EP1649178A1 - Dünnwandige wälzlager - Google Patents

Dünnwandige wälzlager

Info

Publication number
EP1649178A1
EP1649178A1 EP04740182A EP04740182A EP1649178A1 EP 1649178 A1 EP1649178 A1 EP 1649178A1 EP 04740182 A EP04740182 A EP 04740182A EP 04740182 A EP04740182 A EP 04740182A EP 1649178 A1 EP1649178 A1 EP 1649178A1
Authority
EP
European Patent Office
Prior art keywords
bearings
hardness
steel
universal joint
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04740182A
Other languages
English (en)
French (fr)
Inventor
Karl-Ludwig Grell
Leo Müntnich
Günter Grube
Stefan Gerstner
Norbert Radinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHO Holding GmbH and Co KG
Original Assignee
Schaeffler KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler KG filed Critical Schaeffler KG
Publication of EP1649178A1 publication Critical patent/EP1649178A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/466Needle bearings with one row or needles comprising needle rollers and an outer ring, i.e. subunit without inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • F16C21/005Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement the external zone of a bearing with rolling members, e.g. needles, being cup-shaped, with or without a separate thrust-bearing disc or ring, e.g. for universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/588Races of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/385Bearing cup; Bearing construction; Bearing seal; Mounting of bearing on the intermediate member
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/41Couplings

