the nozzle inlet opening 8 '( Fig. 7 ) or only after the nozzle inlet opening 8 '( Fig. 8 ).
  • the diameter ⁇ , the temperature T and / or the pressure p can be varied changeably to influence the cold gas particle stream 7.
  • the nozzle 8 can be heated to produce a constant temperature T of the cold gas particle stream 7 or to change the temperature T of the cold gas particle stream 7 changeable.
  • the entire cold gas spraying system 1 can be arranged in a vacuum chamber (not shown).
  • Cold spraying means that temperatures up to a maximum of 80 ° C - 550 ° C, especially 400 ° C to 550 ° C are used.
  • the substrate temperature is 80 ° C to 100 ° C.
  • the speeds are from 300m / s to 2000m / s, especially up to 900m / s.
  • FIG. 4 there are the powder injectors 35 and the pulse heating means 25 which are used together or separately.
  • FIG. 5 are compared to FIG. 4 nor the pressure generator 29 available that can be used individually, in pairs or together.
  • the properties of the cold gas particle stream 7 can be changed individually or together in a coating process, in particular if the change acts in the same direction, ie temperature increase and pressure increase.
  • the pulsed injection of powder particles may preferably be effected by a piezoelectric powder injector 35.
  • Particularly grain sizes smaller than 1 ⁇ m, preferably less than 500 nm (nanoparticles) may be sprayed with the modulated cold gas particle streams. 7
  • powder injectors 35 with different powder materials M can be used to achieve graded or multiple coatings.
  • metals, metal alloys, semimetals and compounds thereof as well as semiconductors, high-temperature superconductors, magnetic materials, glasses and / or ceramics can be sprayed.
  • FIG. 6 there are two powder containers 16, 16 'containing different materials for the particles.
  • the materials of the powder containers 16, 16 ' can be added simultaneously or only one powder container 16, 16' is active.
  • the particles have different particle sizes, it makes sense to change the velocity v of the cold gas particle stream, thus z. B. the same pulse at smaller, ie lighter particles is achieved.
  • two gas heaters and or two high-pressure gas generators can be used.
  • FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a row 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure only longitudinal grains
  • As a material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 are For example, iron, nickel or cobalt-based superalloys used.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 10 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • the term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known; these writings are part of the revelation regarding the solidification process.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrA1X layer.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • the FIG. 11 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of circumferentially arranged around a rotation axis 102 around burners 107 open into a common combustion chamber space 154, the flames 156 produce.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • Each heat shield element 155 made of an alloy is working medium side with a particularly heat-resistant protective layer (MCrA1X layer and / or ceramic coating) or is made of high temperature resistant material (solid ceramic stones).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrA1X means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1
  • a ceramic thermal barrier coating consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • suitable coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.

