TWI745905B - 自溫度焦點補償裝置 - Google Patents

自溫度焦點補償裝置 Download PDF

Info

Publication number
TWI745905B
TWI745905B TW109110428A TW109110428A TWI745905B TW I745905 B TWI745905 B TW I745905B TW 109110428 A TW109110428 A TW 109110428A TW 109110428 A TW109110428 A TW 109110428A TW I745905 B TWI745905 B TW I745905B
Authority
TW
Taiwan
Prior art keywords
temperature
fresnel lens
fresnel
power
self
Prior art date
Application number
TW109110428A
Other languages
English (en)
Other versions
TW202136839A (zh
Inventor
黃旭華
Original Assignee
黃旭華
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黃旭華 filed Critical 黃旭華
Priority to TW109110428A priority Critical patent/TWI745905B/zh
Priority to US16/882,696 priority patent/US11237304B2/en
Priority to JP2021049787A priority patent/JP2021157177A/ja
Publication of TW202136839A publication Critical patent/TW202136839A/zh
Application granted granted Critical
Publication of TWI745905B publication Critical patent/TWI745905B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一種自溫度焦點補償裝置,適於配合一透鏡組,包括至少一菲涅爾透鏡組。每一菲涅爾透鏡組在一特定溫度下的焦度為0,且為膠合透鏡。每一菲涅爾透鏡組包括一第一菲涅爾透鏡以及一第二菲涅爾透鏡。第一菲涅爾透鏡具有正焦度。第二菲涅爾透鏡具有負焦度。至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與透鏡組隨溫度變化所產生的焦度變化量之和為0。

