EP1723329B1 - Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection - Google Patents

Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection Download PDF

Info

Publication number
EP1723329B1
EP1723329B1 EP04817134A EP04817134A EP1723329B1 EP 1723329 B1 EP1723329 B1 EP 1723329B1 EP 04817134 A EP04817134 A EP 04817134A EP 04817134 A EP04817134 A EP 04817134A EP 1723329 B1 EP1723329 B1 EP 1723329B1
Authority
EP
European Patent Office
Prior art keywords
metering unit
combustion engine
internal combustion
pressure
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04817134A
Other languages
German (de)
English (en)
Other versions
EP1723329A1 (fr
Inventor
Andreas Holl
Rouslan Sova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004006694A external-priority patent/DE102004006694A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1723329A1 publication Critical patent/EP1723329A1/fr
Application granted granted Critical
Publication of EP1723329B1 publication Critical patent/EP1723329B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Definitions

  • the invention relates to a method, a computer program and a control unit for operating an internal combustion engine with an injection system, in particular for a motor vehicle. Moreover, the invention relates to a data carrier with this computer program and an internal combustion engine with this controller.
  • Such a method and control device is basically known.
  • an injection system for an internal combustion engine is conveyed in the fuel from a metering unit and a high-pressure pump in a fuel tank.
  • the injection system disclosed therein further comprises two control circuits for regulating the pressure in the fuel accumulator.
  • a first control circuit provides to regulate this pressure by a suitable control of a pressure control valve on the high pressure side of the injection system.
  • a second control circuit provides the pressure in the fuel storage by suitably driving the metering unit on the Low pressure side of the injection system to regulate.
  • Inaccuracies can also arise in the regulation of the pressure in the fuel storage by the second control circuit. This applies, for example, if the behavior of a metering unit actually used deviates from an expected behavior of a standardized metering unit due to manufacturing tolerances.
  • a pressure regulator for a fuel injection system of an internal combustion engine is known.
  • the fuel flow delivered to a high-pressure accumulator is modulated according to a predetermined pattern and the resulting changes in the manipulated variable of the pressure regulator are recorded.
  • the manipulated variable By comparing the manipulated variable with a predetermined pattern, malfunctions of the pressure regulator can be detected.
  • the inventively generated individual characteristic reflects the real behavior of a metering unit actually used much more accurately than a standard characteristic, which typically represents the statistically averaged behavior of a large variety of manufactured metering units, each with different manufacturing tolerances. If the individual characteristic curve determined on the basis of the method according to the invention is used for the actually used metering unit in the regulation of the pressure in the fuel accumulator, this control is considerably more precise than if it were carried out on the basis of the standard characteristic curve.
  • the characteristic curve usually represents the fuel quantity provided by the metering unit for the high-pressure pump or the flow rate as a function of the size of its electrical drive current.
  • the inventive method provides to generate the individual characteristic by interpolation of at least two determined interpolation points for this characteristic.
  • the method comprises the following steps: operating the internal combustion engine in a suitably predetermined reference operating point; and determining the provisional fulcrum of the individual characteristic curve for the reference operating point as a value pair comprising the fuel mass flow provided by the metering unit in the reference operating point for the high-pressure pump and the associated electrical drive current.
  • the precision with which the determined interpolation points reflect the real behavior of a metering unit can be further improved in that, with the aid of the described method, they are initially only provisionally fixed. It is then advisable to determine a plurality of preliminary interpolation points for the same predetermined reference operating point by repeatedly repeating the indicated method steps, in order then to determine a final interpolation point by suitable filtering of these plurality of interpolation points, which represents the real behavior of the metering unit even more precisely.
  • the bases used for the interpolation of the individual characteristic line to be determined are advantageously determined for different operating states of the internal combustion engine, such as, for example, idling or full load operation. It is also advisable to provide the generation of the bases for such operating conditions in which the internal combustion engine is operated most frequently.
  • a difference between the standard characteristic curve and the determined individual characteristic curve is calculated.
  • the pressure as a controlled variable is adjusted using a correction characteristic that represents this difference.
  • the adjusted manipulated variable can be monitored much more precisely, that is to say by narrow preset mass flow limit values than the unadjusted controlled variable. The reason for this is that the pressure thresholds for the adjusted controlled variable need not take into account any fluctuations in the controlled variable due to the possibly deviating behavior of the metering unit actually used compared to a standard behavior.
  • a difference between the standard characteristic curve and the determined individual characteristic curve is calculated.
  • the flow rate as a manipulated variable (amount of fuel provided by the metering unit) is adjusted by means of a correction characteristic which represents this difference.
