EP1590708A2 - Lentille commutable - Google Patents

Lentille commutable

Info

Publication number
EP1590708A2
EP1590708A2 EP04707966A EP04707966A EP1590708A2 EP 1590708 A2 EP1590708 A2 EP 1590708A2 EP 04707966 A EP04707966 A EP 04707966A EP 04707966 A EP04707966 A EP 04707966A EP 1590708 A2 EP1590708 A2 EP 1590708A2
Authority
EP
European Patent Office
Prior art keywords
lens array
birefringent
mode
display
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04707966A
Other languages
German (de)
English (en)
Inventor
Graham John Woodgate
Jonathan Harrold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
Ocuity Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocuity Ltd filed Critical Ocuity Ltd
Priority to EP10010077A priority Critical patent/EP2287660A3/fr
Priority to EP10010073A priority patent/EP2299319A1/fr
Priority to EP10010074A priority patent/EP2287659A3/fr
Publication of EP1590708A2 publication Critical patent/EP1590708A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background

Definitions

  • Fig. 1 a shows in plan view a display surface in a display plane 1.
  • a right eye 2 views a right eye homologous image point 3 on the display plane and a left eye 4 views a left eye homologous point 5 on the display plane to produce an apparent image point 6 perceived by the user behind the screen plane.
  • Fig. lb shows in plan view a display surface in a display plane 1.
  • a right eye 2 views a right eye homologous image point 7 on the display plane and a left eye 4 views a left eye homologous point 8 on the display plane to produce an apparent image point 9 in front of the screen plane.
  • Fig. lc shows the appearance of the left eye image 10 and right eye image 11.
  • the homologous point 5 in the left eye image 10 is positioned on a reference line 12.
  • the corresponding homologous point 3 in the right eye image 11 is at a different relative position 3 with respect to the reference line 12.
  • the separation 13 of the point 3 from the reference line 12 is called the disparity and in this case is a positive disparity for points which will lie behind the screen plane.
  • the homologous points For a generalised point in the scene there is a corresponding point in each image of the stereo pair as shown in Fig. la. These points are termed the homologous points.
  • the relative separation of the homologous points between the two images is termed the disparity; points with zero disparity correspond to points at the depth plane of the display.
  • Fig. 2b shows the left eye optical system.
  • the display device 16 produces a left eye image 26 for the left eye channel.
  • the parallax optical element 17 directs light in a direction shown by the arrow 28 to produce a left eye viewing window 30 in the region in front of the display. An observer places their left eye 32 at the position of the window 30. The position of the right eye viewing window 20 is shown for reference.
  • FIG. 3 shows in plan view a display device 16,17 in a display plane 34 producing the left eye viewing windows 36,37,38 and right eye viewing windows 39,40,41 in the window plane 42.
  • the separation of the window plane from the display is termed the nominal viewing distance 43.
  • the windows 37,40 in the central position with respect to the display are in the zeroth lobe 44.
  • Windows 36,39 to the right of the zeroth lobe 44 are in the +1 lobe 46, while windows 38,41 to the left of the zeroth lobe are in the -1 lobe 48.
  • the longitudinal viewing freedom of the display is determined by the length of these viewing zones.
  • Fig. 4b shows the intensity distribution with position schematically for more realistic windows.
  • the right eye window position intensity distribution 56 corresponds to the window 41 in Fig. 3
  • intensity distribution 57 corresponds to the window 37
  • intensity distribution 58 corresponds to the window 40
  • intensity distribution 59 corresponds to the window 36.
  • Fig4a shows the ideal viewing windows while Fig. 4b is a schematic of the actual viewing windows that may be outputted from the display.
  • Fig. 4b is a schematic of the actual viewing windows that may be outputted from the display.
  • Several artefacts can occur due to inadequate window performance.
  • Cross talk occurs when light from the right eye image is seen by the left eye and vice versa. This is a significant 3D image degradation mechanism which can lead to visual strain for the user.
  • poor window quality will lead to a reduction in the viewing freedom of the observer.
  • the optical system is designed to optimised the performance of the viewing windows.
  • the parallax optical element may be a parallax barrier.
  • the display comprises a backlight, an array of electronically adjustable pixels (known as a Spatial Light Modulator, SLM) arranged in columns and rows and a parallax barrier attached to the front of the display as illustrated in plan view in Fig. 5.
  • SLM Spatial Light Modulator
  • Parallax barriers rely on blocking the light from regions of the display and therefore reduce the brightness and device efficiency, generally to approximately 20-40% of the original display brightness. Parallax barriers are not readily removed and replaced due to the requirements of sub-pixel alignment tolerances of the barrier with respect to the pixel structure of the display in order to optimise the viewing freedom of the display.
  • the 2D mode is half resolution.
  • parallax optic cf. parallax barriers
  • lenticular screen which is an array of vertically extended cylindrical microlenses.
  • the term "cylindrical” as used herein has its normal meaning in the art and includes not only strictly spherical lens shapes but also aspherical lens shapes.
  • the pitch of the lenses corresponds to the viewpoint correction condition, that is the pitch of the parallax barrier is slightly smaller than twice the pitch of the pixel array in order to steer the light from each pixel to the viewing window.
  • the resolution of each of the stereo pair images is half the horizontal resolution of the base LCD, and two views are created.
  • the curvature of the lenses is set substantially so as to produce an image of the LCD pixels at the window plane.
  • lenticular displays have the full brightness of the base panel.
  • Fig. 6 shows a typical structure for a lenticular display device using a lenticular array.
  • a backlight 60 produces a light output 62 which is incident on an LCD input polariser 64.
  • the light is transmitted through a TFT LCD substrate 66 and is incident on a repeating array of pixels arranged in columns and rows in an LCD pixel plane 67.
  • the red pixels 68,71,73, green pixels 69,72,75 and blue pixels 70,73 each comprise an individually controllable liquid crystal layer and are separated by regions of an opaque mask called a black mask 76.
  • Each pixel comprises a transmissive region, or pixel aperture 78.
  • the lenticular screen 94 serves to direct light from alternate pixel columns 69,71,73,75 to the right eye as shown by the ray 88 from the pixel 69 and from the intermediate columns 68,70,72,74 to the left eye as shown by the ray 90 from pixel 68.
  • the observer sees the light from the underlying pixel illuminating the aperture of the individual lenticule, 98 of the lenticular screen 96. The extent of the captured light cone is shown by the captured rays 100.
  • Lenticular displays are described in T.Okoshi "Threee Dimensional Imaging Techniques", Academic Press, 1976.
  • One type of lenticular display using a spatial light modulator is described in US-4,959,641, in particular non-switching lenticular elements in air.
  • a lenticular display using cylindrical lenses that are tilted with respect to columns of pixels of a display is described in "multiview 3D - LCD” published in SPIE Proceedings Nol.2653, 1996, pages 32 to 39.
  • the viewing freedom of the flat panel displays described above is limited by the window structure of the display.
  • a display in which the viewing freedom is enhanced by measuring the position of an observer and moving the parallax element in correspondence is described in EP- 0,829,743. Such an observer measurement apparatus and mechanical actuation is expensive and complex.
  • a display in which the window optical structure is not varied (a fixed parallax optic display for example) and the image data is switched in correspondence to the measured position of the observer such that the observer maintains a substantially orthoscopic image is described for example in EP-0,721,131.
  • a switchable diffuser element is placed in the optical system used to form the light lines.
  • a switchable diffuser could be for example of the Polymer Dispersed Liquid Crystal type in which the molecular arrangement switches between a scattering and non-scattering mode on the application of an applied voltage across the material. In the 3D mode, the diffuser is clear and light lines are produced to create the rear parallax barrier effect.
  • the diffuser In the 2D mode, the diffuser is scattering and the light lines are washed out, creating the effect of a uniform light source. In this way, the output of the display is substantially Lambertian and the windows are washed out. An observer will then see the display as a full resolution 2D display. Such a display suffers from Fresnel diffraction artefacts in the 3D mode, as well as from unwanted residual scatter in the diffuser's clear state which will increase the display cross-talk. Therefore, such a display is likely to exhibit higher levels of visual strain.
  • a second LCD is placed in front of the display to serve as a parallax optic.
  • the parallax LCD In a first mode, the parallax LCD is clear so that no windows are produced and an image is seen in 2D.
  • the device In a second mode, the device is switched so as to produce slits of a parallax barrier. Output windows are then created and the image appears to be 3D.
  • Such a display has increased cost and complexity due to the use of two LCD elements as well as being of reduced brightness or having increased power consumption. If used in a reflective mode 3D display system, parallax barriers result in very poor brightness due to attenuation of light by the blocking regions of the parallax barrier both on the way in and out of the display.
  • One disadvantage is that such a display uses parallax barrier technology and thus is limited to perhaps 20-30% brightness in the 3D mode of operation. Also, the display will have a viewing freedom and cross talk which is limited by the diffraction from the apertures of the barrier. It is known to provide electrically switchable birefringent lenses for purposes of switching light directionally. It is known to use such lenses to switch a display between a 2D mode of operation and a 3D mode of operation.
  • switchable microlenses comprising a lenticular screen filled with liquid crystal material are used to change the optical power of a lenticular screen.
  • US-6,069,650 and WO-98/21620 teach the use of an electro-optic material in a lenticular screen whose refractive index is switchable by selective application of an electric potential between a first value whereby the light output directing action of the lenticular means is provided and a second value whereby the light output directing action is removed.
  • a 3D display comprising a liquid crystal Fresnel lens is described in S.Suyama et al " 3D Display System with Dual Frequency Liquid Crystal Narifocal Lens", SID 97 DIGEST pp273-276.
  • a switchable birefringent lens array for a display apparatus producing a substantially linearly polarised output
  • the lens array comprising: birefringent material arranged between a planar surface and a relief surface defining an array of cylindrical lenses; and electrodes for applying a control voltage across the birefringent material for electrically switching the birefringent material between a first mode and a second mode, the lens array being arranged in said first mode to modify the directional distribution of incident light polarised in a predetermined direction and in said second mode to have substantially no effect on incident light polarised in said predetermined direction, wherein: in the first mode, at said relief surface the birefringent material is aligned parallel to the geometrical axis of the cylindrical lenses; and in the first mode, at said planar surface the birefringent material is aligned parallel to the planar surface at a predetermined angle such that in the first mode, the alignment direction twists between the planar surface and the relief surface
  • the alignment direction of the birefringent material is advantageous for the alignment direction of the birefringent material to be parallel to the geometric axis of the cylindrical lenses, because this avoids dislocations at the relief surface due to competition between the alignment layer surface energy and the surface relief structure alignment surface energy, which dislocations might cause scatter, increase optical crosstalk, reduce lens contrast and/or increase relaxation times. It also simplifies manufacture, allowing the use of known manufacturing techniques.
  • Such rotation of the polarisation direction by the lens array means that no additional waveplate is required between the display and the active lens (although optionally one or more waveplates may be added), thus allowing the viewing distance of the element to be reduced in the first mode of operation and the device cost to be reduced.
  • the alignment may be provided by any suitable means, for example alignment layers.
  • a directional display apparatus comprising: a substantially linearly polarised output display device; and a switchable birefringent cylindrical lens arranged in a first mode to modify the directional distribution of the polarised output display device and in a second mode to substantially cause no modification of the directional distribution of the display device comprising: a surface relief layer defining a cylindrical microlens array; an alignment layers formed on the surface relief layer such that the alignment of the birefringent material at the surface relief surface the first mode of operation is substantially parallel to the geometric axis of the cylindrical lenses; and electrode layers arranged to switch the orientation of the birefringent material between at least a first and second orientation for first and second modes respectively, the alignment of the birefringent material at the planar substrate being aligned in cooperation with the output polarisation of the display device so that in the first mode of operation the polarisation is transmitted through the birefringent material with a twist to be substantially parallel to the geometric axis of the