Description

自溫度焦點補償裝置
本發明是有關於一種補償裝置,且特別是有關於一種自溫度焦點補償裝置。
由於塑膠成本較低且易於加工成形,因此,塑膠鏡片或是玻璃與塑膠混合構成的光學透鏡已經廣泛地使用於消費市場與工業領域中。然而,塑膠鏡片的折射率容易隨著溫度的改變而改變,使得光學透鏡的焦點改變。當使用環境的溫度產生變化時,光學透鏡的成像會無法維持清晰的影像,因此產生所謂的離焦現象。例如,因投影系統的光源所產生的熱量、太陽能發電系統隨大氣溫度的變化以及車載用鏡頭的使用環境的溫度變化等情況所發生的離焦現象。
若要克服離焦現象的問題,目前市場上多採用溫控系統來維持使用環境的溫度。然而,溫控系統的成本通常超出一般消費者可接受的範圍。而且,例如是太陽能發電等不易使用溫控系統而通常伴隨著嚴重的離焦現象的問題。因此,即需一種可解決 離焦現象的焦點補償裝置。
本發明提供一種自溫度焦點補償裝置,其可配合其他透鏡組,並補償透鏡組隨溫度變化所產生的焦度變化量。
本發明的一實施例的自溫度焦點補償裝置適於配合一透鏡組,其包括至少一菲涅爾透鏡組。每一菲涅爾透鏡組在一特定溫度下的焦度為0,且為膠合透鏡。每一菲涅爾透鏡組包括一第一菲涅爾透鏡以及一第二菲涅爾透鏡。第一菲涅爾透鏡具有正焦度。第二菲涅爾透鏡具有負焦度。至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與透鏡組隨溫度變化所產生的焦度變化量之和為0。
本發明的一實施例的自溫度焦點補償裝置適於配合一透鏡組,其包括至少一菲涅爾透鏡組。每一菲涅爾透鏡組在一特定溫度下的焦度為0。每一菲涅爾透鏡組包括一第一菲涅爾透鏡以及一第二菲涅爾透鏡。第一菲涅爾透鏡具有正焦度。第二菲涅爾透鏡具有負焦度。第一菲涅爾透鏡與第二菲涅爾透鏡沿其菲涅爾透鏡組的光軸上的空氣間隙大於0。至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與透鏡組隨溫度變化所產生的焦度變化量之和為0。
在本發明的一實施例中,上述的透鏡組的焦度大於0。當自溫度焦點補償裝置的溫度大於特定溫度時,第二菲涅爾透鏡在 該溫度的焦度與在特定溫度的焦度之間的差值大於0。當自溫度焦點補償裝置的溫度小於特定溫度時,第二菲涅爾透鏡在該溫度的焦度與在特定溫度的焦度之間的差值小於0。
在本發明的一實施例中,上述的第一菲涅爾透鏡的材質為玻璃。第二菲涅爾透鏡的材質為塑膠。第二菲涅爾透鏡的折射率隨溫度的改變量與第一菲涅爾透鏡的折射率隨溫度的改變量之間的比值大於10。
在本發明的一實施例中,上述的透鏡組的焦度小於0。當自溫度焦點補償裝置的溫度大於特定溫度時,第一菲涅爾透鏡在該溫度的焦度與在特定溫度的焦度之間的差值小於0。當自溫度焦點補償裝置的溫度小於特定溫度時,第一菲涅爾透鏡在該溫度的焦度與在特定溫度的焦度之間的差值大於0。
在本發明的一實施例中,上述的第一菲涅爾透鏡的材質為塑膠。第二菲涅爾透鏡的材質為玻璃。第一菲涅爾透鏡的折射率隨溫度的改變量與第二菲涅爾透鏡的折射率隨溫度的改變量之間的比值大於10。
在本發明的一實施例中,上述的第一菲涅爾透鏡具有環繞光軸的多個環形齒狀的第一菲涅爾表面。第二菲涅爾透鏡具有環繞光軸的多個環形齒狀的第二菲涅爾表面。第一菲涅爾表面與第二菲涅爾表面互相面對,且第一菲涅爾表面與第二菲涅爾表面在平行於光軸的軸上的曲率半徑之和為0。
在本發明的一實施例中,上述的第一菲涅爾透鏡具有相 對於第一菲涅爾表面的第一光學面,且第一光學面為平面。第二菲涅爾透鏡具有相對於第二菲涅爾表面的第二光學面,且第二光學面為平面。
在本發明的一實施例中,上述的第一菲涅爾透鏡具有相對於第一菲涅爾表面的第一光學面,且第一光學面為凹面或凸面。第二菲涅爾透鏡具有相對於第二菲涅爾表面的第二光學面,且第二光學面為凹面或凸面。第一光學面與第二光學面在平行於光軸的軸上的曲率半徑之和為0。
在本發明的一實施例中,上述的每一菲涅爾透鏡組滿足以下關係式: h <
Figure 109110428-A0305-02-0006-1
其中h’為第一菲涅爾透鏡的每一環形齒狀在垂直於光軸方向上的距離,d’為第一菲涅爾透鏡的該每一環形齒狀在平行於光軸方向上的最大厚度,且n為第一菲涅爾透鏡的折射率。
基於上述,在本發明實施例的自溫度焦點補償裝置中,由於每一菲涅爾透鏡組在特定溫度下的焦度為0,且至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與透鏡組隨溫度變化所產生的焦度變化量之和為0,因此自溫度焦點補償裝置可補償透鏡組隨溫度變化所產生的焦度變化量,成本較低,且適用於大部分的透鏡組。