Description

  • Die Erfindung betrifft eine Kaltgasspritzanlage und ein Kaltgasspritzverfahren.
  • Aus dem Stand der Technik sind verschiedene Verfahren zur Herstellung von Schichten bekannt, die auf Bauteile aufgebracht und bei hohen Temperaturen eingesetzt werden. Dies sind Verdampfungsverfahren, wie z. B. PVD oder CVD oder thermische Spritzverfahren (Plasmaspritzen, HVOF: EP 0 924 315 B1 ).
    Ein anderes Beschichtungsverfahren stellt das Kaltgasspritzverfahren dar, das aus den Patenten WO 2005/061116 , US 5,302,414 , US 2004/0037954 A1 , EP 1 132 497 A1 sowie US 6,502,767 bekannt ist.
    Beim Kaltgasspritzen kommen pulverförmige Werkstoffe zum Einsatz, die Korngrößen von größer 5µm, idealerweise zwischen 20 und 40µm aufweisen. Aus kinetisch energetischen Gründen ist das Verspritzen von nanopartikulären Werkstoffen um nanostrukturierte Beschichtungen zu erzielen bisher nicht möglich.
  • Die US 6,124,563 und die US 6, 630,207 beschreiben gepulste thermische Sprühverfahren.
    Die DE 103 19 481 A1 und die WO 2003/041868 A2 beschreiben spezielle Sprühdüsenkonstruktionen für das Kaltgasspritzverfahren.
  • Es ist daher Aufgabe der Erfindung, das Kaltgasspritzverfahren zu verbessern, insbesondere so, dass auch nanokristalline Pulver verspritzt werden können.
  • Die Aufgabe wird gelöst durch eine Kaltgasspritzanlage gemäß Anspruch 1 und ein Kaltgasspritzverfahren gemäß Anspruch 29.
  • Die in den Unteransprüchen aufgelisteten Maßnahmen können beliebig in vorteilhafter Art und Weise beliebig miteinander kombiniert werden.
  • Die Erfindung wird anhand der Figuren näher und beispielhaft erläutert.
  • Es zeigen
  • Figur 1
    eine Kaltgasspritzanlage nach dem Stand der Technik,
    Figur 2 - 8
    eine erfindungsgemäß ausgestaltete Kaltgasspritzanlage,
    Figur 9
    eine Gasturbine,
    Figur 10
    eine perspektivische Ansicht einer Turbinenschaufel und
    Figur 11
    eine Brennkammer.
  • Figur 1 zeigt eine Kaltgasspritzanlage 1' nach dem Stand der Technik.
    Das Pulver für eine Beschichtung 13 wird durch eine Düse 8 auf ein Substrat 10, beispielsweise ein Bauteil (Turbinenschaufel 120, 130, (Fig. 9, 10), Brennkammerwand 155 (Fig. 11) oder ein Gehäuseteil (Fig. 9) einer Turbine 100 (Fig. 9) zugeführt, sodass sich dort eine Beschichtung 13 bildet. Das Pulver kommt aus einem Pulverbehälter 16, wobei der für das Kaltgasspritzen notwendige Druck durch einen Hochdruckgaserzeuger 22 erzeugt wird, so dass ein Kaltgaspartikelstrom 7 erzeugt wird, indem das Pulver dem Hochdruckgas als Trägergas in der Düse 8 zugeführt wird. Das Hochdruckgas kann ggf. mittels eines Heizers 19 erhitzt werden. Der Heizer 19 kann im Hochdruckgaserzeuger integriert sein.
    Kaltspritzen bedeutet, dass Temperaturen bis maximal 80°C - 550°C, insbesondere 400°C bis 550°C verwendet werden. Die Substrattemperatur liegt bei 80°C bis 100°C. Die Geschwindigkeiten liegen bei 300m/s bis 2000m/s.
  • Figur 2 zeigt eine erfindungsgemäße Kaltgasspritzanlage 1. Die erfindungsgemäße Kaltgasspritzanlage 1 weist gegenüber dem Stand der Technik (Fig. 1) ein oder mehrere Beeinflussungsmittel 25, 26, 29, 32, 35, 36 auf, die zumindest eine Eigenschaft des Kaltgaspartikelstroms 7 (z. B. Temperatur T, Druck p, Partikeldichte p, Partikelmaterial M, Geschwindigkeit v, ...) wechselhaft verändern (moduliert).
    Diese Beeinflussung der Eigenschaften des Kaltgaspartikelstroms 7 kann periodisch oder aperiodisch während eines Beschichtungsvorgangs erfolgen. Ebenso kann während eines Beschichtungsvorgangs auf Beschichtungszeiten mit periodischen Änderungen aperiodische Änderungen folgen oder umgekehrt. Vorzugsweise erfolgt nur eine periodische Änderung des oder der Eigenschaften.
  • Das Beeinflussungsmittel kann zum Beispiel ein Pulsheizmittel 25 sein, das das Hochdruckgas des Hochdruckgaserzeugers wechselhaft, vorzugsweise pulsierend erhitzt und so zu einer Modulation des Kaltgaspartikelstroms 7 führt. Das Pulsheizmittel 25 kann auch Teil des Heizers 19 sein.
  • Ebenso kann ein Ventil 32 als Beeinflussungsmittel, insbesondere eine gelochte Scheibe (Chopper) 32 vor der Düseeintrittsöffnung 8' angebracht sein. Da diese den Kaltgaspartikelstrom 7 periodisch oder aperiodisch unterbricht, wird ein pulsierender Kaltgaspartikelstrom 7 in Richtung des Substrats 10 erzeugt, der lokal unterschiedliche Partikeldichten p in Strahlrichtung bewirkt. Wenn das Ventil 32 verschlossen ist, staut sich das Material vor der Düse 8 und es baut sich ein höherer Druck auf, der sich nach dem Öffnen des Ventils wieder entspannt.