  • the birefringent material is a liquid crystal.
  • the alignment direction at the planar substrate is parallel or orthogonal to the output polarisation of the display device.
  • the display may be a spatial light modulator for non-display directionality switching applications.
  • additional waveplates may be incorporated between the display device and the active lens to rotate the output polarisation of the substantially polarised display.
  • the alignment direction of the liquid crystal can be parallel to the geometric axis of the surface relief cylindrical microlenses .
  • the lens surface is convenient to manufacture with known surface alignment techniques.
  • the invention has the unexpected advantage that polarisation guiding will take place in the lenses because of their relatively high optical thickness in practical systems. This guiding effect can be used to control the polarisation of the device in the active lens.
  • the display can produce high brightness in 2D and 3D modes with a fixed liquid crystal display output polarisation state.
  • Such a lens array has the advantage that it may be configured so as not require any power consumption in the second mode of operation. This is because in the absence of a control voltage the birefringent material is aligned parallel to the optical axis, whereby the light experiences the ordinary refractive index of the birefringent material at the relief surface, which most conveniently is the second mode of operation in which there is substantially no effect on the incident light.
  • the alignment may be provided by any suitable means, for example an alignment layer.
  • Homeofropic alignment layers allow the use of readily available polymer materials to form the lens surface without excessively high refractive indices. Such polymer materials do not suffer from high cost, high toxicity and difficult processing regimes.
  • an optical switching apparatus comprising a switchable birefringent lens comprising a birefringent optical material and a first substrate wherein: a first homeofropic alignment layer is formed on the surface relief structure; and the dielectric anisotropy of the birefringent material is less than zero, such that the switchable lens operates in the first mode when an electric field is applied to the cell and in a second mode when no electric field is applied to the cell.
  • a switchable birefringent lens comprising a birefringent optical material and a first substrate wherein: a first homeofropic alignment layer is formed on the surface relief structure; and the dielectric anisotropy of the birefringent material is less than zero, such that the switchable lens operates in the first mode when an electric field is applied to the cell and in a second mode when no electric field is applied to the cell.
  • - comprises homeofropic and homogenous alignment such that it shows homogeneous alignment properties in a first mode and homeofropic alignment properties in a second mode.
  • - provides a twist of the incident polarisation state in the first mode of operation such that the polarisation state at the surface relief structure is parallel to the birefringent lens optical axis.
  • a display apparatus comprising: a display device having a spatial light modulator and an output polariser; and an electrically switchable birefringent lens array arranged to receive light from the spatial light modulator, wherein the lens array is arranged between the spatial light modulator and the output polariser of the display device.
  • a directional display apparatus comprising: a substantially linearly polarised output display device an active lens comprising switchable birefringent cylindrical lens arranged in a first mode to modify the directional distribution of the polarised output display device and in a second mode to substantially cause no modification of the directional distribution of the display device, where the active lens is positioned between the pixel plane and an output polariser of the display device.
  • a display apparatus comprising: an emissive spatial light modulator which is arranged to output light which is substantially linearly polarised in each pixel of the spatial light modulator; and an electrically switchable birefringent lens array arranged to receive light from the spatial light modulator.
  • This type of apparatus has the advantage of simplicity.
  • the microlenses By arranging the microlenses to be internal to the glass substrate, reflections from the surfaces of the lenses can be minimised and the output surface (which may be planar) can be anti-reflection coated.
  • a multi- viewer display can be configured so that in one mode of operation all viewers can see the same image and in a second mode of operation different viewers can see different images to allow multiple simultaneous uses of the display. This can reduce the number of displays and display drivers required in an environment by allowing each observer to see their preferred choice of image from the same display unit.
  • Fig. lb shows the generation of apparent depth in a 3D display for an object in front of the screen plane
  • Fig. 4a shows the ideal window profile for an autostereoscopic display
  • Fig. 4b shows a schematic of the output profile of viewing windows from an autostereoscopic 3D display
  • Fig. 7c shows in the same view as Fig. 7b, an alternative arrangement in which the cusps are substantially in contact with the planar surface and an electrode is formed on the surface relief surface;
  • Fig. 15 shows in cross section the structure of an active lens autostereoscopic 3D display with an external polariser
  • Fig. 17 shows an active lens autostereoscopic 3D display with a polarised emissive display
  • Fig. 18 shows an active lens enhanced brightness reflective display
  • Fig. 19 shows the alignment and polarisation directions for an active lens enhanced brightness reflective display
  • Fig. 20 shows the alignment and polarisation directions for an active lens with tilted geometric lens axis
  • Fig. 21 shows a switchable autostereoscopic display in which an active lens is positioned between an emissive display and an output polariser;
  • the direction of the optical axis of the birefringent material (the director direction, or the extraordinary axis direction) will be referred to as the birefringent optical axis. This should not be confused with the optical axis of the lenses which is defined in the usual way by geometric optics.
  • a cylindrical lens describes a lens in which an edge (which has a radius of curvature and may have other aspheric components) is swept in a first linear direction.
  • the geometric microlens axis is defined as the line along the centre of the lens in the first linear direction, i.e. parallel to the direction of sweep of the edge.
  • the geometric microlens axis is vertical, so that it is parallel to the columns of pixels of the display.
  • the geometric microlens axis is horizontal so that it is parallel to the rows of the pixels of the display.
  • An active lens is a lens comprising a switchable birefringent material which allows switching between respective directional distributions.
  • the fixed lens 94,98 of Fig. 6 may be replaced by an active lens of the present invention to advantageously allow switching between for example a full resolution 2D mode and an autostereoscopic 3D mode.
  • Electrode layers 110 and 112 are formed on the substrate 102, and electrode layers 114, 115 are formed on the substrate 104.
  • the electrodes may for example be fransparent elecfrodes such as Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • the electrodes 110 and 112 may alternatively be formed on the surface of the lens structure 108.
  • the elecfrodes 110, 112 and 114,115 are shown as separate elements for purposes of explanation of the effect so that the liquid crystal switching is shown for different electric fields in different parts of the same image.
  • the elecfrodes on both substrates may be segmented so that different regions of the lens area can be controlled independently to be 2D or 3D, or they may be a single element over the whole display area.
  • the lens array may be passive multiplexed addressed as is known in the art.
  • the lenses may be spaced from the second substrate 104 by means of spacer balls, spacer fibres, spacer ribs or other known spacer techniques. Alternatively, the lens may touch down on to the planar surface.
  • this removes the need for spacers, but will reduce the active aperture of the lens.
  • the birefringent molecules are represented by a positive dielectric anisotropy, nematic liquid crystal material with no electric field applied across the cell.
  • the director of the liquid crystal molecules is aligned substantially in the plane of the surface by means of homogeneous alignment layers 116 and 118 at the surface relief structure 108 and second subsfrate 104.
  • a small pretilt (not shown) may be imposed on the cell by the alignment layers 116,118.
  • the molecules are represented as elongate ellipses for the purpose of explanation, with the extraordinary refractive index parallel to the long axis of the molecule.
  • an image of the pixel plane is produced at a window plane for horizontally aligned cylindrical microlens arrays 127 rather than vertically aligned lenses.
  • the alignment direction of the output polariser 123 is set to be horizontal as shown in Fig. 8b and the alignment direction at the plan 125e and surface relief structures 127 are also set to be horizontal.
  • the lenses are aligned vertically, but the same apparatus can be applied to horizontally aligned lenses.
  • Such a device in which the planar substrate is aligned with the output polarisation of the display advantageously operates in the same liquid crystal mode (for example normally white or normally black) for both directional distributions of operation.
  • One approach would be to produce an alignment layers on the plane and surface relief surfaces that are parallel to the panel output polarisation. This would require an alignment layer at the lens surface relief structure which is not parallel to the geometric lens axis of the cylindrical lenses.
  • the output polarisation of the display can be modified by incorporating a waveplate such as a half waveplate at the input to the active lens.
  • a waveplate such as a half waveplate at the input to the active lens.
  • This enables the output linear polarisation state to be rotated to the vertical prior to passing through the active lens.
  • Half waveplates and broadband half waveplates in which chromatic dispersion effects are reduced are well known in the art.
  • the waveplate will have an additional cost due to material and fitting to the device, the waveplate may be chromatic, and the waveplate has an additional thickness.
  • the separation of the pixel plane and the lens determines the distance of the windows from the display device, therefore increasing this distance increases the distance of the best viewing zone from the display.
  • Light from the ambient light source 252 illuminates the display.
  • the lenses are in the OFF state so that there is a focussing function.
  • the light source is thus focussed on to the pixel plane 276.
  • the reflected light is collected by an adjacent lens where it is focussed to an observer as shown by the rays 286.
  • the image will appear brighter. The overall brightness is conserved, as the bright windows are interspersed by darker windows.
  • transmissive mode light from the limited regions of transmission are likewise focussed to a window plane to increase the apparent brightness of the image.
  • Frontal reflections 288 are in a different direction to the useful light 286 and are therefore not seen
  • the alignment layer 208 has a homogeneous alignment bias so that the liquid crystal molecules are aligned substantially parallel (or orthogonal) to the output polarisation direction of the panel.
  • the homogeneous alignment bias is anti-parallel to the vertical component of the alignment at the plane subsfrate and thus a rotation is provided through the cell.
  • Such a rotation provides the same advantages as described above, in particular allowing the alignment of the lenses with the output polarisation of a standard display without the requirement for additional waveplates or other modification of the display device output polarisation, thus maximising the viewing angle of the device.
  • a further embodiment of the invention is shown in Figs. 11 and 12.
  • the alignment layer 134 at the planar substrate is a homogeneous alignment layer, causing the liquid crystal to orient parallel to the subsfrate.
  • the incident polarisation sees the extraordinary index in the material 136 close to the plane subsfrate.
  • the material 138 close to the lens surface is oriented homeotropically, so that the polarisation state sees substantially the ordinary index in the surface relief region.
  • the polymer refractive index is substantially matched to the ordinary refractive index of the liquid crystal material, substantially no phase step is present and the lens has no function.
  • the ordinary refractive index of the liquid crystal may be lower than the index of the polymer material.
  • the polymer index 356 is substantially matched to the ordinary index of the birefringent material for a positive dielectric anisofropy liquid crystal material. As described elsewhere in the present application, such a system typically requires a voltage to be applied to the cell to enable the 2D mode of operation in which the polymer and ordinary indices are substantially matched. In other material systems, the polymer index 356 may be substantially matched to the extraordinary index of the birefringent material, in which case the following considerations still apply mutatis mutandis.
  • the design operating temperature 362 is typically room temperature for example in the range of 20-25°C, and preferably 20°C.
  • twist may require further compensation.
  • the amount of twist in the lens may be determined by the offset drive voltage.
  • a small offset drive voltage may cause less twist in the lens than is present for no drive voltage.
  • an offset of the maximum drive voltage may introduce twist that was not otherwise present.
  • the design twist in the device could be set at manufacture to be optimised so that the correct resultant twist occurs in the lens cell at the design operating temperature when the offset voltage has been applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