10、10’、10”、10''':自溫度焦點補償裝置
100、100’、100A、100B、100C:菲涅爾透鏡組
110、110’:第一菲涅爾透鏡
112:第一菲涅爾表面
112a、122a:光學無效面
112b、112b’、122b:光學有效面
112c、122c:中心面
114、114’:第一光學面
120、120’:第二菲涅爾透鏡
122:第二菲涅爾表面
124、124’:第二光學面
200、200’、200”:透鏡組
210、220、230、240:透鏡
250:濾光器
300:光電轉換板
400:感測器
A:光軸
A1:軸
B、C:點
d、d1、h’、h0、h1、h1x、h2:距離
d’:厚度
f:焦距
G:空氣間隙
I:成像面
L、L1、L2:光線
P:間距
H:高度
r:半徑
ω0、ω1、ω2、ψ、ψ1、θ、θ’、θ1、θ2:角度
圖1是依據本發明實施例的一種自溫度焦點補償裝置的示意圖。
圖2是依據本發明實施例的自溫度焦點補償裝置的一種菲涅爾透鏡組的示意圖。
圖3是依據本發明實施例的自溫度焦點補償裝置的另一種菲涅爾透鏡組的示意圖。
圖4是依據本發明實施例的自溫度焦點補償裝置的光線追跡在不同溫度下的示意圖。
圖5是依據本發明實施例的另一種自溫度焦點補償裝置的示意圖。
圖6A是光線入射於菲涅爾透鏡組的示意圖。
圖6B是光線L3入射於第一菲涅爾透鏡的局部放大圖。
圖7是依據本發明實施例的自溫度焦點補償裝置配合於透鏡組為菲涅爾透鏡的示意圖。
圖8是依據本發明實施例的自溫度焦點補償裝置配合於透鏡組為車載用鏡頭的示意圖。
圖9是依據本發明實施例的菲涅爾透鏡的菲涅爾表面的局部示意圖。
圖1是依據本發明實施例的一種自溫度焦點補償裝置的 示意圖。圖2是依據本發明實施例的自溫度焦點補償裝置的一種菲涅爾透鏡組的示意圖。請同時參考圖1與圖2,本發明的一實施例的自溫度焦點補償裝置10適於配合一透鏡組200,其包括至少一菲涅爾透鏡組100。每一菲涅爾透鏡組100在一特定溫度下的焦度為0,其中特定溫度例如是室溫:攝氏25度。每一菲涅爾透鏡組100包括一第一菲涅爾透鏡110以及一第二菲涅爾透鏡120。第一菲涅爾透鏡110具有正焦度。第二菲涅爾透鏡120具有負焦度。至少一菲涅爾透鏡組100隨溫度變化所產生的焦度變化量與透鏡組200隨溫度變化所產生的焦度變化量之和為0。
在本實施例中,如圖1所示,菲涅爾透鏡組100可為膠合透鏡。在一實施例中,如圖2所示,自溫度焦點補償裝置10’的菲涅爾透鏡組100’中的第一菲涅爾透鏡110與第二菲涅爾透鏡120沿其菲涅爾透鏡組100’的光軸A上的空氣間隙G大於0。
詳細來說,在本實施例中,第一菲涅爾透鏡110具有環繞光軸A的多個環形齒狀的第一菲涅爾表面112。第二菲涅爾透鏡120具有環繞光軸A的多個環形齒狀的第二菲涅爾表面122。第一菲涅爾表面112的環形齒狀包括中心面112c、光學有效面112b以及光學無效面112a,其中中心面112c與光學有效面112b被配置為具有光聚焦或光發散的效果,且光學無效面112a對於第一菲涅爾透鏡110的預期的光聚焦或光發散沒有貢獻。再者,中心面112c與離中心面112c最近的一個光學有效面112b透過光學無效面112a的其中一個相連接,且每兩個光學有效面112b之間 透過光學無效面112a的其中一個相連接。同理,第二菲涅爾表面122的環形齒狀包括中心面122c、光學有效面122b以及光學無效面122a,且其之間的連接關係相似於第一菲涅爾表面112,在此不再贅述。
為了方便說明,圖2中的光學有效面112b、122b簡單地以平面示意。但本發明不以此為限,中心面112c、122c與光學有效面112b、122b也可為球面、非球面或曲面結合的表面。再者,圖2示意了第一與第二菲涅爾透鏡110與120為等高式菲涅爾透鏡,即,以第一菲涅爾透鏡110為例,菲涅爾表面112的每一光學有效面112b的最大厚度H相等。但本發明不以此為限,第一與第二菲涅爾透鏡110與120也可為等環式菲涅爾透鏡,即,以第一菲涅爾透鏡110為例,菲涅爾表面112的光學有效面112b之間的節距P相等。
除此之外,在本實施例中,第一菲涅爾表面112與第二菲涅爾表面122互相面對,且第一菲涅爾表面112與第二菲涅爾表面122在平行於光軸A的軸A1上的曲率半徑之和為0。