  • the adjusted manipulated variable can be monitored much more precisely, that is to say by means of narrow preset mass flow limit values, than the unadjusted manipulated variable. The reason for this is that the mass flow limit values for the adjusted manipulated variable need not take into account the deviation due to the possibly deviating behavior of the metering unit actually used compared to a standard behavior.
  • the above object of the invention is further by a computer program and a control device for carrying out this method and by a data carrier with the computer program and an internal combustion engine with solved the control unit.
  • the advantages of these solutions correspond to the advantages mentioned above with reference to the method described.
  • FIG. 1 shows an injection system 100 for an internal combustion engine (not shown here), as the basis of the present invention. It comprises a fuel tank 110, from which fuel is conveyed to a metering unit 130 with the aid of an electric fuel pump 120.
  • the metering unit 130 provides a certain amount of fuel for a high-pressure downstream pump 140 in response to a control signal z.
  • the high-pressure pump pumps the fuel into a fuel reservoir 150.
  • the fuel is stored under high pressure to be available on demand for injection valves 160 of the internal combustion engine.
  • the magnitude of the pressure in the fuel reservoir is measured by means of a pressure sensor 170.
  • the pressure sensor 170 transmits the measured pressure in the fuel accumulator 150 in the form of a measurement signal p to a control unit 180 of the injection system 100.
  • the control unit 180 essentially acts as a pressure regulator for regulating the pressure in the fuel accumulator 150 in response to the measurement signal p taking into account inter alia the respective current speed N and the current operating temperature T of the internal combustion engine.
  • FIG. 2 initially illustrates an error that arises when driving the metering unit 130 actually used based on a wrong characteristic.
  • a power flow rate Q of the metering unit measured, for example, in liters per hour, plotted against their electrical drive current I.
  • the drive current I for Recognize a metering unit which causes the metering unit to provide a desired amount or a desired mass flow of fuel for the high-pressure pump 140.
  • this amount is very much dependent on the behavior of the metering unit 130 actually used, as shown in FIG. 2 is illustrated and explained below.
  • the pressure control in the controller 180 would then attempt to compensate for this undesirable pressure buildup in the form of error compensation via an integral portion in the pressure regulator 184 (4), ultimately using only the wrong norm curve nKL again to be incorrect from the metering unit provided amount of fuel (5).
  • the set in this way by the pressure control device 184 in the metering unit 130 flow rate in this case would even be below the originally desired 120 liters per hour, because the controller had to assume that the originally set value (3) was too high.
  • the determination of the individual characteristic according to FIG. 3 refers to a control unit, in which initially no correction characteristic or filter device is present, but the output of the pressure control device is used directly to control the metering unit 130, which, in contrast to the standard curve, the actual behavior of the metering unit 130 represents much more accurate; please refer FIG. 2 ,
  • the learning function designates a type of operating mode of the control unit 180, which enables the generation of the individual characteristic curve iKL preferably in parallel to a normal operation of the internal combustion engine.
  • the current operating state of the internal combustion engine is then continuously checked in accordance with a method step S1 to determine whether, or when, one of generally several predetermined reference operating points is assumed by the internal combustion engine.
  • Each of these reference operating points is typically defined by a predetermined pressure in the fuel reservoir, a predetermined injection quantity into the combustion chambers of the internal combustion engine, and / or by a predetermined rotational speed N of the internal combustion engine.
  • the reference operating points are advantageously distributed to different operating states of the internal combustion engine. These operating states are advantageously those which the internal combustion engine occupies particularly frequently due to their respective use or their respective range of use.
  • method step S2 If it is then determined in method step S2 'that the internal combustion engine is currently being operated at a first predetermined reference point, then the current value of the control signal x is detected at the output of the pressure regulating device 184 (see FIG. 4 ) and cached. In addition, an associated Fuel flow rate determined. This happens in method step S3. The procedure is analogous if, in method step S2 ', it is determined that the internal combustion engine is currently not being operated in the first reference operating point, but in a second or third reference operating point, which is checked in method steps S2 "and S2'".
  • the control signal x is sampled at a detected reference operating point not only once but preferably several times, so that in method step S3 not only a single value but a plurality of values for the control signal x is available for each reference operating point.
  • the sampled values for the control signal x are then filtered, that is to say for example observed or evaluated to what extent they represent a stabilized value for the control signal x in the currently occupied reference operating point.
  • This evaluation can be done, for example, in such a way that it is checked whether the sampled values are within a predefined ⁇ environment around a limit. If, in such an evaluation, it is shown that the sample values of the control signal still fluctuate too much and no stabilized value can be recognized, the method branches back from method step S4 to method step S1, wherein the method steps S2, S3 and S4 are repeated.
  • the sampled values can also be subjected to stabilization by averaging in step S4 during the filtering.
  • step S2 If it has been determined at the end of method step S2 '''that the internal combustion engine is currently not in any of the Reference operating points is operated, the method also branches back to method step S1.