  • Ein modulierter Kaltgaspartikelstrom 7 kann auch dadurch erzeugt werden, dass aus dem Pulverbehälter 16 das Pulver in wechselhaft veränderten Mengen pro Zeiteinheit, vorzugsweise pulsierend dem Hochdruckgas hinzugefügt wird. Dies kann beispielsweise durch insbesondere piezoelektrische Injektoren 35 als Beeinflussungsmittel erfolgen.
  • Ebenso kann der Kaltgaspartikelstrom 7 durch Druckerzeuger 29 als Beeinflussungsmittel, vorzugsweise durch piezoelektrische Druckerzeuger 29 moduliert werden, die am Anfang der Lavaldüse 8 oder auf der Düse 8 angeordnet sind und die den Querschnitt der Lavaldüse wechselhaft verändern.
    So kann die Düse 8 ein piezoelektrisches Material oder eine innere piezoelektrische Beschichtung aufweisen, das oder durch die durch Anlegen einer Spannung sich ausdehnen oder sich zusammenziehen und so den Querschnitt des Kaltgaspartikelstroms 7 verändern und damit die Partikeldichte p, den Druck p und die Geschwindigkeit des Kaltgaspartikelstroms 7 verändern.
  • Ebenso kann der Kaltgaspartikelstrom 7 im Bereich der Düse 8 durch eine akustische Welleneinkopplung mittels eines Welleneinkopplers 26, insbesondere durch einen Ultraschallgeber beeinflusst werden, der auf der Düse 8 aufliegt. Diese verhindern von allem ein Anhaften von Partikeln in der Düse 8.
  • Auch kann das Hochdruckgas durch ein Hochdruckventil 36 als Beeinflussungsmittel gesteuert werden. Das Hochdruckventil 36 ist bspw. im Hochdruckgaserzeuger integriert oder entlang einer Leitung 37 vorhanden, die das Gas aus dem Hochdruckgaserzeuger 22 zu dem Pulver führt.
  • Die Beeinflussungsmittel 25, 26, 29, 32, 35, 36 können einzeln, gepaart oder mehrfach vorhanden sein und zum Einsatz kommen.
  • Vorzugsweise wird das Material M durch den oder die Pulverinjektoren 35 pulsartig dem Kaltgaspartikelstrom 7 zugeführt und die Geschwindigkeit v des Kaltgaspartikelstroms 7 wird moduliert.
  • Das Mischen des Hochdruckgases, das aus dem Hochdruckgaserzeuger 22 stammt und des Pulvers, das aus dem Pulverbehälter 16 gelangt, kann vor der Düseneintrittsöffnung 8' in einer Kammer 4 erfolgen (Fig. 1, Fig. 2). Ebenso ist es möglich, den Hochdruckgasstrom und die Partikel erst in der Düse 8 miteinander zu vermischen (nicht dargestellt).
  • Die Beeinflussungsmittel 25, 32, 35, 36 können entweder nur vor der Düseneintrittsöffnung 8' angeordnet sein (Fig. 7) oder nur nach der Düseneintrittsöffnung 8' angeordnet sein (Fig. 8).
  • Insbesondere kann bei der Düse 8 der Durchmesser Φ, die Temperatur T und/oder der Druck p wechselhaft verändert werden, um den Kaltgaspartikelstrom 7 zu beeinflussen.
  • Ebenso kann die Düse 8 beheizt werden, um eine konstante Temperatur T des Kaltgaspartikelstroms 7 zu erzeugen oder die Temperatur T des Kaltgaspartikelstroms 7 wechselhaft zu verändern.
  • Die gesamte Kaltgasspritzanlage 1 kann in einer Vakuumkammer (nicht dargestellt) angeordnet sein.
  • Kaltspritzen bedeutet, dass Temperaturen bis maximal 80°C - 550°C, insbesondere 400°C bis 550°C verwendet werden. Die Substrattemperatur liegt bei 80°C bis 100°C.
    Die Geschwindigkeiten liegen bei 300m/s bis 2000m/s, insbesondere bis 900m/s.
  • In Figur 3 ist nur ein Pulverinjektor 35 vorhanden.
  • In Figur 4 sind die Pulverinjektoren 35 und die Pulsheizmittel 25 vorhanden, die zusammen oder getrennt voneinander verwendet werden.
  • In Figur 5 sind im Vergleich zur Figur 4 noch die Druckerzeuger 29 vorhanden, die einzeln, zu zweit oder zusammen verwendet werden können.
  • Die Eigenschaften des Kaltgaspartikelstroms 7 können bei einem Beschichtungsvorgang einzeln oder zusammen verändert werden, insbesondere wenn die Veränderung in die gleiche Richtung wirkt, also Temperaturerhöhung und Druckerhöhung.
  • Durch Temperaturerhöhung, Druckmodulation oder Querschnittsverengung der Düse 8 des Kaltgaspartikelstroms 7 werden höhere Partikelgeschwindigkeiten erreicht und damit ein besseres Beschichtungsergebnis erzielt.
  • Zur Erzeugung eines gepulsten Kaltgaspartikelstromes 7 sind also verschiedene Verfahren denkbar:
    • Ventil 32 vor der Düse 8 oder rotierende gelochte Scheibe im Gasstrom vor der Düse 8,
    • periodische Verengung des Querschnitts der Düse 8, vorzugsweise durch piezoelektrische Keramiken bzw. Materialien,