圖3是依據本發明實施例的自溫度焦點補償裝置的另一種菲涅爾透鏡組的示意圖。請先參考圖2,在本實施例中,第一菲涅爾透鏡110具有相對於第一菲涅爾表面112的第一光學面114,且第一光學面114為平面。第二菲涅爾透鏡120具有相對於第二菲涅爾表面122的第二光學面124,且第二光學面124為平面,但本發明不以此為限。請參考圖3,在一實施例中,第一光學面114 可為凹面或凸面,且第二光學面124可為凹面或凸面。第一光學面114與第二光學面124在平行於光軸A的軸A1上的曲率半徑之和為0。舉例來說,圖3中的第一菲涅爾透鏡110’的第一光學面114’為凸面,且第二菲涅爾透鏡120’的第二光學面124’為凹面。
圖4是依據本發明實施例的自溫度焦點補償裝置的光線追跡(light tracking)在不同溫度下的示意圖。圖4示意光線L、L1與L2的光線追跡。光線L例如是自溫度焦點補償裝置10’的溫度與特定溫度相等時的光線追跡,光線L1例如是自溫度焦點補償裝置10’的溫度大於特定溫度時的光線追跡,且光線L2例如是自溫度焦點補償裝置10’的溫度小於特定溫度時的光線追跡。
圖4以透鏡組200的焦度大於0為例。請參考圖4,在本實施例中,當自溫度焦點補償裝置10’的溫度大於特定溫度時,例如溫度大於等於攝氏60度,第二菲涅爾透鏡120在該溫度的焦度與在特定溫度的焦度之間的差值大於0。反之,當自溫度焦點補償裝置10’的溫度小於特定溫度時,例如溫度小於等於攝氏0度,第二菲涅爾透鏡120在該溫度的焦度與在特定溫度的焦度之間的差值小於0。也就是說,在溫度大於特定溫度時,透鏡組200產生了-△K的焦度變化,且第二菲涅爾透鏡120產生了+△K的焦度補償量。反之,在溫度小於特定溫度時,透鏡組200產生了+△K的焦度變化,且第二菲涅爾透鏡120產生了-△K的焦度補償量。即使自溫度焦點補償裝置10’的溫度與特定溫度不同,自溫度焦點補償裝置10’都能對應透鏡組200的焦度變化量產生對應的焦度補償 量,以使透鏡組200與自溫度焦點補償裝置10’的系統焦度維持不變。因此,光線L、L1、L2都能聚焦在成像面I上。
舉例來說,在本實施例中,第一菲涅爾透鏡110的材質為玻璃。第二菲涅爾透鏡120的材質為塑膠。第二菲涅爾透鏡120的折射率隨溫度的改變量與第一菲涅爾透鏡110的折射率隨溫度的改變量之間的比值大於10。也就是說,菲涅爾透鏡組100可產生的焦度補償量可僅考慮塑膠材質的第二菲涅爾透鏡120。
此外,以透鏡組200的焦度小於0為例。在一實施例中,當自溫度焦點補償裝置10’的溫度大於特定溫度時,第一菲涅爾透鏡110在該溫度的焦度與在特定溫度的焦度之間的差值小於0。當自溫度焦點補償裝置10’的溫度小於特定溫度時,第一菲涅爾透鏡110在該溫度的焦度與在特定溫度的焦度之間的差值大於0。其中,第一菲涅爾透鏡110的材質為塑膠。第二菲涅爾透鏡120的材質為玻璃。第一菲涅爾透鏡110的折射率隨溫度的改變量與第二菲涅爾透鏡120的折射率隨溫度的改變量之間的比值大於10。也就是說,菲涅爾透鏡組100可產生的焦度補償量可僅考慮塑膠材質的第一菲涅爾透鏡110。
基於上述,在本發明實施例的自溫度焦點補償裝置10、10’中,由於每一菲涅爾透鏡組100、100’在特定溫度下的焦度為0,且至少一菲涅爾透鏡組100、100’隨溫度變化所產生的焦度變化量與透鏡組200隨溫度變化所產生的焦度變化量之和為0,因此自溫度焦點補償裝置10、10’可補償透鏡組隨溫度變化所產生的焦 度變化量。相較於使用控溫裝置等處理方式,本發明實施例的自溫度焦點補償裝置10、10’成本較低,且適用於大部分的透鏡組。再者,由於菲涅爾透鏡組100可為膠合透鏡,因此自溫度焦點補償裝置10的系統長度較小。此外,由於菲涅爾透鏡組100’中的第一菲涅爾透鏡110與第二菲涅爾透鏡120沿其菲涅爾透鏡組100’的光軸A上的空氣間隙G可大於0,菲涅爾透鏡組100’的空氣間隙G可做為因溫度變化產生的體積上的改變的補償空間,因此可減少菲涅爾透鏡組100’因溫度變化產生的系統形變,有利於維持自溫度焦點補償裝置10’的成像品質。
除此之外,在本發明實施例的自溫度焦點補償裝置10、10’中,第一菲涅爾透鏡110的第一菲涅爾表面112與第二菲涅爾透鏡120第二菲涅爾表面122在平行於光軸A的軸A1上的曲率半徑之和為0。在製程上可先形成需較高溫度成形的玻璃菲涅爾透鏡,之後再以此玻璃菲涅爾透鏡做為模具之一而形成可在較低溫度成形的塑膠菲涅爾透鏡。因此,生產者可減少模具的開發成本。再者,第一菲涅爾透鏡110、110’的第一光學面114、114’與第二菲涅爾透鏡120、120’的第二光學面124、124’可為平面、凹面或凸面,使用者可針對不同的透鏡組的空間安排而設計合適形狀的自溫度焦點補償裝置10、10’,因此對於使用者而言較為方便。