Definitions

  • the invention relates to thin-walled rolling bearings manufactured without cutting, such as needle bearings, the outer rings of which are made from a cold strip.
  • the invention relates to an universal joint bush for receiving a roller bearing journal, which is also made from a cold strip.
  • Cold rolled steel strip is widely used for the production of cold formed products.
  • the increasing requirements with regard to application and usage properties require better mechanical, in particular forming, properties.
  • Good formability is characterized by the highest possible r values, which characterize the deep-drawability, high n values, which characterize the stretchability, and high elongation values, which characterize the plane strain properties. It has proven to be advantageous if the forming properties in the different directions, in particular in the longitudinal, transverse and diagonal directions, are as equal as possible, that is to say are largely isotropic. The advantages of isotropic properties are essentially expressed in the uniformity of the
  • HK bearings envelopeing circular bearings
  • needle bearings or needle bushes represent a special feature of roller bearings, which are differentiated from solid roller bearings of radial design.
  • These HK bearings get their roundness and shape when they are pressed into a bore and the sleeve material is therefore subject to permanent compressive stresses.
  • These compressive stresses generated by the pressing are added to the load stresses that arise during operation of the bearing, so that the material used has to meet high requirements.
  • DE 10 34 932 describes a method for producing a needle bearing, the running sleeve first being produced with a fixed board and a cage with rolling elements being introduced into this open sleeve before an undetachable structural unit is formed by bending the second board. The sleeve and cage are then subjected to a common hardening process.
  • thin-walled outer and inner rings for needle roller bearings are produced without cutting from a deep-drawable cold strip, the cold strip being a case hardening steel of the brands CK 15, St4 C22, 15Cr3 or 16MnCr5, for example.
  • a prerequisite for this manufacturing process is a uniform isotropic formability of the cold strip.
  • the parts are drawn from the strip of a certain thickness, calibrated for high dimensional accuracy and shaped to the same wall thickness.
  • These molded parts are case hardened to achieve wear resistance and the required load capacity. This is done by carburizing with or without adding nitrogen (carbonitriding) in so-called case hardening furnaces at temperatures between 830 and 930 ° C. Depending on the required hardening depth, this means heat treatment for up to two hours or more.
  • the steels mentioned are the standard materials for non-cutting, thin-walled outer rings of the needle sleeves or needle bushes and have the following characteristic properties:
  • case-hardened sleeve bearings depends on the rolling element diameter and the case hardening depth (Eht) resulting from the reference stress.
  • case-hardened parts therefore consist of two hardened surface layers and a core area with a significantly lower hardness value.
  • the ratio of the sleeve wall thickness to the hardening depth is about 3: 1 to 4: 1.
  • the case hardening depth is about 5 to 7% of the rolling element diameter plus a required manufacturing tolerance, so that the sleeve wall thickness corresponds to more than a quarter of the rolling element diameter at maximum load design.
  • universal joints are also of interest. These are used to connect two shafts at an angle while simultaneously transferring torques. The connection is brought about in such a way that two opposing pins of a universal joint engage in corresponding bores in the fork-shaped ends of the two shafts. To achieve great ease of movement, the pins are accommodated in special bearings, preferably in roller bearings.
  • the universal joint bushes belonging to the bearing, which in functional use have to absorb axial pin forces over the bush base, are subject to high spring loads. In other words, the bushes that are pre-tensioned in the universal joint show a certain fatigue if they are made from conventionally case-hardened steel such as St4, DC04 or C15M at 16MnCr5.
  • this object is achieved according to the characterizing part of claim 1 in conjunction with its preamble in that the outer rings are made of a cold-formable hardenable steel, a ratio of 1:20 to 1: 5 being set between their wall thickness and the diameter of the bearing needles and the through-hardened wall has a core hardness of ⁇ 600 HV and an edge hardness of ⁇ 680 HV.
  • the decisive advantage of the thin-walled roller bearings designed according to the invention is that the required thickness of the outer rings is no longer to be regarded as a composite with a core zone and double hardening depth, but as an almost homogeneous "hardened edge zone", which is supported by a housing that the outer ring is pressed in. Since the ratio of hardening depth to rolling element diameter is decisive for the bearing capacity of a bearing, completely different designs result tion and installation options. Now thin-walled roller bearings can be re-designed
  • Another advantage of the solution according to the invention is that a further saving potential can be realized due to the different heat treatment.
  • the hardness throughput time and on the other hand the hardening temperature can be reduced.
  • the higher dimensional and dimensional stability of the claimed solution is also advantageous.
  • the core hardness has a value of 600 to 650 HV and the hardness has a value of 680 to 750 HV.
  • the tempering steel has the following chemical composition:
  • the universal joint rifle is made from a cold-formable, hardenable steel, the through-hardened wall has a core hardness of ⁇ 600 HV and an edge hardness of ⁇ 680 HV.
  • the core hardness should have a value of 600-650 HV and the edge hardness a value of 680-750 HV.