  • method step S6 it is then checked in the following whether all reference points are already considered learned or not. If not, the method branches according to FIG. 3 again back to method step S1, where it is then checked again in cooperation with the method steps S2 ', S2 "and S2''', whether the internal combustion engine is located in one of the reference points for which no stabilized control signal z has been defined for these reference operating points.
  • the method steps S3, S4, S5 and S6 are then run through again, however, if it is determined in method step S6 that all or at least a sufficient number of reference operating points has been learned, then according to method step S7, the individual characteristic iKL for the metering unit 130 actually used is determined The interpolation kinks in the individual characteristic curve can then be smoothed by extrapolation.
  • step S7 individual characteristic for the metering unit 130 is then preferably implemented in the controller 180 and used for precise control of the metering unit 130.
  • a correction characteristic which represents the differences in the behavior of the actually used metering unit compared to a normalized metering unit.
  • This correction characteristic can be determined simply by forming the difference between the individual and the standard characteristic, in particular at the support points representing the individual reference operating points.
  • the controller 180 is preferably as a pressure regulator according to FIG. 4 educated.
  • a first subtraction device 182 for generating a pressure control deviation e as a difference between the actual pressure represented by the measurement signal p and a predetermined desired pressure p soll in the fuel reservoir 150.
  • the control device further comprises the pressure control device 184 for receiving the control deviation e and for generating a control signal x in accordance with the control deviation e and on the basis of a standard characteristic fuel mass flow / electrical drive current for the metering unit 130.
  • the control signal x represents the in consideration of the current pressure control deviation e from the metering unit 130 for the high-pressure pump 140 to be provided fuel delivery, which is required to make the control deviation to zero.
  • a correction characteristic to be generated according to the method according to the invention is also stored in the control unit 180. It serves to determine a correction component for the control signal x, which represents a possibly different activation and conveying behavior of the metering unit 130 actually used in relation to a standardized metering unit. With the aid of a second addition or subtraction device 187, the control device 180 then generates a corrected control signal y for the metering unit 130. With the aid of the second addition or subtraction device, the control signal x is combined with the correction component to the corrected control signal y, which produces a corrected quantity request for represents the fuel delivery amount to be provided by the metering unit 130.
  • the controller 180 further comprises a filter means 188 for generating a stabilized corrected control signal z from the corrected control signal y for driving the metering unit 130.
  • control unit 180 As a pressure regulator just described, it was assumed that a standard characteristic curve for metering units is stored in the control unit and in particular in the pressure control unit 184.
  • correction characteristic 186 is stored for adapting the standard characteristic to the real behavior of the metering unit 130 actually used. The mathematical combination of these two characteristics practically generates the new, individual characteristic which represents the real behavior of the metering unit actually used. This individual characteristic is ultimately based on the calculated, corrected control signal y.
  • FIG. 5 the effects of the use of the individual characteristic curve iKL or the standard characteristic curve nKL are illustrated taking into account the correction characteristic (not shown) on the pressure control behavior of the injection system.
  • the pressure regulator 184 has determined a particular flow demand Q for compensating for a currently detected pressure deviation e, for example, 118 liters per hour (1), then that quantity requirement is first modified according to the learned correction characteristic (2). With this corrected quantity requirement, the nominal characteristic curve nKL determined in the control unit 180 is then used to determine the desired electrical current that is required to compensate for the detected control deviation e for the control of the actually used metering unit 130. That this is the current that is in FIG.
  • the method according to the invention is preferably realized in the form of a computer program.
  • This computer program can then optionally be stored together with other computer programs for controlling and / or regulating the injection system of the internal combustion engine on a computer readable data carrier.
  • the data carrier may be a floppy disk, a compact disc, a so-called flash memory or the like.
  • the computer program stored on the data carrier can then be sold as a product to a customer.
  • the transmission can also take place via an electronic communication network, in particular the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Procédé, programme informatique et appareil de commande permettant de faire fonctionner un moteur à combustion interne pourvu d'un système d'injection, en particulier pour un véhicule à moteur. Dans ledit système d'injection, du carburant est refoulé d'une unité de dosage (130) et d'une pompe à haute pression (140) dans un accumulateur (150) de carburant. La pression dans l'accumulateur de carburant est détectée et régulée par l'unité de dosage (130) commandée par l'unité de commande (180). Selon la présente invention, pour prendre également en compte, dans ce système connu, d'éventuelles tolérances de fabrication d'unité de dosages individuelles (130) lors de la régulation de la pression dans l'accumulateur (150) de carburant et pour rendre ainsi la régulation plus précise, une courbe caractéristique individuelle (iKL) pour l'unité de dosage effectivement utilisée (130) est déterminée et prise en compte lors de la régulation de pression.

