EP1583900B1 - Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe - Google Patents

Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe Download PDF

Info

Publication number
EP1583900B1
EP1583900B1 EP03767390A EP03767390A EP1583900B1 EP 1583900 B1 EP1583900 B1 EP 1583900B1 EP 03767390 A EP03767390 A EP 03767390A EP 03767390 A EP03767390 A EP 03767390A EP 1583900 B1 EP1583900 B1 EP 1583900B1
Authority
EP
European Patent Office
Prior art keywords
fuel
pump
pressure
behavior
injection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03767390A
Other languages
English (en)
French (fr)
Other versions
EP1583900A1 (de
Inventor
Gerhard Eser
Gerhard Schopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1583900A1 publication Critical patent/EP1583900A1/de
Application granted granted Critical
Publication of EP1583900B1 publication Critical patent/EP1583900B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/028Returnless common rail system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails

Definitions

  • the invention relates to a fuel injection system with a fuel storage, which is supplied via at least a first pump fuel and the fuel is discharged via injectors, wherein the delivery pressure of the first pump in response to the fuel temperature and the evaporation behavior of the fuel from a control and / or regulating device is set, which controls the first pump.
  • the invention relates to a method for determining the delivery pressure of a first pump of a fuel injection system, which has a fuel reservoir, which is supplied via the first pump fuel and the fuel is discharged via injectors, wherein the delivery pressure of the first pump in dependence on the fuel temperature and the Evaporating behavior of the fuel is adjusted by a control and / or regulating device, which controls the first pump.
  • the fuel is conveyed with at least one pump from the tank into a fuel storage, which is also referred to as fuel rail.
  • the fuel mass from the fuel reservoir is introduced into the combustion chamber or at least one intake manifold of the internal combustion engine via injectors connected to the fuel accumulator.
  • injectors In order to inject the required fuel mass, the injectors are opened for a defined time.
  • the delivery pressure of the pump must be high enough to avoid cavitation by evaporation of fuel in the system, depending essentially on the fuel temperature and the vaporization behavior of the fuel, at which pressure the fuel evaporated.
  • the publication DE 199 51 410 A1 discloses a method and apparatus for varying a pre-pressure generated by a low pressure pump and applied by a high pressure pump. In order to keep the form as low as possible and at the same time to avoid evaporation of the fuel at the high-pressure pump, it is provided that the fuel temperature is determined in the high-pressure pump.
  • the publication EP 1 223 326 A describes a method for controlling an amount of fuel supplied during a starting operation of an internal combustion engine, wherein the determined evaporation behavior for influencing the normal engine operation is further used.
  • the invention has the object of developing the generic fuel injection systems and the generic method such that the energy consumption for the drive of the pump and thus reduced fuel consumption and cavitation by evaporation of fuel continues to be avoided.
  • the fuel injection system builds on the generic state of the art in that for determining the evaporation behavior of the fuel Lambda probe output signal is used. Since in this solution, the current evaporation behavior is received in the setting of the delivery pressure or the calculation of the setpoint for the delivery pressure, it is no longer necessary, a corresponding lead in fuel pressure for fuels with high evaporation tendency, such as the said winter fuels or said worst case - Provide fuel so that the energy consumption of the pump and thus the fuel consumption can be reduced overall. If the same amount of fuels with different evaporation behavior is injected, different lambda probe output signals are obtained. Therefore, it is possible, for example, to provide a characteristic map in which the vaporization behavior of the fuel can be deduced via the lambda probe output signal.
  • the control and / or regulating device determines the evaporation behavior of the fuel by modeling.
  • a fuel pressure sensor is preferably provided behind the pump, which supplies a fuel pressure actual value or a corresponding signal which is supplied to the control and / or regulating device.
  • the latter calculates a fuel pressure setpoint as a function of the fuel temperature and the vaporization behavior of the fuel.
  • the fuel temperature can be determined, for example, via a fuel temperature model, and the vaporization behavior of the fuel can be determined via a start amount adaptation, which will be explained in more detail later. Based on a comparison of the actual fuel pressure value with the fuel pressure setpoint then a suitable pump control can be calculated.
  • a modeling is preferred in this context, because a direct determination of the evaporation behavior of the fuel in the motor vehicle is comparatively expensive.
  • the fuel quantity adaptation algorithm is many generic fuel injection systems provided anyway to adjust the injected fuel amount. Since the quantity of fuel to be injected also depends on the vaporization behavior of the fuel, the fuel quantity adaptation algorithm makes it possible, in a particularly simple manner, to deduce directly or indirectly the vaporization behavior of the fuel.
  • the delivery pressure of the first pump is set to a minimum value at which a cavitation by evaporation of fuel is just avoided. This reduces the power consumption of the pump as much as possible.
  • control and / or regulating device determines the fuel temperature by modeling.
  • the current fuel temperature via temperatures which are in any case detected by sensors, such as, for example, the cooling water temperature and so forth.
  • embodiments of the fuel injection system according to the invention come into consideration, in which it is provided that the control and / or regulating device is supplied with the fuel temperature detected by a temperature sensor. It is advantageous if the temperature sensor detects the fuel temperature behind the pump.
  • the evaporation behavior of the fuel is determined by modeling
  • embodiments of the fuel injection system according to the invention are contemplated in which it is provided that the evaporation behavior of the fuel is determined via a fuel quantity adaptation algorithm.