  • a universal joint bush produced according to the invention is in particular that a higher rigidity of the joint cross system, a higher spring characteristic and a higher breaking strength of the bush base are achieved.
  • the bush base is supported by the radial stresses of the pressed-in state and acts like a disc spring, the pretensioning force of which is maintained over the entire service life, since the material of the tempered steel retains the spring properties and a high yield strength right down to the core.
  • FIG. 1 is a perspective view of a needle bushing, partially sectioned
  • FIG. 1a is a longitudinal section through a needle sleeve
  • FIG. 2 shows a hardness comparison between classic material and steel according to the invention
  • FIG. 3 spring characteristic curves of a bush base made of classic material and steel according to the invention and FIG. 4 plastic deformation under radial load between classic material and steel according to the invention.
  • the needle bush shown in FIG. 1 and designated by 1 has a radial section 2 with an annular profile, which at one end merges into the radially inwardly directed rim 3 and is closed by the bottom 4 at the other end.
  • Bearing needles 7 guided in the cage 6 roll between the bottom 4 provided with the elevation 5 and the rim 3.
  • Such needle bushes close bearings on shaft ends.
  • the wall thickness of the needle bush can decrease to 50% -
  • the diameter of the rolling elements can increase by 20%
  • the rolling elements can extend their axial extension by up to 5%
  • the dynamic load rating Cr can increase by up to 18%
  • the basic static load rating Cor can increase by up to 9% - the dynamic service life can increase by up to 75%
  • the differences between the two needle sleeves are determined by the following geometric dimensions:
  • the diameter of the bearing needles is specified as 2.5 or 3 mm, so that a ratio of wall thickness to diameter of the bearing needles of 1: 2.5 or 1: 6 is formed.
  • the axial length of the bearing needles is 15.3 or 16 mm -
  • the internal distance from board to board is 18.14 or 18.91 mm
  • the roller sleeves shown in FIG. 1b show a similar picture with regard to the savings potential that can be achieved.
  • the left-hand roller sleeve designed according to the prior art is made of case hardening steel C16M with 0.145-0.194% C, while the right-hand roller sleeve according to the invention is made of steel of the brand C45M. Both parts have the same dimensions below:
  • the wall thickness is reduced by 50% from 2 mm on the left to 1 mm on the right.
  • the diameter of the rolling elements is specified as 7 or 6 mm, so that there is a ratio of wall thickness to diameter of the rolling elements of 1: 3.5 or 1: 6.
  • the axial length of the rolling elements is 13 or 14.5 mm.
  • the inner distance from board to board of the roller sleeve is specified as 13.56 or 15.16 mm.
  • the outer diameter is reduced from 63 to 59 mm. The savings potential between the two roller sleeves is realized in this case with approximately the same load capacity through a reduced installation space (outer diameter).
  • the steel C45M according to the invention in contrast to the conventional steel of the DC04M brand, has a hardness gradient which only drops flatly towards the strip center. While the hardness at the edge is around 750 HV, the core hardness assumes a value of around 650 HV. Due to this optimized hardenability, which has to be matched to the component geometry and the stress, the steel has a high core hardness, toughness and elasticity. This high core hardness of the cold-formable, hardenable steel ultimately ensures that the savings potential described above, such as reducing the wall thickness, increasing the rolling element diameter, increasing the dynamic and static load rating, increasing the dynamic service life and reducing the overall weight, are possible.
  • the steel of the C45M brand is an isotropic fine-grain steel with high purity and specially tailored to the requirements in rolling bearing technology. Its deep-drawing ability and formability are comparable to the cold-rolled materials previously used, but its hardenability is significantly higher than that of conventional steels.
  • the spring characteristics of the base 8.1 of universal joint bushes 8 made of DC04M and C45M shown in FIG. 3 clearly show that with a bush base 8.1 made of DC04M a plastic deformation occurs from a certain force, while the base 8.1 of a bush made of C45M has a significantly larger one Force range behaves elastically.
  • the sleeve base 8.1 acts like a plate spring, the pretensioning force of which is maintained over the entire service life, since the material of the tempering steel according to the invention has spring properties right down to the core area.
  • the pre-tensioning force of an universal joint bush 8 according to the invention increases with the same geometrical dimensions compared to an universal joint bushing according to the prior art by at least 20%.
  • Figure 4 shows the different plastic deformation of sleeve raceways made of DC04M and C45M under load. Due to the high core hardness, the bearings made from the new material have a higher static and dynamic load-bearing capacity than comparable bearings made from conventional steel. This reduces plastic deformation on the raceways under high static loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Die Erfindung betrifft spanlos hergestellte dünnwandige Wälzlager, wie Nadellager, deren Außenringe eine Baueinheit bilden und aus einem Kaltband hergestellt sind. In erfindungsgemäßer Weise sind die Außenringe aus einem kaltumformbaren durchhärtbarem Stahl hergestellt, wobei zwischen deren Wanddicke und dem Durchmesser der Lagernadeln ein Verhältnis von 1 : 20 bis 1 : 5 eingestellt ist und die durchgehärtete Wand ein Kernhärte von größer/gleich 600 HV und eine Randhärte von größer/gleich 680 HV aufweist. Durch die Erfindung wird es möglich, daß bei gleichem Bauraum Lager statisch höher belastet werden können als Lager aus konventionellen Stählen.