圖5是依據本發明實施例的另一種自溫度焦點補償裝置的示意圖。請參考圖5,在一實施例中,自溫度焦點補償裝置10”可包括多個菲涅爾透鏡組100A、100B、100C。也就是說,自溫度 焦點補償裝置10”中的每一組菲涅爾透鏡組100A、100B、100C都可對透鏡組200隨溫度變化所產生的焦度變化量做出補償。因此,使用者可針對透鏡組200的焦度變化量的大小對應地增加或減少自溫度焦點補償裝置10”中的菲涅爾透鏡組100A、100B、100C的數量。
圖6A是光線入射於菲涅爾透鏡組的示意圖。圖6B是光線L3入射於第一菲涅爾透鏡的局部放大圖。在圖6A中,光線L3在未入射至第一菲涅爾透鏡110與光軸A之間的夾角為θ,即光線L3的入射角,且光線L4在未入射至第一菲涅爾透鏡110與光軸A之間的夾角為θ’,即光線L4的入射角。請參考圖6A與6B,當光線L4以θ’的夾角入射於菲涅爾透鏡組100時,光線L4會穿過光學無效面112a、122a而不會對第一與第二菲涅爾透鏡110與120的聚光或光發散做出貢獻,並形成了雜散光。因此,光線L4對自溫度焦點補償裝置10的成像造成不利的影響。反之,光線L3以θ的夾角入射於菲涅爾透鏡組100,並穿過光學有效面112b、122b是較佳的情況。
詳細來說,依據圖6B中光線L3的光線追跡,可得到d=h/tan ψ,sin θ=n sin ψ
Figure 109110428-A0305-02-0013-2
等關係式,其中ψ為光線L3穿過第一光學面114後與光軸A之間的夾角,即光線L3的折射角,d為第一光學面114到穿過第一 光學面114後的光線L3在光學無效面112a的交點之間的距離,h為光線L3入射於第一光學面114的位置至光學無效面112a之間的距離,且n為第一菲涅爾透鏡110的折射率。一般而言,sinθ<1,因此可得到
Figure 109110428-A0305-02-0014-4
h<
Figure 109110428-A0305-02-0014-5
等關係式。依據圖6B的幾何關係,將距離d延伸至距離d’,可進一步得到公式(1)
Figure 109110428-A0305-02-0014-3
其中h’為第一菲涅爾透鏡110的每一環形齒狀在垂直於光軸A方向上的距離(也就是光學有效面112b的相鄰的兩個光學有效面112b在垂直於光軸A方向上的距離),d’為第一菲涅爾透鏡110的該每一環形齒狀在平行於光軸A方向上的最大厚度。以三菱EP-8000的塑膠材料為例,其折射率n約為1.66。若第一菲涅爾透鏡110的鏡片厚度為1mm(即d’為1mm),且第一菲涅爾透鏡110的鏡片半徑為10mm,依據公式(1),因此可取得第一菲涅爾透鏡110的每一環形齒狀在垂直於光軸A方向上的平均距離為0.7547mm(即h’為0.7547mm)。因此,第一菲涅爾透鏡110較佳為至少需14(10/0.7547=13.25)個環形齒狀。
基於上述,當菲涅爾透鏡組100滿足上述公式(1)的條件限制時,光學系統可有避免眩光(flare),因此可提高光學系統的成像品質。
圖7是依據本發明實施例的自溫度焦點補償裝置配合於透鏡組為菲涅爾透鏡的示意圖。請參考圖7,在一實施例中,自溫度焦點補償裝置10'''包括菲涅爾透鏡組100A與100B。透鏡組200’為菲涅爾透鏡。再者,光線依序通過透鏡組200’與菲涅爾透鏡組100A、100B而聚焦於光電轉換板300。圖7的使用狀況例如是太陽能發電系統。對於太陽能發電系統而言,因菲涅爾透鏡可在透鏡尺寸變大的情況下,其透鏡的厚度能有效縮減的優點,因此太陽能發電系統通常選擇菲涅爾透鏡做為透鏡組200’。然而,在夏天正午時間,太陽能發電系統的使用環境可遠高於特定溫度。反之,在冬天,太陽能發電系統的使用環境可低於特定溫度。例如,在沙漠的環境下,夏天正午的氣溫可達攝氏80度,且冬天可低於攝氏-20度。例如,透鏡組200’從室溫攝氏25度到攝氏85度可產生0.3毫米的焦度變化量。或者是,於地球之外的使用環境,例如月球、火星等,其太陽能發電系統的使用環境的溫度變化更大。在此實施例中,第一菲涅爾透鏡110例如是使用小原光學SBSM18的玻璃材料,其折射率約為1.638,且第二菲涅爾透鏡120例如是使用三菱EP-5000的塑膠材料,其折射率約為1.636。因此,使用本發明實施例的自溫度焦點補償裝置10'''有利於提高太陽能發電系統的發電效率。