  • the fuel quantity adaptation algorithm is anyway provided in many generic fuel injection systems to adjust the injected amount of fuel. Since the quantity of fuel to be injected also depends on the vaporization behavior of the fuel, the fuel quantity adaptation algorithm makes it possible, in a particularly simple manner, to deduce directly or indirectly the vaporization behavior of the fuel.
  • the first pump is a low-pressure pump
  • the low-pressure pump is connected downstream of a second pump in the form of a high-pressure pump.
  • the high-pressure pump may in particular be a high-pressure pump with a controlled or regulated mass flow.
  • the inventive method is based on the generic state of the art in that a lambda probe output signal is used to determine the vaporization behavior of the fuel.
  • the evaporation behavior of the fuel is determined by modeling.
  • the delivery pressure of the first pump is set to a minimum value at which a Cavitation by evaporation of fuel is just avoided.
  • certain embodiments of the method according to the invention can provide that the fuel temperature is determined by modeling.
  • the fuel temperature is detected via a temperature sensor.
  • the first pump is a low-pressure pump, and that the low-pressure pump is followed by a second pump in the form of a high-pressure pump.
  • the invention makes it possible, in particular, to determine the required setpoint value for the delivery pressure of a low-pressure fuel pump in such a way that cavitation (even) is avoided.
  • This can be done in an advantageous manner by modeling the fuel temperature due to different measuring relationship or model values already present in the control and / or regulating device as well as the inclusion of adaptation values from the fuel quantity adaptation, in particular the fuel quantity start adaptation.
  • the starting amount adaptation is a functionality that adjusts the amount of fuel injected at the start depending on the vaporization behavior of the fuel. For example, by lowering the fuel pressure setpoint in the flow of a high-pressure pump to a minimum value, a fuel saving due to the reduced flow rate of the low-pressure fuel pump can be achieved.
  • FIG. 1 illustrates exemplary vapor pressure curves of commercial fuels.
  • the curves for a so-called worst-case fuel, a common European winter fuel and a common European summer fuel are shown from top to bottom.
  • the representation of FIG. 1 It can be seen that worst-case fuels require higher pressure than common European summer fuels to avoid cavitation due to fuel vaporisation.
  • FIG. 2 shows a schematic representation of an embodiment of the fuel injection system according to the invention.
  • Such injection systems are also referred to as common rail injection systems.
  • the illustrated fuel injection system has a rail or a fuel accumulator 10, to which a plurality of injectors 14 are assigned, via which fuel can be injected from the fuel accumulator 10 into the combustion chambers or an intake pipe of an internal combustion engine.
  • the injectors 14 are controlled by a control and / or regulating device 16 in order to determine a time period determined by the control and / or regulating device 16 to open.
  • the fuel accumulator 10 is connected via a high-pressure line 28 to the output of a mass-flow-controlled high-pressure pump 18 in connection.
  • the suction side of the high pressure pump 18 is connected via a low pressure line 26 to the outlet of a low pressure pump 12 in connection.
  • the suction side of the low-pressure pump 12 is connected via a suction line 24 to a fuel tank 20 in connection, can be sucked from the fuel.
  • the delivery pressure of the low pressure pump 12 is adjusted by the control and / or regulating device 16. Furthermore, the control and / or regulating device 16 is supplied with the output signal of a pressure sensor 22 arranged in the low-pressure line 26.
  • the control and / or control device 16 has models for determining the fuel temperature and the vaporization behavior of the fuel currently present in the fuel tank 20. These models can evaluate the output signals from non-illustrated but already existing sensors. In particular with regard to the fuel temperature, it would alternatively be possible in a relatively simple manner to provide a temperature sensor in or on the low-pressure line 26. Based on the fuel temperature and the vaporization behavior of the fuel, the control and / or regulating device 16 calculates a delivery pressure desired value and compares this with an actual value determined via the pressure sensor 22 in order to track the delivery pressure of the low-pressure pump 12 appropriately to the delivery pressure desired value.
  • the delivery pressure target value becomes higher than that in a case where a fuel having a lower vaporization tendency is contained in the fuel tank 20. In this way, it is possible to keep the delivery pressure setpoint to a minimum value at which cavitation by evaporation of fuel is just avoided. Compared to known solutions, the energy required to drive the low pressure pump 12 is reduced, resulting in fuel economy.
  • FIG. 3 shows a flowchart illustrating an embodiment of the method according to the invention.
  • the illustrated method begins at step S1.
  • the fuel temperature is detected by modeling.
  • the already-known cooling water temperature can be used to close the instantaneous fuel temperature in a particularly advantageous manner.
  • the evaporation behavior of the fuel is detected by modeling.
  • the lambda probe output signal can be used because different lambda probe output signals are obtained when equal quantities of fuels with different vaporization behavior are injected.
  • the delivery pressure of the low-pressure pump is determined as a function of the fuel temperature and the vaporization behavior of the fuel via a characteristic map, for example via a characteristic map, as shown in FIG FIG. 1 is shown.
  • the delivery pressure of the low-pressure pump is preferably determined such that a cavitation by evaporation of fuel is just avoided.
  • the illustrated embodiment of the method according to the invention ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Kraftstoffeinspritzsystem mit einem Kraftstoffspeicher (10), dem über zumindest eine erste Pumpe (12) Kraftstoff zugeführt wird und dem über Injektoren (14) Kraftstoff abgeführt wird. Erfindungsgemäße ist vorgesehen, dass der Förderdruck der ersten Pumpe (12) in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs eingestellt wird.