    • pulsierende Gaserhitzung,
    • Beeinflussung der Trägergasgeschwindigkeit durch akustische Welleneinkopplung.
  • Die pulsierende Injektion von Pulverteilchen kann vorzugsweise durch einen piezoelektrischen Pulverinjektor 35 erfolgen.
    Besonders Korngrößen kleiner 1µm, vorzugsweise kleiner 500nm (Nanopartikel) können mit den modulierten Kaltgaspartikelströmen 7 verspritzt werden.
  • Ebenso können mehrere Pulverinjektoren 35 mit verschiedenen Pulvermaterialien M eingesetzt werden, um gradierte oder Vielfachbeschichtungen zu erzielen.
  • Bezüglich der Materialauswahl sind keine Einschränkungen gegeben, sodass also Metalle, Metalllegierungen, Halbmetalle sowie Verbindungen hiervon (Karbide, Nitride, Oxide, Sulfide, Phosphate etc.) sowie Halbleiter, Hochtemperatursupraleiter, Magnetwerkstoffe, Gläser und/oder Keramiken verspritzt werden können.
  • In Figur 6 sind zwei Pulverbehälter 16, 16' enthalten, die verschiedene Materialien für die Partikel enthalten.
    Die Materialien der Pulverbehälter 16, 16' können gleichzeitig hinzugefügt werden oder nur ein Pulverbehälter 16, 16' ist aktiv.
    Insbesondere wenn die Partikel verschiedene Partikelgrößen aufweisen ist es sinnvoll, die Geschwindigkeit v des Kaltgaspartikelstroms zu verändern, damit z. B. der gleiche Impuls bei kleineren, d. h. leichteren Partikeln erreicht wird.
    Hier können auch zwei Gasheizer und oder zwei Hochdruckgaserzeuger verwendet werden.
  • Die Figur 9 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
    Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
    Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
    Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
    Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
    An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
    Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
    Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
    Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierungen Teil der Offenbarung.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.
  • Die Figur 10 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
  • Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
  • Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
    Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
  • Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
    Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
  • Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
  • Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierung Teil der Offenbarung.
    Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
  • Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
    Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
    Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
  • Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
    Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt; diese Schriften sind bzgl. des Erstarrungsverfahrens Teil der Offenbarung.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrA1X; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 EP 0 412 397 B1 oder EP 1 306 454 A1 , die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen.
    Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
    Auf der MCrA1X-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).
  • Auf der MCrA1X kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Die Wärmedämmschicht bedeckt die gesamte MCrA1X-Schicht. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
    Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.
  • Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.
  • Die Figur 11 zeigt eine Brennkammer 110 der Gasturbine 100. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
  • Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
  • Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
  • Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrA1X-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
    Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrA1X: M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 , die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen.
  • Auf der MCrA1X kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
    Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Turbinenschaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155.