L'invention concerne un dispositif d'affichage qui comporte un réseau de lentilles biréfringentes commutables. Ce dispositif d'affichage produit un signal de sortie polarisé de manière sensiblement linéaire. Le réseau de lentilles comprend une matière biréfringente placée entre une surface plane d'un premier substrat et une surface présentant un relief d'un second substrat, et définit un réseau de lentilles cylindriques. Le réseau de lentilles comporte des électrodes pour appliquer une tension de commande sur la matière biréfringente afin de la commuter électriquement entre un premier mode et un second mode. Dans le premier mode, le réseau de lentilles modifie la distribution directionnelle de la lumière incidente polarisée dans une direction prédéterminée. Dans le second mode, le réseau de lentilles n'a pratiquement pas d'effet sur la lumière incidente polarisée dans cette direction prédéterminée. Dans un premier aspect du premier mode, sur la surface présentant un relief, la matière biréfringente est alignée de manière sensiblement parallèle à l'axe géométrique des lentilles cylindriques ; et sur la surface plane, la matière biréfringente est alignée parallèlement à la surface plane suivant un angle prédéterminé, de sorte que la direction d'alignement pivote entre la surface plane et la surface présentant un relief. Dans un deuxième aspect, l'alignement de la matière biréfringente est homéotrope sur la ou les surfaces présentant un relief. Dans un troisième aspect, le réseau de lentilles est placé entre un modulateur spatial de lumière et le polariseur de sortie du dispositif d'affichage. Dans un quatrième aspect, le réseau de lentilles reçoit la lumière provenant d'un modulateur spatial émetteur de lumière qui est conçu pour produire de la lumière polarisée de manière sensiblement linéaire dans chaque pixel. Dans un cinquième aspect, un organe de commande de tension commande la tension aux bornes des électrodes pour opérer une commutation entre les premier et second modes afin de compenser les variations de température du réseau de lentilles, ce qui permet d'élargir la plage de températures de fonctionnement.
EP04707966A 2003-02-05 2004-02-04 Lentille commutable Ceased EP1590708A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10010077A EP2287660A3 (fr) 2003-02-05 2004-02-04 Réseau commutable de lentilles biréfringentes de forme cylindrique
EP10010073A EP2299319A1 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant un modulateur spatial de lumière et un réseau de lentilles biréfringentes commutables de forme cylindrique
EP10010074A EP2287659A3 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant des pixels émissifs (électroluminescents) et un réseau de lentilles biréfringentes commutables de forme cylindrique