Claims (12)

  1. Procédé pour faire fonctionner un moteur à combustion interne avec un système d'injection (100), notamment pour un véhicule automobile, dans lequel du carburant est refoulé depuis une pompe haute pression (140) dans un accumulateur de carburant (150), dans lequel, entre un réservoir de carburant (110) et la pompe haute pression (140), est disposée une unité de dosage (130) et dans lequel la pression dans l'accumulateur de carburant (150) est détectée et est régulée par la commande de l'unité de dosage (130), une caractéristique individuelle (iKL), qui représente le comportement réel de l'unité de dosage, étant déterminée pour la commande de l'unité de dosage (130) pendant le fonctionnement du moteur à combustion interne, caractérisé en ce que la détermination d'un point d'appui, de préférence d'abord seulement provisoire, pour la caractéristique individuelle qui représente le flux quantitatif (Q) de carburant fourni par l'unité de dosage (130) pour la pompe haute pression en fonction de son courant d'attaque (I), comprend les étapes suivantes :
    fonctionnement du moteur à combustion interne dans un point de fonctionnement de référence prédéterminé de manière appropriée ; et
    détermination du point d'appui provisoire de la caractéristique individuelle pour le point de fonctionnement de référence en tant que paire de valeurs comprenant le flux quantitatif de carburant fourni par l'unité de dosage (130) dans le point de fonctionnement de référence pour la pompe haute pression (140) et le courant d'attaque électrique associé, la détermination du point d'appui provisoire n'étant effectuée que si le moteur à combustion interne lors du fonctionnement dans le point de fonctionnement de référence a dépassé une valeur seuil de température minimale prédéterminée, une pluralité de points d'appui provisoires pour un même et unique point de fonctionnement de référence prédéterminé étant déterminée par récurrence ; et un point d'appui définitif pour le point de fonctionnement de référence prédéterminé étant déterminé par filtrage de la pluralité des points d'appui provisoires et la détermination de la caractéristique individuelle comprenant les étapes suivantes :
    détermination d'au moins deux points d'appui définitifs pour différents points de fonctionnement de référence sélectionnés de manière appropriée ; et
    détermination de la caractéristique individuelle pour l'unité de dosage réellement utilisée (130) par interpolation des au moins deux points d'appui et de préférence extrapolation des points d'inflexion de la caractéristique individuelle résultant de l'interpolation de plusieurs points d'appui.
  2. Procédé selon la revendication 1, caractérisé en ce que le filtrage consiste en une formation de moyenne ou en une analyse des points d'appui provisoires déterminés, selon que les points d'appui provisoires se situent à l'intérieur d'un environnement ε prédéfini autour d'une valeur limite, la valeur limite étant dans ce cas définie en tant que point d'appui définitif.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque point de fonctionnement de référence est défini par une pression prédéterminée dans l'accumulateur de carburant, une quantité d'injection prédéterminée et/ou un régime prédéterminé du moteur à combustion interne.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les points de fonctionnement de référence individuels pour déterminer une caractéristique individuelle unique sont placés en fonction du véhicule dans différents états de fonctionnement du moteur à combustion interne, par exemple en marche à vide ou à pleine charge ou avec un couple maximal.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les points de fonctionnement de référence individuels pour déterminer une caractéristique individuelle unique sont placés en fonction du véhicule dans des états de fonctionnement du moteur à combustion interne dans lesquels le moteur à combustion interne fonctionne le plus souvent lorsqu'il est monté dans un véhicule.