Description

Dünnwandige Wälzlager
Anwendungsgebiet der Erfindung
Die Erfindung betrifft spanlos hergestellte dünnwandige Wälzlager, wie Nadel- lager, deren Außenringe aus einem Kaltband hergestellt sind. Außerdem betrifft die Erfindung eine Gelenkkreuzbüchse zur Aufnahme eines wälzgelagerten Lagerzapfens, die ebenfalls aus einem Kaltband hergestellt ist.
Hintergrund der Erfindung
Kaltgewalztes Stahlband wird vielfach zur Herstellung von kaltumgeformten Erzeugnissen verwendet. Die steigenden Anforderungen bezüglich der Anwe- nungs- und Gebrauchseigenschaften erfordern bessere mechanische, insbesondere Umformeigenschaften. Eine gute Umformbarkeit ist gekennzeichnet durch möglichst hohe, die Tiefziehbarkeit kennzeichnende r-Werte, hohe, die Streckziehbarkeit kennzeichnende n-Werte und hohe, die plane strain- Eigenschaften kennzeichnende Dehnungswerte. Dabei hat es sich als vorteilhaft erwiesen wenn die Umformeigenschaften in den verschiedenen Richtungen, insbesondere in der Längs-, der Quer- und der Diagonalrichtung mög- liehst gleich sind, das heißt, weitgehend isotrop sind. Die Vorteile isotroper Eigenschaften drücken sich im wesentlichen in einer Gleichmäßigkeit des
Stoffflusses und in einer Reduzierung des Blechverschnittes aus (DE 195 47 181 C1 ). In diesem Zusammenhang ist dem Fachmann bekannt, daß sogenannte HK- Lager (Hüllkreislager), wie Nadellager oder Nadelbüchsen eine wälzlagertechnische Besonderheit darstellen, die sich gegenüber massiven Wälzlagern radialer Bauart abgrenzen. Diese HK-Lager erhalten ihre Rundheit und Form durch das Einpressen in eine Bohrung und der Hülsenwerkstoff unterliegt somit permanenten Druckspannungen. Diese durch das Einpressen erzeugten Druckspannungen addieren sich zu den beim Betrieb des Lagers entstehenden Lastspannungen, so daß der verwendete Werkstoff hohe Anforderungen zu erfüllen hat. Insbesondere soll er gut umformbar sein und eine Eignung für eine Wär- mebahandlung aufweisen, um die gewünschten mechanischen Kennwerte zu erreichen.
In der DE 10 34 932 ist ein Verfahren zu Herstellung eines Nadellagers beschrieben, wobei die Laufhülse zunächst mit einem festen Bord hergestellt ist und in diese offene Hülse ein Käfig mit Wälzkörper eingeführt wird, bevor durch umbiegen des zweiten Bordes eine unverlierbare Baueinheit gebildet ist. Danach werden Hülse und Käfig einem gemeinsamen Härtevorgang unterworfen. Nach diesem Stand der Technik werden dünnwandige Außen- bzw. Innenringe für Nadellager aus einem tiefziehfähigen Kaltband spanlos hergestellt, wobei das Kaltband ein Einsatzstahl beispielsweise der Marken CK 15, St4 C22, 15Cr3 oder 16MnCr5 ist. Voraussetzung für diesen Herstellprozeß ist eine gleichmäßige isotrope Umformfähgikeit des Kaltbandes. In einzelnen oder mehreren Stufen hintereinander werden die Teile aus dem Band bestimmter Dicke abgestreckt, kalibriert auf eine hohe Maßgenauigkeit und wanddicken- gleich geformt. Zur Erreichung der Verschleißfestigkeit und der geforderten Tragfähigkeit werden diese ausgeformten Teile einsatzgehärtet. Dies erfolgt durch eine Aufkohlung ohne oder mit Stickstoffzugabe (Karbonitrierung) in sogenannten Einsatzhärteöfen bei Temperaturen zwischen 830 und 930°C. Je nach erforderliche Einhärtetiefe bedeutet dies eine Wärmebehandlung bis zu zwei Stunden und mehr. Die genannten Stähle gelten als Standard-Werkstoffe für spanlos gefertigte, dünnwandige Außenringe der Nadelhülsen oder Nadelbüchsen und weisen nachstehende charakteristische Eigenschaften auf:
- ihre Reinheit und Kaltziehfähigkeit
- die notwendige Einsatzhärtung
- die relative Maß- und Formveränderung bei der Wärmebehandlung
- die erforderliche Materialdicke, bedingt durch die Einsatzhärtungstiefe Eht und den für diese Werkstoffe notwendigen weichen Kern
Die maximale Tragfähigkeit derart einsatzgehärteter Hülsenlager ist abhängig vom Wälzkörperdurchmesser und der sich aus der Vergleichsspannung ergebenden Einsatzhärtetiefe (Eht). Im Querschnitt gesehen bestehen demnach einsatzgehärtete Teile aus zwei gehärteten Randschichten und einem Kernbe- reich mit einem deutlich niedrigeren Härtewert. Das Verhältnis der Hülsen- wanddicke zur Einhärtetiefe liegt bei etwa 3 : 1 bis 4 : 1. Die Einsatzhärtetiefe beträgt etwa 5 bis 7 % des Wälzkörperdurchmessers zuzüglich einer erforderlichen Fertigungstoleranz, so daß die Hülsenwanddicke bei maximaler Lastauslegung mehr als ein Viertel des Wälzkörperdurchmessers entspricht.
Im Zusammenhang mit der Erfindung sind auch Kreuzgelenke von Interesse. Diese werden zur winkelbeweglichen Verbindung zweier Wellen bei gleichzeitiger Übertragung von Drehmomenten benutzt. Die Verbindung wird dabei in der Weise herbeigeführt, daß jeweils zwei einander gegenüberliegende Zapfen eines Gelenkkreuzes in entsprechende Bohrungen der gabelförmig ausgebildeten Enden der beiden Wellen eingreifen. Zur Erzielung einer großen Leicht- gängigkeit sind die Zapfen in besonderen Lagern aufgenommen, vorzugsweise in Wälzlagern. Die zur Lagerung gehörenden Gelenkkreuzbüchsen, die im funktioneilen Einsatz axial wirkende Zapfenkräfte über den Büchsenboden auf- nehmen müssen, unterliegen einer hohen Federbeanspruchung. D. h., die im Kreuzgelenk vorgespannt eingepressten Büchsen zeigen eine bestimmte Er- müdungserscheinung, wenn sie aus herkömmlich einsatzgehärteten Stahl wie St4, DC04 oder C15M bei 16MnCr5 hergestellt werden. Die Herstellung einer Gelenkkreuzbüchse aus einsatzgehärtetem Stahl geht aus der DE-AS1 021211 hervor. Die Folge dieser Ermüdungserscheinung ist, daß die Funktion des Gesamtsystems, bedingt durch ein vergrößertes Spiel nach einer bestimmten Beanspruchungsdauer, ungenau wird. Weitere Ausführungen zu Kreuzgelenklagerungen sind an dieser Stelle nicht erforderlich, weil dem Fachmann hinreichend bekannt (DE 21 22 575, DE 30 33 445 A^, DE-OS 21 20 569, DE 37 39 718 A1 )