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0302658 2003-02-05
GB0302658A GB2398130A (en) 2003-02-05 2003-02-05 Switchable active lens for display apparatus
PCT/GB2004/000374 WO2004070467A2 (fr) 2003-02-05 2004-02-04 Lentille commutable

Publications (1)

Publication Number Publication Date
EP1590708A2 true EP1590708A2 (fr) 2005-11-02

Family

ID=9952498

Family Applications (4)

Application Number Title Priority Date Filing Date
EP10010074A Withdrawn EP2287659A3 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant des pixels émissifs (électroluminescents) et un réseau de lentilles biréfringentes commutables de forme cylindrique
EP04707966A Ceased EP1590708A2 (fr) 2003-02-05 2004-02-04 Lentille commutable
EP10010073A Withdrawn EP2299319A1 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant un modulateur spatial de lumière et un réseau de lentilles biréfringentes commutables de forme cylindrique
EP10010077A Withdrawn EP2287660A3 (fr) 2003-02-05 2004-02-04 Réseau commutable de lentilles biréfringentes de forme cylindrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10010074A Withdrawn EP2287659A3 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant des pixels émissifs (électroluminescents) et un réseau de lentilles biréfringentes commutables de forme cylindrique

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP10010073A Withdrawn EP2299319A1 (fr) 2003-02-05 2004-02-04 Dispositif d'affichage de type autostéréoscopique commutable comportant un modulateur spatial de lumière et un réseau de lentilles biréfringentes commutables de forme cylindrique
EP10010077A Withdrawn EP2287660A3 (fr) 2003-02-05 2004-02-04 Réseau commutable de lentilles biréfringentes de forme cylindrique

Country Status (7)

Country Link
US (3) US7532272B2 (fr)
EP (4) EP2287659A3 (fr)
JP (3) JP2006516753A (fr)
KR (1) KR100993239B1 (fr)
CN (3) CN100383653C (fr)
GB (1) GB2398130A (fr)
WO (1) WO2004070467A2 (fr)