圖8是依據本發明實施例的自溫度焦點補償裝置配合於透鏡組為車載用鏡頭的示意圖。請參考圖8,在另一實施例中,透鏡組200”為車載用鏡頭,其包括塑膠材料的透鏡210、220與240,玻璃材料的透鏡230,以及紅外截止濾光器250。在圖8中,光線依序通過透鏡組200”與菲涅爾透鏡組100A、100B而成像於感測器400上,其中感測器400可為互補金氧半導體(Complementary Metal-Oxide Semiconductor,CMOS)。在此實施例中,第一菲涅爾透鏡110例如是使用小原光學SBAH11的玻璃材料,其折射率約為1.667,且第二菲涅爾透鏡120例如是使用三菱EP-8000的塑膠材料,其折射率約為1.66。由於車載用鏡頭的使用情境較為複雜,難以使光學系統的成像品質維持在最佳的狀況。因此,在本發明實施例的自溫度焦點補償裝置10'''的成本較低的情況下,透鏡組200”搭配自溫度焦點補償裝置10'''來做為焦度變化量的補償,對於使用者而言是更佳的選擇。
除此之外,為了滿足上述本發明實施例的自溫度焦點補償裝置10、10’、10”、10'''的焦度變化量的補償效果以及提供較佳的成像效果,以下將簡述如何設計等高式菲涅爾透鏡的菲涅爾表面。
圖9是依據本發明實施例的菲涅爾透鏡的菲涅爾表面的局部示意圖。請參考圖9,首先,依據造鏡者公式(Lensmaker's equation),可取得公式(2),
Figure 109110428-A0305-02-0017-6
其中K為焦度,f為焦距,n為第一菲涅爾透鏡110在特定溫度下的折射率,以及r為中心面112c的半徑。依據圖9的幾何關係,可取得公式(3)-(4), r 2 =h0 2 +(r-d1) 2 (3)
Figure 109110428-A0305-02-0017-7
其中h0為光軸A至離中心面112c最近的光學有效面112b之間的距離,以及d1=r/2。再依據折射定律(Snell’s Law)以及三角函數的關係,可取得公式(5)-(6)。
n sin θ1=sin ω1=sin(ψ1-θ1) (5)
Figure 109110428-A0305-02-0017-8
再者,依據圖9中點B與C處的幾何關係,可取得公式(7)-(8)
Figure 109110428-A0305-02-0017-9
Figure 109110428-A0305-02-0017-10
其中h1為離中心面112c最近的光學有效面112b到下一個光學有效面112b之間的距離,即離中心面112c最近的光學有效面112b的尺寸。再假設角度ω1與ω2相近,依據公式(8),可計算出tanω1。 依據公式(7),可計算出距離h1。依據公式(6)與(8),可計算出角度θ1。
除此之外,考量第一菲涅爾透鏡110在欲補償的溫度下的焦度與在特定溫度下的焦度,可取得公式(9)
Figure 109110428-A0305-02-0018-11
其中n’為欲補償的溫度下的折射率。因此,依據公式(2)與d1=r/2,可計算出距離d1。依據公式(3),可計算出距離h0。依據公式(5)-(6),可計算出距離h1。依此類推,依據圖9中的幾何關係以及上述公式,例如公式(5)-(6),可再計算出圖9中的角度θ2與距離h2,其中距離h2為離中心面112c最近的光學有效面112b的下一個光學有效面112b’的尺寸,以及第一菲涅爾透鏡110的其他的光學有效面112b的尺寸。
綜上所述,在本發明實施例的自溫度焦點補償裝置中,由於每一菲涅爾透鏡組在特定溫度下的焦度為0,且至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與透鏡組隨溫度變化所產生的焦度變化量之和為0,因此自溫度焦點補償裝置可補償透鏡組隨溫度變化所產生的焦度變化量。相較於使用控溫裝置的處理方式,本發明實施例的自溫度焦點補償裝置成本較低,且適用於大部分的透鏡組。再者,由於菲涅爾透鏡組可為膠合透鏡,因此自溫度焦點補償裝置的系統長度較小。此外,由於菲涅爾透鏡組中的第一菲涅爾透鏡與第二菲涅爾透鏡沿其菲涅爾透鏡組的光軸上 的空氣間隙可大於0,菲涅爾透鏡組的空氣間隙可做為因溫度變化產生的體積上的改變的補償空間,因此可減少菲涅爾透鏡組因溫度變化產生的系統形變,有利於維持自溫度焦點補償裝置的成像品質。
10:自溫度焦點補償裝置 100:菲涅爾透鏡組 110:第一菲涅爾透鏡 120:第二菲涅爾透鏡 200:透鏡組 A:光軸