Zusammenfassung der Erfindung
Aufgabe der Erfindung ist es daher, spanlos hergestellte dünnwandige Wälzlager und Gelenkkreuzbüchsen bereitzustellen, die sich durch einen verbesser- ten Wirkungsgrad auszeichnen.
Erfindungsgemäß wird diese Aufgabe nach den kennzeichnenden Teil von Anspruch 1 in Verbindung mit dessen Oberbegriff dadurch gelöst, daß die Außenringe aus einem kaltumformbaren durchhärtbaren Stahl hergestellt sind, wobei zwischen deren Wanddicke und dem Durchmesser der Lagernadeln ein Verhältnis von 1 : 20 bis 1 : 5 eingestellt ist und die durchgehärtete Wand eine Kernhärte von ≥ 600 HV und eine Randhärte von ≥ 680 HV aufweist.
Der entscheidende Vorteil der erfindungsgemäß ausgebildeten dünnwandigen Wälzlager liegt darin, daß die erforderliche Dicke der Außenringe nun nicht mehr als ein Werkstoffverbund mit Kernzone und doppelter Einhärtetiefe zu betrachten ist, sondern als eine nahezu homogene „gehärtete Randzone", deren Abstützung durch ein Gehäuse erfolgt, in das der Außenring eingepreßt ist. Da für die Tragfähigkeit eines Lagers das Verhältnis von Einhärtetiefe zu Wälzkörperdurchmesser bestimmend ist, ergeben sich völlig andere Konstruk- tions- und Einbaumöglichkeiten. Es lassen sich nunmehr dünnwandige Wälzlager neu auslegen, die
- bei gleichen Bauraum statisch höher belastet werden können, - kleinere Bauräume bei gleichen Belastungen ermöglichen,
- Auslegungen ermöglichen, die bei gleichen Bauraum zu längerer Lebensdauer führen.
Ein anderer Vorteil der erfindungsgemäßen Lösung liegt darin, daß sich auf- grund der unterschiedlichen Wärmebehandlung ein weiteres Einsparpotential realisieren läßt. Zum einen kann die Härtedurchlaufzeit und zum anderen die Härtetemperatur herabgesetzt werden. Auch ist die höhere Maß- und Formstabilität der beanspruchten Lösung von Vorteil.
Weitere vorteilhafte Ausführungen der Erfindung sind in den Untenansprüchen 2 und 3 beschrieben.
So ist nach Anspruch 2 vorgesehen, daß die Kernhärte einen Wert von 600 bis 650 HV und die Randhärte einen Wert von 680 bis 750 HV aufweist.
Aus Anspruch 3 geht hervor, daß der Vergütungsstahl folgende chemische Zusammensetzung aufweist:
0,37 - 0,50 % C bis 0,50 % Cr bis 0,40 % Si bis 0,40 % Ni
0,50 bis 0,80 % Mn bis 0,10 % Mo bis 0,020 % P bis 0,20 % Cu bis 0,020 % S
Nach dem zweiten unabhängigen Anspruch 4 ist vorgesehen, daß die Gelenkkreuzbüchse aus einem kaltumformbaren durchhärtbaren Stahl hergestellt ist, wobei die durchgehärtete Wand eine Kernhärte von ≥ 600 HV und eine Randhärte von ≥ 680 HV aufweist.
In vorteilhafter Weise soll dabei nach Anspruch 5 die Kernhärte einen Wert von 600 - 650 HV und die Randhärte einen Wert von 680 - 750 HV aufweisen.
Gemäß Anspruch 6 ist schließlich vorgesehen, daß für die Gelenkkreuzbüchse ein Vergütungsstahl mit folgender chemischer Zusammensetzung verwendet ist:
0,37 - 0,50 % C bis 0,50 % Cr bis 0,40 % Si bis 0,40 % Ni
0,50 bis 0,80 % Mn bis 0,10 % Mo bis 0,020 % P bis 0,20 % Cu bis 0,020 % S
Die Vorteile einer erfindungsgemäß hergestellten Gelenkkreuzbüchse liegen insbesondere darin, daß eine höhere Steifigkeit des Gelekkreuzsystems, eine höhere Federkennlinie und eine höhere Bruchfestigkeit des Büchsenbodens erreicht werden. Der Büchsenboden wird abgestützt über die radialen Spannungen des eingepressten Zustandes und wirkt wie eine Tellerfeder, deren Vorspannkraft über die gesamte Lebensdauer aufrecht erhalten bleibt, da der Werkstoff des Vergütungsstahles bis in den Kern die Federeigenschaften und eine hohe Streckgrenze beibehält.
Die Erfindung wird an nachstehenden Ausführungsbeispielen näher erläutert.
Kurze Beschreibung der Zeichnungen
Es zeigen: Figur 1 eine perspektivisch dargestellte Nadelbüchse, teilweise geschnitten, Figur 1a einen Längsschnitt durch je eine Nadelhülse,
Figur 1 b einen Längsschnitt durch je eine Rollenhülse,
Figur 2 einen Härtevergleich zwischen klassischem Werkstoff und erfindungsgemäßem Stahl,
Figur 3 Federkennlinien eines Büchsenbodens aus klassischem Werkstoff und erfindungsgemäßen Stahl und Figur 4 plastische Verformung bei Radiallast zwischen klassischem Werkstoff und erfindungsgemäßem Stahl.
Ausführliche Beschreibung der Zeichnungen
Die in der Figur 1 gezeigte und mit 1 bezeichnete Nadelbüchse weist einen Radialabschnitt 2 mit kreisringförmigen Profil auf, der an einem Ende in den radial nach innen gerichteten Bord 3 übergeht und am anderen Ende durch den Boden 4 verschlossen ist. Zwischen dem mit der Erhebung 5 versehenen Boden 4 und dem Bord 3 wälzen im Käfig 6 geführte Lagernadeln 7 ab. Derartige Nadelbüchsen schließen Lagerstellen an Wellenenden ab.
Wird nun eine solche Nadelbüchse 1 bei gleichem Außendurchmesser einmal nach dem bisherigen Stand der Technik aus einem Stahl der Marke DC04M und einmal aus einem erfindungsgemäßen kaltumformbaren und durchhärtba- ren Stahl gemäß den Ansprüchen hergestellt, so ergeben sich durch die erfindungsgemäße Neuauslegung in etwa folgende Potentialeinsparungen:
- die Wandstärke der Nadelbüchse kann sich bis auf 50 % verringern - der Durchmesser der Wälzkörper kann sich bis um 20 % vergrößern
- die Wälzkörper können sich in ihrer axialen Ausdehnung bis um 5% verlängern
- die dynamische Tragzahl Cr kann sich bis um 18 % erhöhen
- die statische Tragzahl Cor kann sich bis um 9 % erhöhen - die dynamische Lebensdauer kann sich bis um 75 % erhöhen