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403815A (en) * 2003-07-10 2005-01-12 Ocuity Ltd Birefringent lens array structure
JP2005274905A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 立体映像表示装置
KR101166246B1 (ko) * 2004-11-24 2012-07-18 코닌클리케 필립스 일렉트로닉스 엔.브이. 디스플레이 디바이스
CN100584043C (zh) * 2005-03-17 2010-01-20 皇家飞利浦电子股份有限公司 自动立体显示设备及其滤色器
KR101115700B1 (ko) * 2005-05-31 2012-03-06 엘지디스플레이 주식회사 2차원 및 3차원 영상의 선택적 디스플레이가 가능한디스플레이 장치
KR20060130887A (ko) * 2005-06-09 2006-12-20 삼성전자주식회사 투사형 3차원 영상을 위한 스크린 및 프로젝션 시스템
GB2428100A (en) * 2005-07-08 2007-01-17 Sharp Kk Display device and optical device
TW200718173A (en) * 2005-07-14 2007-05-01 Koninkl Philips Electronics Nv Autostereoscopic display apparatus
JP4863044B2 (ja) * 2005-07-21 2012-01-25 ソニー株式会社 表示装置、表示制御方法、並びにプログラム
KR101128519B1 (ko) * 2005-08-04 2012-03-27 삼성전자주식회사 고해상도 오토스테레오스코픽 디스플레이
US7518664B2 (en) * 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
KR101335172B1 (ko) 2005-10-27 2013-12-05 리얼디 인크. 자동입체영상 렌티큘라 어레이 및 디스플레이 스크린의차동 팽창에 대한 온도 보정
US7692859B2 (en) 2005-11-02 2010-04-06 Koninklijke Philips Electronics N.V. Optical system for 3-dimensional display
CN101331777B (zh) 2005-12-14 2010-09-01 皇家飞利浦电子股份有限公司 2d/3d自动立体显示设备
US8149342B2 (en) 2005-12-14 2012-04-03 Koninklijke Philips Electronics N.V. Controlling the perceived depth of autostereoscopic display device and method therefor
ATE518373T1 (de) * 2005-12-20 2011-08-15 Koninkl Philips Electronics Nv Autostereoskopische anzeigeeinrichtung
JP5329231B2 (ja) 2005-12-20 2013-10-30 コーニンクレッカ フィリップス エヌ ヴェ 自動立体表示装置
JP5039055B2 (ja) * 2005-12-20 2012-10-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 切り替え可能な自動立体表示装置
CN101341762B (zh) * 2005-12-20 2012-06-20 皇家飞利浦电子股份有限公司 自动立体显示装置
EP1994767B1 (fr) 2006-03-03 2011-02-23 Koninklijke Philips Electronics N.V. Dispositif d'affichage autostereoscopique a base d'un reseau commandable de lentilles a cristaux liquides pour la commutation entre modes 2d et 3d
JP4631769B2 (ja) * 2006-03-23 2011-02-16 セイコーエプソン株式会社 電気光学装置及びプロジェクタ
CN100529861C (zh) * 2006-06-27 2009-08-19 乐金显示有限公司 液晶透镜及包括其的图像显示器件
KR101263697B1 (ko) * 2006-06-27 2013-05-10 엘지디스플레이 주식회사 렌티큘러 어레이 및 이를 포함하는 영상표시장치
US20080013002A1 (en) * 2006-06-29 2008-01-17 Hyung Ki Hong Lenticular lens and method of fabricating thereof
KR101324398B1 (ko) 2006-06-29 2013-11-01 엘지디스플레이 주식회사 렌티큘라 렌즈와 그 액정 배향방법
ATE459896T1 (de) * 2006-08-24 2010-03-15 Koninkl Philips Electronics Nv Krümmungsreduktion für ein umschaltbares flüssigkristalllinsenarray
US20080117231A1 (en) 2006-11-19 2008-05-22 Tom Kimpe Display assemblies and computer programs and methods for defect compensation
CN101563629A (zh) * 2006-12-19 2009-10-21 皇家飞利浦电子股份有限公司 用于自动立体显示设备的透镜结构
KR101326576B1 (ko) * 2006-12-26 2013-11-08 엘지디스플레이 주식회사 입체영상표시패널과 이를 포함하는 입체영상표시장치
KR101433107B1 (ko) * 2007-03-13 2014-08-27 엘지디스플레이 주식회사 액정렌즈를 포함하는 액정표시장치
KR101350475B1 (ko) * 2007-04-12 2014-01-15 삼성전자주식회사 고효율 2차원/3차원 겸용 영상 표시장치
KR101222990B1 (ko) * 2007-10-22 2013-01-18 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR101419233B1 (ko) * 2007-12-14 2014-07-16 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR101274705B1 (ko) * 2007-12-14 2013-06-12 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 적용한 입체 표시 장치
EP2250820A2 (fr) * 2008-02-08 2010-11-17 Koninklijke Philips Electronics N.V. Dispositif d'affichage autostéréoscopique
KR100946432B1 (ko) * 2008-04-08 2010-03-10 하이디스 테크놀로지 주식회사 자동 입체영상표시장치
BRPI0909609B1 (pt) * 2008-06-02 2021-07-13 Koninklijke Philips N.V. Dispositivo de visualização autoestereoscópica e método de visualização de uma imagem autoestereoscópica
USRE45394E1 (en) 2008-10-20 2015-03-03 X6D Limited 3D glasses
USD666663S1 (en) 2008-10-20 2012-09-04 X6D Limited 3D glasses
USD603445S1 (en) 2009-03-13 2009-11-03 X6D Limited 3D glasses
USD624952S1 (en) 2008-10-20 2010-10-05 X6D Ltd. 3D glasses
CA2684513A1 (fr) 2008-11-17 2010-05-17 X6D Limited Lunettes de vision tridimensionnelle ameliorees
US8542326B2 (en) 2008-11-17 2013-09-24 X6D Limited 3D shutter glasses for use with LCD displays
US20100245999A1 (en) * 2009-03-30 2010-09-30 Carlow Richard A Cart For 3D Glasses
JP2010224191A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 立体画像表示装置
USD646451S1 (en) 2009-03-30 2011-10-04 X6D Limited Cart for 3D glasses
GB2469693A (en) 2009-04-25 2010-10-27 Optovate Ltd A controllable light directional distributor for an illumination apparatus
USD672804S1 (en) 2009-05-13 2012-12-18 X6D Limited 3D glasses
USD650956S1 (en) 2009-05-13 2011-12-20 X6D Limited Cart for 3D glasses
JP2012528348A (ja) * 2009-05-28 2012-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 集束配置を有する表示装置
WO2010136951A1 (fr) 2009-05-28 2010-12-02 Koninklijke Philips Electronics N.V. Dispositif d'affichage autostéréoscopique
DE102009044910A1 (de) * 2009-06-23 2010-12-30 Seereal Technologies S.A. Räumliche Lichtmodulationseinrichtung zum Modulieren eines Wellenfeldes mit komplexer Information
CN107102444A (zh) * 2009-06-26 2017-08-29 皇家飞利浦电子股份有限公司 自动立体显示装置
WO2011017713A2 (fr) * 2009-08-07 2011-02-10 Reald Inc. Affichage à écran plat stéréoscopique avec intervalles de suppression mis à jour
WO2011026315A1 (fr) 2009-09-02 2011-03-10 The Hong Kong University Of Science And Technology Procédé de création d'angles d’inclinaison préalable spatialement variables dans une cellule de cristal liquide
DE112010003840B4 (de) * 2009-09-29 2022-10-20 Seereal Technologies S.A. Lichtmodulator für ein Display, Display und ein Verfahren zum Betreiben eines Lichtmodulators
BR112012009707B1 (pt) 2009-10-30 2020-05-12 Koninklijke Philips N.V. Dispositivo de visualização de multi-vistas
USD671590S1 (en) 2010-09-10 2012-11-27 X6D Limited 3D glasses
USD692941S1 (en) 2009-11-16 2013-11-05 X6D Limited 3D glasses
USD669522S1 (en) 2010-08-27 2012-10-23 X6D Limited 3D glasses
JP5761522B2 (ja) 2009-12-04 2015-08-12 Nltテクノロジー株式会社 立体表示装置、立体表示用画像データ生成方法、及びそのプログラム
US8964013B2 (en) * 2009-12-31 2015-02-24 Broadcom Corporation Display with elastic light manipulator
US8823782B2 (en) 2009-12-31 2014-09-02 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US8854531B2 (en) 2009-12-31 2014-10-07 Broadcom Corporation Multiple remote controllers that each simultaneously controls a different visual presentation of a 2D/3D display
US9247286B2 (en) * 2009-12-31 2016-01-26 Broadcom Corporation Frame formatting supporting mixed two and three dimensional video data communication
US8427626B2 (en) * 2010-01-27 2013-04-23 Sony Corporation Lens array element and image display device
USD662965S1 (en) 2010-02-04 2012-07-03 X6D Limited 3D glasses
US20110234605A1 (en) * 2010-03-26 2011-09-29 Nathan James Smith Display having split sub-pixels for multiple image display functions
CN102906627B (zh) 2010-05-21 2015-08-19 皇家飞利浦电子股份有限公司 多视图显示设备
TWI387315B (zh) * 2010-06-29 2013-02-21 Acer Inc 用來觀看立體影像之快門眼鏡