Claims (10)

  1. 一種自溫度焦點補償裝置,適於配合一透鏡組,包括:至少一菲涅爾透鏡組,其中每一菲涅爾透鏡組在一特定溫度下的焦度為0,且為膠合透鏡,並包括:一第一菲涅爾透鏡,具有正焦度;以及一第二菲涅爾透鏡,具有負焦度;其中,在一溫度範圍內,該至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與該透鏡組隨溫度變化所產生的焦度變化量之和接近0。
  2. 一種自溫度焦點補償裝置,適於配合一透鏡組,包括:至少一菲涅爾透鏡組,其中每一菲涅爾透鏡組在一特定溫度下的焦度為0,並包括:一第一菲涅爾透鏡,具有正焦度;以及一第二菲涅爾透鏡,具有負焦度,該第一菲涅爾透鏡與該第二菲涅爾透鏡沿其菲涅爾透鏡組的光軸上的空氣間隙大於0;其中,在一溫度範圍內,該至少一菲涅爾透鏡組隨溫度變化所產生的焦度變化量與該透鏡組隨溫度變化所產生的焦度變化量之和接近0。
  3. 如請求項1或請求項2中任一項所述的自溫度焦點補償裝置,其中該透鏡組的焦度大於0,當該自溫度焦點補償裝置的溫度大於該特定溫度時,該第二菲涅爾透鏡在該溫度的焦度與在該特定溫度的焦度之間的差值大於0,當該自溫度焦點補償裝置的溫度小於該特定溫度時,該第二菲涅爾透鏡在該溫度的焦度與在該特定溫度的焦度之間的差值小於0。
  4. 如請求項3所述的自溫度焦點補償裝置,其中該第一菲涅爾透鏡的材質為玻璃,該第二菲涅爾透鏡的材質為塑膠,該第二菲涅爾透鏡的折射率隨溫度的改變量與該第一菲涅爾透鏡的折射率隨溫度的改變量之間的比值大於10。
  5. 如請求項1或請求項2中任一項所述的自溫度焦點補償裝置,其中該透鏡組的焦度小於0,當該自溫度焦點補償裝置的溫度大於該特定溫度時,該第一菲涅爾透鏡在該溫度的焦度與在該特定溫度的焦度之間的差值小於0,當該自溫度焦點補償裝置的溫度小於該特定溫度時,該第一菲涅爾透鏡在該溫度的焦度與在該特定溫度的焦度之間的差值大於0。
  6. 如請求項5所述的自溫度焦點補償裝置,其中該第一菲涅爾透鏡的材質為塑膠,該第二菲涅爾透鏡的材質為玻璃,該第一菲涅爾透鏡的折射率隨溫度的改變量與該第二菲涅爾透鏡的折射率隨溫度的改變量之間的比值大於10。
  7. 如請求項1或請求項2中任一項所述的自溫度焦點補償裝置,其中該第一菲涅爾透鏡具有環繞該光軸的多個環形齒狀 的第一菲涅爾表面,該第二菲涅爾透鏡具有環繞該光軸的多個環形齒狀的第二菲涅爾表面,該第一菲涅爾表面與該第二菲涅爾表面互相面對,且該第一菲涅爾表面與該第二菲涅爾表面在平行於該光軸的軸上的曲率半徑之和為0。
  8. 如請求項7所述的自溫度焦點補償裝置,其中該第一菲涅爾透鏡具有相對於該第一菲涅爾表面的第一光學面,且該第一光學面為平面,該第二菲涅爾透鏡具有相對於該第二菲涅爾表面的第二光學面,且該第二光學面為平面。
  9. 如請求項7所述的自溫度焦點補償裝置,其中該第一菲涅爾透鏡具有相對於該第一菲涅爾表面的第一光學面,且該第一光學面為凹面或凸面,該第二菲涅爾透鏡具有相對於該第二菲涅爾表面的第二光學面,且該第二光學面為凹面或凸面,該第一光學面與該第二光學面在平行於該光軸的軸上的曲率半徑之和為0。
  10. 如請求項7所述的自溫度焦點補償裝置,其中每一菲涅爾透鏡組滿足以下關係式: h<
    Figure 109110428-A0305-02-0023-13
    其中h’為該第一菲涅爾透鏡的每一環形齒狀在垂直於該光軸方向上的距離,d’為該第一菲涅爾透鏡的該每一環形齒狀在平行於該光軸方向上的最大厚度,且n為該第一菲涅爾透鏡的折射率。
TW109110428A 2020-03-27 2020-03-27 自溫度焦點補償裝置 TWI745905B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109110428A TWI745905B (zh) 2020-03-27 2020-03-27 自溫度焦點補償裝置
US16/882,696 US11237304B2 (en) 2020-03-27 2020-05-25 Self-temperature focus compensation device
JP2021049787A JP2021157177A (ja) 2020-03-27 2021-03-24 自己温度焦点補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109110428A TWI745905B (zh) 2020-03-27 2020-03-27 自溫度焦點補償裝置