- das Gesamtgewicht kann sich bis um 7 % vermindern:
Wie ein konkreter Vergleich der in Figur 1a schematisch dargestellten Nadelhülsen vom Typ HK 3020 zeigt, weist sowohl die Nadelhülse aus dem Einsatz- stahl DC04M (0,05 - 0,08 % C) als auch die Nadelhülse aus dem erfindungsgemäßen Stahl C45M (0,37-0,50 % C) folgende gleiche Abmessungen auf:
- Außendurchmesser 37 mm
- Hüllkreisdurchmesser 30 mm - axiale Ausdehnung 20 mm
Die Unterschiede zwischen beiden Nadelhülsen sind durch nachstehende geometrische Abmessungen bestimmt:
- Während bei der linksseitigen Nadelhülse gemäß dem bisherigen Stand der Technik eine Wanddicke von 1 mm ausgewiesen ist, ist diese bei der rechtsseitigen erfindungsgemäßen Nadelhülse auf 0,5 mm reduziert.
- Der Durchmesser der Lagernadeln ist mit 2,5 bzw. mit 3 mm angegeben, so daß ein Verhältnis von Wanddicke zu Durchmesser der Lagernadeln von 1 : 2,5 bzw. von 1 : 6 gebildet ist.
- Die axiale Länge der Lagernadeln beträgt 15,3 bzw. 16 mm - Der innere Abstand von Bord zu Bord beträgt 18,14 bzw. 18,91 mm
Es ist erkennbar, daß bei gleichen Einbauverhältnissen (gleicher Außendurchmesser, gleicher Hüllkreisdurchmesser, gleiche axiale Ausdehnung) eine Stei- gerung der Tragfähigkeit realisiert ist, die durch den erhöhten Durchmesser der Lagernadeln und deren größere axiale Ausdehnung bedingt ist.
Ein ähnliches Bild hinsichtlich der erzielbaren Einsparpotentiale belegen die in Figur 1 b dargestellten Rollenhülsen. Die linksseitige nach dem Stand der Technik ausgebildete Rollenhülse ist aus dem Einsatzstahl C16M mit 0,145 - 0,194 % C hergestellt, während die erfindungsgemäße rechtsseitig befindliche Rollenhülse aus dem Stahl der Marke C45M gefertigt ist. Beide Teile weisen nachstehende gleiche Abmessungen auf:
- Hüllkreisdurchmesser 45 mm
- axiale Ausdehnung 17 mm
Die Unterschiede zwischen beiden Rollenhülsen sind durch folgende geometrische Abmessungen bestimmt:
- Wie im Beispiel 1 a ist die Wanddicke um 50 % verringert und zwar von 2 mm linksseitig auf 1 mm rechtsseitig.
- Der Durchmesser der Rollkörper ist mit 7 bzw. 6 mm angegeben, so daß sich ein Verhältnis von Wanddicke zu Durchmesser der Rollkörper von 1 : 3,5 bzw. von 1 : 6 ergibt.
- Die axiale Längenausdehnung der Rollkörper beträgt 13 bzw. 14,5 mm.
- Der innere Abstand von Bord zu Bord der Rollenhülse ist mit 13,56 bzw. mit 15,16 mm angegeben. - Der Außendurchmesser verringert sich von 63 auf 59 mm. Das Einsparpotential zwischen beiden Rollenhülsen ist in diesem Fall bei etwa gleicher Tragfähigkeit durch einen verringerten Bauraum (Außendurchmesser) realisiert.
Wie Figur 2 zeigt, weist der erfindungsgemäße Stahl C45M im Gegensatz zum herkömmlichen Stahl der Marke DC04M einen nur flach in Richtung Bandmitte abfallenden Härteverlauf auf. Während die Randhärte mit etwa 750 HV anzusetzen ist, nimmt die Kernhärte einen Wert von etwa 650 HV an. Durch diese optimierte Härtbarkeit, die auf die Bauteilgeometrie und die Beanspruchung abzustimmen ist, weist der Stahl eine hohe Kernhärte, Zähigkeit und Elastizität auf. Diese hohe Kernhärte des kaltumformbaren durchhärtbaren Stahles sorgt letztendlich dafür, daß die vorstehend beschriebenen Einsparpotenziale wie Verringerung der Wandstärke, Erhöhung des Wälzkörperdurchmessers, Erhöhung der dynamischen und der statischen Tragzahl, Erhöhung der dynami- sehen Lebensdauer und eine Reduzierung des Gesamtgewichtes möglich werden. Der Stahl der Marke C45M ist ein isotroper Feinkornstahl mit hoher Reinheit und speziell auf die Anforderungen in der Wälzlagertechnik abgestimmt. Seine Tiefziehfähigkeit und Umformbarkeit ist vergleichbar mit den bisher verwendeten Kaltband-Werkstoffen, in seiner Härtbarkeit liegt er jedoch deutlich über den konventionellen Stählen.
Die in Figur 3 dargestellten Federkennlinien des Bodens 8.1 von Gelenkkreuzbüchsen 8 aus DC04M und C45M zeigen deutlich, daß bei einem Büchsenboden 8.1 aus DC04M ab einer bestimmten Kraft eine plastische Verformung ein- tritt, während sich der Boden 8.1 einer Büchse aus C45M über einen deutlich größeren Kraftbereich elastisch verhält. Der Büchsenboden 8.1 wirkt im Sinne der Erfindung wie eine Tellerfeder, deren Vorspannkraft über die gesamte Lebensdauer aufrecht erhalten bleibt, da der Werkstoff des erfindungsgemäßen Vergütungsstahl bis in den Kernbereich Federeigenschaften hat. Die Vor- Spannkraft einer erfindungsgemäßen Gelenkkreuzbüchse 8 erhöht sich bei gleichen geometrischen Abmessungen gegenüber einer Gelenkkreuzbüchse gemäß Stand der Technik um wenigstens 20 %. Auf diese Weise läßt sich eine höhere Steifigkeit des gesamten Gelenkkreuzsystems realisieren, die sich positiv auf die Funktion und die Lebensdauer auswirkt. Bei den im Kreuzgelenk nach dem Stand der Technik eingepreßten Büchsen zeigen sich Ermüdungserscheinungen, wenn sie aus herkömmlich einsatzgehärteten Stählen hergestellt sind. Die Folge ist, daß diese Gelenkkreuze, zum Beispiel in einer Lenksäule oder in einem Antriebsystem eingesetzt, ein vergrößertes Spiel nach einer bestimmten Beanspruchungsdauer aufweisen, was die Funktion erheblich beeinträchtigt.
Figur 4 zeigt schließlich die unterschiedliche plastische Verformung von Hülsenlaufbahnen aus DC04M und C45M bei Belastung. Die Lager aus dem neuen Werkstoff weisen aufgrund der hohen Kernhärte eine höhere statische und dynamische Tragfähigkeit auf als vergleichbare Lager aus herkömmlichem Stahl. Dies vermindert plastische Verformungen an den Laufbahnen bei hoher statischer Belastung.
Bezugszeichen
1 Nadelbüchse
2 Radialabschnitt
3 Bord
4 Boden
5 Erhebung
6 . Käfig
7 Lagernadel
8 Gelenkkreuzbüchse
8.1 Boden