CN103003722B (zh) * 2010-08-09 2015-08-26 Jsr株式会社 光指向性控制单元及其制造方法、显示模块
US8184215B2 (en) * 2010-08-17 2012-05-22 Lc-Tec Displays Ab High-speed liquid crystal polarization modulator
US8820937B2 (en) 2010-08-17 2014-09-02 Lc-Tec Displays Ab Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
USD664183S1 (en) 2010-08-27 2012-07-24 X6D Limited 3D glasses
GB2484067B (en) 2010-09-22 2012-12-05 Au Optronics Corp Graded index birefringent component
TR201909190T4 (tr) 2010-09-22 2019-07-22 Koninklijke Philips Nv Çoklu görünüm görüntü cihazı.
US8582043B2 (en) * 2010-10-13 2013-11-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. 2D/3D switchable LC lens unit for use in a display device
US9519091B2 (en) * 2010-10-22 2016-12-13 Lg Chem, Ltd. Display device including a conductive pattern
KR20120053548A (ko) * 2010-11-17 2012-05-29 삼성전자주식회사 디스플레이 구동 회로, 그것의 동작 방법, 및 그것을 포함하는 사용자 장치
FR2971064B1 (fr) * 2011-01-31 2015-12-18 Wysips Ecran d'affichage a barriere de parallaxe avec cellules photovoltaiques integrees et procede pour sa fabrication
JP6195794B2 (ja) * 2011-01-31 2017-09-13 サンパートナー テクノロジーズSunpartner Technologies 明るさが改善された一体型光起電力セルを有するディスプレイデバイス
KR20120091646A (ko) * 2011-02-09 2012-08-20 주식회사 엘지화학 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
KR20120091885A (ko) * 2011-02-10 2012-08-20 삼성전자주식회사 스위칭 패널을 이용한 영상 표시 장치 및 스위칭 패널의 제조 방법
GB2488979A (en) * 2011-03-07 2012-09-19 Sharp Kk Switchable Optics with GRIN lenses formed in liquid crystal layer
JP5927532B2 (ja) 2011-03-22 2016-06-01 株式会社Joled 表示装置および電子機器
US8953242B2 (en) * 2011-03-31 2015-02-10 Honeywell International Inc. Varible focus stereoscopic display system and method
JP5301605B2 (ja) 2011-04-08 2013-09-25 株式会社ジャパンディスプレイ 液晶表示装置
KR101912255B1 (ko) 2011-04-19 2018-10-29 코닌클리케 필립스 엔.브이. 광 출력 패널 및 이를 가진 디바이스
TW201243434A (en) * 2011-04-29 2012-11-01 Unique Instr Co Ltd Method for reducing screen bending
JP5667928B2 (ja) * 2011-05-20 2015-02-12 株式会社ジャパンディスプレイ 画像表示装置
JP5588399B2 (ja) * 2011-06-28 2014-09-10 株式会社ジャパンディスプレイ 表示装置および可変レンズアレイ
JP5813434B2 (ja) * 2011-09-22 2015-11-17 株式会社ジャパンディスプレイ 液晶表示装置
US8711298B2 (en) * 2011-11-18 2014-04-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Flat panel display device and stereoscopic display device
TWI452342B (zh) * 2011-12-15 2014-09-11 Delta Electronics Inc 裸眼立體顯示裝置
KR101652479B1 (ko) * 2011-12-16 2016-08-31 코닝정밀소재 주식회사 3d 디스플레이용 렌티큘러 어레이 제조방법 및 이에 의해 제조되는 3d 디스플레이용 렌티큘러 어레이
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
WO2013105240A1 (fr) 2012-01-11 2013-07-18 株式会社 東芝 Élément optique à cristaux liquides et dispositif d'affichage d'image tridimensionnelle
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
KR101857819B1 (ko) * 2012-03-20 2018-05-14 엘지디스플레이 주식회사 액정 프리즘
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
JP5629717B2 (ja) * 2012-03-28 2014-11-26 株式会社東芝 液晶レンズ装置及び画像表示装置
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
CN202548357U (zh) * 2012-04-26 2012-11-21 京东方科技集团股份有限公司 电取向设备
KR20130127764A (ko) * 2012-05-15 2013-11-25 삼성디스플레이 주식회사 3차원 영상 표시 방법 및 이를 수행하기 위한 3차원 영상 표시 장치
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
KR102017203B1 (ko) 2012-05-25 2019-10-22 삼성디스플레이 주식회사 액정 렌즈 및 이를 포함하는 표시 장치
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
WO2013183108A1 (fr) * 2012-06-04 2013-12-12 株式会社Pfu Dispositif, procédé et programme de traitement d'informations
CN102707539B (zh) * 2012-06-05 2015-09-09 京东方科技集团股份有限公司 一种2d-3d可切换立体显示装置及液晶透镜
US9151984B2 (en) * 2012-06-18 2015-10-06 Microsoft Technology Licensing, Llc Active reflective surfaces
KR20140002869A (ko) * 2012-06-28 2014-01-09 코오롱인더스트리 주식회사 디스플레이 장치를 위한 스위칭 렌즈 및 그 제조방법
USD711959S1 (en) 2012-08-10 2014-08-26 X6D Limited Glasses for amblyopia treatment
US20140049706A1 (en) * 2012-08-16 2014-02-20 Lg Display Co., Ltd. Stereoscopic Image Display Device
CN102830495A (zh) * 2012-08-17 2012-12-19 京东方科技集团股份有限公司 一种3d显示装置
JP6107007B2 (ja) * 2012-09-06 2017-04-05 セイコーエプソン株式会社 プロジェクター
KR20140040451A (ko) * 2012-09-26 2014-04-03 삼성전자주식회사 멀티뷰 디스플레이장치 및 그의 표시방법
US9674510B2 (en) * 2012-11-21 2017-06-06 Elwha Llc Pulsed projection system for 3D video
JP2014115464A (ja) * 2012-12-10 2014-06-26 Dainippon Printing Co Ltd 表示装置
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
KR101996655B1 (ko) * 2012-12-26 2019-07-05 엘지디스플레이 주식회사 홀로그램 표시 장치
KR20140096661A (ko) * 2013-01-28 2014-08-06 삼성전자주식회사 무안경식 반사형 3차원 칼라 디스플레이
JP6145721B2 (ja) * 2013-02-19 2017-06-14 パナソニックIpマネジメント株式会社 画像表示装置
JP2014209170A (ja) * 2013-03-22 2014-11-06 株式会社東芝 液晶光学装置、固体撮像装置、携帯情報端末、および表示装置
JP5710696B2 (ja) * 2013-06-19 2015-04-30 株式会社ジャパンディスプレイ 表示装置
TWI495926B (zh) 2013-07-08 2015-08-11 Au Optronics Corp 液晶透鏡裝置及其液晶透鏡之驅動方法
WO2015005672A1 (fr) 2013-07-09 2015-01-15 Samsung Electronics Co., Ltd. Appareil et procédé de génération d'image et support enregistrable non transitoire
KR20150017199A (ko) * 2013-08-06 2015-02-16 삼성전자주식회사 디스플레이 장치 및 제어 방법
CA2884903C (fr) 2013-10-20 2015-09-22 Gerwin Damberg Projecteurs et procedes de champ lumineux
KR20150061967A (ko) 2013-11-28 2015-06-05 삼성디스플레이 주식회사 표시장치
KR102156343B1 (ko) * 2013-12-31 2020-09-15 엘지디스플레이 주식회사 무안경 입체 디스플레이 장치
CN104252081A (zh) * 2014-03-26 2014-12-31 福州大学 一种液晶微透镜阵列及其制备方法
JP6516234B2 (ja) 2014-04-24 2019-05-22 Tianma Japan株式会社 立体画像表示装置
WO2015172236A1 (fr) 2014-05-15 2015-11-19 Mtt Innovation Incorporated Optimisation de schémas d'actionnement pour systèmes de projecteurs multiples
US10281731B2 (en) 2014-05-16 2019-05-07 The Hong Kong University Of Science & Technology 2D/3D switchable liquid crystal lens unit
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
KR102533793B1 (ko) 2014-10-21 2023-05-18 리얼디 인크. 고 출력 취급 편광 스위치
US10082675B2 (en) 2014-10-21 2018-09-25 Reald Inc. High power handling polarization switches
KR20160087461A (ko) 2015-01-13 2016-07-22 삼성디스플레이 주식회사 광 변조 장치 및 그 구동 방법
JP6697849B2 (ja) * 2015-01-21 2020-05-27 ソニー株式会社 ウェアラブルディスプレイ装置および画像表示方法
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
CN104834125A (zh) * 2015-05-21 2015-08-12 中凯光电江苏有限公司 用于2d与3d切换的液晶盒及其制备方法
CN105676466B (zh) * 2016-01-07 2017-12-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置
KR102574641B1 (ko) * 2016-07-19 2023-09-06 삼성디스플레이 주식회사 표시 장치
CN106444208A (zh) * 2016-08-31 2017-02-22 张家港康得新光电材料有限公司 显示装置以及其2d显示模式的实现方法
JP6855299B2 (ja) 2017-03-23 2021-04-07 株式会社ジャパンディスプレイ 表示装置
JP6855305B2 (ja) 2017-03-31 2021-04-07 株式会社ジャパンディスプレイ 表示装置
CN110582723B (zh) * 2017-04-03 2022-12-02 株式会社尼康 波长可调谐滤光器以及其切换和调节方法
CN110785694B (zh) 2017-05-08 2023-06-23 瑞尔D斯帕克有限责任公司 用于定向显示器的光学叠堆
JP2018189913A (ja) 2017-05-11 2018-11-29 株式会社ジャパンディスプレイ 表示装置
US20180341139A1 (en) 2017-05-23 2018-11-29 Government Of The United States, As Represented By The Secretary Of The Air Force Projection using liquid crystal polarization gratings to modulate light
TW201921060A (zh) 2017-09-15 2019-06-01 美商瑞爾D斯帕克有限責任公司 用於可切換定向顯示器的光學堆疊結構