Publications (2)

Publication Number Publication Date
TW202136839A TW202136839A (zh) 2021-10-01
TWI745905B true TWI745905B (zh) 2021-11-11

Family

ID=77854511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110428A TWI745905B (zh) 2020-03-27 2020-03-27 自溫度焦點補償裝置

Country Status (3)

Country Link
US (1) US11237304B2 (zh)
JP (1) JP2021157177A (zh)
TW (1) TWI745905B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947282B2 (ja) * 2018-02-22 2021-10-13 株式会社ニコン 接眼光学系およびヘッドマウントディスプレイ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200512478A (en) * 2002-04-01 2005-04-01 Raytheon Co Fixed focus, optically athermalized, diffractive infrared zoom objective lens
CN1748179A (zh) * 2003-02-05 2006-03-15 奥奎帝有限公司 可切换的双折射柱面透镜阵列
CN101144905A (zh) * 2006-09-15 2008-03-19 株式会社理光 光学衍射元件,光学扫描***,光扫描器和图像形成装置
US20100302654A1 (en) * 2006-12-06 2010-12-02 Takashi Amano Fresnel lens
CN107076380A (zh) * 2014-09-09 2017-08-18 黑拉许克联合股份有限公司 用于车辆的照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260828A (en) * 1992-03-27 1993-11-09 Polaroid Corporation Methods and means for reducing temperature-induced variations in lenses and lens devices
WO2000008641A1 (en) * 1998-08-07 2000-02-17 Koninklijke Philips Electronics N.V. Optical scanning device and optical apparatus for reading and/or writing information in an information plane provided with such a device
WO2000013048A1 (en) * 1998-08-28 2000-03-09 Ksm Associates, Inc. Optical systems employing stepped diffractive surfaces
EP1355180B1 (en) * 2002-04-19 2009-03-11 Lockheed Martin Corporation Refractive multispectral objective lens system and methods of selecting optical materials therefor
JP2009047732A (ja) * 2007-08-13 2009-03-05 Toyota Central R&D Labs Inc 集光光学系及びレーザ発振装置
CN201344650Y (zh) 2009-02-10 2009-11-11 吴兆流 菲涅尔聚光器
US9187360B2 (en) * 2012-04-20 2015-11-17 Schott Corporation Glasses for the correction of chromatic and thermal optical aberations for lenses transmitting in the near, mid, and far-infrared sprectrums
EP2687889A1 (en) * 2012-07-16 2014-01-22 MBDA UK Limited Athermalized infrared objective having three lenses
CN107102509B (zh) 2016-02-19 2020-05-26 台湾扬昕股份有限公司 投影屏幕
US10215890B2 (en) * 2016-05-18 2019-02-26 Google Llc Optical field curvature control using multi-layer Fresnel lens in VR display
CN106773008B (zh) 2016-11-18 2020-02-21 玉晶光电(厦门)有限公司 目镜光学***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200512478A (en) * 2002-04-01 2005-04-01 Raytheon Co Fixed focus, optically athermalized, diffractive infrared zoom objective lens
CN1748179A (zh) * 2003-02-05 2006-03-15 奥奎帝有限公司 可切换的双折射柱面透镜阵列
CN101144905A (zh) * 2006-09-15 2008-03-19 株式会社理光 光学衍射元件,光学扫描***,光扫描器和图像形成装置
US20100302654A1 (en) * 2006-12-06 2010-12-02 Takashi Amano Fresnel lens
CN107076380A (zh) * 2014-09-09 2017-08-18 黑拉许克联合股份有限公司 用于车辆的照明装置

Also Published As

Publication number Publication date
US11237304B2 (en) 2022-02-01
JP2021157177A (ja) 2021-10-07
TW202136839A (zh) 2021-10-01
US20210302705A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN105301746B (zh) 光学成像***
CN106154497B (zh) 光学成像***
CN105372794B (zh) 光学成像***
CN106324802B (zh) 光学成像***
USRE43842E1 (en) Panoramic imaging system
TW201930951A (zh) 光學成像鏡頭
CN106168700A (zh) 光学成像***
CN106353878A (zh) 光学成像***
CN108267837A (zh) 光学成像***
WO2010016930A2 (en) Imaging optics designed by the simultaneous multiple surface method
CN206757158U (zh) 光学成像***
TWI745905B (zh) 自溫度焦點補償裝置
CN110146967A (zh) 光学成像***
TW201928437A (zh) 四片式紅外單波長投影鏡片組
CN103197404A (zh) 红外全景环视成像***及其方法
CN105892008B (zh) 光学成像***
US10054773B2 (en) Wide-field infrared imaging system
Zhuang et al. Multi-element direct design using a freeform surface for a compact illumination system
JP2006209041A (ja) パノラマレンズ
TW201917438A (zh) 光學鏡頭
WO2013031163A1 (ja) 正立等倍レンズアレイユニット、画像読取装置および画像形成装置
CN106094183B (zh) 一种高像质内对焦式光学成像***
TW200412442A (en) Lens module for a thin scanning device
JP3860261B2 (ja) 両面が回折面からなる回折型光学素子
TW201942631A (zh) 鏡頭及其製造方法