Claims

Patentansprüche
Spanlos hergestellte dünnwandige Wälzlager, wie Nadellager, deren Außenringe aus einem Kaltband hergestellt sind, dadurch gekennzeichnet, daß die Außenringe aus einem kaltumformbaren durchhärtbaren Stahl hergestellt sind, wobei zwischen deren Wanddicke und dem Durchmesser der Lagernadeln ein Verhältnis von 1 :20 bis 1 :5 eingestellt ist und die durchgehärtete Wand eine Kernhärte von ≥ 600 HV und eine Randhärte von ≥ 680 HV aufweist.
Wälzlager nach Anspruch 1 , dadurch gekennzeichnet, daß die Kernhärte einen Wert von 600 - 650 HV und die Randhärte einen Wert von 680 - 750 HV aufweist.
3. Wälzlager nach Anspruch 1 , dadurch gekennzeichnet, daß ein Vergütungsstahl mit folgender chemischer Zusammensetzung verwendet ist:
0,37 - 0,50 % C bis 0,50 % Cr bis 0,40 % Si bis 0,40 % Ni 0,50 - 0,80 % Mn bis 0,10 % Mo bis 0,020 % P bis 0,20 % Cu bis 0,020 % S
4. Gelenkkreuzbüchse (8) zur Aufnahme eines wälzgelagerten Lagerzapfens, die aus einem Kaltband als dünnwandige spanlos hergestellte Nadellagerbüchse ausgebildet ist, deren geschlossener Boden zum stirnseitigen Anlauf eines Kreuzgelenkzapfens dient, dadurch gekennzeichnet, daß sie aus einem kaltumformbaren durchhärtbaren Stahl hergestellt ist, wobei die durchgehärtete Wand eine Kernhärte von ≥ 600 HV und eine Randhärte von ≥ 680 HV aufweist.
5. Gelenkreuzbüchse (8) nach Anspruch 4, dadurch gekennzeichnet, daß die Kernhärte einen Wert von 600 - 650 HV und die Randhärte einen wert von 680 - 750 HV aufweist.
6. Gelenkkreuzbüchse (8) nach Anspruch 4, dadurch gekennzeichnet, daß ein Vergütungsstahl mit folgender chemischer Zusammensetzung verwendet ist: 0,37 - 0,50 % C bis 0,50 % Cr bis 0,40 % Si bis 0,40 % Ni 0,50 - 0,80 % Mn bis 0,10 % Mo bis 0,020 % P bis 0,20 % Cu bis 0,020 % S
EP04740182A 2003-07-25 2004-06-23 Dünnwandige wälzlager Ceased EP1649178A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333875A DE10333875A1 (de) 2003-07-25 2003-07-25 Dünnwandige Wälzlager
PCT/EP2004/006757 WO2005019665A1 (de) 2003-07-25 2004-06-23 Dünnwandige wälzlager

Publications (1)

Publication Number Publication Date
EP1649178A1 true EP1649178A1 (de) 2006-04-26

Family

ID=34071897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740182A Ceased EP1649178A1 (de) 2003-07-25 2004-06-23 Dünnwandige wälzlager

Country Status (5)

Country Link
US (1) US20060182379A1 (de)
EP (1) EP1649178A1 (de)
CN (1) CN1829867B (de)
DE (1) DE10333875A1 (de)
WO (1) WO2005019665A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014966A1 (de) * 2005-04-01 2006-10-05 Schaeffler Kg Verfahren zur Herstellung geschweisster Wälzlagerringe aus Wälzlagerstahl
DE102006010314A1 (de) * 2006-03-07 2007-09-13 Schaeffler Kg Wälzlagerbauteil
DE102006055028A1 (de) * 2006-11-22 2008-05-29 Schaeffler Kg Radialwälzlager, insbesondere zur Lagerung von Wellen in Windkraftgetrieben
DE102007015687B4 (de) * 2007-03-31 2020-02-20 Schaeffler Technologies AG & Co. KG Antiblockiersystem mit einer Radialkolbenpumpe mit einem Exzenterantrieb mit einem Radialwälzlager
US8632256B2 (en) * 2007-06-28 2014-01-21 Ntn Corporation Rocking bearing outer ring, rocking bearing, air disc brake device, and fitting structure of rocking bearing outer ring
DE102011004199A1 (de) 2011-02-16 2012-08-16 Schaeffler Technologies Gmbh & Co. Kg Radial-Rollenwälzlager, insbesondere Nadelhülse oder Nadelbüchse
DE102011004336A1 (de) * 2011-02-17 2012-08-23 Schaeffler Technologies Gmbh & Co. Kg Nadellager für eine Lageranordnung
DE102011088299A1 (de) * 2011-12-12 2013-06-13 Schaeffler Technologies AG & Co. KG Wälzlager
DE102014224751A1 (de) * 2014-12-03 2016-05-25 Schaeffler Technologies AG & Co. KG Zapfenlager für Kreuzgelenke und Verfahren zum Herstellen eines Zapfenlagers
CN106151258A (zh) * 2016-08-17 2016-11-23 常州市武进长江滚针轴承有限公司 降噪型滚针轴承
DE102016221704A1 (de) * 2016-11-07 2018-05-09 Schaeffler Technologies AG & Co. KG Nadelhülse eines Nadellagers mit Drosselbord für Automatikgetriebe
DE102019203558A1 (de) * 2019-03-15 2020-09-17 Christian Bauer Gmbh + Co. Kg Flachformfeder, insbesondere Teller- oder Wellfeder
DE102019218794A1 (de) * 2019-12-03 2021-06-10 Thyssenkrupp Ag Verfahren zur Erhöhung der Tragfähigkeit und Walzvorrichtung zum Hartwalzen einer randschichtgehärteten Wälzlagerlaufbahn
IT202000011143A1 (it) * 2020-05-15 2021-11-15 Skf Ab Mozzo ruota alleggerito per un gruppo mozzo ruota
DE102020208269A1 (de) 2020-07-02 2022-01-05 Aktiebolaget Skf Laufbahnelement und Verfahren zu dessen Herstellung
DE102020208271A1 (de) * 2020-07-02 2022-01-05 Aktiebolaget Skf Blechtafellaufbahn mit einem Bord für Wälzkörper
DE102020208272A1 (de) 2020-07-02 2022-01-05 Aktiebolaget Skf Blechtafellaufbahn mit Aussparungen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE33445C (de) * F. JUNGE in Hamburg Bremse für Federkraftmaschinen
DE876481C (de) * 1941-05-25 1953-05-15 Riv Officine Di Villar Perosa Einfaerbvorrichtung fuer druckende Maschinen, besonders fuer Rechenmaschinen, Kontrollkassen u. dgl.
DE1034932B (de) * 1957-01-30 1958-07-24 Schaeffler Ohg Industriewerk Verfahren zur Herstellung von Nadellagern mit axial zwischen gehaerteten Borden liegendem Kaefig
DE1286343B (de) * 1964-03-24 1969-01-02 Skf Kugellagerfabriken Gmbh Mit einem Kaefig versehenes Radial-Zylinderrollenlager, insbesondere Nadellager
US3677032A (en) * 1969-01-22 1972-07-18 Nippon Seiko Kk Shell type needle bearing
DE2120569A1 (de) * 1971-04-27 1972-11-02 Volkswagenwerk Ag, 3180 Wolfsburg Kreuzgelenk, insbesondere für die Gelenkwelle einer Fahrzeuglenkung
DE2122575B2 (de) * 1971-05-07 1977-02-03 Industriewerk Schaeffler Ohg, 8522 Herzogenaurach Lagerbuechse fuer kreuzgelenkzapfen
DE3027263C2 (de) * 1980-07-18 1986-08-14 SKF GmbH, 8720 Schweinfurt Lagerung von Zapfen in Gabelaugen von Kreuzgelenken mittels eines Zylinderrollenlagers
CN87201963U (zh) * 1987-02-10 1987-10-14 刘昌祥 内燃机启动机用薄壁滚针轴承
DE3739718A1 (de) * 1987-11-24 1989-06-08 Schaeffler Waelzlager Kg Verfahren und vorrichtung zur bearbeitung einer waelzlagerbuechse fuer gelenkkreuzzapfen
DE3919199A1 (de) * 1989-06-13 1990-12-20 Skf Gmbh Verfahren zur herstellung von waelzlagerelementen
DE4137118A1 (de) * 1991-11-12 1993-05-13 Schaeffler Waelzlager Kg Kaltband zur herstellung praezisions-tiefgezogener, einsatzgehaerteter bauteile, insbesondere waelzlager- und motorenteile
FR2686950B1 (fr) * 1992-01-31 1996-06-07 Nadella Douille en cuvette perfectionnee pour roulement radial et son application a un joint de cardan.
DE19547181C1 (de) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines kaltgewalzten, höherfesten Bandstahles mit guter Umformbarkeit bei isotropen Eigenschaften
DE19711389A1 (de) * 1997-03-19 1998-09-24 Schaeffler Waelzlager Ohg Verfahren zum Herstellen eines Wälzlagers
DE19834361A1 (de) * 1998-07-30 2000-02-03 Schaeffler Waelzlager Ohg Bauteil, insbesondere Wälzlager- und Motorenbauteil
JP2000104746A (ja) * 1998-09-30 2000-04-11 Ntn Corp 針状ころ軸受
DE10020118B4 (de) * 2000-04-22 2009-11-12 Schaeffler Kg Wälzlagerbauteil
RU2176754C1 (ru) * 2001-04-12 2001-12-10 Закрытое Акционерное Общество "Техмаш" Шарнир карданного вала