Description

  • Die Erfindung betrifft ein Kraftstoffeinspritzsystem mit einem Kraftstoffspeicher, dem über zumindest eine erste Pumpe Kraftstoff zugeführt wird und dem über Injektoren Kraftstoff abgeführt wird, wobei der Förderdruck der ersten Pumpe in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs von einer Steuer- und/oder Regelungseinrichtung eingestellt wird, welche die erste Pumpe ansteuert.
  • Weiterhin betrifft die Erfindung ein Verfahren zur Bestimmung des Förderdrucks einer ersten Pumpe eines Kraftstoffeinspritzsystems, das einen Kraftstoffspeicher aufweist, dem über die erste Pumpe Kraftstoff zugeführt wird und dem über Injektoren Kraftstoff abgeführt wird, wobei der Förderdruck der ersten Pumpe in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs von einer Steuer- und/oder Regelungseinrichtung eingestellt wird, welche die erste Pumpe ansteuert.
  • Bei den gattungsgemäßen Kraftstoffeinspritzsystemen für Brennkraftmaschinen wird der Kraftstoff mit zumindest einer Pumpe aus dem Tank in einen Kraftstoffspeicher gefördert, der auch als Kraftstoffrail bezeichnet wird. Über mit dem Kraftstoffspeicher in Verbindung stehende Injektoren wird die Kraftstoffmasse aus dem Kraftstoffspeicher in den Brennraum oder zumindest ein Saugrohr der Brennkraftmaschine eingebracht. Um die geforderte Kraftstoffmasse einspritzen zu können, werden die Injektoren für eine definierte Zeit geöffnet. Der Förderdruck der Pumpe muss hoch genug sein, um eine Kavitation durch Verdampfung von Kraftstoff im System vermeiden zu können, wobei es im Wesentlichen von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs abhängt, bei welchem Druck der Kraftstoff verdampft. Selbst wenn die Kraftstofftemperatur zur Bestimmung des Sollwertes für den Förderdruck herangezogen wird, ist es immer noch erforderlich, zur sicheren Vermeidung von Kavitation einen entsprechenden Vorhalt im Kraftstoffdruck für Kraftstoffe mit hoher Verdampfungsneigung vorzusehen, beispielsweise für Winterkraftstoffe oder sogenannte "Worst-Case-Kraftstoffe".
  • Die Druckschrift DE 199 51 410 A1 offenbart ein Verfahren und eine Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und von einer Hochdruckpumpe angelegten Vordrucks. Um den Vordruck möglichst niedrig zu halten und gleichzeitig ein Verdampfen des Kraftstoffs an der Hochdruckpumpe zu vermeiden, ist vorgesehen, dass die Kraftstofftemperatur in der Hochdruckpumpe ermittelt wird.
  • Die Druckschrift EP 1 223 326 A beschreibt ein Verfahren zur Steuerung einer zugeführten Kraftstoffmenge während eines Startvorgangs einer Verbrennungskraftmaschine, wobei das ermittelte Verdampfungsverhalten zur Beeinflussung des normalen Motorbetriebs weiter verwendet wird.
  • Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäßen Kraftstoffeinspritzsysteme und die gattungsgemäßen Verfahren derart weiterzubilden, dass der Energieverbrauch für den Antrieb der Pumpe und somit der Kraftstoffverbrauch gesenkt sowie eine Kavitation durch Verdampfung von Kraftstoff weiterhin vermieden wird.
  • Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Das erfindungsgemäße Kraftstoffeinspritzsystem baut auf dem gattungsgemäßen Stand der Technik dadurch auf, dass zur Ermittlung des Verdampfungsverhaltens des Kraftstoffs ein Lambdasondenausgangssignal herangezogen wird. Da bei dieser Lösung das aktuelle Verdampfungsverhalten in die Einstellung des Förderdrucks beziehungsweise die Berechnung des Sollwertes für den Förderdruck eingeht, ist es nicht länger erforderlich, einen entsprechenden Vorhalt im Kraftstoffdruck für Kraftstoffe mit hoher Verdampfungsneigung, wie beispielsweise die genannten Winterkraftstoffe oder die genannten Worst-Case-Kraftstoffe vorzusehen, so dass der Energieverbrauch der Pumpe und damit der Kraftstoffverbrauch insgesamt gesenkt werden kann. Wird die gleiche Menge von Kraftstoffen mit unterschiedlichem Verdampfungsverhalten eingespritzt, so werden unterschiedliche Lambdasondenausgangssignale erhalten. Daher ist es beispielsweise möglich, ein Kennfeld vorzusehen, in dem über das Lambdasondenausgangssignal auf das Verdampfungsverhalten des Kraftstoffs geschlossen werden kann.
  • Vorteilhafterweise kann vorgesehen sein, dass die Steuer- und/oder Regelungseinrichtung das Verdampfungsverhalten des Kraftstoffs durch Modellbildung ermittelt. Im Falle einer Regelungseinrichtung ist hinter der Pumpe vorzugsweise ein Kraftstoffdrucksensor vorgesehen, der einen Kraftstoffdruck-Istwert beziehungsweise ein entsprechendes Signal liefert, das der Steuer- und/oder Regelungseinrichtung zugeführt wird. Letztere berechnet in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs einen Kraftstoffdruck-Sollwert. Dabei kann die Kraftstofftemperatur beispielsweise über ein Kraftstofftemperaturmodell ermittelt werden, und das Verdampfungsverhalten des Kraftstoffs kann über eine Startmengenadaption bestimmt werden, was später noch näher erläutert wird. Anhand eines Vergleichs des Kraftstoffdruck-Istwertes mit dem Kraftstoffdruck-Sollwert kann dann eine geeignete Pumpenansteuerung berechnet werden. Eine Modellbildung wird in diesem Zusammenhang bevorzugt, weil eine direkte Bestimmung des Verdampfungsverhaltens des Kraftstoffs im Kraftfahrzeug vergleichsweise aufwendig ist. Der Kraftstoffmengenadaptionsalgorithmus ist bei vielen gattungsgemäßen Kraftstoffeinspritzsystemen ohnehin vorgesehen, um die eingespritzte Kraftstoffmenge einzustellen. Da auch die einzuspritzende Kraftstoffmenge vom Verdampfungsverhalten des Kraftstoffs abhängt, kann durch den Kraftstoffmengenadaptionsalgorithmus in besonders einfacher Weise direkt oder indirekt auf das Verdampfungsverhalten des Kraftstoffs geschlossen werden.