Claims (46)

  1. Kaltgasspritzanlage,
    die aufweist
    zumindest einen Pulverbehälter (16, 16'),
    einen Hochdruckgaserzeuger (22) zur Erzeugung eines Hochdruckgases,
    einen Gasheizer (19) und
    eine Düse (8),
    aus der ein Kaltgaspartikelstrom (7) austritt,
    dadurch gekennzeichnet, dass
    die Kaltgasspritzanlage (1) Beeinflussungsmittel (25, 26, 29, 32, 35, 35', 36) aufweist,
    die zur wechselhaften Veränderung zumindest einer der Eigenschaften Temperatur (T), Druck (p), Partikeldichte (ρ), Partikelmaterial (M), Geschwindigkeit (v) des Kaltgaspartikelstroms (7) führen.
  2. Kaltgasspritzanlage nach Anspruch 1,
    dadurch gekennzeichnet, dass
    durch die Beeinflussungsmittel (25, 26, 29, 32, 35, 35', 36) die zumindest eine Eigenschaft des Kaltgaspartikelstroms (7) periodisch veränderbar ist.
  3. Kaltgasspritzanlage nach Anspruch 1,
    dadurch gekennzeichnet, dass
    durch die Beeinflussungsmittel (25, 26, 29, 32, 35, 35', 36) die zumindest eine Eigenschaft des Kaltgaspartikelstroms (7) aperiodisch veränderbar ist.
  4. Kaltgasspritzanlage nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet, dass
    zumindest ein Pulverinjektor (35, 35') als Beeinflussungsmittel vorhanden ist,
    durch den das Pulver aus dem Pulverbehälter (16, 16') pulsartig dem Hochdruckgas zuführbar ist,
    wodurch die Partikeldichte (ρ) des Kaltgaspartikelstroms (7) veränderbar ist.
  5. Kaltgasspritzanlage nach Anspruch 1, 2, 3 oder 4,
    dadurch gekennzeichnet, dass
    ein Pulsheizmittel (25) als Beeinflussungsmittel vorhanden ist,
    insbesondere als Teil des Gasheizers (19),
    durch das (25) das Hochdruckgas wechselhaft erhitzbar ist, wodurch auch die Temperatur des Kaltgaspartikelstroms (7) veränderbar ist.
  6. Kaltgasspritzanlage nach Anspruch 1, 2, 3, 4 oder 5,
    dadurch gekennzeichnet, dass
    die Kaltgasspritzanlage (1) vor der Düseneintrittsöffnung (8') der Düse (8) ein Ventil (32),
    insbesondere eine rotierende gelochte Scheibe (32),
    als Beeinflussungsmittel aufweist,
    durch die die Düse (8) zeitweise verschlossen werden kann, so dass die Partikeldichte (ρ) im Kaltgaspartikelstrom (7) wechselhaft veränderbar ist.
  7. Kaltgasspritzanlage nach Anspruch 1, 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, dass
    die Kaltgasspritzanlage (1) im Bereich der Düse (8) oder als Teil der Düse (8) mechanisch wirkende Druckerzeuger (29),
    insbesondere aufweisend Piezoelektrika,
    als Beeinflussungsmittel aufweist,
    durch die die Düse (8) im Querschnitt (Φ) wechselhaft veränderbar ist.
  8. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    akustische Welleneinkoppler (26),
    insbesondere Ultraschallgeber im Bereich oder auf der Düse (8)
    als Beeinflussungsmittel vorhanden sind,
    durch die der Kaltgaspartikelstrom (7) komprimierbar oder expandierbar ist.
  9. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    ein Hochdruckventil (36) im Hochdruckgaserzeuger (22) oder an einer Leitung (37) des Hochdruckgaserzeugers (22)
    als Beeinflussungsmittel vorhanden ist,
    das (36) das Ausströmen des Hochdruckgases aus dem Hochdruckgaserzeuger (22) wechselhaft unterbrechen kann,
    so dass der Druck (p) im Kaltgaspartikelstrom (7) wechselhaft veränderbar ist.
  10. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    Beeinflussungsmittel (26, 29, 32, 36) zur Veränderung des Durchmessers (Φ) der Düse (8), der Temperatur (T) und/oder des Drucks (p) in der Düse (8) vorhanden sind.
  11. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    die Beeinflussungsmittel (25, 29, 32, 35, 35', 36) nur vor der Düseneintrittsöffnung (8') angeordnet sind.
  12. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass
    die Beeinflussungsmittel (26, 29) nur nach der Düseneintrittsöffnung (8') angeordnet sind.
  13. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    sie (1) innerhalb einer Vakuumkammer angeordnet ist.
  14. Kaltgasspritzanlage nach Anspruch 1 oder 4,
    dadurch gekennzeichnet, dass
    das Hochdruckgas und Pulver vor der Düse (8) vermischbar sind.
  15. Kaltgasspritzanlage nach Anspruch 1 oder 4,
    dadurch gekennzeichnet, dass
    dass das Hochdruckgas und Pulver in der Düse (8) vermischbar sind.
  16. Kaltgasspritzanlage nach Anspruch 1, 4, 14 oder 15, dadurch gekennzeichnet, dass
    zwei Pulverbehälter (16, 16') und zwei Pulverinjektoren (35, 35') vorhanden sind.
  17. Kaltgasspritzanlage nach Anspruch 1 oder 5,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur ein Pulsheizmittel (25) vorhanden ist.
  18. Kaltgasspritzanlage nach Anspruch 1 oder 4,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur ein Pulverinjektor (35) vorhanden ist.
  19. Kaltgasspritzanlage nach Anspruch 1 oder 7,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur mechanisch wirkende Druckerzeuger (29) vorhanden sind.
  20. Kaltgasspritzanlage nach Anspruch 1 oder 6,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur ein Ventil (32) vorhanden ist.
  21. Kaltgasspritzanlage nach Anspruch 1 oder 9,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur ein Hochdruckventil (36) vorhanden ist.
  22. Kaltgasspritzanlage nach Anspruch 4, 5 oder 16,
    dadurch gekennzeichnet, dass ,
    als Beeinflussungsmittel nur Pulverinjektoren (35) und Pulsheizmittel (25) vorhanden sind.