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019665A1 *

Also Published As

Publication number Publication date
DE10333875A1 (de) 2005-02-17
CN1829867A (zh) 2006-09-06
CN1829867B (zh) 2011-11-23
US20060182379A1 (en) 2006-08-17
WO2005019665A1 (de) 2005-03-03

Similar Documents

Publication Publication Date Title
EP1649178A1 (de) Dünnwandige wälzlager
DE10020118B4 (de) Wälzlagerbauteil
DE102005019482B4 (de) Kegelrollenlager
DE102005019481B4 (de) Kegelrollenlager
DE2745527A1 (de) Verbundring fuer waelzlager sowie dessen herstellverfahren
EP0328007B1 (de) Gebaute Getriebewelle
DE3919199C2 (de)
DE102012223449B4 (de) Wälzlageranordnung und Verfahren zum Herstellen einer Wälzlageranordnung
DE3022227C2 (de) Großwälzlager in Leichtbauweise
DE102007058757A1 (de) Kurbelwellenlagerung
EP2478236B1 (de) Kugelrollenlager
DE3913176A1 (de) Arbeitsverfahren zur axialen und radialen fixierung von kugellagern
EP1609960A1 (de) Hebelartiger Nockenfolger
DE202019005800U1 (de) Zweiteilige hochfeste Schraube
DE112007002699T5 (de) Radlagervorrichtung für ein Fahrzeug
DE19817290B4 (de) Längswälzlager
DE2117018A1 (de) Radial-Nadellager-Außenring
EP1778991B1 (de) Wälzlager umfassend wenigstens ein präzisionstiefgezogenes bauteil mit einer lauf- oder führungsfläche für wälzkörper, sowie verfahren zur herstellung eines solchen bauteils
DE102019130286A1 (de) Dichthülse mit kombinierten Axiallagermitteln für eine Druckmittel-Drehdurchführung
DE4127213A1 (de) Duennringlager
DE4119860A1 (de) Lagerbuechse, insbesondere fuer kreuzgelenke, sowie verfahren zur herstellung derselben
DE112011104988T5 (de) Wälzlager mit zumindest einem flexiblen Ring
DE102006020075A1 (de) Verfahren zur Herstellung eines Wälzlagers
DE102006002305B3 (de) Kegelrollen-oder Zylinderrollenlager
DE202009002011U1 (de) Gleitlagerelement mit Bund

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110516