  6. Programme informatique avec un code programme, caractérisé en ce que le code programme est réalisé pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 5.
  7. Support de données caractérisé par le programme informatique selon la revendication 6 mémorisé sur celui-ci.
  8. Appareil de commande (180) pour un moteur à combustion interne comprenant un système d'injection (100), en particulier pour un véhicule automobile, dans lequel du carburant est refoulé par une unité de dosage (130) et une pompe haute pression (140) dans un accumulateur de carburant (150), et dans lequel la pression dans l'accumulateur de carburant est détectée et est régulée par commande de l'unité de dosage,
    caractérisé en ce que
    l'appareil de commande (180) est réalisé de telle sorte qu'il détermine, pendant le fonctionnement du moteur à combustion interne, une caractéristique individuelle selon un procédé selon l'une quelconque des revendications 1 à 5.
  9. Appareil de commande (180) selon la revendication 8, caractérisé en ce que l'appareil de commande est réalisé de manière à commander l'unité de dosage (130) en tenant compte de la caractéristique individuelle (iKL) déterminée auparavant.
  10. Appareil de commande (180) selon la revendication 9, caractérisé en ce que l'appareil de commande comprend :
    un dispositif de régulation de la pression (184) pour recevoir un écart de régulation (e) sous la forme d'une différence entre la pression réelle et une pression de consigne dans l'accumulateur de carburant (150) et pour générer un signal de régulation (x) en fonction de l'écart de régulation (e) en prenant pour base une caractéristique normée (nKL) pour l'unité de dosage (130), le signal de régulation (x) représentant la quantité de carburant refoulé devant être fournie en tenant compte de l'écart de régulation (e) par l'unité de dosage (130) pour la pompe haute pression (140) ;
    la caractéristique de correction consignée (186) pour déterminer une proportion de correction pour le signal de régulation (x), qui représente un comportement de commande et de refoulement éventuellement différent de l'unité de dosage véritablement utilisée par rapport à l'unité de dosage normée ;
    un dispositif d'addition ou de soustraction (187) pour générer un signal de régulation corrigé (y) pour l'unité de dosage (130) par liaison mathématique du signal de régulation (x) avec la proportion de correction, le signal de régulation corrigé (y) représentant un souhait de quantité corrigé pour la quantité de carburant refoulé à fournir par l'unité de dosage (130).
  11. Appareil de commande selon la revendication 9 ou 10, caractérisé en ce que l'appareil de commande présente en outre un dispositif de filtre (188) pour générer un signal de régulation stabilisé (z) pour l'unité de dosage (130) par filtrage du signal de régulation corrigé (y).
  12. Moteur à combustion interne, en particulier pour un véhicule automobile, comprenant un système d'injection (100) dans lequel du carburant est refoulé par une unité de dosage (130) et une pompe haute pression (140) dans un accumulateur de carburant (150), et dans lequel la pression dans l'accumulateur de carburant (150) est détectée et est régulée par commande de l'unité de dosage par un appareil de commande (180) selon la revendication 8.
EP04817134A 2004-01-14 2004-12-08 Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection Active EP1723329B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004001877 2004-01-14
DE102004006694A DE102004006694A1 (de) 2004-01-14 2004-02-11 Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem
PCT/EP2004/053347 WO2005068810A1 (fr) 2004-01-14 2004-12-08 Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection

Publications (2)

Publication Number Publication Date
EP1723329A1 EP1723329A1 (fr) 2006-11-22
EP1723329B1 true EP1723329B1 (fr) 2012-07-18

Family

ID=34796603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04817134A Active EP1723329B1 (fr) 2004-01-14 2004-12-08 Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection

Country Status (5)

Country Link
US (1) US7543566B2 (fr)
EP (1) EP1723329B1 (fr)
JP (1) JP2006523286A (fr)
KR (1) KR20060125839A (fr)
WO (1) WO2005068810A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054316A1 (de) * 2006-07-18 2008-01-24 Robert Bosch Gmbh Verfahren zur Ermittlung eines Fehlers in einer Kraftstoffzumesseinheit eines Einspritzsystems
DE102007018310B3 (de) * 2007-04-18 2008-11-13 Continental Automotive Gmbh Verfahren und Vorrichtung zur Regelung eines Hochdruckspeicherdrucks eines Einspritzsystems einer Brennkraftmaschine
EP2128416A1 (fr) * 2008-05-28 2009-12-02 GM Global Technology Operations, Inc. Procédé et système de contrôle d'une pompe haute pression, particulièrement pour un système d'injection de carburant d'un moteur diesel
DE102010030872A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Verfahren zum Bestimmen einer Korrekturkennlinie
KR101012609B1 (ko) * 2010-11-08 2011-02-10 김유중 일정유량 토출용 증압기
FR2975436B1 (fr) * 2011-05-20 2015-08-07 Continental Automotive France Systeme d'injection directe de carburant adaptatif
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
EP3456950A1 (fr) * 2017-09-13 2019-03-20 Robert Bosch GmbH Procédé pour réguler une pression dans un réservoir de carburant d'un système d'injection d'un moteur à combustion
DE102017221333B4 (de) 2017-11-28 2021-01-28 Vitesco Technologies GmbH Toleranz- und Verschleißkompensation einer Kraftstoffpumpe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044514A1 (de) * 1999-09-09 2001-03-15 Denso Corp Kraftsotffeinspritzgerät

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726261A (en) * 1980-07-24 1982-02-12 Diesel Kiki Co Ltd Fuel injector of internal combustion engine
DE3436768A1 (de) * 1984-10-06 1986-04-10 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur steuerung der kraftstoffeinspritzung bei brennkraftmaschinen und kraftstoffeinspritzsystem zur durchfuehrung des verfahrens
US5722373A (en) * 1993-02-26 1998-03-03 Paul; Marius A. Fuel injector system with feed-back control
US5678521A (en) * 1993-05-06 1997-10-21 Cummins Engine Company, Inc. System and methods for electronic control of an accumulator fuel system
US5507266A (en) * 1994-04-11 1996-04-16 Siemens Automotive L.P. Fuel pressure control using hysteresis pump drive
DE19757594C2 (de) 1997-12-23 2002-11-28 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Druckreglers
DE69906459T2 (de) * 1998-11-20 2003-10-23 Mitsubishi Motors Corp Kraftstoffeinspritzvorrichtung der Accumulatorgattung
JP2001152922A (ja) 1999-11-26 2001-06-05 Mitsubishi Motors Corp コモンレール式燃料噴射装置
DE10131507C2 (de) 2001-07-02 2003-07-24 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10131783B4 (de) 2001-07-03 2006-03-16 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
DE10141821C1 (de) * 2001-08-27 2003-04-24 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
DE10148222A1 (de) * 2001-09-28 2003-04-17 Bosch Gmbh Robert Verfahren zum Betrieb einer Brennkraftmaschine
JP2004233322A (ja) 2003-01-28 2004-08-19 Mgs:Kk 中性子線による木材の乾燥度(含水量)を計測する装置
DE10315318A1 (de) * 2003-04-04 2004-10-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044514A1 (de) * 1999-09-09 2001-03-15 Denso Corp Kraftsotffeinspritzgerät