  23. Kaltgasspritzanlage nach Anspruch 4 oder 9,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur ein Hochdruckventil (36) und Pulsheizmittel (25) vorhanden sind.
  24. Kaltgasspritzanlage nach Anspruch 1, 5 oder 7,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur Pulsheizmittel (25) und mechanisch wirkende Druckerzeuger (29) vorhanden sind.
  25. Kaltgasspritzanlage nach Anspruch 1, 4, 7 oder 16, dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur Pulverinjektoren (35) und mechanisch wirkende Druckerzeuger (29) vorhanden sind.
  26. Kaltgasspritzanlage nach Anspruch 1, 4 oder 5,
    dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur Pulsheizmittel (25), mechanisch wirkende Druckerzeuger (29) und Pulverinjektoren (35) vorhanden sind.
  27. Kaltgasspritzanlage nach Anspruch 1, 4, 9 oder 19, dadurch gekennzeichnet, dass
    als Beeinflussungsmittel nur Pulsheizmittel (25), ein Hochdruckventil (36) und Pulverinjektor (35) vorhanden sind.
  28. Kaltgasspritzanlage nach Anspruch 1,
    dadurch gekennzeichnet, dass
    nur die Eigenschaften Temperatur (T), Druck (p), Partikeldichte (ρ), Partikelmaterial (M), Geschwindigkeit (v) des Kaltgaspartikelstroms veränderbar sind.
  29. Kaltgasspritzverfahren,
    insbesondere mit einer Kaltgasspritzanlage gemäß einem oder mehreren der Ansprüche 1 bis 28,
    dadurch gekennzeichnet, dass
    ein Kaltgaspartikelstrom (7) in zumindest einem seiner Parameter Temperatur (T), Druck (p), Partikeldichte (ρ), Partikelmaterial (M), Geschwindigkeit (v) wechselhaft verändert wird.
  30. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    nur die Partikeldichte (ρ) des Kaltgaspartikelstroms (7) verändert wird.
  31. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    nur die Temperatur (T) des Kaltgaspartikelstroms (7) verändert wird.
  32. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    nur die Geschwindigkeit (v) des Kaltgaspartikelstroms (7) verändert wird.
  33. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    nur das Partikelmaterial (M) des Kaltgaspartikelstroms (7) verändert wird.
  34. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    nur der Druck (p) des Kaltgaspartikelstroms (7) verändert wird.
  35. Kaltgasspritzverfahren nach Anspruch 29, 30, 31, 32, 33 oder 34,
    dadurch gekennzeichnet, dass
    der zumindest eine Parameter des Kaltgaspartikelstroms (7) periodisch verändert wird.
  36. Kaltgasspritzverfahren nach Anspruch 29, 30, 31, 32, 33 oder 34,
    dadurch gekennzeichnet, dass
    der zumindest eine Parameter des Kaltgaspartikelstroms (7) aperiodisch verändert wird.
  37. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    zwei Eigenschaften des Kaltgaspartikelstroms (7) gleichzeitig verändert werden.
  38. Kaltgasspritzverfahren nach Anspruch 29 oder 37,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur die Temperatur (T) und die Partikeldichte (ρ) des Kaltgaspartikelstroms (7) verändert wird.
  39. Kaltgasspritzverfahren nach Anspruch 29 oder 37,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur die Temperatur (T) und die Geschwindigkeit (v) des Kaltgaspartikelstroms (7) verändert wird.
  40. Kaltgasspritzverfahren nach Anspruch 29 oder 37,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur die Temperatur (T) und der Druck (p) des Kaltgaspartikelstroms (7) verändert wird.
  41. Kaltgasspritzverfahren nach Anspruch 29 oder 37,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur der Druck (p) und die Partikeldichte (ρ) des Kaltgaspartikelstroms (7) verändert wird.
  42. Kaltgasspritzverfahren nach Anspruch 29 oder 37,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur der Druck (p) und das Material (M) des Kaltgaspartikelstroms (7) verändert wird.
  43. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur die Partikeldichte (ρ) und die Geschwindigkeit (v) des Kaltgaspartikelstroms (7) verändert wird.
  44. Kaltgasspritzverfahren nach Anspruch 29,
    dadurch gekennzeichnet, dass
    bei einem Beschichtungsvorgang nur das Material (M) und die Geschwindigkeit (v) des Kaltgaspartikelstroms (7) verändert wird.
  45. Kaltgasspritzverfahren nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    das Hochdruckgas und Pulver vor der Düse (8) vermischt werden.
  46. Kaltgasspritzanlage nach einem oder mehreren der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    das Hochdruckgas und Pulver in der Düse (8) vermischt werden.
EP06000403A 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom Not-in-force EP1806429B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06000403A EP1806429B1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom
DE502006001063T DE502006001063D1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom
AT06000403T ATE400674T1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und kaltspritzverfahren mit moduliertem gasstrom
RU2007100423/05A RU2426602C2 (ru) 2006-01-10 2007-01-09 Установка для холодного газового распыления и способ холодного газового распыления с модулированным газовым потоком
US11/651,730 US7631816B2 (en) 2006-01-10 2007-01-10 Cold spraying installation and cold spraying process with modulated gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06000403A EP1806429B1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom

Publications (2)

Publication Number Publication Date
EP1806429A1 EP1806429A1 (de) 2007-07-11
EP1806429B1 true EP1806429B1 (de) 2008-07-09

Family

ID=36032100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06000403A Not-in-force EP1806429B1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom

Country Status (5)

Country Link
US (1) US7631816B2 (de)
EP (1) EP1806429B1 (de)
AT (1) ATE400674T1 (de)
DE (1) DE502006001063D1 (de)
RU (1) RU2426602C2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058142A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen und/oder Reparieren eines Rotors einer Strömungsmaschine und Rotor hierzu
DE102008058141A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Schaufel für einen Rotor einer Strömungsmaschine
EP2206804A1 (de) * 2009-01-07 2010-07-14 General Electric Company Systeme und Verfahren zum Verbinden von Metallteilen mit Kaltsprühtechnik
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2434073C9 (ru) * 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
US20100019058A1 (en) * 2006-09-13 2010-01-28 Vanderzwet Daniel P Nozzle assembly for cold gas dynamic spray system
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
DE102008006112A1 (de) * 2008-01-25 2009-07-30 BSH Bosch und Siemens Hausgeräte GmbH Heizeinrichtung für ein Hausgerät zur Pflege von Wäschestücken und Verfahren zum Betreiben einer derartigen Heizeinrichtung
DE102008031843A1 (de) * 2008-07-05 2010-01-07 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Kaltgasspritzen
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
DE102008057159A1 (de) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Gasturbine
DE102008057162A1 (de) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Verfahren zur Reparatur des Bauteils einer Gasturbine
US8268237B2 (en) 2009-01-08 2012-09-18 General Electric Company Method of coating with cryo-milled nano-grained particles
DE102009009474B4 (de) * 2009-02-19 2014-10-30 Sulzer Metco Ag Gasspritzanlage und Verfahren zum Gasspritzen
DE102009033620A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Kaltgasspritzen von oxydhaltigen Schutzschichten
DE102009043097A1 (de) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Laufschaufel zur Verwendung in Zweiphasenströmungen sowie Verfahren zum Herstellen einer solchen Laufschaufel
DE102009048659B3 (de) * 2009-09-29 2011-04-28 Siemens Aktiengesellschaft Transformatorkern
DE102009052946A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Bauteilbeschichtung
JP5712054B2 (ja) * 2011-05-31 2015-05-07 日本発條株式会社 シャフト付きヒータユニットおよびシャフト付きヒータユニットの製造方法
US8544769B2 (en) 2011-07-26 2013-10-01 General Electric Company Multi-nozzle spray gun
US20130047394A1 (en) * 2011-08-29 2013-02-28 General Electric Company Solid state system and method for refurbishment of forged components
US9412568B2 (en) 2011-09-29 2016-08-09 H.C. Starck, Inc. Large-area sputtering targets
US10099322B2 (en) * 2012-10-29 2018-10-16 South Dakota Board Of Regents Methods for cold spray repair
US10441962B2 (en) 2012-10-29 2019-10-15 South Dakota Board Of Regents Cold spray device and system
JP6122666B2 (ja) * 2013-03-07 2017-04-26 東京エレクトロン株式会社 ホッパー及び溶射装置
CN103521404B (zh) * 2013-10-25 2015-12-02 中国船舶重工集团公司第七二五研究所 一种便携式低压冷喷涂装置
PL3134932T3 (pl) 2014-04-25 2022-01-17 South Dakota Board Of Regents Elektrody o dużej pojemności
JP6488559B2 (ja) * 2014-05-30 2019-03-27 東洋製罐グループホールディングス株式会社 紙成形体
US20170191151A1 (en) * 2014-05-30 2017-07-06 Toyo Seikan Group Holdings, Ltd. Formed paper article, local region coating method, and coating device
US10315218B2 (en) 2017-07-06 2019-06-11 General Electric Company Method for repairing turbine component by application of thick cold spray coating
JP6967954B2 (ja) * 2017-12-05 2021-11-17 東京エレクトロン株式会社 排気装置、処理装置及び排気方法
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
MX2020009841A (es) * 2018-03-22 2021-01-08 Ecocoat Gmbh Aparato para alimentar y dosificar polvo, aparato para producir una estructura de capa sobre un area de superficie de un dispositivo, elemento de calentamiento plano y metodo para producir un elemento de calentamiento plano.
EP3789516A1 (de) * 2019-09-09 2021-03-10 Siemens Aktiengesellschaft Kaltgasspritzanlage mit einstellbarem partikelstrahl
WO2021155463A1 (en) * 2020-02-04 2021-08-12 1188511 Canada Ltd. Performing operations on a workpiece using electromagnetic forces