CN107481655B (zh) * 2017-09-15 2024-02-06 寰尚空间设计装饰(上海)有限公司 一种室内led显示屏在线点亮测试工装装置
JP7062404B2 (ja) 2017-10-27 2022-05-06 株式会社ジャパンディスプレイ 光学素子
EP3707554B1 (fr) 2017-11-06 2023-09-13 RealD Spark, LLC Appareil d'affichage de confidentialité
JP7291444B2 (ja) 2018-01-25 2023-06-15 リアルディー スパーク エルエルシー ディスプレイデバイスおよび視野角制御光学素子
CN111919162B (zh) 2018-01-25 2024-05-24 瑞尔D斯帕克有限责任公司 用于隐私显示器的触摸屏
JP7495027B2 (ja) 2018-03-22 2024-06-04 リアルディー スパーク エルエルシー 光導波路、バックライト装置およびディスプレイ装置
EP3814680A4 (fr) 2018-06-29 2022-05-04 RealD Spark, LLC Empilement optique d'affichage de confidentialité
JP7113685B2 (ja) * 2018-07-10 2022-08-05 株式会社村上開明堂 ミラー表示装置およびその制御方法
US11073735B2 (en) 2018-07-18 2021-07-27 Reald Spark, Llc Optical stack for switchable directional display
CN109031849B (zh) 2018-08-31 2021-11-16 京东方科技集团股份有限公司 液晶透镜及采用该液晶透镜的成像装置
US11287677B2 (en) 2019-01-07 2022-03-29 Reald Spark, Llc Optical stack for privacy display
WO2020167680A1 (fr) 2019-02-12 2020-08-20 Reald Spark, Llc Diffuseur pour afficheur de confidentialité
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
CN112582803B (zh) * 2019-09-30 2022-08-12 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
KR20220074941A (ko) 2019-10-02 2022-06-03 리얼디 스파크, 엘엘씨 프라이버시 디스플레이 기기
EP4058830A4 (fr) 2019-11-13 2024-01-24 RealD Spark, LLC Dispositif d'affichage à réduction de luminance hors axe uniforme
EP4073560A4 (fr) 2019-12-10 2024-02-21 RealD Spark, LLC Contrôle du reflet d'un dispositif d'affichage
US11191146B2 (en) 2019-12-18 2021-11-30 Reald Spark, Llc Control of ambient light for a privacy display
US10928669B1 (en) * 2020-03-11 2021-02-23 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
TWI745905B (zh) * 2020-03-27 2021-11-11 黃旭華 自溫度焦點補償裝置
CN111427193B (zh) * 2020-04-14 2021-09-24 深圳市华星光电半导体显示技术有限公司 液晶显示装置
US11112651B1 (en) 2020-04-14 2021-09-07 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Liquid crystal display device
EP4143632A1 (fr) 2020-04-30 2023-03-08 RealD Spark, LLC Appareil d'affichage directionnel
WO2021222606A1 (fr) 2020-04-30 2021-11-04 Reald Spark, Llc Appareil d'affichage directionnel
EP4143631A4 (fr) 2020-04-30 2024-05-29 RealD Spark, LLC Appareil d'affichage directionnel
TW202204818A (zh) 2020-07-29 2022-02-01 美商瑞爾D斯帕克有限責任公司 光瞳照明裝置
CN116209945A (zh) 2020-07-29 2023-06-02 瑞尔D斯帕克有限责任公司 用于可切换定向显示器的背光源
US11693186B2 (en) * 2021-04-01 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Two-dimensional grating coupler and methods of making same
EP4321908A1 (fr) 2021-05-20 2024-02-14 Samsung Electronics Co., Ltd. Procédé et dispositif de commande de luminance
CN113325651B (zh) * 2021-06-10 2023-03-31 电子科技大学 一种液晶光学相控阵热透镜效应补偿装置、***及方法
US11892717B2 (en) 2021-09-30 2024-02-06 Reald Spark, Llc Marks for privacy display
WO2023154217A1 (fr) 2022-02-09 2023-08-17 Reald Spark, Llc Affichage de confidentialité suivi par un observateur
US11892718B2 (en) 2022-04-07 2024-02-06 Reald Spark, Llc Directional display apparatus
CN115407544B (zh) * 2022-08-19 2024-04-16 京东方科技集团股份有限公司 反射式显示面板及显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791847A1 (fr) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Dispositif d'affichage autostéréoscopique
US6288767B1 (en) * 1996-06-07 2001-09-11 Olympus Optical Company, Ltd Imaging optical system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850681A (en) * 1986-04-07 1989-07-25 Canon Kabushiki Kaisha Optical modulation device
JPS62237435A (ja) * 1986-04-08 1987-10-17 Canon Inc 測光装置
GB8623490D0 (en) 1986-09-30 1986-11-05 Bass M L Display means for stereoscopic images
EP0309774B1 (fr) * 1987-09-18 1992-11-19 F. Hoffmann-La Roche Ag Cellule à cristal liquide ferro-électrique
JP2603697B2 (ja) * 1988-08-08 1997-04-23 オリンパス光学工業株式会社 内視鏡用結像光学系
JPH0263005A (ja) * 1988-08-30 1990-03-02 Seiko Epson Corp 偏光素子
US5029982A (en) * 1989-09-11 1991-07-09 Tandy Corporation LCD contrast adjustment system
JPH03175436A (ja) * 1989-12-05 1991-07-30 Matsushita Electric Ind Co Ltd カラー画像投写装置と、その液晶表示装置
NL9002808A (nl) * 1990-12-19 1992-07-16 Philips Nv Inrichting ten behoeve van projectieweergave.
JPH0534656A (ja) * 1991-08-01 1993-02-12 Toyota Motor Corp 焦点距離可変液晶レンズ
JPH05249564A (ja) 1992-03-06 1993-09-28 Asahi Chem Ind Co Ltd 透過型スクリーン
JPH06102509A (ja) * 1992-06-17 1994-04-15 Xerox Corp 光カップリング・レンズアレイ付きフルカラー表示装置
JPH06118416A (ja) * 1992-10-08 1994-04-28 Toyota Motor Corp 液晶光屈折素子
JPH0798339A (ja) * 1993-09-28 1995-04-11 Yutaka Denki Seisakusho:Kk 電流検出パターン
CN2226775Y (zh) * 1994-05-23 1996-05-08 中国科学院长春物理研究所 一种电控双折射模式的液晶显示器
JP3299058B2 (ja) 1994-11-18 2002-07-08 株式会社富士通ゼネラル 液晶プロジェクタ
GB2296617A (en) 1994-12-29 1996-07-03 Sharp Kk Observer tracking autosteroscopic display
JP3303275B2 (ja) * 1996-01-17 2002-07-15 日本電信電話株式会社 光学素子およびその素子を用いた光学装置
JPH09203980A (ja) * 1996-01-25 1997-08-05 Matsushita Electric Ind Co Ltd 2次元/3次元画像表示スクリーン
EP0829744B1 (fr) 1996-09-12 2005-03-23 Sharp Kabushiki Kaisha Barrière de parallaxe et dispositif d'affichage
GB2317291A (en) 1996-09-12 1998-03-18 Sharp Kk Observer tracking directional display
GB2317710A (en) 1996-09-27 1998-04-01 Sharp Kk Spatial light modulator and directional display
GB9623682D0 (en) * 1996-11-14 1997-01-08 Philips Electronics Nv Autostereoscopic display apparatus
EP0848281B1 (fr) * 1996-12-13 2006-04-19 Rolic AG Cellule à cristaux liquides ferroélectriques
US5930044A (en) * 1997-01-09 1999-07-27 U.S. Philips Corporation Deflecting element having a switchable liquid crystalline material
US6020946A (en) * 1998-02-23 2000-02-01 International Business Machines Corporation Dry processing for liquid-crystal displays using low energy ion bombardment
JPH11271744A (ja) * 1998-03-24 1999-10-08 Minolta Co Ltd カラー液晶表示装置
US6590605B1 (en) * 1998-10-14 2003-07-08 Dimension Technologies, Inc. Autostereoscopic display
CN2422659Y (zh) * 2000-01-29 2001-03-07 杨克立 叠层液晶式三维图像显示屏
JP2002250895A (ja) * 2001-02-23 2002-09-06 Mixed Reality Systems Laboratory Inc 立体画像表示方法及びそれを用いた立体画像表示装置
US20020158574A1 (en) * 2001-04-27 2002-10-31 3M Innovative Properties Company Organic displays and devices containing oriented electronically active layers
US20030027017A1 (en) * 2001-07-03 2003-02-06 O'neill Mary Light emitter for a display
GB0119176D0 (en) * 2001-08-06 2001-09-26 Ocuity Ltd Optical switching apparatus
GB0129992D0 (en) * 2001-12-14 2002-02-06 Ocuity Ltd Control of optical switching apparatus
KR101122199B1 (ko) * 2005-07-07 2012-03-19 삼성전자주식회사 2차원/3차원 영상 호환용 입체영상 디스플레이 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791847A1 (fr) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Dispositif d'affichage autostéréoscopique
US6288767B1 (en) * 1996-06-07 2001-09-11 Olympus Optical Company, Ltd Imaging optical system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. BAHADUR (ED.): "Liquid Crystal Applications and Uses", ISBN: 981 02 2975 5, pages: 238 *
See also references of WO2004070467A2 *