  • Bei bevorzugten Ausführungsformen des erfindungsgemäßen Kraftstoffeinspritzsystems ist weiterhin vorgesehen, dass der Förderdruck der ersten Pumpe auf einen Mindestwert eingestellt wird, bei dem eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird. Dadurch wird der Energieverbrauch der Pumpe soweit wie möglich verringert.
  • Wie bereits erwähnt, kann bei bestimmten Ausführungsformen des erfindungsgemäßen Kraftstoffeinspritzsystems vorgesehen sein, dass die Steuer- und/oder Regelungseinrichtung die Kraftstofftemperatur durch Modellbildung ermittelt. Beispielsweise kann über ohnehin durch Sensoren erfasste Temperaturen, wie beispielsweise die Kühlwassertemperatur und so weiter, auf die momentane Kraftstofftemperatur geschlossen werden.
  • Alternativ kommen Ausführungsformen des erfindungsgemäßen Kraftstoffeinspritzsystems in Betracht, bei denen vorgesehen ist, dass der Steuer- und/oder Regelungseinrichtung die von einem Temperatursensor erfasste Kraftstofftemperatur zugeführt wird. Dabei ist es vorteilhaft, wenn der Temperatursensor die Kraftstofftemperatur hinter der Pumpe erfasst .
  • Insbesondere wenn das Verdampfungsverhalten des Kraftstoffs durch Modellbildung ermittelt wird, kommen Ausführungsformen des erfindungsgemäßen Kraftstoffeinspritzsystems in Betracht, bei denen vorgesehen ist, dass das Verdampfungsverhalten des Kraftstoffs über einen Kraftstoffmengenadaptionsalgorithmus ermittelt wird. Der Kraftstoffmengenadaptionsalgorithmus ist bei vielen gattungsgemäßen Kraftstoffeinspritzsystemen ohnehin vorgesehen, um die eingespritzte Kraftstoffmenge einzustellen. Da auch die einzuspritzende Kraftstoffmenge vom Verdampfungsverhalten des Kraftstoffs abhängt, kann durch den Kraftstoffmengenadaptionsalgorithmus in besonders einfacher Weise direkt oder indirekt auf das Verdampfungsverhalten des Kraftstoffs geschlossen werden.
  • Bei besonders bevorzugten Ausführungsformen des erfindungsgemäßen Kraftstoffeinspritzsystems ist vorgesehen, dass die erste Pumpe eine Niederdruckpumpe ist, und dass der Niederdruckpumpe eine zweite Pumpe in Form einer Hochdruckpumpe nachgeschaltet ist. Bei der Hochdruckpumpe kann es sich insbesondere um eine Hochdruckpumpe mit gesteuertem beziehungsweise geregeltem Massenstrom handeln.
  • Das erfindungsgemäße Verfahren baut auf dem gattungsgemäßen Stand der Technik dadurch auf, dass zur Ermittlung des Verdampfungsverhaltens des Kraftstoffs ein Lambdasondenausgangssignal herangezogen wird. Durch diese Lösung werden die Vorteile des erfindungsgemäßen Kraftstoffeinspritzsystems in gleicher oder ähnlicher Weise erzielt, weshalb zur Ausführung von Wiederholungen auf die entsprechenden Ausführungen verwiesen wird.
  • Gleiches gilt sinngemäß für die nachfolgend angegebenen vorteilhaften Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens, wobei auch diesbezüglich auf die entsprechenden Ausführungen im Zusammenhang mit dem erfindungsgemäßen Kraftstoffeinspritzsystem verwiesen wird.
  • Vorteilhafterweise kann vorgesehen sein, dass das Verdampfungsverhalten des Kraftstoffs durch Modellbildung ermittelt wird.
  • Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens ist vorgesehen, dass der Förderdruck der ersten Pumpe auf einen Mindestwert eingestellt wird, bei dem eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird.
  • Weiterhin können bestimmte Ausführungsformen des erfindungsgemäßen Verfahrens vorsehen, dass die Kraftstofftemperatur durch Modellbildung ermittelt wird.
  • Alternativ kann bei dem erfindungsgemäßen Verfahren vorgesehen sein, dass die Kraftstofftemperatur über einen Temperatursensor erfasst wird.
  • Dabei kann insbesondere vorgesehen sein, dass das Verdampfungsverhalten des Kraftstoffs über einen Kraftstoffmengenadaptionsalgorithmus ermittelt wird.
  • Auch im Zusammenhang mit dem erfindungsgemäßen Verfahren wird es als besonders vorteilhaft erachtet, dass die erste Pumpe eine Niederdruckpumpe ist, und dass der Niederdruckpumpe eine zweite Pumpe in Form einer Hochdruckpumpe nachgeschaltet ist.
  • Die Erfindung ermöglicht es insbesondere, den notwendigen Sollwert für den Förderdruck einer Kraftstoffniederdruckpumpe derart zu bestimmen, dass eine Kavitation (gerade) vermieden wird. Dies kann in vorteilhafter Weise durch Modellierung der Kraftstofftemperatur aufgrund verschiedener bereits in der Steuer- und/oder Regelungseinrichtung vorhandener Messbeziehungsweise Modellwerte sowie die Einrechnung von Adaptionswerten aus der Kraftstoffmengenadaption, insbesondere der Kraftstoffstartmengenadaption erfolgen. Die Startmengenadaption ist eine Funktionalität, die in Abhängigkeit des Verdampfungsverhaltens des Kraftstoffs die beim Start eingespritzte Kraftstoffmenge anpasst. Beispielsweise durch die Absenkung des Kraftstoffdruck-Sollwertes im Vorlauf einer Hochdruckpumpe auf einen Mindestwert kann eine Kraftstoffeinsparung aufgrund der verminderten Förderleistung der Kraftstoffniederdruckpumpe erreicht werden.