Also Published As

Publication number Publication date
US7543566B2 (en) 2009-06-09
EP1723329A1 (fr) 2006-11-22
JP2006523286A (ja) 2006-10-12
KR20060125839A (ko) 2006-12-06
US20070272208A1 (en) 2007-11-29
WO2005068810A1 (fr) 2005-07-28

Similar Documents

Publication Publication Date Title
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE2808731A1 (de) Verfahren zum betrieb einer kraftstoffeinspritzanlage und kraftstoffeinspritzanlage
DE3028574A1 (de) Schubsteuerungssystem fuer ein gasturbinen-strahltriebwerk
EP1446568B1 (fr) Procede de commande d'un moteur a combustion interne
EP1723329B1 (fr) Procede et appareil de commande permettant de faire fonctionner un moteur a combustion interne pourvu d'un systeme d'injection
DE102010039841B4 (de) Verfahren zum Anpassen der Einspritzcharakteristik eines Einspritzventils
WO2011050920A1 (fr) Procédé pour commander et réguler un moteur à combustion interne
WO2008009563A1 (fr) ProcÉdÉ d'exploitation d'un circuit de carburant d'un moteur À combustion interne
EP1802859A1 (fr) Procede pour faire fonctionner un systeme d'injection de carburant en particulier d'un vehicule automobile
EP2054606A1 (fr) Procédé de détermination d'une valeur de consigne de pression de rampe
WO2010012545A1 (fr) Procédé et dispositif servant à réguler la pression de carburant dans l'accumulateur de pression d'un système d'injection common rail
EP3234329A1 (fr) Procédé permettant de faire fonctionner un moteur diesel
EP0963514B1 (fr) Procede pour reguler une grandeur avec une intervention limitee du regulateur
DE102004006694A1 (de) Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10131507C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
CH707936A1 (de) Steuerung für ein Einspritzsystem.
DE102016119043B4 (de) Lernverfahren zur Bestimmung des Einspritzverhaltens eines Kraftstoffinjektors und Verfahren zur Regelung von Einspritzmengen eines Kraftstoffinjektors an einem Verbrennungsmotor
EP0579794B1 (fr) Procede et dispositif permettant d'evaluer la capacite a fonctionner d'une regulation lambda
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP3665377B1 (fr) Procédé permettant de faire fonctionner un moteur à combustion interne comprenant un système d'injection, système d'injection conçu pour la mise en uvre d'un tel procédé et moteur à combustion interne comprenant un tel système d'injection
DE102010016417A1 (de) Vorrichtung zum Steuern eines Kraftstoffeinspritzsystems
DE102007033858A1 (de) Verfahren zum Betrieb eines bedarfsgesteuerten Kraftstoffsystems für eine Brennkraftmaschine in einem Fahrzeug
DE102005014161B4 (de) Verfahren und Vorrichtung zur Ermittlung der Kraftstoffdruckwerte eines Kraftstoffhochdrucksystems
DE10311011B4 (de) Verfahren zum Erfassen eines individuellen Offsetwertes einer elektrischen Größe zum Ansteuern eines Einspritzventils einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20070214

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004013638

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02D0041000000

Ipc: F02D0041240000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 59/48 20060101ALI20120306BHEP

Ipc: F02D 41/24 20060101AFI20120306BHEP

Ipc: F02M 59/36 20060101ALI20120306BHEP

Ipc: F02D 41/38 20060101ALI20120306BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013638

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20121217

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013638

Country of ref document: DE

Effective date: 20130419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131217

Year of fee payment: 10

Ref country code: FR

Payment date: 20131213

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004013638

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 20