Also Published As

Publication number Publication date
CN101216612B (zh) 2010-06-02
JP4944234B2 (ja) 2012-05-30
WO2004070467A3 (fr) 2004-09-30
CN101216613A (zh) 2008-07-09
CN100383653C (zh) 2008-04-23
CN1748179A (zh) 2006-03-15
KR20060122678A (ko) 2006-11-30
EP2299319A1 (fr) 2011-03-23
CN101216612A (zh) 2008-07-09
EP2287660A3 (fr) 2011-03-30
EP2287660A2 (fr) 2011-02-23
JP2011053692A (ja) 2011-03-17
WO2004070467A2 (fr) 2004-08-19
US8004179B2 (en) 2011-08-23
US20060098296A1 (en) 2006-05-11
US8004621B2 (en) 2011-08-23
KR100993239B1 (ko) 2010-11-10
JP2006516753A (ja) 2006-07-06
JP2011028286A (ja) 2011-02-10
US20080266388A1 (en) 2008-10-30
GB2398130A (en) 2004-08-11
US20080284844A1 (en) 2008-11-20
EP2287659A2 (fr) 2011-02-23
JP4944235B2 (ja) 2012-05-30
EP2287659A3 (fr) 2011-03-16
US7532272B2 (en) 2009-05-12
GB0302658D0 (en) 2003-03-12
CN101216613B (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
US7532272B2 (en) Switchable lens
US7215475B2 (en) Lens array structure
US7426068B2 (en) Display apparatus
US7683989B2 (en) Directional display apparatus
JP4244321B2 (ja) 光切り替え装置
KR20070082955A (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
WO2008075249A1 (fr) Structure de lentille pour un dispositif d'affichage autostéréoscopique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050809

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AU OPTRONICS CORPORATION

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20160628