  • Die Erfindung wird nun unter Bezugnahme auf die beigefügten Zeichnungen anhand einer bevorzugten Ausführungsform beispielhaft erläutert.
  • Es zeigen:
  • Figur 1
    beispielhafte Dampfdruckkurven von handelsüblichen Kraftstoffen;
    Figur 2
    eine schematische Darstellung einer Ausführungsform des erfindungsgemäßen Kraftstoffeinspritzsystems; und
    Figur 3
    ein Flussdiagramm, das eine Ausführungsform des er- findungsgemäßen Verfahrens veranschaulicht.
  • Figur 1 veranschaulicht beispielhafte Dampfdruckkurven von handelsüblichen Kraftstoffen. Dabei sind von oben nach unten die Kurven für einen sogenannten Worst-Case-Kraftstoff, einen üblichen europäischen Winterkraftstoff und einen üblichen europäischen Sommerkraftstoff dargestellt. Der Darstellung von Figur 1 ist zu entnehmen, dass bei Worst-Case-Kraftstoffen ein höherer Druck als bei üblichen europäischen Sommerkraftstoffen erforderlich ist, um eine Kavitation durch Verdampfung von Kraftstoff zu vermeiden.
  • Figur 2 zeigt eine schematische Darstellung einer Ausführungsform des erfindungsgemäßen Kraftstoffeinspritzsystems. Derartige Einspritzsysteme werden auch als Common-Rail-Einspritzsysteme bezeichnet. Das dargestellte Kraftstoffeinspritzsystem weist ein Rail beziehungsweise einen Kraftstoffspeicher 10 auf, dem mehrere Injektoren 14 zugeordnet sind, über die Kraftstoff aus dem Kraftstoffspeicher 10 in die Brennräume oder ein Ansaugrohr einer Brennkraftmaschine eingespritzt werden kann. Die Injektoren 14 werden von einer Steuer- und/oder Regeleinrichtung 16 angesteuert, um für eine von der Steuer- und/oder Regeleinrichtung 16 bestimmte Zeitdauer zu öffnen. Der Kraftstoffspeicher 10 steht über eine Hochdruckleitung 28 mit dem Ausgang einer massenstromgeregelten Hochdruckpumpe 18 in Verbindung. Die Saugseite der Hochdruckpumpe 18 steht über eine Niederdruckleitung 26 mit dem Auslass einer Niederdruckpumpe 12 in Verbindung. Die Saugseite der Niederdruckpumpe 12 steht über eine Ansaugleitung 24 mit einem Kraftstofftank 20 in Verbindung, aus dem Kraftstoff angesaugt werden kann. Der Förderdruck der Niederdruckpumpe 12 wird von der Steuer- und/oder Regeleinrichtung 16 eingestellt. Weiterhin wird der Steuer- und/oder Regeleinrichtung 16 das Ausgangssignal eines in der Niederdruckleitung 26 angeordneten Drucksensors 22 zugeführt.
  • Die Regel- und/oder Steuereinrichtung 16 verfügt über Modelle zur Bestimmung der Kraftstofftemperatur und des Verdampfungsverhaltens des Kraftstoffs, der momentan in dem Kraftstofftank 20 vorhanden ist. Diese Modelle können die Ausgangssignale von nicht dargestellten jedoch ohnehin vorhandenen Sensoren auswerten. Insbesondere hinsichtlich der Kraftstofftemperatur wäre es in relativ einfacher Weise alternativ möglich, einen Temperatursensor in oder an der Niederdruckleitung 26 vorzusehen. Die Steuer- und/oder Regelungseinrichtung 16 berechnet anhand der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs einen Förderdruck-Sollwert und vergleicht diesen mit einem über den Drucksensor 22 ermittelten Istwert, um den Förderdruck der Niederdruckpumpe 12 dem Förderdruck-Sollwert geeignet nachzuführen. Sofern in dem Kraftstofftank 20 Kraftstoff mit einer höheren Verdampfungsneigung enthalten ist, ergibt sich für den Förderdruck-Sollwert ein höherer Wert als in einem Fall, in dem ein Kraftstoff mit niedrigerer Verdampfungsneigung in dem Kraftstofftank 20 enthalten ist. Auf diese Weise gelingt es, den Förderdruck-Sollwert auf einem Mindestwert zu halten, bei dem eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird. Im Vergleich zu bekannten Lösungen wird die zum Antrieb der Niederdruckpumpe 12 erforderliche Energie verringert, was zu einer Kraftstoffeinsparung führt.
  • Figur 3 zeigt ein Flussdiagramm, das eine Ausführungsform des erfindungsgemäßen Verfahrens veranschaulicht. Das dargestellte Verfahren beginnt beim Schritt S1. In Schritt S2 wird die Kraftstofftemperatur durch Modellbildung erfasst. Zu diesem Zweck kann in besonders vorteilhafter Weise über die ohnehin bekannte Kühlwassertemperatur auf die momentane Kraftstofftemperatur geschlossen werden. Im Schritt S3 wird das Verdampfungsverhalten des Kraftstoffes durch Modellbildung erfasst. Zu diesem Zweck kann beispielsweise das Lambdasondenausgangssignal herangezogen werden, weil unterschiedliche Lambdasondenausgangssignale erhalten werden, wenn gleiche Mengen von Kraftstoffen mit unterschiedlichem Verdampfungsverhalten eingespritzt werden. Im Schritt S4 wird der Förderdruck der Niederdruckpumpe in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs über ein Kennfeld bestimmt, beispielsweise über ein Kennfeld, wie es in Figur 1 dargestellt ist. Der Förderdruck der Niederdruckpumpe wird dabei vorzugsweise derart bestimmt, dass eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird. Beim Schritt S5 endet die dargestellte Ausführungsform des erfindungsgemäßen Verfahrens.