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142089A (en) * 1977-03-22 1979-02-27 Canadian Patents And Development Limited Pulsed coaxial thermal plasma sprayer
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JP2773050B2 (ja) 1989-08-10 1998-07-09 シーメンス アクチエンゲゼルシヤフト 耐熱性耐食性の保護被覆層
DE69016433T2 (de) 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
RU2147624C1 (ru) 1994-10-14 2000-04-20 Сименс АГ Защитный слой для защиты детали от коррозии, окисления и термической перегрузки, а также способ его изготовления
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
US6124563A (en) 1997-03-24 2000-09-26 Utron Inc. Pulsed electrothermal powder spray
DE19756594A1 (de) 1997-12-18 1999-06-24 Linde Ag Heißgaserzeugung beim thermischen Spritzen
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
RU2145644C1 (ru) 1998-11-05 2000-02-20 Дикун Юрий Вениаминович Способ получения покрытия из порошковых материалов и устройство для его осуществления
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
US6502767B2 (en) 2000-05-03 2003-01-07 Asb Industries Advanced cold spray system
DE10126100A1 (de) 2001-05-29 2002-12-05 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US6630207B1 (en) 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
DE10224780A1 (de) 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE10319481A1 (de) 2003-04-30 2004-11-18 Linde Ag Lavaldüse für das thermische Spritzen und das kinetische Spritzen
KR100515608B1 (ko) * 2003-12-24 2005-09-16 재단법인 포항산업과학연구원 분말 예열 장치가 구비된 저온 스프레이 장치
US20070098912A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for producing functionally graded coatings using cold gas-dynamic spraying

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058142A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen und/oder Reparieren eines Rotors einer Strömungsmaschine und Rotor hierzu
DE102008058141A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Schaufel für einen Rotor einer Strömungsmaschine
EP2206804A1 (de) * 2009-01-07 2010-07-14 General Electric Company Systeme und Verfahren zum Verbinden von Metallteilen mit Kaltsprühtechnik
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Also Published As

Publication number Publication date
DE502006001063D1 (de) 2008-08-21
US20070187525A1 (en) 2007-08-16
ATE400674T1 (de) 2008-07-15
US7631816B2 (en) 2009-12-15
RU2426602C2 (ru) 2011-08-20
RU2007100423A (ru) 2008-08-10
EP1806429A1 (de) 2007-07-11

Similar Documents

Publication Publication Date Title
EP1806429B1 (de) Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom
EP1971443B1 (de) Düsenanordnung und verfahren zum kaltgasspritzen
EP1845171B1 (de) Verwendung metallischer Pulver mit unterschiedlichen Korngrössen zum Herstellen eines Schichtsystems
EP2436798B1 (de) Maskierungsmaterial, Maskierungsschicht und Verfahren zum Maskieren eines Substrats
EP2143520A1 (de) Verfahren zur Herstellung eines Lochs
EP1974071B1 (de) Im strömungskanal einer strömungsmaschine anzuordnendes bauteil und spritzverfahren zum erzeugen einer beschichtung
WO2006061267A1 (de) Schichtsystem, verwendung und verfahren zur herstellung eines schichtsystems
EP1772228A1 (de) Verfahren zum Reparieren eines Bauteils mit einer gerichteten Mikrostruktur
EP1952931A1 (de) Mechtrode mit Pulverzufuhr und Verfahren zur Benutzung dieser Mechtrode
EP1816222A1 (de) Schichtsystem mit zweilagiger metallischer Anbindungsschicht
EP1816316B1 (de) Bauteilreparaturverfahren
EP1839801A1 (de) Reparaturverfahren zum Instandsetzen von Bauteilen
EP1707651A1 (de) Schichtsystem und Verfahren zur Herstellung eines Schichtsystems
EP1666625A1 (de) Verfahren zur Beschichtung von Bauteilen im Inneren einer Vorrichtung
EP1806426A1 (de) Halterung zum Halten eines metallischen Turbinenbauteils
EP1681374B1 (de) Schichtsystem mit Sperrschicht und Verfahren zur Herstellung
EP2341165A1 (de) Keramisches Bauteil oder keramische Schicht mit hoher Porosität, deren Verwendung sowie Bauteil aufweisend diese Schicht
EP1586675B1 (de) Verfahren zur Innenbeschichtung eines Bauteils mit einem Hohlraum
EP1674193A1 (de) Verfahren zur Herstellung eines Lochs
EP1867749A1 (de) Verfahren zum Aufbringen von Material auf ein Bauteil
EP1812186A2 (de) Giessverfahren und gegossenes bauteil
EP1762634A1 (de) Verfahren zum Beschichten eines Bauteils
EP1772533A1 (de) Vorrichtung zur Innenbeschichtung, Retorte und Verfahren zur Innenbeschichtung
EP1932935A1 (de) Verfahren zur Herstellung einer Turbinenschaufel mit einem Oxid auf einer metallischen Schicht, eine Turbineschaufel ,Verwendung einer solchen Turbinenschaufel und ein Verfahren zum Betreiben einer Turbine
EP1818419A1 (de) Legierung, Schutzschicht und Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006001063

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

26N No opposition filed

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130415

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140115

Year of fee payment: 9

Ref country code: IT

Payment date: 20140130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140110

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001063

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001063

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110