Claims (14)

  1. Kraftstoffeinspritzsystem mit einem Kraftstoffspeicher (10), dem über zumindest eine erste Pumpe (12) Kraftstoff zugeführt wird und dem über Injektoren (14) Kraftstoff abgeführt wird, wobei der Förderdruck der ersten Pumpe (12) in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs von einer Steuer- und/oder Regelungseinrichtung (16) eingestellt wird, welche die erste Pumpe (12) ansteuert,
    dadurch gekennzeichnet, dass zur Ermittlung des Verdampfungsverhaltens des Kraftstoffs ein Lambdasondenausgangssignal herangezogen wird.
  2. Kraftstoffeinspritzsystem mit einem Kraftstoffspeicher (10) nach Anspruch 1, dadurch gekennzeichnet,
    dass die Steuer- und/oder Regelungseinrichtung (16) das Verdampfungsverhalten des Kraftstoffs durch Modellbildung ermittelt.
  3. Kraftstoffeinspritzsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Förderdruck der ersten Pumpe (12) auf einen Mindestwert eingestellt wird, bei dem eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird.
  4. Kraftstoffeinspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und/oder Regelungseinrichtung (16) die Kraftstofftemperatur durch Modellbildung ermittelt.
  5. Kraftstoffeinspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    dass der Steuer- und/oder Regelungseinrichtung (16) die von einem Temperatursensor erfasste Kraftstofftemperatur zugeführt wird.
  6. Kraftstoffeinspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verdampfungsverhalten des Kraftstoffs über einen Kraftstoffmengenadaptionsalgorithmus ermittelt wird.
  7. Kraftstoffeinspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Pumpe eine Niederdruckpumpe (12) ist, und dass der Niederdruckpumpe (12) eine zweite Pumpe in Form einer Hochdruckpumpe (18) nachgeschaltet ist.
  8. Verfahren zur Bestimmung des Förderdrucks einer ersten Pumpe (12) eines Kraftstoffeinspritzsystems, das einen Kraftstoffspeicher (10) aufweist, dem über die erste Pumpe (12) Kraftstoff zugeführt wird und dem über Injektoren (14) Kraftstoff abgeführt wird, wobei der Förderdruck der ersten Pumpe (12) in Abhängigkeit von der Kraftstofftemperatur und dem Verdampfungsverhalten des Kraftstoffs von einer Steuer- und/oder Regelungseinrichtung (16) eingestellt wird, welche die erste Pumpe (12) ansteuert,
    dadurch gekennzeichnet, dass zur Ermittlung des Verdampfungsverhaltens des Kraftstoffs ein Lambdasondenausgangssignal herangezogen wird.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, dass das Verdampfungsverhalten des Kraftstoffs durch Modellbildung ermittelt wird.
  10. Verfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass der Förderdruck der ersten Pumpe (12) auf einen Mindestwert eingestellt wird, bei dem eine Kavitation durch Verdampfung von Kraftstoff gerade vermieden wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass die Kraftstofftemperatur durch Modellbildung ermittelt wird.
  12. Verfahren nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet, dass die Kraftstofftemperatur über einen Temperatursensor erfasst wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12,

    dadurch gekennzeichnet, dass das Verdampfungsverhalten des Kraftstoffs über einen Kraftstoffmengenadaptionsalgorithmus ermittelt wird.
  14. Verfahren nach einem der Ansprüche 8 bis 13,
    dadurch gekennzeichnet, dass die erste Pumpe eine Niederdruckpumpe (12) ist, und dass der Niederdruckpumpe (12) eine zweite Pumpe in Form einer Hochdruckpumpe (18) nachgeschaltet ist.
EP03767390A 2003-01-13 2003-10-28 Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe Expired - Fee Related EP1583900B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10300929 2003-01-13
DE10300929A DE10300929B4 (de) 2003-01-13 2003-01-13 Kraftstoffeinspritzsystem und Verfahren zur Bestimmung des Förderdrucks einer Kraftstoffpumpe
PCT/DE2003/003579 WO2004067948A1 (de) 2003-01-13 2003-10-28 Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe

Publications (2)

Publication Number Publication Date
EP1583900A1 EP1583900A1 (de) 2005-10-12
EP1583900B1 true EP1583900B1 (de) 2009-03-25

Family

ID=32730549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767390A Expired - Fee Related EP1583900B1 (de) 2003-01-13 2003-10-28 Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe

Country Status (4)

Country Link
US (1) US7363916B2 (de)
EP (1) EP1583900B1 (de)
DE (2) DE10300929B4 (de)
WO (1) WO2004067948A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203257A1 (de) * 2012-03-01 2013-09-05 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für ein Brennkraftmaschinen-Kraftstoffsystem

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045738B4 (de) 2004-09-21 2013-05-29 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102004062613B4 (de) * 2004-12-24 2014-02-20 Volkswagen Ag Verfahren und Vorrichtung zur Kraftstoffversorgung von Verbrennungsmotoren
DE102006027486A1 (de) * 2006-06-14 2007-12-20 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1995438B1 (de) * 2007-05-24 2012-02-22 Volvo Car Corporation Verfahren zur Steuerung einer Brennstoffpumpe zur Brennstoffinjektion
DE102007050297A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
US7634985B2 (en) * 2007-11-29 2009-12-22 Caterpillar Inc. Common rail fuel control system
DE102011005662A1 (de) * 2011-03-16 2012-09-20 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für eine Elektro-Kraftstoffpumpe
US9279371B2 (en) * 2012-04-10 2016-03-08 Ford Global Technologies, Llc System and method for monitoring an engine and limiting cylinder air charge
DE102012014252B3 (de) * 2012-07-19 2013-10-17 Audi Ag Verfahren zum Betreiben einer Kraftstofftankeinrichtung sowie entsprechende Kraftstofftankeinrichtung
US9453466B2 (en) * 2013-02-21 2016-09-27 Ford Global Technologies, Llc Methods and systems for a fuel system
US9567915B2 (en) * 2013-03-07 2017-02-14 GM Global Technology Operations LLC System and method for controlling a low pressure pump to prevent vaporization of fuel at an inlet of a high pressure pump
DE102014214284A1 (de) * 2014-07-22 2016-01-28 Robert Bosch Gmbh Verfahren zum Adaptieren eines Kraftstoffdrucks in einem Niederdruckbereich eines Kraftstoffdirekteinspritzungssystems
DE102015201414A1 (de) 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Starten einer Brennkraftmaschine
US9677494B2 (en) 2015-03-25 2017-06-13 Ford Global Technologies, Llc Method for mitigating cavitation
US9683511B2 (en) 2015-05-14 2017-06-20 Ford Global Technologies, Llc Method and system for supplying fuel to an engine
DE102015222090A1 (de) 2015-11-10 2017-05-11 Robert Bosch Gmbh Kraftstoffpumpe
DE102016203652A1 (de) * 2016-03-07 2017-09-07 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Kraftstoffpumpe
DE102016204410A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Verfahren zum Ermitteln eines Sollwertes für eine Stellgröße zur Ansteuerung einer Niederdruckpumpe
DE102016221317A1 (de) * 2016-10-28 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Qualitätsbestimmung von flüssigem Kraftstoff

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044344A (en) * 1989-10-16 1991-09-03 Walbro Corporation Pressure-responsive fuel delivery system
JPH06129322A (ja) * 1992-10-15 1994-05-10 Fuji Heavy Ind Ltd 高圧噴射式エンジンの燃料圧力制御方法
US5237975A (en) * 1992-10-27 1993-08-24 Ford Motor Company Returnless fuel delivery system
JP3067478B2 (ja) * 1993-08-19 2000-07-17 トヨタ自動車株式会社 燃料噴射装置
JP3564794B2 (ja) * 1995-05-30 2004-09-15 株式会社デンソー 内燃機関用燃料供給装置
DE19951410A1 (de) * 1999-10-26 2001-05-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hochdruckpumpe anliegenden Vordrucks
JP3829035B2 (ja) * 1999-11-30 2006-10-04 株式会社日立製作所 エンジンの燃料圧力制御装置
JP2001152992A (ja) * 1999-11-30 2001-06-05 Unisia Jecs Corp エンジンの燃料圧力制御装置
JP2001207928A (ja) * 2000-01-25 2001-08-03 Denso Corp 内燃機関の燃料供給量制御装置
US6622707B2 (en) * 2000-06-28 2003-09-23 Delphi Technologies, Inc. Electronic returnless fuel system
US6532941B2 (en) * 2000-08-29 2003-03-18 Delphi Technologies, Inc. Electronic returnless fuel system
EP1223326B1 (de) 2001-01-11 2006-03-15 Volkswagen Aktiengesellschaft Verfahren zur Steuerung einer eingespritzten Kraftstoffmenge während eines Startvorganges und zur Erkennung einer Kraftstoffqualität
DE10137315A1 (de) * 2001-07-31 2003-02-20 Volkswagen Ag Schaltungsanordnung und Verfahren zur Regelung einer elektrischen Kraftstoffpumpe in einem rücklauffreien Kraftstoff-Fördersystem
DE10152236B4 (de) * 2001-10-20 2009-09-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203257A1 (de) * 2012-03-01 2013-09-05 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für ein Brennkraftmaschinen-Kraftstoffsystem

Also Published As

Publication number Publication date
US7363916B2 (en) 2008-04-29
DE10300929A1 (de) 2004-08-19
US20060225706A1 (en) 2006-10-12
DE10300929B4 (de) 2006-07-06
EP1583900A1 (de) 2005-10-12
WO2004067948A1 (de) 2004-08-12
DE50311352D1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
EP1583900B1 (de) Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe
DE19600693B4 (de) Kraftstoffzuführsystem für Motoren mit einer Kraftstoffdruckregelung
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
EP1825125B1 (de) Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine
WO2001031184A1 (de) Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks
EP2006521B1 (de) Verfahren zur Regelung des Raildrucks während eines Startvorgangs
DE102004032909A1 (de) Kraftstoffdampfverarbeitungssystem
EP2205846B1 (de) Verfahren zur steuerung eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE10061987A1 (de) Verfahren und Vorrichtung zum Kühlen einer Kraftstoffeinspritzanlage
WO2001040638A2 (de) Kraftstoffzuführvorrichtung für einen verbrennungsmotor
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102007057452A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
DE102008055747B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
DE102018120866A1 (de) Reid-Dampfdruckerfassung von Kraftstoff mit bürstenloser Kraftstoffpumpe
WO1999002837A1 (de) System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1438495A1 (de) Verfahren, computerprogramm, steuer- und regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine
DE10036772C2 (de) Verfahren zum Betreiben eines Kraftstoffzumesssystems einer direkteinspritzenden Brennkraftmaschine
DE10141821C1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
EP1399660A1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie kraftstoffsystem für eine brennkraftmaschine
DE102010016417B4 (de) Vorrichtung zum Steuern eines Kraftstoffeinspritzsystems
WO2001069067A1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2002084096A1 (de) Verfahren, computerprogramm und steuer- und/oder regeleinrichtung zum betreiben einer brennkraftmaschine sowie brennkraftmaschine
WO1991019892A1 (de) Verfahren zur einstellung der kraftstoffördermenge einer brennkraftmaschine
DE10303444B3 (de) Verfahren zum Ermitteln eines Grundsteuersignals zum Steuern einer Kraftstoffpumpe
WO2004053325A1 (de) Vorrichtung zur aufrechterhaltung eines solldruckes im kraftstoff-hochdruckspeicher eines speichereinspritzsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

17Q First examination report despatched

Effective date: 20080725

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50311352

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181031

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311352

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501